
Engineer-to-Engineer Note EE-223

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

In-Circuit Flash Programming on SHARC® Processors
Contributed by R. Murphy Rev 2 – February 19, 2007

Copyright 2004-2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
ADSP-2116x, ADSP-2126x, ADSP-2136x and
ADSP-2137x SHARC® processors, similar to
most re-programmable processors, require that
internal program code and data be boot-loaded at
power-up. The code and data can be supplied by
a host system (e.g., via an SPI or JTAG
connection) or can be stored in an on-board non-
volatile memory device such as a ROM or in a
serial or parallel flash device. The SHARC EZ-
KIT Lite® evaluation boards enable you to boot
the processor in any of these modes. This EE-
Note focuses on PROM booting. This is
supported by an 8-Mbit flash memory device
(AM29LV081B-120EC) from AMD.

Several options are available to system designers
for programming boot code into the flash device.

This document discusses programming the flash
using the Flash Programmer utility and bases the
discussion on an example flash programmer
project.

The discussed procedure in this EE-Note is for
ADSP-21262 and ADSP-21161 processors, but it
applies to all SHARC processors. ADSP-21161
processors use the external port for programming
the flash, and ADSP-21262 processors use the
parallel port to program the flash. The approach
provided for ADSP-21161 processors applies to
ADSP-21367, ADSP-21368, ADSP-21369,
ADSP-21371, and ADSP-21375 processors. The
approach provided for ADSP-21262 processors
applies to ADSP-2126x, ADSP-21362, ADSP-

21363, ADSP-21364, ADSP-21365, and ADSP-
21366 processors.

Flash Programmer Utility

VisualDSP++® 4.5 development tools or higher
includes a Flash Programmer utility that allows
you to point the flash utility to a previously
programmed loader (.LDR) file and program the
flash based on a supplied driver file. The driver
file is simply a DSP executable (.DXE) developed
for a specific combination of processor and flash
device. The VisualDSP++ tools include driver
files for each of the SHARC EZ-KIT Lite
evaluation boards, allowing you to program your
flash device with your driver file. The driver files
for the ADSP-21262 EZ-KIT Lite can be found
in the following location:
VisualDSP 4.5\212xx\Examples\ADSP-21262
EZ-KIT Lite\Flash Programmer

Similar folders exist for all SHARC evaluation
boards.

Using the Flash Programmer Code

Alternatively, the Flash Programmer utility can
be circumvented; you can use the attached
example code and code available in the listing to
manually program the image into flash. This is
useful for verifying the development of a custom
driver for the Flash Programmer utility as well as
for simply creating a custom executable for use
in programming the end system.

Flash programmer code for the ADSP-21161
processor (using the external port) and the

 a

In-Circuit Flash Programming on SHARC® Processors Page 2 of 5

ADSP-21262 processor (using the parallel port)
are included in the associated ZIP file [1] for this
EE-Note.

This example shows how the VisualDSP++ tools
are used to program an application into flash. In-
circuit programming (verses burning the flash
before it is placed on the board) is frequently
used to perform software or firmware updates to
systems that are already deployed in the field.

The task requires two separate sets of code: a
software routine that programs the data into the
flash, and an end application that is ultimately
boot-loaded into and run by the processor.

In this example, flash_programmer.asm
contains a generic flash programming algorithm,
a simple LED toggling routine in blink.asm.
(This routine will serve as the data payload that
flash_programmer.asm will program into the
flash.) The ADSP-21161 blink application
toggles flags 4-9 on the ADSP-21161N EZ-KIT
Lite evaluation board. The ADSP-21262 blink
application toggles LEDs 1-8 on the ADSP-
21262 EZ-KIT Lite evaluation board.

In-Circuit Flash Programming
The attached code example demonstrates the four
steps involved with in-circuit flash programming.

Step 1. Building the Application

Using the USB debug agent, a JTAG emulator,
and/or the VisualDSP++ simulator, you can write
and test the application. The application in
blink.asm toggles the LEDs, which are
connected to flags 4-9 sequentially for the
ADSP-21161 processor. The application in
ppflags.c toggles the LEDs, which are
connected to flags 8-15 sequentially for the
ADSP-21262 processor. Verify that this routine
and your board are functional by activating an
ADSP-21161N/ADSP-21262 EZ-KIT Lite debug
target in the IDDE and then opening blink.dpj.
Next, load blink.dxe. After the executable has

been loaded, run the project (F5) and watch the
LEDs.

Step 2. Creating the PROM Boot-Image

After verifying the application, use the
VisualDSP++ loader to generate a boot-image
from the source code. To do this, open the
Project Options dialog box for blink.dpj
and specify “Loader file” as the output file type
(Figure 1).

The .LDR file to be generated will ultimately be
included in the flash programming routine as an
array. To this end, the .LDR file should be in
“Include” format (essentially comma-delimited
ASCII) with each word being 32-bits, as shown
in Figure 2.

Figure 1. Specifying a loader file as output file type

Click OK and then click Rebuild All. This
rebuilds the project according to the specified
project options and generates blink.ldr.

 a

In-Circuit Flash Programming on SHARC® Processors Page 3 of 5

Figure 2. Specifying Parallel port (PROM) as boot
type

The flash programmer utility requires that the
loader file be in Intel Hex format for
programming the flash.

Step 3. Programming the Flash Device

Next, use either the Flash Programmer utility
(Step 3A) or the included flash-programmer
project (Step 3B) to program the .LDR image into
the flash device.

Step 3A. Using the Flash Programmer Utility

Perform the following steps:

1. From the VisualDSP++ Tools menu, choose
Flash Programmer.

Figure 3. Loading the driver

2. Click Load Driver. The utility will load a
supplied driver for the AMD flash onto the
EZ-KIT Lite board (or you can browse to
locate a custom flash driver file).

3. Click the Programming tab. Browse to the
folder containing blink.ldr and click
Program.

Figure 4. Programming the flash

4. When a "Program complete" message
appears, reset the board to boot the new
application code.

Step 3B. Using the Included flash_programmer
Project

Perform the following steps:

5. Open flash_programmer.dpj.

6. Rebuild the project with your application
code.

The last step modifies the flash programming
application to include the recently generated
blink.ldr. To do this, in the file
flash_programmer.asm, simply declare an
array in a section mapped to external memory
and initialize it with the payload .LDR file.
To use the example application (blink), this is
done as follows:
.section/dm seg_ext8;

.var my_file[]= "blink.ldr";

 a

In-Circuit Flash Programming on SHARC® Processors Page 4 of 5

The Linker Description File (.LDF) is then
used to pack all seg_ext8 input sections to
an external memory segment (also named
seg_ext8).

With the correct payload file specified,
simply rebuild the project to generate the
flash programming executable.
(flash_programmer.dxe).

7. Program the flash, as described next.

Four LEDs provide feedback on the progress
of the flash programming. As each of the
following five steps completes, an LED
illuminates to indicate that it was successful
(or blinks rapidly to indicate failure).

The five steps are as follows:

1. Verify that the payload fits into the
1 M x 8-bit flash.

2. Reset the flash.

3. Erase the flash (completely or by-sector).

4. Write the payload .LDR file into the flash.

5. Verify the data.

If all five steps are successful, all of the
LEDs flash briefly, indicating that the in-
circuit flash programming was successful.
You may now reset the board, and the new
application code will be booted.

Additional Notes
In this example, the payload buffer, my_file[],
is initiated at build time. In a real system, this
buffer would be initialized during execution. The
flash data may be imported from a serial port,
link port, or an SPI port. The data may be placed
into memory by an on-board host processor.

Viewing the flash and external memory space via
memory windows in the IDDE is supported by
the VisualDSP++ tools using an Analog Devices
In-Circuit-Emulator (ICE). However, during
debug of the application, this may cause the
debugger window to hang momentarily,
especially while single stepping. To avoid this
bottleneck, close the external memory windows
while the code is running, and open them as
needed to verify the memory contents.

Summary
This EE-Note discusses two ways of
programming the in-circuit flash on SHARC
processors. The example code provided with the
EE-Note demonstrates the in-circuit flash
programming for ADSP-21161 and ADSP-21262
processors. The example code is tested on the
flash in the ADSP-21161N and ADSP-21262
EZ-KIT Lite evaluation boards.

 a

In-Circuit Flash Programming on SHARC® Processors Page 5 of 5

References
[1] Associated .ZIP File. Revision 2, February 2007. Analog Devices, Inc.

[2] ADSP-2126x SHARC DSP Core Manual, Revision 2.0, February 2004. Analog Devices, Inc.

[3] ADSP-2126x SHARC Processor Peripherals Manual, Revision 3.0, December 2005. Analog Devices, Inc.

[4] ADSP-21262 EZ-KIT Lite Manual, Revision 3.0, August 2006. Analog Devices, Inc.

[5] ADSP-21262 SHARC Processor Data Sheet, Revision B, August 2005. Analog Devices, Inc.

[6] AM29LV081B 1M x 8-Bit Uniform Sector Flash Memory Data Sheet, Revision D, September 2003. AMD

[7] ADSP-21161 SHARC Processor Hardware Reference Manual, Revision 4.0, February 2005. Analog Devices, Inc.

[8] ADSP-21160 SHARC DSP Hardware Reference Manual, Revision 3.0, November 2003. Analog Devices, Inc.

[9] ADSP-2136x SHARC Processor Hardware Reference Manual for the ADSP-21362/3/4/5/6 Processors, Revision 1.0,
October 2005. Analog Devices, Inc.

[10] ADSP-21368 SHARC Processor Hardware Reference Manual, Revision 1.0, September 2006. Analog Devices, Inc.

Document History

Version Description

Rev 2 – February 19, 2007
by C. Prabakaran and
Jeyanthi Jegadeesan

Modified the document to make it common for all SHARC processors.

Merged with the contents from In-Circuit Flash Programming on the ADSP-21161
EZ-Kit Lite (EE-150).

Rev 1 – January 23, 2004
by R. Murphy

Initial Release

http://www.analog.com/processors/processors/sharc/technicalLibrary/manuals/2126x_core.html
http://www.analog.com/processors/processors/sharc/technicalLibrary/manuals/2126x_core.html
http://www.analog.com/processors/processors/sharc/technicalLibrary/manuals/2126x_core.html
http://www.analog.com/processors/processors/sharc/technicalLibrary/manuals/2126x_core.html
http://www.analog.com/processors/processors/sharc/technicalLibrary/manuals/2126x_core.html
http://www.analog.com/processors/processors/sharc/technicalLibrary/manuals/2126x_core.html

	Introduction
	Flash Programmer Utility
	Using the Flash Programmer Code

	In-Circuit Flash Programming
	Step 1. Building the Application
	Step 2. Creating the PROM Boot-Image
	Step 3. Programming the Flash Device
	Step 3A. Using the Flash Programmer Utility
	Step 3B. Using the Included flash_programmer Project

	Additional Notes
	Summary
	References
	Document History

