
aaaa Engineer To Engineer Note EE-160
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2002, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices
regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Examining ADSP-21160 Link Port
Backward Compatibility to the
ADSP-2106x Link Ports

Overview

This Engineer’s Note will discuss the ADSP-21160
link port compatibility to previous SHARC DSPs,
along with software and hardware related issues.
Software examples for core- and DMA driven reads
and writes to an ADSP-21062 will be provided.

General Operation

The ADSP-21160 has six 8-bit wide link ports that
provide additional I/O capabilities. These link ports
can connect to other DSPs’ or peripherals’ devices
supporting the link port protocol as detailed in the
ADSP-21160 data sheet. These bi-directional ports
consists of eight data lines (LxDAT7-0), a link clock
line (LxCLK), and a link acknowledge line
(LxACK). The LxCLK line allows asynchronous
data transfers and the LxACK line provides
handshaking. When a link port is not enabled,
LxDAT7-0, LxCLK and LxACK are three-stated.
The ADSP-21160 link ports can be configured to
use four data lines for compatibility with older
SHARC link ports.

When configured as a transmitter, the port drives
both the data and LxCLK lines. When configured as
a receiver, the port drives the LxACK line. A link-
port-transmitted word consists of 4 bytes (for a 32-
bit word) or 6 bytes (for a 48-bit word). The
transmitter asserts the clock (LxCLK) high with
each new byte (nibble) of data. The falling edge of
LxCLK is used by the receiver to latch the byte
(nibble). The receiver asserts LxACK when it is
ready to accept another word in the buffer. The

transmitter samples LxACK at the beginning of each
word transmission (i.e. after every 6 or 8 bytes). If
LxACK is deasserted at that time, the transmitter
does not transmit the new word.

The transmitter leaves LxCLK high and continues to
drive the first byte if LxACK is deasserted. When
LxACK is eventually asserted again, LxCLK goes
low and begins transmission of the next word. If the
transmit buffer is empty, LxCLK remains low until
the buffer is refilled, regardless of the state of
LxACK. Data is latched in the receive buffer on the
falling edge of LxCLK. The receive operation is
purely asynchronous and can occur at any frequency
up to the processor clock frequency. Link ports have
the capability of running at 80 MHz rates
accordingly at frequencies up to the same speed as
the DSP’s internal clock (see timing requirements as
detailed in the ADSP-21160 and ADSP-21062 Data
sheet, for exceptions and workarounds see ADSP-
21160 and ADSP-21062 Hardware Anomaly List),
letting each port transfer either 4 or 8 (ADSP-
21160) bits of data per internal clock cycle. Note
that the ADSP-21160M’s internal clock (CK)
switches at higher frequencies than the system input
clock (CLKIN). The ratio between the DSP’s
internal clock (CK) frequency and external (CLKIN)
clock frequency is programmed with the
CLK_CFG3–0 pins, during reset.

To determine switching frequencies for the link
ports, divide down the internal clock (CK), using the
programmable divider control of each link port
(LxCLKD1–0). Calculation of link receiver data
setup and hold relative to link clock is required to
determine the maximum allowable skew that can be
introduced in the transmission path between
LxDATA and LxCLK.

The links are designed to drive transmission lines
with characteristic impedances of 50 Ohm or
greater. Higher transmission line impedance reduces

EE-160 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

the on-chip effect of driver impedance variations,
for distances longer than about 6 inches. It is
recommended that an external series termination
resistor be used at each link port pin to absorb
reflections from the open circuit at the destination.
The external resistor should be selected such that its
value (plus the internal resistance of the driver) is
equal to the characteristic impedance of the
transmission line. For more information on how to
calculate the value of a series termination read the
appropriate chapters of any high-speed digital
design book.

Link Port Configuration

There are four control registers associated with link
port control functions. The SYSCON, LCOM, LAR,
and LCTLx registers control the link ports operating
modes for the I/O processor. To configure link port
operations, these registers should be set in the
following order: SYSCON, LAR, LCOM, LCTLx.
Before reassigning a link port with the LAR register,
disable the link port’s assigned buffer with the
LCTLx register.

 There are six registers, LBUF0-5, that buffer the
data flow through the link ports. These registers are
independent of the link ports and may be connected
to any of the six link ports. The Link Assignment
Register (LAR) assigns the link buffer-to-port
connections. The link buffers read from or write to
internal memory under DMA or processor core
control. Each link buffer consists of an external and
an internal 48-bit register. When transmitting, the
internal register is used to accept core data or DMA
data from internal memory.

When receiving, the external register performs the
packing and unpacking for the link port, most
significant nibble or byte first. These two registers
form a two-stage FIFO for the LBUFx buffer. Two
writes (32- or 48-bit) can occur to the register by the
DMA or the core, before it signals a full condition.
Full/empty status for the link buffer FIFOs is given
by the LxSTAT bits of the LCOM register. (See
Core driven transfer example) This status is cleared

for a link buffer when its LxEN enable bit is cleared
in the LCTLx register. If a read is attempted from an
empty receive buffer, the core stalls (hangs) until the
link port completes reception of a word. If a write is
attempted to a full transmit buffer, the core stalls
until the external device accepts the complete word.
The SYSCON register contains the BHD bit, this bit
can be set preventing the processor core from
detecting a buffer-related stall condition.

Overall there are six bit fields in the Link Port
Control Registers LCTLx, controlling for each link
buffer appropriate functions. For bit definitions see
the ADSP-21160 Hardware Reference Manual.

The LCOM Register contains status bits for each
link buffer. For bit definitions see the ADSP-21160
Hardware Reference Manual. Note that the link port
error status bit is set when the link port buffer has
not received a full word. This means that the error
bit would only be cleared on occasions when the
link buffer has received a multiple of 8 or 12 nibbles
indicating that a full 32 or 48 bit word has been
received. If you were to check the status bit at a time
when you were not sure that a word has been
completely received the error status bit could be set
indicating that the transfer is not complete. If you
are checking the error status bit at an appropriate
time and the bit remains set after a word has been
received, it may indicate that there is in fact an error
possibly caused by a clock glitch bringing in
unintended nibbles.

ADSP-21062 Compatible Mode

ADSP-21160 link ports are logically compatible
with ADSP-2106x link ports. However only an
ADSP-2106xL (Low Power 3.3V) is electrical
compatible. If a 5V device is used a voltage
conversion stage must be introduced into the link
path. Furthermore the LxDPWID bit in the LCTLx

ADSP-21160 ADSP-21062L

LxACK LxACK

LxDAT4 - 0

LxCLKLxCLK

LxDAT4 - 0

EE-160 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

register must be cleared in order to enable a ADSP-
2106x compatible 4-bit data path.

Example: Both DSPs using same CLKin frequency
i.e. 33 MHz, ADSP-21160 CK frequency is set to
2xCLKin (CK=66MHz)

ADSP-21160

LXCLKD1 LXCLKD0

RECEIVE
OCCURS @ IN

MHZ

TRANSMIT
OCCURS @ IN

MHZ

0 1 <=66 =66

1 0 <=66 =33

1 1 <=66 =22

0 0 <=66 =16.5

ADSP-21062

LCLK2X

RECEIVE
OCCURS @ IN

MHZ

TRANSMIT
OCCURS @ IN

MHZ

0 <=33 =33

1 >33 & <=66 =66

Theoretically maximum throughput (LCLK=80MHz)
in both directions can be obtained by setting the
lower LxCLKD bit in the LCTLx register (Selecting
a full core-rate transfer frequency) and setting the
ADSP-2106x LCLK2x bit in the LCOM register
(Transfers at 2x clock rate). Make sure that you met
the timing requirements as detailed in the ADSP-
21160 and ADSP-21062 data sheets. The LDATA
and LCLK signals start at the same time from the
source device and reach the destination at the same
time since they follow the same length of
transmission lines. However, there is a pin to pin
skew due to the mismatches in loadings and the
transmission line length. For an example calculation
on how to calculate the maximum skew allowed
between LCLK and LDATA at the receiver link
port, see the calculation below. The smallest
calculated number is the maximum skew allowed
between LCLK and LDATA, in order to ensure
reliable bi-directional transfers.
These calculations are worst case; they are made
directly from speed specifications. Therefore they
include multiple specification guardbands.

ADSP-21160M Receiver Side

ADSP-21062L, LCLK2x=0, tLCLK = 30.3 ns :

Setup Skew = tLCLKTWH (Min) - tDLDCH -tSLDCL
= (tLCLK /2)-1.5 - 2.5 - 2.5 = 8.65 ns

Hold Skew = tLCLKTWL (Min) + tHLDCH -tHLDCL
= (tLCLK /2)-1.0 – 2.5 - 2.5 = 9.15 ns

ADSP-21062L Receiver Side

ADSP-21160M, LxCLKD1=1, tLCLK = 30.3 ns :

Setup Skew = tLCLKTWH (Min) - tDLDCH -tSLDCL
= (tLCLK/2)-1.5 – 6 - 3.0 = 4.65 ns

Hold Skew = tLCLKTWL (Min) + tHLDCH -tHLDCL
= (tLCLK /2)-1.5 – 2.0 – 3.0 = 8.65 ns

Parameter are based on datasheet revision ADSP-21062L REV.C , ADSP-21160 REV.0

Core-Driven Transfer Examples

Code Listings 1.1 to 1.4 shows how the core reads
and writes the link buffers, by polling the full or
empty status bits. In these examples a ADSP-21160
link port (4) is connected to ADSP-21062L link
port (5). The core transfers N values. Received
values are stored in a data buffer.

DMA-Driven Transfer Examples
Code Listings 2.1 to 2.4 shows single mode DMA
transfers. In these examples a triangle wave of
length N is computed and stored in a data buffer.
After that the core set up a DMA transfer. By
writing the LCTLx register the I/O processor starts
transferring the whole block of data. Note that
programs should not modify an active DMA
channel’s bits in the LCTLx register; other than to
disable the channel by clearing the LxDEN bit. The
I/O processor stores the received block in DM
memory.

EE-160 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

/*---
Code to receive with a ADSP-21160 link port(4) from a ADSP-21062. The core directly
reads N values from the link buffer(LBUF4). The core will hang on the read of
LBUF4 until data is ready to receive. Received values are stored DM Memory.
---*/

#include "def21160.h"

#define N 1024

/*------------ DM data --------------*/
.section/dm seg_dmda;
/*data to be transmitted to SHARC*/
.VAR dest[N];

/*---- PM interrupt vector code -----*/
.section/pm seg_rth;
Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump begin; nop; nop;

/*------ program memory code -------*/
.section/pm seg_pmco;

begin:
b2=dest;
l2=N;
m2=1;

ustat1 = dm(SYSCON); /* Clear Buffer Hang Disable */
bit clr ustat1 BHD;
dm(SYSCON) = ustat1;

r0=0; /*clear link control registers*/
dm(LAR)=r0;
dm(LCTL1)=r0;

r0=0x4000; /* LBUF4->LPORT4, all other ports are disabled */
dm(LAR)=r0;
r0=L4EN | L4CLKD1; /*LBUF4 enable port, RX, 32bit word size,

1/2 clock, 4bit data path*/
dm(LCTL1)=r0; /*always write LCTLx after LAR*/
r2=N;

readstat:
ustat1=dm(LCOM); /* read Link Port common Control Register */
bit tst ustat1 L4STAT0 ; /* test buffer full */
if not tf jump readstat; /* test until word is received */
r2=r2-1; /* count received words */

if GT jump readstat (DB);
r1=dm(LBUF4); /* save received words until count expired*/
dm(i2,m2)=r1;

/* terminate and wait */
wait1:
jump wait1;
/*---*/

Listing 1.1 ADSP-21160 Core-Driven Receive Example
/*---
Code to transmit with a ADSP-21160 link port(4) to a ADSP-21062. The core directly
writes N values to the link buffer(LBUF4). The core stops writing words to the
buffer, if the L4STAT1 bit indicates a full condition. In order to transmit to an
ADSP-21160 using 8 bit data width the corresponding LxDPWID must be set.
---*/

#include "def21160.h"

#define N 1024

EE-160 Page 5
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

/*------------ DM data --------------*/
.section/dm seg_dmda;

/*---- PM interrupt vector code -----*/
.section/pm seg_rth;
Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump begin; nop; nop;

/*------ program memory code -------*/

.section/pm seg_pmco;

begin: r0=0; /*clear link control registers*/
dm(LAR)=r0;
dm(LCTL1)=r0;

ustat1 = dm(SYSCON); /* Clear Buffer Hang Disable */
bit clr ustat1 BHD;
dm(SYSCON) = ustat1;

r0=0x4000; /* LBUF4->LPORT4, all other ports are disabled
*/

dm(LAR)=r0;

r0=L4EN | L4CLKD1 | L4TRAN; /*LBUF4 enable port and dma, transmit,
32bit word size, 1/2 clock, 4bit data path*/

dm(LCTL1)=r0; /*always write LCTLx after LAR*/
r1=1;
r2=N;

readstat:
ustat1=dm(LCOM); /* read Link Port common Control Register */
bit tst ustat1 L4STAT1;
if tf jump readstat; /* test until buffer is empty */
if GT jump readstat (DB);
dm(LBUF4)=r2; /* write value to link port buffer */
r2=r2-r1;

/* terminate and wait */
wait1:
jump wait1;
/*---*/

Listing 1.2 ADSP-21160 Core-Driven Transmit Example

/*---
Code to receive with a ADSP-21062 link port(5) from a ADSP-21160. The core directly
reads N values from the link buffer(LBUF2). The core will hang on the read of
LBUF4 until data is ready to receive. Received values are stored DM Memory.
---*/

#include "def21060.h"
#define N 1024

/*------------ DM data --------------*/
.section/dm seg_dmda;
.var dest[N];

/*---- PM interrupt vector code -----*/
.section/pm seg_rth;
Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump start; nop; nop;

/*------ program memory code -------*/
.section/pm seg_pmco;

start: ustat1 = dm(SYSCON); /* Clear Buffer Hang Disable */

EE-160 Page 6
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

bit clr ustat1 0x800;
dm(SYSCON) = ustat1;

b1=dest; /* setup circular buffer */
l1=N;
m1=1;

setup: r0=0x00000000;
dm(LCTL)=r0; /* clear link control registers */
dm(LAR)=r0;

r0=0x0000000; /* LCKX2x=0 transfers occurring at CK frequency */
dm(LCOM)=r0;

r0=0x3ff7f; /* LBUF2 <==> LPORT5, all others disabled */
dm(LAR)=r0;

r9=0x00000100; /* lbuf2 enable, receive, 32-bit word, 4-bit bus width */
dm(LCTL)=r9;
r2=N;

readstat:
ustat1=dm(LCOM); /* read Link Port common Control Register */
bit tst ustat1 0x10; /* test buffer full */
if not tf jump readstat; /* test until word is received */
r2=r2-1; /* count received words */
if GT jump readstat (DB);
r1=dm(LBUF2);
dm(i1,m1)=r1; /* save received words until count expired*/

/* terminate and wait */
wait1: idle;

jump wait1;
.ENDSEG;

Listing 1.3 ADSP-21062 Core-Driven Receive Example
/*---
Code to transmit with a ADSP-21062 link port(5) to a ADSP-21160. The core directly
writes N values to the link buffer(LBUF2). The core stops writing words to the buffer,
if the L2STAT1 bit indicates a full condition.
---*/

#include "def21060.h"

#define N 1024

/*------------ DM data --------------*/
.section/dm seg_dmda;

/*---- PM interrupt vector code -----*/
.section/pm seg_rth;
Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump start; nop; nop;

/*------ program memory code -------*/
.section/pm seg_pmco;

start: ustat1 = dm(SYSCON); /* Clear Buffer Hang Disable */
bit clr ustat1 0x800;
dm(SYSCON) = ustat1;

setup: r0=0x00000000;
dm(LCTL)=r0; /* clear link control registers */
dm(LAR)=r0;

r0=0x0000000; /* Lclk2x=0 (0x0004000 for Lclk2x=1) */
dm(LCOM)=r0;

r0=0x3ff7f; /* LBUF2 <==> LPORT5, all others disabled */
dm(LAR)=r0;

EE-160 Page 7
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

r9=0x00000900; /* lbuf2 enable, transmit, 32-bit word, 4-bit bus width */
dm(LCTL)=r9; /* always write LCTLx after LAR */
r2=N;

readstat:
ustat1=dm(LCOM); /* read Link Port common Control Register */
bit tst ustat1 0x20;
if tf jump readstat; /* test until buffer is empty */
if GT jump readstat (DB);
dm(LBUF2)=r2; /* write value to link port buffer */
r2=r2-1;

/* terminate and wait */

wait1: idle;
jump wait1;

/*---*/
.ENDSEG;

Listing 1.4 ADSP-21062 Core-Driven Transmit Example

/*---
Code to receive with a ADSP-21160 link port(4) from a ADSP-21062. The DSP's I/O
processor manages the DMA transfer through the link port. The DMA operation transfers and
stores an entire block of data in DM data memory. In order to receive from a ADSP-21160 using
8 bit data width the corresponding LxDPWID must be set.
---*/

#include "def21160.h"

#define N 512 /* length of receive data */

/*------------ DM data --------------*/
.section/dm seg_dmda;
.var dest[N];

/*---- PM interrupt vector code -----*/
.section/pm seg_rth;
Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump begin; nop; nop;

/*------ program memory code -------*/
.section/pm seg_pmco;

begin: ustat1 = dm(SYSCON); /* Clear Buffer Hang Disable */
bit clr ustat1 BHD;
dm(SYSCON) = ustat1;

r0=0; /* Clear Link Control Registers */
dm(LAR)=r0;
dm(LCTL1)=r0;

/* Set up DMA pointers */
r0=dest; /* Set DMA channel 8 Index Register */
dm(II8)=r0;

r0=1;
dm(IM8)=r0; /* Set DMA channel 8 Modify Register */

r0=@dest;
dm(C8)=r0; /* Set DMA channel 8 count Register */

r0=0x4000; /* LBUF4->LPORT4, all other ports are disabled */
dm(LAR)=r0;

r0=L4EN | L4DEN | L4CLKD1;/*LBUF4 enable port and DMA, receive, word size, ½

EE-160 Page 8
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

clock, 4bit data path*/
dm(LCTL1)=r0; /*always write LCTLx after LAR*/

/* terminate and wait */
wait1:
jump wait1;
/*---*/

Listing 2.1 ADSP-21160 DMA-Driven Receive Example

EE-160 Page 9
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

/*---
Code to transmit with a ADSP-21160 link port(4) to a ADSP-21062. The DSP's I/O
processor manages the DMA transfer through the link port. The DMA operation transfers an
entire block of data located in DM data memory. In order to transmit to an ADSP-21160
using 8 bit data width the corresponding LxDPWID must be set.
---*/

#include "def21160.h"

#define N 512 /* length of sample data should be a even number */

/*------------ DM data --------------*/
.section/dm seg_dmda;
.VAR source[N]; /*data to be transmitted to SHARC*/

/*---- PM interrupt vector code -----*/
.section/pm seg_rth;
Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump start; nop; nop;

/*------ program memory code -------*/
.section/pm seg_pmco;

/* computes sample data to be transmitted in one DMA transfer block */
start: bit set MODE1 CBUFEN;

b0=source; b1=b0; i0=source+N/4; i1=source+3*N/4;
l0=N; l1=N; m0=1; r0=N/4; r1=-N/4-1;
/* triangle function period=N, amplitude=N/2 */
lcntr=N/2, do compute until lce;
r1=r1+1; dm(i0,m0)=r0;

compute:r0=r0-1, dm(i1,m0)=r1; /* proper transmission can be easily verified
using the debug window plot function */

setup: ustat1 = dm(SYSCON); /* Clear Buffer Hang Disable */
bit clr ustat1 BHD;
dm(SYSCON) = ustat1;

r0=0; /*clear link control registers*/
dm(LAR)=r0;
dm(LCTL1)=r0;

/* Set up DMA pointers */
r0=source;
dm(II8)=r0; /* Set DMA channel 8 Index Register */

r0=1;
dm(IM8)=r0; /* Set DMA channel 8 Modify Register */

r0=@source;
dm(C8)=r0; /* Set DMA channel 8 count Register */

r0=0x4000;
dm(LAR)=r0; /* LBUF4->LPORT4, all other ports are disabled */

r0=0x12C00; /* LBUF4 enable port and DMA, transmit, 32bit word size, 1/2 clock,
4bit data path */

dm(LCTL1)=r0; /* always write LCTLx after LAR */

/* terminate and wait */
wait1:
jump wait1;
/*---*/

Listing 2.2 ADSP-21160 DMA-Driven Transmit Example

/*---
Code to receive with a ADSP-21062 link port(5) from a ADSP-21160. The DSP's I/O
processor manages the DMA transfer through the link port. The DMA operation transfers and
stores an entire block of data in DM data memory.

EE-160 Page 10
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

---*/

#include "def21060.h"

#define N 512 /* length of receive data */

/*------------ DM data --------------*/
.section/dm seg_dmda;
.var dest[N];

/*---- PM interrupt vector code -----*/
.section/pm seg_rth;
Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump start; nop; nop;

/*------ program memory code -------*/
.section/pm seg_pmco;

start: ustat1 = dm(SYSCON);
bit clr ustat1 0x800;
dm(SYSCON) = ustat1;/* Clear Buffer Hang Disable */

setup: r0=0; /* Clear Link Control Registers */
dm(LCTL)=r0;
dm(LAR)=r0;

/* Set up DMA pointers */
r0=dest;
dm(II4)=r0; /* Set DMA channel 4 Index Register */

r0=1;
dm(IM4)=r0; /* Set DMA channel 4 Modify Register */

r0=@dest;
dm(C4)=r0; /* Set DMA channel 4 count Register */

r0=0x0000000; /* receive at clock frequency */
dm(LCOM)=r0;

r0=0x3ff7f;
dm(LAR)=r0; /* LBUF2 <==> LPORT5, all others disabled */

r9=0x00000300;
dm(LCTL)=r9; /* lbuf2 enable, receive, 32-bit word, 4-bit bus width, DMA */

/* terminate and wait */
wait1:
jump wait1;
/*---*/

Listing 2.3 ADSP-21062 DMA-Driven Receive Example

/*---
Code to transmit with a ADSP-21062 link port(5) to a ADSP-21160. The DSP's I/O
processor manages the DMA transfer through the link port. The DMA operation transfers an
entire block of data located in DM data memory.
---*/

#include "def21060.h"

#define N 512 /* length of sample data should be a even number */

/*------------ DM data --------------*/
.section/dm seg_dmda;

EE-160 Page 11
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

.VAR source[N];

/*---- PM interrupt vector code -----*/
.section/pm seg_rth;
Reserved_1: rti; nop; nop; nop;
Chip_Reset: idle; jump start; nop; nop;

/*------ program memory code -------*/
.section/pm seg_pmco;

/* computes sample data to be transmitted in one DMA transfer block */
start: b0=source; b1=b0; i0=source+N/4; i1=source+3*N/4;

l0=N; l1=N; m0=1; r0=N/4; r1=-N/4-1; /* triangle function period=N,
amplitude=N/2 */

lcntr=N/2, do compute until lce;
r1=r1+1; dm(i0,m0)=r0;

compute:r0=r0-1, dm(i1,m0)=r1; /* proper transmission can be easily verified
using the debug window plot function */

setup: ustat1 = dm(SYSCON); /* Clear Buffer Hang Disable */
bit clr ustat1 0x800;
dm(SYSCON) = ustat1;

r0=0x00000000; /* Clear Link Control Register */
dm(LCTL)=r0;
dm(LAR)=r0;

/* Set up DMA pointers */
r0=source; /* Set DMA channel 4 Index Register */
dm(II4)=r0;

r0=1;
dm(IM4)=r0; /* Set DMA channel 4 Modify Register */

r0=@source; /* Set DMA channel 4 count Register */
dm(C4)=r0;

r0=0x0000000; /* transfer on clock rate, disable 2-D DMA, disable link
pull-down resistor*/

dm(LCOM)=r0;

r0=0x3ff7f; /* LBUF2 <==> LPORT5, all others disabled */
dm(LAR)=r0;

r9=0x00000b00; /* lbuf2 enable, transmit, 32-bit word, 4-bit bus width, DMA
*/

dm(LCTL)=r9;

/* terminate and wait */
wait1: idle;

jump wait1;
.endseg;
/*---*/

Listing 2.4 ADSP-21062 DMA-Driven Transmit Example

References:

ADSP- 21160M SHARC DSP Microcomputer Datasheet REV.0
ADSP- 21062L SHARC DSP Microcomputer Datasheet REV.C
ADSP- 21160 SHARC DSP Hardware Reference (First Edition)
ADSP- 2106x SHARC DSP User’s Manual (Second Edition)

