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Introduction 
This EE-Note describes how to connect Analog 
Devices Blackfin®

 processors to SHARC® 
processors over the Serial Peripheral Interface 
(SPI). 

This document includes: 

 SPI description 

 Description of the physical layer setup 

 Configuration of the SPI 

 Programming model for the Blackfin 
processor SPI interface 

 Programming model for the SHARC 
processor SPI interface 

 Code examples as separate files 

Motivation 
Today’s embedded systems often require 
multiple processors, each for a special 
application range. A typical system using both 
Analog Devices Blackfin and SHARC processors 
could involve an audio environment.  

For SHARC processors, a typical application 
might involve high-dynamic/high-performance, 
floating-point audio processing. Blackfin 
processors, which combine both a DSP and a 
microcontroller, can act as a host to control 
SHARC processors, for example: 

 Booting SHARC processors (SPI slave 
booting) 

 Sending messages (e.g., bass, treble, volume, 
fader) 

Figure 1 shows an example signal flow diagram 
for a multiprocessor system. 
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Figure 1. System setup 

SPI Description 
SPI® is an industry-standard synchronous serial 
data link named by Motorola. The standard is not 
fully specified. The specification includes the 
hardware, but not the software protocol. 

It supports communication with multiple SPI-
compatible devices. Unlike other serial interfaces 
like I2C, the SPI peripheral is a four-wire 
interface – I2C uses two lines – consisting of two 
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data pins (MOSI and MISO), one device select pin 
(/SPISS), and a gated clock pin (SCK). The two 
data pins allow full-duplex operation to other 
SPI-compatible devices. SPI also includes 
programmable baud rates, clock phase, and clock 
polarity. The devices communicate in 
master/slave mode, where the master device 
initiates the data frame. Multiple slave devices 
are allowed with individual slave/chip select 
lines. 

A restricted subset of SPI is Microwire™ 
(µWire) from National Semiconductor, which is 
based on SPI and is compatible to it. In this EE-
Note, SPI refers to Motorola SPI. 

Typical SPI-compatible peripheral devices 
include: 

 Microcontrollers 

 Codecs 

 A/D and D/A converters 

 Sensors 

 Flash memory devices 

 SP/DIF and AES/EBU digital audio 
transmitters and receivers 

 LCD displays 

The SPI interface on Blackfin processors and 
SHARC processors provide the following 
features: 

 Full-duplex synchronous serial interface 

 8- or 16-bit word sizes (Blackfin processors) 

 32-bit word sizes (SHARC processors) 

 Little endian or big endian formats 

 Programmable baud rates, clock polarities, 
and phases 

 Master, slave, and multi-master modes 

 Open drain outputs to avoid possible driver 
conflict due to data contention and to 
support multi-master scenarios 

 Master or slave booting from an SPI device 

 DMA capability to allow data transfers 
without core overhead 

Figure 2 and Figure 3 show SPI block diagrams. 

 

Figure 2. Blackfin SPI block diagram 
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Figure 3. SHARC SPI block diagram 

For details, refer to the SPI chapter in the 
Hardware Reference manual (HRM) of your 
Blackfin processor derivative and SHARC 
processor derivative, respectively. 
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Setting Up the Physical Layer 
Figure 4 shows the connection and direction of 
the signals for a SHARC SPI slave device and a 
Blackfin SPI master device. 
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Figure 4. Master-slave connection 

An SPI master device always drives both the 
clock and slave select line signals. An SPI slave 
device is active only when two signals are 
present: a clock and an active slave select line. 

For both processors, the difference between an 
SPI master device and an SPI slave device is one 
bit (MSTR) in the SPI control register. 

For a master SPI device, the /SPISS pin can act 
as an error signal input in a multi-master 
environment. A pull-up resistor is recommended. 

The SPI slave select enable output signals 
(/SSEL) are always active low in the SPI 
protocol. Since the respective pins are not driven 
during reset, it is recommended to pull them up 
by a resistor. 

Blackfin processors require a pull-up 
resistor for the SCK line. The SHARC 
processor’s DPI provide an internal 
pull-up for the SPICLK pin, so no 
external pull-up is required here. 

Programming Model for Blackfin 
Processors 
The programming model of the Blackfin 
processor’s SPI interface is described in the 
Hardware Reference manual of your Blackfin 
derivative. The SPI flowcharts provided in the 

ADSP-BF537 HRM provide a good reference for 
setting up an SPI transfer. 

This section describes specific details of the 
programming model and is provided as an 
addendum and a brief summary of the current 
documentation. 

This EE-Note focuses on a single 
master/single slave environment, where 
the ADSP-BF537 processor acts as an 
SPI master and the ADSP-21369 
processor acts as an SPI slave device. 
The provided examples cover other set-
ups based on these two processors. 

Preparation 

Most Blackfin processors use pin multiplexing to 
reduce pin count. On the ADSP-BF537 
propcessor, most of the SPI signals are accessible 
through Port F. The five most important signals 
(SCK, MISO, MOSI, /SPISS, and SPISSEL1) are 
not multiplexed with other peripherals. 

For ADSP-BF537 processors, you must write to 
PORTF_FER to enable these SPI signals. By 
default, GPIO functionality is enabled. 

For using SPISSEL2 – SPISSEL7, refer to the SPI 
chapter and the General-Purpose PORT chapter 
of the HRM. These signals – if required – must 
also be enabled. 

Interrupts are used to signal the end of a transfer 
from/to a peripheral. Otherwise, status bits must 
be polled periodically by the processor to detect 
the end of a transfer. If the clock ratio between 
the core and the system/peripheral is high (e.g., 
SPI clock = 1 MHz, and core clock = 500 MHz), 
polling is probably not an issue. This allows 
other operations to be performed in the 
meantime. 

Both the Core Event Controller and the System 
Interrupt Controller (SIC) must be configured as 
well. Refer to the “Program Sequencer” chapter 
in the Blackfin Processor Programming 
Reference manual (PRM) and the “System 
Interrupts” chapter of the HRM for details. 
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SPI Initialization 

The SPI interface consists of a set (SPI_FLG, 
SPI_BAUD, and SPI_CTL) of system memory-
mapped registers (MMRs) for configuration. 

SPI status can be read from the SPI_STAT 
register. 

For core-driven transfers, the SPI 
transmit/receive data buffer registers 
(SPI_TDBR/SPI_RDBR) and SPI_SHADOW are also 
required. 

SPI_FLG Register 
For an SPI master device, a slave is selected by 
writing to SPI_FLG to set the appropriate slave 
select enable (FLSx) bits. 

The slave select value (FLGx) bits determine the 
value driven onto the slave select line. 

If CPHA = 1 (CPHA bit set in SPI_CTL), the output 
value is set by software control of the FLGx bits. 

If CPHA = 0, the SPI hardware sets the output 
value, and the FLGx bits are ignored. This means 
hardware selects and deselects the slave (/SSEL) 
every single word (see Figure 5 and Figure 7). 

The following figures show a transfer of 16-bit 
words over SPI. The first two words are 
illustrated. The Blackfin processor is the master 
and drives the SPI clock and slave select line. 
The SHARC processor acts as a slave, receiving 
data from the master SPI device. 

Additionally, Figure 7 and Figure 8 show an 
active low SCK version of the transmission; clock 
polarity is inverted in this case. 

 
Figure 5. CPHA = 0, active high SCK (CPOL = 0) 

 
Figure 6. CPHA = 1, active high SCK (CPOL = 0) 

 
Figure 7. CPHA = 0, active low SCK (CPOL = 1) 

 
Figure 8. CPHA = 1, active low SCK (CPOL = 1)
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SPI_BAUD 
The SPI_BAUD register allows you to set the SPI 
clock frequency. It is derived from the Blackfin 
processor’s system clock (SCK). If SCK is 
maximized to 133 MHz, this translates to an SPI 
frequency limitation of ~33 MHz (SCK/4). If 
higher frequencies are required, the Blackfin 
processor’s SPORT interface can be used to 
emulate SPI. Serial clock speeds of up to 
~66 MHz can be achieved, as the maximum 
SPORT clock frequency is SCK/2. Refer to EE-
304[4]. 

SPI_CTL 
The SPI_CTL register is described in the 
processor’s HRM. 

As mentioned in “SPI Description”, Motorola 
did not specify a (timing) protocol for SPI, and 
four different modes are typically used. These 
modes are set with the two bits: CPOL (clock 
polarity) and CPHA (clock phase). 

The SPI interface of current Blackfin processors 
– compared to the SHARC SPI interface – does 
not support 32-bit data words. 

SPI_STAT 
The SPI status register (SPI_STAT) can be 
divided in two groups of bits. The first group is 
for detecting errors, such as buffer under-run, 
buffer overflow, and conflicts in multi-master 
environments. The other group of bits shows the 
status of the transmit buffer or the receive buffer 
and the SPI status (SPI finished). 

For details, see “SPI DMA Transfer and Interrupt 
Servicing”, which shows how to use these status 
bits. 

SPI DMA Initialization 

The SPI has a single dedicated DMA channel for 
doing one transmit or one receive operation at 
the same time. 

Refer to the Direct Memory Access chapter in 
the HRM for details. 

SPI Transfer Start 

For an SPI master device, select a slave by 
writing to SPI_FLG to set the appropriate slave 
select enable (FLSx) bits. 

In SPI DMA mode, the SPI interface and the 
DMA should not be enabled during initialization. 
If both are configured properly, first start the 
DMA (DMAEN = 1) and then the SPI (SPEN = 1). 

In SPI core mode, we can enable the SPI during 
initialization, if we are running in TIMOD = 00. In 
TIMOD = 01, the SPI starts immediately when the 
SPI bit is set. Either fill SPI_TDBR first and then 
enable the SPI, or use also TIMOD = 00 for SPI 
transmit operations. For the last case, a dummy 
read access to SPI_RDBR starts the transfer. 

SPI DMA Transfer and Interrupt Servicing 

 DMA Tx DMA Rx Core Tx Core Rx 

DMA_RUN 1x - - - 

TXS 2x - 1x - 

RXS - - - ≥1x 

SPIF 1x - 1x 1x 

Table 1. Status bits to be polled 

For an SPI DMA operation, you must wait for 
the DMA interrupt to occur. That’s when the 
DMA_DONE bit is set in the DMAx_IRQ_STATUS 
register. 

The DMA_DONE interrupt is asserted when 
the last memory access (read or write) 
has completed. To transmit to a 
peripheral (memory read), there may be 
up to four data words in the channel’s 
DMA FIFO when the interrupt occurs. 

The service routine for an SPI receive or SPI 
transmit must first clear the interrupt source. 
Write a 1 to the DMA_DONE bit (W1C – write-1-to-
clear). Otherwise, an interrupt will be latched 
again. 
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If, however, the application needs to 
know when the final data item is 
actually transferred to the peripheral, the 
application can test or poll the DMA_RUN 
bit. As long as there is pending data in 
the FIFO, the DMA_RUN bit is 1. 

Poll the DMA_RUN bit (DMA_RUN = 1) in the 
DMAx_IRQ_STATUS register until it goes low 
(DMA_RUN = 0). 

When using DMA for SPI transmit, the 
DMA_DONE interrupt signifies that the 
DMA FIFO is empty. However, at this 
point there may still be data in the 
PERIPHERAL (SPI) DMA FIFO 
waiting to be transmitted. Therefore, 
software needs to poll TXS in the 
SPI_STAT register until it goes low for 
two successive reads, at which point the 
SPI DMA FIFO will be empty. 

The TXS bit defines when the transmit buffer can 
be filled, but the data might be still in the SPI 
shift register. 

The SPIF bit is set one-half the SCK period after 
the last SCK edge. That’s when the last bit of the 
word is shifted out, and the SPI transfer is 
finished. 

The RXS bit defines when the receive buffer can 
be read. The end of a single word transfer occurs 
when the RXS bit is set, indicating that a new 
word has just been received and latched into the 
receive buffer, SPI_RDBR. For a master SPI, RXS 
is set shortly after the last sampling edge of SCK. 
For a slave SPI, RXS is set shortly after the last 
SCK edge, regardless of CPHA or CPOL. The 
latency is typically a few SCLK cycles and is 
independent of TIMOD and the baud rate. If 
configured to generate an interrupt when 
SPI_RDBR is full (TIMOD = 00), the interrupt goes 
active one SCLK cycle after RXS is set. When not 
relying on this interrupt, the end of a transfer can 
be detected by polling the RXS bit. 

Polling is not required for a DMA receive 
operation as the interrupt occurs after the last 

memory write operation of the DMA. For a 
DMA transmit operation, you need to take care 
of the data latency between the DMA FIFOs and 
SPI DMA FIFOs. 

SPI Core Transfer 

For an SPI core transfer, you can also use 
interrupts. But that’s not very meaningful if the 
SPI clock to core clock ratio is close to one. You 
would have an interrupt for every single word, 
and the MIPS performance would be reduced 
dramatically. 

Therefore, it is good practice to set up a 
hardware loop (a feature of the Blackfin 
Sequencer) for data transfer. Inside this loop, the 
appropriate status bits must be polled every 
single word between every single transfer. 

SPI Transfer Stop 

Stopping the SPI is similar to the start procedure. 
For SPI DMA transfer, stop the components in 
the reversed order. Deselect the slave by clearing 
the appropriate slave select enable (FLSx) bit. 
Then stop the DMA, and at least disable the SPI. 

Additionally, you can reset the SPI_STATUS 
register by clearing error bits (W1C).To clear the 
RXS bit, do a dummy read from SPI_RDBR. 

Summary: DMA and Core SPI Transfer 

The Blackfin SPI Controller provides two ways 
to perform a transfer. You can set up a DMA-
based transfer or use the processor core to access 
the SPI_TDBR or SPI_RDBR registers, driving the 
transfer, set up with the two TIMOD (transfer 
initiation mode) bits. 

A DMA-based transfer reduces the processor’s 
load – other computations or tasks can be done in 
parallel. If you need an acknowledgement that 
the transfer (the DMA) has finished, enable 
interrupts; otherwise, DMA status bits must be 
polled by the processor. 
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DMA-based transfer is preferred, especially for 
large transfers. 

There is one disadvantage regarding a DMA-
based transfer when the Blackfin processor is 
both in DMA receive mode (TIMOD = 10) and a 
master (MSTR = 1). In this case, the SPI still 
drives the SPI clock and slave select line even 
when the last word is received and the transfer 
should be completed; the value in the current 
inner loop count register is zero 
(DMAx_CURR_X_XOUNT = 0). This is because the 
SPI and DMA are not synchronized with regard 
to word count. Every read access to SPI_RDBR 
(never mind if DMA or core is doing this) drives 
the SPI to fetch new data on the MISO line until 
the SPI is stopped (SPE = 0). 

If the connected slave has no clue about the 
number of words to be transmitted and/or no 
counter is running to stop the slave at the right 
time, the slave might accidentally be driven to 
transfer more words than required. 

In receive mode with DMA 
(TIMOD = 10), as long as there is data in 
the SPI DMA FIFO (i.e., the FIFO is not 
empty), the SPI continues to request a 
DMA write to memory. The DMA 
engine continues to read a word from 
the SPI DMA FIFO and writes to 
memory until the SPI DMA word count 
register transitions from 1 to 0. The SPI 
continues receiving words until SPI 
DMA mode is disabled. 

The whole FIFO depth for SPI DMA 
transfers is 6: DMA peripheral (SPI) 
FIFO (4 16/8 bit words) + SPI_TDBR / 
SPI_RDBR + SPI interface shift register. 
Refer to Figure 10. 

 

Figure 9. SPI core FIFO / bus structure 

In this case, or if only a few data words (e.g. 
short control messages) have to be send, a core-
driven transfer is the preferred method. There are 
two transfer initiation modes: one mode starts the 
transfer with a read of SPI_RDBR (TIMOD = 00), 
and the other mode starts with a write to 
SPI_TDBR (TIMOD = 01). The second mode 
should not be used as the transfer starts 
immediately when the SPI is enabled (SPE = 1). 

This means a core-based SPI master transmit and 
receive should be done with TIMOD bits set to 00. 
For an SPI receive, simply read the SPI_RDBR 
data buffer. For an SPI transmit, first fill up the 
SPI_TDBR data buffer followed by a read access 
to SPI_RDBR which starts the transfer. 

With regard to debugging, a core SPI transfer 
can be monitored more easily than an SPI DMA 
transfer. For example, every single word can be 
transferred in single-step mode. A running DMA 
cannot be stopped. If the core is in “halt” status, 
the DMA is running in the background. 

 

Figure 10. SPI DMA FIFO / bus structure 
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The very first access to SPI_RDBR is a 
dummy access; the first word is invalid. 
Every access to SPI_RDBR drives the SPI 
interface to fetch the next data word. 

After the last transfer, the final word 
should be read out of the SPI_SHADOW 
data buffer (which does not drive 
another read transfer), or disable first 
SPI (SPE = 0) before accessing 
SPI_RDBR the last time. Only an access 
to SPI_RDBR will clear RXS (read data 
buffer full) bit. 

Blackfin Processor SPI Examples 

The examples provided in the associated .ZIP 
file are for an SPI master and an SPI slave 
implementation for ADSP-BF537 Blackfin 
processors. For more details, refer to the 
‘README.txt’ file. 

Programming Model for SHARC 
Processors 

The SPI port is available on ADSP-21161N, 
ADSP-2126x, ADSP-2136x, and ADSP-2137x 
SHARC processors. The programming model 
discussed below applies mainly to ADSP-2126x, 
ADSP-2136x, and ADSP-2137x processors. For 
ADSP-21161N processors, the SPI programming 
model is different. This section describes some 
specific details of the programming model. 
It serves as an addendum and brief summary of 
the current documentation in the HRM. 

Preparation 

Each SPI port on SHARC processors has the 
following signals: 

 SPICLK 

 SPIDS# 

 MOSI 

 MISO 

 SPI slave select signals (SPIFLG3–0) 

ADSP-2116x and ADSP-2126x processors have 
one SPI port, and the SPI signals are available on 
the dedicated hardware pins. The Flag 3 – 0 pins 
are used as the slave select signals when the SPI 
is the master.  

ADSP-21362/3/4/5/6 processors have two SPI 
ports in which the primary SPI signals are 
available on the dedicated hardware pins and the 
secondary SPI can be routed through the Signal 
Routing Unit (SRU) to the Digital Application 
Interface (DAI) pins of the processors. The 
primary SPI port uses the Flag 3-0 pins as the 
slave select signals where as the secondary SPI 
port has 4 dedicated SPIFLGB3-0 signals which 
can be routed to any of the DAI pins. 

For ADSP-21367/8/9 and ADSP-2137x 
processors, both SPI ports can be routed through 
the Signal Routing Unit 2 (SRU2) to the Digital 
Peripheral Interface (DPI) pins of the processors. 
Both the SPI ports on the ADSP-21367/8/9 and 
ADSP-2137x processors have dedicated 
SPIFLG3–0 signals as slave select signals when 
the SPI is used as master. 

The DAI pins and DPI pins on SHARC 
processors have an internal pull-up resistor. By 
default, this pull-up resistor is enabled and can 
be disabled by writing into the corresponding 
pull-up enable register. When the SPI signals are 
routed to the DAI or DPI pins, adding the 
external pull-up may not be needed. 

For ADSP-21367/8/9 and ADSP-2137x 
processors, when the SPI is used as the master 
the following must be taken care of in the 
application while routing the SPICLK signal using 
SRU2. When CLKPL = 0, the pin enable signal of 
the DPI pin to which the SPICLK is routed should 
be configured as follows: 
SRU(SPI_CLK_O,DPI_PB03_I); 
SRU(HIGH,DPI_PBEN03_I); 

When CLKPL = 1, the pin enable signal of the 
DPI pin to which the SPICLK is routed should be 
configured as follows: 
SRU(SPI_CLK_O,DPI_PB03_I); 
SRU(SPI_CLK_PBEN_O,DPI_PBEN03_I); 
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SPI Initialization 

The SPI port of SHARC processors use the 
following control and status registers to 
configure the SPI: 

 SPICTL 

 SPIFLG 

 SPIBAUD 

 SPISTAT 

SPICTL Register 
The SPICTL register has control bits for selecting 
the SPI configuration and enabling the SPI. 
Some of the control bits include: 

 Word length selection 

 Master or slave operation 

 Data format (little or big endian) 

 Clock phase and polarity 

 Open drain output for data pins 

 Packing enable 

Refer to the processor’s HRM for a complete 
description of the SPICTL register. 

SPIFLG Register 
The SPIFLG register is used only when the SPI is 
configured as the master. This register is not 
used for slave mode operation. This register 
allows you to select one or all of the SPIFLG3-0 
signals as slave select signals. Setting the DSxEN 
bit on the SPIFLG register selects the 
corresponding SPIFLGx signal as the slave select 
signal. 

When CPHASE = 0, the slave select signal will be 
generated by the hardware automatically. The 
SPIFLGx signal will be asserted low before each 
data transfer, and between successive transfers 
this signal will be asserted high.  

When CPHASE = 1, the slave select signal should 
be generated manually by the user application. 
The SPIFLGx bit of the SPIFLG register can be 
used for this purpose. In this mode, setting or 
clearing the SPIFLGx bit on the SPIFLG register 
reflects on the SPIFLGx signal. Before SPI is 

enabled, ensure that this pin is high by setting the 
SPIFLGx bit of the SPIFLG register. As soon as 
the transfer is started, clear the SPIFLGx bit of 
the SPIFLG register before starting the transfer. 

SPIBAUD Register 
The SPIBAUD register is used only when the SPI 
is configured as the master. This register is not 
used for slave mode operation. This register 
allows you to select the baud rate of the SPI 
master. The BAUDR bits (15-1) can be used to 
configure the SPI baud rate. The SPI baud rate is 
derived from the core clock of the processor. For 
ADSP-2136x and ADSP-2137x processors, the 
SPI baud rate is calculated as follows: 

SPI baud rate = CCLK / (8 *(BAUDR - 1)) 

For ADSP-2126x processors, the SPI baud rate is 
calculated as follows: 

SPI baud rate = CCLK / (4 *(BAUDR - 1)) 

SPISTAT Register  
The SPISTAT register is the read-only register 
that provides the status of transmit and receive 
buffer FIFOs, and the current transfer 
completion. It also has the bits to indicate the 
transmission/reception errors and multi-master 
errors. The bits on this register are write-1-to-
clear bits. 

SPI DMA Initialization 

The SPI has the following registers for 
initializing the DMA mode of operation: 

 SPIDMAC 

 IISPI 

 IMSPI 

 CSPI 

 CPSPI 

The IISPI, IMSPI, CSPI, and CPSPI registers are 
the DMA parameter registers. The IISPI, IMSPI, 
and CSPI registers hold the value of the internal 
memory address from/to which the data needs to 
be transferred, modifier value, and the count 
value, respectively. The CPSPI register holds the 
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value of the next DMA sequence when the DMA 
chaining is enabled.  

The SPIDMAC register has the control bits to 
configure the transmit or receive DMA, enable 
the interrupt, enable the DMA, and DMA 
chaining. It also has the status bits which show 
the current DMA transfer status and some error 
conditions. SPI DMA is initialized by setting the 
SPIDEN bit of the SPIDMAC register. 

SPI Transfer Start 

SPI transfer can be in core mode or in DMA 
mode. The TIMOD1-0 bits on the SPI control 
register select the mode of data transfer. In core 
mode, the transmit buffer (TXSPI) and receive 
buffer (RXSPI) registers are accessed by the core 
directly. In DMA mode, the DMA controller 
accesses the receive buffer or the transmit buffer 
and does the data transfer. 

When the TIMOD1-0 bits are configured as ‘00’, 
reading the RXSPI buffer after enabling the SPI 
master initiates a data transfer. When these bits 
are configured as ‘01’, writing to the TXSPI 
buffer after enabling the SPI master initiates a 
data transfer. The TIMOD1-0 bits are configured 
as ‘10’ for DMA mode of operation. Depending 
upon the direction of the DMA (transmit or 
receive), the DMA controller initiates a data 
transfer by writing into the transmit buffer or 
reading from the receive buffer.  

The DMA controller has 4-deep FIFO, 
which is used for the DMA data 
transfer. The internal DMA request is 
generated for a group of 4 data words on 
the FIFO. If DMA count is not a 
multiple of 4, the requests are generated 
for each group of 4 words, and finally 
one request is generated for the rest of 
the words. For example, if the DMA 
count is 7, the DMA controller 
generates two DMA requests (one for 
the DMA count of 4, and the other for 
the rest of the data words).  

For all the cases, the master generates the SPI 
clock to the slave device. The slave select signals 
are generated automatically or manually, 
depending on the CPHASE bit configuration. 

SPI Transfer and Interrupt Servicing 

Core-driven transfers can be in interrupt driven 
mode or in polling mode. In polling mode, the 
user application must continuously poll for the 
status of the transmit buffer or receive buffer by 
reading the SPISTAT register. When the transmit 
buffer is empty or the receive buffer has data, the 
application can write data to the transmit buffer 
or read data from the receive buffer. 

In interrupt-driven mode, an interrupt is 
generated automatically when the transmit buffer 
is empty or the receive buffer has one complete 
word, depending on the TIMOD1-0 bits 
configuration. Inside the interrupt service 
routine, the user application must write to the 
transmit buffer or read from the receive buffer. 

In general, the user application can use the 
combination of the polling and interrupt-driven 
modes where full-duplex communication is 
needed.  

For DMA-driven transfers, an interrupt is 
generated at the end of a block transfer. For 
DMA chaining mode, the interrupt can be 
generated at the end of each sequence or at the 
end of all the sequences. The DMA interrupt can 
be to process the block of data received over the 
SPI or it can be used to start a new transfer. 

When the SPI master is configured for 
initiating a data transfer by reading the 
receive buffer in core mode, initially the 
master must do a dummy read. This 
dummy read generates the clock for the 
slave device to transmit the first data. To 
receive N words of data, the master 
must do N+1 data transfers in core 
mode. For an SPI receive DMA 
operation, the DMA controller takes 
care of this dummy read. 
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SPI Transfer Stop 

SPI transfers are stopped when the SPI is 
disabled. The SPI can be disabled inside the 
interrupt service routine. For core mode 
operation, after transmitting or receiving the 
required number of words, the SPI can be 
disabled by clearing the SPICTL register 
contents. The SPIFE bit of the SPISTAT register 
bit must be polled before disabling the SPI. This 
bit indicates whether the current transfer is 
completed. Ensure that the current data transfer 
is completed before the SPI is disabled. 

For DMA mode operation, inside the ISR, the 
SPIDMAS bit of the SPIDMAC register must be 
polled. This bit indicates the DMA completion 
status and is set when the DMA transfer is in 
progress (and cleared once it is completed). The 
SPIFE bit of the SPISTAT register must be polled 
to ensure that the last data transfer is completed. 
Then the SPI and the SPIDMA register can be 
disabled by clearing the contents of the SPICTL 
and SPIDMAC registers. 

For DMA chaining mode, SPI transfers can be 
stopped by writing a zero to the chain pointer 
register. After writing a zero, poll for the 
SPIDMAS bit of the SPIDMAC register and the 
SPIFE bit of the SPICTL register. Once the 
current data transfer is completed, the SPI and 
the SPIDMA register can be disabled by clearing 
the contents of the SPICTL and SPIDMAC 
registers. 

SHARC Processor SPI Examples 

The examples provided with this EE-Note are 
implemented for ADSP-21369 processors. The 
SPI master code configures the primary SPI of 
the ADSP-21369 processor as a master in DMA 
mode. The divisor value for the SPIBAUD register 
is calculated during runtime, based on the core 
clock and the selected SPI baud rate. The SPI 
slave code configures the primary SPI of the 
ADSP-21369 processor as a slave in DMA 
mode. For both code examples, the direction of 
the DMA transfer can be selected using the 
macros. Macros are also available for selecting 
the clock phase and polarity configuration. 

The code can be used for ADSP-21367/8 and 
ADSP-2137x processors without modification. 
For ADSP-21362/3/4/5/6 and ADSP-2126x 
processors, the SPI configuration code can be 
used as is, but the InitSRU function need not be 
called. The calculation of the SPIBAUD rate must 
be changed for ADSP-2126x processors. 

Conclusion 
This EE-Note discusses the SPI programming 
model on SHARC and Blackfin processors. It 
also provides example code for serial 
communication over SPI between SHARC and 
Blackfin processors. The examples provided with 
this EE-Note are tested between the SPI ports of 
the ADSP-21369 SHARC processors and ADSP-
BF537 Blackfin processors. 
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Appendix 
The .ZIP file associated with this document contains the following code examples: 
[1] Example code for a Blackfin processor SPI master device 

[2] Example code for a Blackfin processor SPI slave device 

[3] Example code for a SHARC processor SPI master device 

[4] Example code for a SHARC processor SPI slave device 
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