
Engineer-to-Engineer Note EE-284

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support

Implementing Overlays on ADSP-21160 SHARC® Processors
Contributed by Jeyanthi Jegadeesan Rev 1 – March 9, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note discusses the implementation of
software overlays on ADSP-21160 SHARC®
processors. It also describes the external memory
packing of ADSP-21160 used for overlays and
demonstrates the software overlay technique on
ADSP-21160 using a simple example code on
the ADSP-21160 EZ-KIT Lite® board. An
introduction to overlays using SHARC
processors can be found in Using Memory
Overlays (EE-66)[1], which discusses the details
and concepts of using the code overlays from
external RAM on SHARC processors.

Overlays on SHARC Processors
Overlays are used when a processor does not
have sufficient internal memory to hold all of the
application's data and/or program code. In these
situations, part of data/program code is loaded
into internal memory during the booting process
and the remaining part is placed in external
memory. When program code (or data) in
external memory has to be executed, it is loaded
into internal memory and executed. The memory
address range in which the overlay function
resides in the external memory is called “live
address space”, and the memory address where
the program is executed in internal memory is
called “run address space”. The code responsible
for transferring the data/program code from
external memory to internal memory at runtime
is called an overlay manager. Typically, it

resides in a reserved space of the processor’s
internal memory. The VisualDSP++® tools
provide the overlay support for all SHARC
processors. Because of this, the linker changes
calls to functions located in an overlay section
into calls to the overlay manager.

Overlays on ADSP-21160 SHARC
Processors
Overlays can be implemented using the ADSP-
21160 processor’s external memory space.
Figure 1 shows a block diagram of the external
memory interface of the ADSP-21160. The
external port data, address, MSx, and RDH/L and
WRH/L lines are used for the external memory
interface.

Figure 1. External Memory Interface

 A

Implementing Overlays on ADSP-21160 SHARC® Processors (EE-284)

ADSP-21160 External Memory Interface and
DMA Packing Modes

The external port of the ADSP-21160 has a 64-
bit external data bus, 32-bit address bus, and the
other external port control signals (MSx, RDH\L,
and WRH\L) for external memory interface. The
unpacked data and instructions are placed in the
processor’s 64-bit external memory as shown in
Figure 2.

Figure 2. External Port Data Alignment

The external memory map is organized such that
consecutive addresses access adjacent 32-bit
memory locations. For unpacked data, the
processor stores the data in both the odd and
even addresses. For packed data, the processor
uses only the odd addresses for storing the data.
The overlay code is placed as data in the external
memory. When the overlay code is placed in
external memory, the emulator uses core writes
to place the data; due to this, data is written into
both the odd and even addresses of the external
memory. In this condition, the overlay manager
uses the DMA with no packing enabled to
transfer the data from external memory to
internal memory. If the overlay manager uses
DMA with packing enabled to transfer the data
from external memory to internal memory, the
DMA will only read the data from the odd
addresses because when packing is enabled in

DMA mode the ADSP-21160 uses only the RDH#
and WRH# lines for data transfer. Due to this, data
in even addresses will not be read into internal
memory. The overlay manager calculates the 32-
bit value corresponding to the 48-bit run-time
address and uses it as the internal memory
address for the DMA. Once the data is written
into the internal memory, it is accessed as a 48-
bit instruction by using the 48-bit run-time
address. In a system that uses a single 32-bit
external memory connected to the processor’s
higher-order address lines, the overlay code can
be placed only in the odd addresses. For these
systems, the overlay manager uses DMA with
32-bit to 48-bit packing enabled to transfer the
data from external memory.

Packing Method in Visual DSP++

The Linker Description File’s (.LDF)
PACKING () command specifies the order used
by the linker to place bytes in memory. This
ordering places data in memory in the sequence
the processor uses as it transfers data. When
mapping the overlays to external memory, the
PACKING () command must be used to place the
overlay data properly in external memory. Use
the following packing mode with the actual
device:
PACKING (12 B3 B4 B5 B6 B0 B11 B12 B1
 B2 B0 B7 B8 B9 B10 B0)

VisualDSP++ Support

The VisualDSP++ linker automatically generates
overlay constants, which configure the external
port DMA parameters in the overlay manager.
Each overlay has a word size, run-time address,
and live address used by the overlay manager to
determine where the overlay resides and where it
is executed. The linker-generated constants
(where N is the ID# of the overlay) are:

 _ov_startaddress_N
(live address space)

 _ov_word_size_run_N

 _ov_word_size_live_N

 A

Implementing Overlays on ADSP-21160 SHARC® Processors (EE-284)

 _ov_runtimestartaddress_N
(run address space)

The linker is also responsible for resolving the
symbol addresses of overlay data and labels.

Overlay Manager with DMA No
Packing - Example
This section shows a simple example program to
illustrate the software overlay implementation on
ADSP-21160 processors. The blink example
program provided with this EE-Note uses the
overlay manager, which initiates a DMA without
packing to download the overlay function. It
toggles three flag pins. This program uses two
software overlay functions that reside in external
memory and one function that resides in internal
memory.

Figure 3. Simple Memory Overlay Example

The main program calls the internal memory
function and the two software overlay functions
in an infinite loop. Each function toggles a
different flag for a small duration. Figure 3
illustrates where the overlay functions, overlay
manager, and the main function are stored in the
memory. The main(), Blink_LED1(), and
Overlay_Manager() functions are loaded into
the internal RAM of the ADSP-21160 initially.
The Blink_LED2() and Blink_LED3() overlay
functions are loaded in external memory. During

runtime, when the overlay function is called, the
function is loaded into internal memory and then
executed.

Linker Definitions

This section discusses the declarations required
in the Linker Description File (.LDF) for the
example program explained above.

// "run" space for Overlay functions
seg_pmco_ovl {
 TYPE(PM RAM)
 START(0x00047288)
 END(0x00049aa9)
 WIDTH(48)
}
// "live" space for Overlay functions
ovl_ext {
 TYPE(DM RAM)
 START(0x02800000)
 END(0x0281FFFF)
 WIDTH(32)
}

Listing 1. Run and Live Space Declaration in .LDF
File

The statements in Listing 1 under the MEMORY {}
command of the .LDF file define the target
memory (i.e., the run space and live space
addresses of the overlay program code). The live
space, which is specified in the external memory,
helps the linker generate the overlay constants.
The statements specified in Listing 2, under
PROCESSOR { } command of the .LDF file maps
the overlay code and data to the external memory
of the system. In Listing 2, the overlay
commands instructs the linker that a specific
section (e.g., seg_pmco) from a specified input
file (Blink1.doj) is to be used as an input for
this overlay segment (seg_pmco_ovl). For .LDF
file syntax and definitions, refer to the
VisualDSP++ Linker and Utilities Manual.

seg_ovl {

OVERLAY_INPUT{
 OVERLAY_OUTPUT($COMMAND_LINE_OUTPU
 T_DIRECTORY\OVLY_1.ovl)
 ALGORITHM(ALL_FIT)

 A

Implementing Overlays on ADSP-21160 SHARC® Processors (EE-284)

 INPUT_SECTIONS(Blink1.doj
 (seg_pmco))

 PACKING(12 B3 B4 B5 B6 B0 B11
 B12 B1 B2 B0 B7 B8 B9 B10 B0)
 }>ovl_ext

OVERLAY_INPUT{
 OVERLAY_OUTPUT($COMMAND_LINE_OUTPU
 T_DIRECTORY\OVLY_2.ovl)

 ALGORITHM(ALL_FIT)

 INPUT_SECTIONS(Blink2.doj
 (seg_pmco))

 PACKING(12 B3 B4 B5 B6 B0 B11
 B12 B1 B2 B0 B7 B8 B9 B10 B0)
 }>ovl_ext
}>seg_pmco_ovl

Listing 2. Specifying Overlay Sections in the .LDF File

The Linker Description File (.LDF) in an overlay
project has the procedure linkage table (PLIT)
command. The PLIT is a jump table constructed
by the linker in root memory. Each call to an
overlay section is replaced by a call to the PLIT.
The PLIT {} commands provide a template by
which the linker generates distinct assembly code
for each overlay section. Listing 3 shows an
example PLIT section that would be defined in
the .LDF file. This section is defined only once in
the .LDF file. However, the linker generates
separate PLIT code for each overlay function call
(OVLY_1 and OVLY_2). In other words, the
PLIT {} command in an .LDF file inserts
assembly instructions that handle calls to
functions in overlays. The template in Listing 3
from which the linker generates assembly code
when a symbol resolves to a function in overlay
memory. Typically, the code handles a call to a
function in overlay memory by calling the
overlay memory manager. Since each call to an
overlay function is replaced by a call to the
PLIT, you must place the jump instruction to the
user-defined overlay manager code in the PLIT
section.

PLIT {
 R0 = PLIT_SYMBOL_OVERLAYID;

/* Assigns "run" address of resolved
symbol to R1.. */

 R1 = PLIT_SYMBOL_ADDRESS;

 // Execute overlay manager

 jump _OverlayManager;
}

Listing 3. Simple .LDF File PLIT Entry Example

Each overlay module declared in the .LDF file
has a unique copy of the PLIT entry defined in
the .LDF file. The example program has two code
overlays, and a simple PLIT is declared in the
.LDF file shown in Listing 3. The corresponding
PLIT table for the two overlay functions would
look like Listing 4.

.section/code .plit;
plt_1__._OVL1_Blink_LED2:
R0 = 1;
R1 = _OVL1_Blink_LED2;
jump _OverlayManager;

plt_2__._OVL2_Blink_LED3:
R0 = 2;
R1 = _OVL2_Blink_LED3;
jump _OverlayManager;

Listing 4. Example PLIT Table

The R0 register is loaded with the overlay ID,
and the R1 register is loaded with the run address
used by the overlay manager.

Overlay Manager with DMA Without Packing

The overlay manager is responsible for
transferring data/code from the live space to the
run space. The linker generates various overlay
constants, such as live addresses, run addresses,
live word sizes for each live address, and run
word sizes. The linker-generated constants must
be declared as external constants as shown in
Listing 5 in the overlay manager function.
Initially, the overlay manager checks whether the

 A

Implementing Overlays on ADSP-21160 SHARC® Processors (EE-284)

overlay function is available in the memory using
the overlay ID. If the function is not yet loaded
in internal memory, it loads the overlay function
into internal memory using DMA transfer. The
overlay manager calculates the equivalent 32-bit
address for the 48-bit run address space.
Listing 6 shows the code that calculates the 32-
bit equivalent address of the 48-bit run address
space. Then the overlay manager configures the
external port DMA parameters using the linker-
generated overlay constants, and the external
port DMA transfer without packing is initiated.
Figure 4 shows a simple overlay manager that
uses DMA without packing. This overlay
manager is used in the system where two 32-bit
external memory are connected to the odd and
even addresses of the processor.

Figure 4. Flowchart: Overlay Manager With DMA
Without Packing

/* The following constants are defined
 by the linker.
 These constants contain the word
 size, live location and run
 location of the overlay functions.
*/

.extern _ov_word_size_run_1;
.extern _ov_word_size_run_2;
.extern _ov_runtimestartaddress_1;
.extern _ov_runtimestartaddress_2;
.extern _ov_startaddress_1;
.extern _ov_startaddress_2;
.extern _ov_word_size_live_1;
.extern _ov_word_size_live_2;

Listing 5. Declaration of Linker-Generated Constants

 i8 = runAddress;
 R0=pm(m8,i8);
 // Address translation
 R1 = 0x40000 ;
 R1 = R0 - R1 ;
 R0 = LSHIFT R1 BY -1 ;
 R1 = R0 + R1 ;
 R0 = 0x40000 ;
 R0 = R0 + R1 ;
 R0 = R0 - 1 ;
 R0 = R0 - 1 ;

 dm(II10)=R0; // Internal address
 for DMA

Listing 6. Code to Calculate the 32-bit Equivalent
Address

In this example, the linker constants are placed in
an array so that the overlay manager can use the
appropriate constants based on the overlay ID.
The required data can be extracted from these
arrays to set up the external port DMA transfer
(Listing 7).

dm(II10)=R0; /*Set internal address*/
i0=liveWordSize; /*Number of words
 stored in internal memory */

R0=1;
dm(EM10)=R0; /*External modifier */
i8=liveWordSize; /* Number of words
 stored in external memory */
R0=1;
dm(IM10)=R0; /*internal modifier */

 A

Implementing Overlays on ADSP-21160 SHARC® Processors (EE-284)

R0=dm(m0,i0);
dm(C10)=R0; /* Set internal count */
R0=pm(m8,i8);
dm(EC10)=R0;/* Set external count */
R0=0x40401;
dm(DMAC10)=R0;/*Set DMA control
 register */

Listing 7. Setting up the DMA Parameters

Overlay Manager with DMA
Packing
An overlay manager that uses DMA with
packing is used for systems that have a 32-bit
external memory connected to the higher-order
address lines of the processor. The overlay
manager configures the external port DMA
parameters using the linker-generated overlay
constants and the external port DMA transfer
with 32-bit to 48-bit packing is initiated. Figure 5
shows the overlay manager that uses DMA in 32-
bit to 48-bit packing mode. This EE-Note
provides another example code that uses the
overlay manager to initiate a DMA with 32-bit to
48-bit packing to download the overlay function.
It toggles the two flag pins of the processors in
an infinite loop. This program uses one software
overlay function that resides in external memory
and one function that resides in internal memory.
The linker definitions discussed in the previous
example code also applies to this application.

Figure 5. Flowchart: Overlay Manager with DMA
Packing

This example code cannot be tested directly on
the EZ-KIT Lite board using the emulator. The
emulator uses core writes to place the data; due
to this, the data will be written into both the odd
and even addresses of the external memory. The
boot kernel code available with this EE-Note is
modified to place the overlay data in the external
memory in higher-order addresses only. DMA
with 32-bit to 48-bit data packing is used to
transfer the data from the higher-order external
memory locations to the internal memory.

 A

Implementing Overlays on ADSP-21160 SHARC® Processors (EE-284)

Figure 6. Overlay Function Execution Flowchart

In the main code, the overlay functions are called
similar to ordinary (non-overlay) functions.
Figure 6 shows the flowchart for the execution of
an overlay function. For the overlay functions,
the linker replaces the actual overlay function
call with a call to the PLIT code generated for
that particular overlay function.

For example, the instruction:
call OVL1_Blink_LED2;

is replaced automatically by:
call plt_1__._OVL1_Blink_LED2;

Looking back at the code:

plt_1__._OVL1_Blink_LED2:

 R0 = 1;
 R1 = _OVL1_Blink_LED2;
 Jump_OverlayManager;

In the R0=0x0001 instruction, the content of the
R0 register in the plt_1__.OVL1_Blink_LED2
table is used as a pointer to access the linker-

generated data in the overlay manager. The
instruction (jump Overlay_Manager())
transfers program control to the overlay manager.
As explained earlier, the overlay manager code
initiates an external port DMA transfer of the
Blink_LED2() overlay function from external
memory to internal memory. Finally, the overlay
manager executes a JUMP instruction to transfer
program control to the Blink_LED2() overlay
function in run space. The overlay manager also
uses a software stack to save the contents of
registers used in the overlay manager function.

Both overlay example codes are validated by
booting from flash. The loader file (.ldr)
attached with the example code can be burned
into flash/EEPROM memory directly. The .ldr
file will have the memory image of both the
bootable and non-bootable parts of the code.
During booting, the boot kernel instructions load
the non-overlay code only; they do not load the
overlay functions. The boot kernel loads the
overlay code as data in the external memory
using core writes. In the given example code
during booting only the main(), Blink_LED1(),
and overlay_manager() functions are loaded
into the internal memory. The overlay functions
mapped from 0x2800000 in external memory are
not loaded into the internal memory. During
runtime, when overlay functions are called, they
are transferred into the run space and executed.

Testing Overlay Example Codes
Test the blink example code available for the
overlay manager without packing using the
emulator:

1. Load the blink_code_overlay.dxe file
available with the EE-Note into internal
memory.

2. Place a breakpoint after the WAIT register
initialization and run until the breakpoint
occurs.

 main ()

Call overlay
function

PLIT Table

 Overlay_ manager ()

 Jump to run space to
execute the function

End

 A

Implementing Overlays on ADSP-21160 SHARC® Processors (EE-284)

3. In VisualDSP++, choose Settings >
Preferences to open the Preferences
dialog box and disable the Reset targets
before load and Run to main after
load options.

4. Reload the blink_code_overlay.dxe file.

5. Run the application.

The blink code example available for the overlay
manager with DMA packing cannot be tested
using the emulator. The blink_code.ldr file
available with this EE-Note can be programmed
into the flash using the Flash Programmer utility
and tested.

Summary
The overlay manager codes discussed in this
section are very simple. They use the DMA with
no packing enabled or with 32-bit to 48-bit
packing mode enabled to transfer overlay data
from external memory to internal memory. The
overlay codes are validated by booting from the
flash. The default boot kernel is modified to
work with the overlay manager example codes.

Source code for the overlay managers are
provided with this EE-Note.

References
[1] Using Memory Overlays (EE-66). Analog Devices, Inc.

[2] ADSP-21160 SHARC DSP Hardware Reference. Rev 3.0, November 2003. Analog Devices, Inc.

[3] VisualDSP++ 4.0 Linker and Utilities Manual. Rev 1.0, January 2005. Analog Devices, Inc.

[4] Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++ (EE-249). October 2004. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – March 09, 2006
by Jeyanthi Jegadeesan

Initial Release

	Introduction
	Overlays on SHARC Processors
	Overlays on ADSP-21160 SHARC Processors
	ADSP-21160 External Memory Interface and DMA Packing Modes
	Packing Method in Visual DSP++
	VisualDSP++ Support

	Overlay Manager with DMA No Packing - Example
	Linker Definitions
	Overlay Manager with DMA Without Packing

	Overlay Manager with DMA Packing
	Testing Overlay Example Codes
	Summary
	References
	Document History

