
Engineer To Engineer Note EE-148

a
Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™
Contributed by Maikel Kokaly-Bannourah April 01, 2003

Introduction

The following Engineer-to-Engineer note

is intended to give an introduction to
Multiprocessor (MP) systems using
VisualDSP++™ The explanation will be based
on code example written for an MP system,
which consists of two ADSP-21160s (2 x ADSP-
21160 EZ-Kit Boards) using VisualDSP++™
3.0.

SHARC® DSP Multiprocessor systems can be
configured in different ways:

• Several DSPs sharing the external bus

• Link Port point-to-point communication

• Use of the DSP’s serial ports in multi-channel
mode.

This note will discuss the implementation of an
MP system with the DSPs sharing the external
bus. For more details on other implementations
please refer to the ADSP-21160 SHARC® DSP
Hardware Reference Manual.

Linker Description File (LDF) for
MP Systems

The very first step in setting up an MP
system is to create a multiprocessor project using
the multiprocessing capabilities of the linker, and
an LDF file to describe the system.

The LDF describes the multiprocessor memory
offsets, shared memory, and each processor’s
memory. The following LDF commands must be
considered when writing an MP LDF:

• MPMEMORY{}, it defines each processor’s
offset within multi-processor memory space
(MMS). The linker uses the offsets during
multiprocessor linking.

• MEMORY{}, it defines memory for all
processors present in the system.

• PROCESSOR{} and SECTIONS{} commands
define each processor and place program sections
for each processor’s output file, using the
memory definitions.

• SHARED MEMORY{}, it is needed when
external shared memory is used in the system.
This command identifies the output for the
shared memory items and generates Shared
Memory executable files (.SM) that reside in the
shared memory of the MP system.

The .SM file is generated from a source code file
(.ASM, .C or .CPP), which must be included
with the project files. This file contains the
variable definitions for the data that will be
placed in the external shared memory.

• LINK_AGAINST(), it resolves symbols within
multiprocessor memory and directs the linker to
check specified executables (.DXEs and .SMs) to
resolve variables and labels that have not been
resolved locally. Whenever expressions or
variables are defined in the MMS (i.e. internal
memory of another processor in the system) the
LINK_AGAINST() command must be used in
the LDF.

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Note: if .SM files and DXE files are included in
the command line, the .SM file must be placed

a

first, followed by all other DXE’s, for the linker
to be able to resolve the variables correctly.

The maximum number of processors that can be
declared in one LDF is architecture-specific (i.e.
maximum of 6 ADSP-21160’s or 2 ADSP-
21065L’s). Also note that a combination of
different DSPs with different architectures (i.e.
ADSP-21062 and ADSP-21160) in the same
LDF is not supported by VisualDSP++™.
However, a combination of DSPs from the same
architecture family (i.e. ADSP-2106x members
such as ADSP-21060, ADSP-21061 and ADSP-
21062) is supported although some memory

segments definitions considerations must be
made.

An MP LDF example where all the above
commands are used is shown in Figure 1. The
remainder of the LDF file is basically the same
as the default one provided with the tools (please
refer to the Linker and Utilities Manual for
ADSP-21xxx Family of DSPs or to EE-69
“Understanding and Using Linker Description
Files (LDFs)” for a general description on LDF
files). In the following example, a 2 ADSP-
21160 and external shared memory system is
defined.

Figure 1 Excerpt from an MP LDF example

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 2 of 13

a

Now that the different sections of the LDF have
been discussed, we can examine the example
code that explores some of the MP capabilities of
the DSP.

For MP system hardware configuration please
refer to chapter 7 of ADSP-21160 SHARC®
DSP Hardware Reference. Also for information
on how to configure a cluster system using two
ADSP-21160 evaluation boards refer to the
ADSP-21160 EZ-KIT Lite User’s Guide.

Multiprocessor Memory Space
(MMS)

The multiprocessor memory space is
divided into a number of address regions (this
number is processor specific) that correspond to
the internal memory of the DSPs in an MP
system. The ADSP-21160’s multiprocessor
memory space appears in Figure 2.
Note: programs may only use Normal word
addressing in multiprocessor memory space.
Other addressing schemes may corrupt valid
data.

Depending on the address range used, the
internal memory of a particular DSP in the
multiprocessor system will be accessed as a
source or destination. Writes to the Broadcast
region access the memory of all DSPs in the
multiprocessing system.

For instance, accessing a memory location within
the address range 0x300000 – 0x3FFFFF, is
equivalent to accessing the internal memory of
the DSP in the MP system with ID 3.

A DSP can also use the MMS to access its own
internal memory by accessing the corresponding
memory region. Note that in this case, the DSP
reads/writes from/to its own internal memory and
does not make an access on the external system
bus.

Figure 2 ADSP-21160 Multiprocessor Memory Space

The following is an example from the code
where the MMS is used to access a memory
location of another DSP in the system. In this
case DSP with ID1 accesses the external port
buffer 1 (EPB1) of DSP with ID2:
Example 1:
r0=0x200006; dm(EI11)=r0;

In example 1, the MMS address for ID2 is
0x200000, which is then added to the address
corresponding to the EPB1 (0x6). Therefore, this
will result in a write access to ID2’s EPB1 by an
external device (DSP or host).

Note: In DSP multiprocessor systems a DSP with
ID=001 must be present, since this is the DSP
responsible for driving the external bus control
lines stable during reset.

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 3 of 13

a

External Memory
External memory is widely used in MP

systems. An important point to keep in mind is
that all DSPs in the system must initialize their
own control registers before trying to access the
external memory (i.e. WAIT register in case of
SBSRAM).

The ADSP-21160 can be gluelessly interfaced to
synchronous and asynchronous SRAM devices,
however the use of DRAM requires an external
controller.

It is very important to set up the proper access
mode for the type of memory used in the
hardware system. The access mode is
programmed via the WAIT register. Default
power up/reset settings for the System Control
(SYSCON) and WAIT registers are detailed in
the ADSP-21160 Hardware Reference Manual.
User defined settings must support the external
memory address ranges that the user intends to
use in their code and hardware systems as well as
the access mode appropriate to the memory
device(s) in use (i.e. synchronous or
asynchronous accesses). The MSIZE setting
must also not exceed the size of the actual
physical memory connected in the user’s system.

Note that SDRAM is gluelessly supported by
certain devices like the ADSP-21065L and the
ADSP-21161. For these cases, specific registers
must be initialized prior to accessing the external
memory. The SDRDIV and IOCTL, for the
ADSP-21065L, and the SDRDIV and SDCTL,
for the ADSP-21161, registers of all processors
in the system must be initialized to the same
value. Once the DSP’s internal memory
controller has been configured, the external
memory can be accessed by the DSP via the
external bus.

In the example project, the shared.asm file
contains the variable definitions for the data that
will be placed in the external shared memory.

Note: the DSP with the lowest ID number (and
therefore highest external bus arbitration

priority in the system) is responsible for
initializing the external data defined in the .ASM
shared memory file during the booting-up
sequence.

Inter Processor Messages and
Vector Interrupts

The Message Passing registers (MSGRx)
are general-purpose memory mapped registers
that can be used for message passing between the
host and a DSP or between two DSPs. Similarly,
Vector Interrupts are used for inter-processor
communication between the host and a DSP or
between DSPs.

The MSGRx and VIRPT registers can be used
for message passing in the following ways:

• Message Passing. The host (or master DSP) can
use any of the 8 message registers, MSGR0
through MSGR7, to communicate with the DSP.

• Vector Interrupts. The host (or master DSP) can
issue a vector interrupt to the DSP by writing the
address of an interrupt service routine to the
VIRPT register. When serviced, this high priority
interrupt causes the DSP to branch to the service
routine at that address.
Example 2:
// Excerpt from ID2: VIRPT Generation

I0=0x100001; // VIRPT reg. address in ID1
R0=0x40080; // ISR at SFT0I address in ID1
will be executed

DM(I0,M0)=R0;// write to VIRPT reg.in ID1
[...]

// Excerpt from ID1: VIRPT Service Routine
// in SFT0I user software interrupt vector
// address

BIT SET IMASK VIRPTI; // VIRPT enabled [...]

// In vector interrupt table

R0=0x2f2f2f2f; // Value for msg. Passing RTI
(DB);// Serve VIRPTI generated by ID2
I0=MSGR0;// Load address of MSGR0 and write
value in ID2

DM(MMS_ID2,I0)=R0;

[...]

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 4 of 13

a
In example 2, ID2 triggers a vector interrupt in
ID1 by writing the address of the service routine
to be served in ID1 (0x40080 = SFTOI) to VIRPT
(0x100001 = 0x1 VIRPT address + 0x100000
MMS ID1). Then, the service routine in ID1
writes a test value to the MSGR0 register of ID2,
using a previously defined offset value
(MMS_ID2 = 0x200000).

This is just an example of how inter-processor
message passing and VIRPT interrupts can be
used as flags or just to indicate program
execution completion in MP systems.

Bus Lock and Semaphores

Semaphores are useful for synchronizing

tasks performed in an MP system. A semaphore
is a flag that can be accessed by any of the DSPs
present in the system.

In critical tasks (i.e. should not be interrupted),
when attempting a read-modify-write operation
on a semaphore, the DSP must have bus
mastership for the duration of the operation.

This can be achieved by using the DSP’s bus
lock feature, which retains mastership of the bus
and prevents other processors from
simultaneously accessing the semaphore.

A read-modify-write operation is accomplished
with the following steps (Example 3):

1. Request bus lock by setting the
BUSLK bit in MODE2.

2. Wait for bus mastership to be acquired.

3. Wait until Direct Write Pending
(DWPD) is zero.

4. Read the semaphore, test it, and write
to it.

The following is an Excerpt from ID1’s code
demonstrating the use of Bus Lock and
Broadcast write:
Example 3:
// Excerpt ID1 code: BROADCAST write using

// Bus Lock

BIT SET MODE2 BUSLK;

if NOT BM jump(PC,0);

ustat1 = DM(SYSTAT);

BIT TST USTAT1 12;

if TF jump(PC,-2);

b1 = Broadcast_data; l1 = N; m1 = 1;

b8 = MMS_Broadcast; l8 = N; m8 = 1;

lcntr = 10;

do broadcast_transfer until lce;

broadcast_transfer: r2 = dm(i1,m1);

 pm(i8,m8) = r2;

pm(i8,m8) = r2;

BIT CLR MODE2 BUSLK;

While the BUSLK bit is set, the DSP can
determine if it has acquired bus mastership by
executing a conditional instruction with the Not
Bus Master (Not BM) condition code. If it has
become the bus master, the DSP can proceed
with the external read or write. If not, it can clear
its BUSLK bit and try again later.

After bus mastership is acquired, the Direct
Write Pending (DWPD) bit’s status in SYSTAT
must be checked to ensure that a semaphore
write by another processor is not pending.

Bus lock can be used in combination with
broadcast writes to implement reflective
semaphores in a multiprocessing system. The
reflective semaphore (i.e. located in the DSP’s
internal memory or an I/O processor register)
must be located at the same address of each DSP.
Once the DSP has become the bus master, it
performs a broadcast write to the specified
address on every DSP, including itself.

Lastly, the BUSLK bit must be cleared to free
the bus after the broadcast transfer has finished.

Multiprocessor Data Transfers
Throughout the code, several types of

data transfers have been implemented:

1. Master and Slave Direct Memory
Access (DMA) between ID1 and ID2,

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 5 of 13

a
2. Master DMA from external memory,

3. Core transfer,

4. Broadcast Write to all DSPs in the
system.

Let’s now examine the different types of data
transfers performed. Note that the Broadcast
Write has already been discussed in the previous
sections.

7.1. Master and Slave Direct Memory Access
(DMA) between ID1 and ID2

Setup Master ID1

A channel in this mode can independently
initiate internal or external memory transfers.
Master mode applies to all external port DMA
channels: 10, 11, 12, and 13.

In example 4, DMA channel 11 was used to
perform a Master DMA transfer from ID1 to ID2
as follows:
Example 4:
// Excerpt from ID1:Master DMA,DMA channel
// 11, transfer from ID1 to ID2

r0=0; dm(DMAC11)=r0;// clear DMA Contr Reg

r0=DMA_source_ID1;dm(II11)=r0;// source ID1

r0=1; dm(IM11)=r0; // modifier = 1

r0=10; dm(C11)=r0; // counter = 10

r0=0x200006;

dm(EI11)=r0; // write to slave EPB1

r0=0; dm(EM11)=r0; // ext. modifier = 0

r0=10; dm(EC11)=r0; // ext. counter = 10

ustat1=0x0404;

dm(DMAC11)=ustat1; // transmit data

ustat1=dm(DMAC11);

bit set ustat1 0x1; // enable DMA channel

dm(DMAC11)=ustat1;

ID1 sets up the channel’s parameter registers.
The I/O processor uses the EI, EM, and EC
registers to access MMS of ID2 in master mode
DMA. ID1 will write to the FIFO (EPB1) in ID2.
Note that the external modifier is set to zero.

To initiate a master mode DMA transfer ID1 sets
the channel’s DMA enable (DEN) bit. The DSP
will then start transferring data to the EPB1
buffer FIFO, where the slave DSP, in this case
ID2, can access it. ID2 needs to set up the Slave
DMA before the data can be transferred to its
own internal memory.

Setup Slave ID2
In a slave mode DMA channel, when the data
transfer direction is external to internal, a slave
mode DMA channel does not initiate any DMA
transfers until the external device (in this case
ID1) writes data to the channel’s EPB1 buffer
FIFO.

The Slave DMA transfer example looks as
follows:
Example 5:
// Excerpt from ID2:Slave DMA, DMA channel
// 11,receive data transmitted by ID1

r0=0;

dm(DMAC11)=r0;// clear DMA Control Reg.

r0=DMA_dest_ID2;

dm(II11)=r0; // destination ID2

r0=1; dm(IM11)=r0; // modifier = 1

r0=10; dm(C11)=r0; // counter = 10

r0=0x01;

dm(DMAC11)=r0; // enable to receive data

Note that the I/O processor does not use the EI,
EM, and EC registers in slave mode DMA.

From the previous Master DMA transfer, ID1
transmits data to EPB1 buffer FIFO. ID2 detects
that the data is present and performs the DMA
transfer to internal memory, emptying the EPB1
buffer FIFO.

Master DMA from External SBSRAM

Note that in the previous DMA transfer, where a
FIFO (EPB1) is used, master and slave DMA
need to be configured.

A type of Master DMA where no slave needs to
be set up is when the master writes/reads directly
(without use of the EPBx slave FIFOs) from/to

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 6 of 13

a
external memory. The advantage of using this
type of transfer is that only one DSP needs to be
configured. Same setup can be used when
reading/writing from/to internal memory of the
MMS.

Note: direct read/write from/to internal memory
of the MMS it’s not supported by certain devices
(ADSP-21065L and ADSP-21161). These devices
access internal memory indirectly with the use of
DMA.

In example 6, DMA channel 10 was used to
perform the Master DMA transfer from external
SBSRAM to ID1’s internal memory as follows:
Example 6:

// Excerpt from ID1: Master DMA, DMA channel
10, transfer from SBSRAM to ID1

r0=0;

dm(DMAC10)=r0;// clear DMA Control Reg.

r0=ext_mem_data;

dm(EI10)=r0; // source SBSRAM

r0=1; dm(EM10)=r0; // modifier = 1

r0=10; dm(EC10)=r0; // counter = 10

r0=DMA_dest_ID1;

dm(II10)=r0; // dest. in ID1’s int. mem.

r0=1; dm(IM10)=r0; // modifier = 1

r0=10; dm(C10)=r0; // counter = 10

ustat1=0x0400;

dm(DMAC10)=ustat1; // receive data

ustat1=dm(DMAC10);

bit set ustat1 0x1; // enable DMA channel

dm(DMAC10)=ustat1;

Like before, the DSP sets up the channel’s
parameter registers. The only difference with
respect to the previous example is that there is no
need to set up a slave DMA. The SBSRAM
master mode DMA transfer to the internal
memory will initiate once the channel’s DMA
enable (DEN) bit is set.

Core transfer

Core transfer is a different way of handling data
where no DMA is used. In this case, the Data

Address Generators (DAGs) are used to directly
transfer data from internal memory of ID2 to
internal memory of ID1.

An example of this is shown below:
Example 7:
// Excerpt from ID2: Core transfer,ID2 to
ID1.

b1=DAG_source_ID2; // Source in ID2

l1=0;m1 = 1;

b8=DAG_dest_ID1;// Dest. in ID1

l8=0; m8 = 1;

r2=dm(i1,m1);

lcntr = N-1,do DAG_transfer until lce;

DAG_transfer: //Dual access in 1 cycle

r2 = dm(i1,m1),pm(i8,m8) = r2;

pm(i8,m8) = r2;

Two data arrays are declared, one in each DSP’s
internal memory. In example 7, ID2 accesses the
array stored in ID1 through the MMS space.

The DAG registers are used to access the two
data buffers to perform a direct data transfer.

Note that values are fetched from both program
and data memory, resulting in a dual memory
access and executing in just one cycle.

Some Performance
Considerations

Core data transfers are a nice and fast
way of transferring words of data since the code
can be optimized to transfer a word of data per
cycle. However, DMA is a better choice when
large amounts of data need to be transferred
since the core can be utilized for computational
processing. Remember that DMA transfers
operate in the background freeing up the core.

Also, a master DMA transfer can be configured
by the slave DSP (or host), increasing
performance in applications where the master
DSP might be overloaded with processing
activity. For more details on DMAs and data
transfer, please refer to EE-84 “SHARC® DMA
Modes of Operation” and the I/O Processor

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 7 of 13

a
chapter in the ADSP-21160 SHARC® DSP
Hardware Reference Manual.

ID Checking
This routine can be used to check

whether the executable file generated gets loaded
into the correct DSP in the system. This code
ensures that no ID mismatch occurs.
Example 8:
// Excerpt from ID2: ID Checking

R0=DM(SYSTAT); // get SYSTAT value

R1=FEXT R0 BY 8:3; // get the IDC value

R2=0x2; // ID=2

R1=R1-R2; // is this DSP ID2?

IF NE JUMP incorrect_ID;

// if incorrect jump to endless loop

Basically, it reads the DSP ID value from the
SYSTAT register and it compares it with the
theoretical value of the DSP ID. In this case, the
code has been written for ID2, so it makes sure it
has been loaded into the correct target, which is
DSP 2. If false, it will enter an endless loop
indicating that an error has occurred.

Note: loading executable file into wrong DSP
will cause the program not to work properly
since all MMS offset values will not correspond
to the correct ones and therefore, inter-processor
accesses will fail.

Multiprocessor Debugger Support
VisualDSP++™ Multiprocessor

Debugger provides the user with full system
evaluation using the Emulator. The Emulator
allows code testing and evaluation on the
hardware platform. I/O inter-processor
communications as well as MMS data transfers
are supported.

MP debugger operations like MP load, run or
reset provide the user with the capability of
testing the system with full synchronization of all
DSPs.

Note: The VisualDSP++™ Simulator allows to
fully test the algorithms and core code for each
DSP in the system independently.

Some of the MP debugger features are:

• Multiprocessor debug commands allow the user
to download, reset, restart, run and step through
the code just like with single-processor
commands, except that they work synchronously
on all active DSPs in the selected MP group.

• The Debugger provides a Multiprocessor Status
window. This window displays the current status
of each DSP in the system: Running, Halted, or
Unknown.

• The contents of each debugger window within
an MP emulation debugger session reflects the
selected DSP, i.e. the window in Focus.

• By default, the contents of each window will
change depending on which DSP is in focus. The
debugger supports Pinning windows (Memory,
Registers, etc.) dedicating them to a specific DSP
in the MP system. This will allow the user to
dedicate a particular debugger window to only
display information from one particular DSP in
the system, as opposed to having the contents of
the window change whenever a new processor is
selected via the MP Status window.

• The debugger provides a Multiprocessor Group
window from which the processors can be
grouped into multiple, logical units upon which
all MP commands are applied. This window is
particularly useful when many processors are
present in a system and the user wishes to
control/debug subsets of these processors
together.

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 8 of 13

a

Figure 3 Multiprocessor Debugger Support

Use pinning, and the processor status items in the
Multiprocessor window, in conjunction with
single-processor debug commands to debug
individual processors in an MP session.

VisualDSP ICE Configurator

The Debugger allows the use of emulator targets.
The DSP In Circuit Emulator (ICE) is a
development tool for debugging programs
running in real time on DSP target system
hardware. The emulator reads executable files
and loads them into the DSP.

The ICE provides a controlled environment for
observing, debugging, and testing activities in a
target system by connecting directly to the target
processor through its JTAG interface.

For the MP system emulation, the Summit-ICE
Universal Emulator system was used. As a first
step, the MP platform must be configured using
the Visual DSP ICE Configurator. The
Configurator is used to describe the user’s
hardware platform to the JTAG emulator. Once a
platform has been described, an emulator target
session can be based upon it. The following steps
should be followed when configuring the MP
platform:

1. Open the VisualDSP ICE Configurator.

2. Create a new platform.

3. Specify the name, number and type of devices
to be included as part of the platform.

These steps are illustrated in Figure 4.

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 9 of 13

a

Please be aware of the Initial Reset on Startup
option, which appears in the Device Properties
window shown in Figure 4. Enabling this option
will perform a complete reset on the selected
device every time the emulator session is
initiated. In systems where some settings may
need to be preserved (i.e. WAIT register) this
option should be cleared.

Note: there is also a similar option in the
debugger itself, reset before loading executable,
which performs a complete reset of all devices in
the system upon downloading code to the DSPs.
This option can be found under Settings/Target
Options/.

Figure 4 VisualDSP ICE Configurator

ICE Test Utility and JTAG Scan Test

Before getting into the actual system debugging,
the ICE must be tested to make sure that has
been properly configured. The ICE Test Utility
(Figure 5) is used for this purpose. Open the
utility, select the proper emulator I/O address,
check the continuous scan box and start testing.
The scan test will then be performed and the
output window would look as follows after a
successfully completed scan test:

Figure 5 VisualDSP ICE Test Utility.

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 10 of 13

a

In case the test does not complete successfully,
an error message will be displayed with a
possible solution for the problem. Here is a
description of some issues that should be kept in
mind for the system design:

1. In a multiprocessor system it is
imperative that the JTAG header is buffered.
This will keep the signals clean and avoid noise
problems that occur with longer signal traces
(ultimately resulting in reliable emulator
operation).

2. In one scan chain, it is not
recommended to use more than eight physical
devices (although, theoretically, the devices that
can be supported in one JTAG scan chain by the
software is about 50). The recommendation of
not more than eight physical devices is mostly
due to the transmission line effects that appear in
long signal traces, and based on some field-
collected empirical data.

3. The power-on sequence for the target
and emulation system is as follows: Apply power
to the emulator first, then to the target board.
This ensures that the JTAG signals are in the
correct state for the DSP to run free.

Please refer to EE-Note 68 Analog Devices JTAG
Emulation Technical Reference (2.5) for a more
detailed description on this topic.

MP System Emulation

Now that the MP project has been created and
the emulator platform is ready for debugging, we
can begin with the hardware emulation.

First of all, the DSP executable files (.DXE’s)
are downloaded to the corresponding DSPs. For
MP emulation, a Load Multiprocessor

Confirmation window (Figure 6) appears. This
window enables the user to select which .DXE
file is loaded into which DSP.

Figure 6 Load Multiprocessor Processor Window.

Once the code has been successfully loaded into
each DSP, the system can be fully evaluated
using the MP features previously described.

After running the code in both DSPs the user can
view the contents in the data memory windows
and should be able to verify that all data transfers
between the two DSPs have completed
successfully.

Figure 7 illustrates a classical example of some
of the MP debugger windows that can be viewed
when evaluating the system.

Running code in the DSP targets (synchronously
in both DSPs or independently), setting up break
points, viewing the memory contents, and system
registers are just some of VisualDSP++™ MP
debugger capabilities.

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 11 of 13

a

Figure 7 VisualDSP++™ Multiprocessor Session

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 12 of 13

a

Version Description

March 31, 2003 by M.Kokaly-Bannourah Updated document and code (VisualDSP++™ 3.0 compatible)

October 11, 2001 by M.Kokaly-Bannourah Initial Release

References
ADSP-21160 SHARC® DSP Hardware
Reference, Analog Devices Inc.

ADSP-21160 EZ-KIT Lite User’s Guide, Analog
Devices Inc.

VisualDSP++™ Linker & Utilities Manual for
ADSP-21xxx Family of DSPs DSPs, Analog
Devices Inc.

VisualDSP++™ Users Guide for ADSP21xxx
Family DSPs, DSPs, Analog Devices Inc.

VisualDSP++™ Emulation Tools Installation
Guide for Windows 95/98/NT/2000, Analog
Devices Inc.

Analog Devices JTAG Emulation Technical
Reference 2.5 (EE-68), Analog Devices Inc.

Understanding and Using Linker Description
Files (LDFs) (EE-69), Analog Devices Inc.

SHARC® DMA Modes of Operation (EE-84),
Analog Devices Inc.

Document History

Introduction to SHARC® Multiprocessor Systems Using VisualDSP++™ (EE-148) Page 13 of 13

	Introduction
	Linker Description File (LDF) for MP Systems
	Multiprocessor Memory Space (MMS)
	External Memory
	Inter Processor Messages and Vector Interrupts
	Bus Lock and Semaphores
	Multiprocessor Data Transfers
	7.1. Master and Slave Direct Memory Access (DMA) between ID1 and ID2
	Setup Master ID1
	Setup Slave ID2

	Master DMA from External SBSRAM
	Core transfer

	Some Performance Considerations
	ID Checking
	Multiprocessor Debugger Support
	VisualDSP ICE Configurator
	ICE Test Utility and JTAG Scan Test
	MP System Emulation

	References
	Document History

