
Engineer-to-Engineer Note EE-220

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Using External Memory with Third Generation SHARC® Processors and
the Parallel Port
Contributed by Brian M., Divya S. and Matt W. Rev 2 – March 8, 2005

Copyright 2005, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
The addressing functionality of the Parallel Port
on the third generation SHARC® family of
processors has changed greatly when compared
to the other SHARC family DSPs that have an
External Port. This EE-Note describes external
memory addressing and how to use the
VisualDSP++® development tools to handle
address translation and data reorganization via
the LDF PACKING command. A macro that helps
the Symbol Manager convert logical and
physical addresses is also explained.

This EE-Note applies to the following
processors:

ADSP-21261 ADSP-21363

ADSP-21262 ADSP-21364

ADSP-21266 ADSP-21365

ADSP-21267 ADSP-21366

ADSP-21362

External Memory Addressing
One significant difference between the Parallel
Port and the previous External Port is that the
Parallel Port no longer accepts logical addresses
from the core, instead requiring the physical
word address to be supplied to the DMA engine.
This change requires special considerations by
software developers wishing to use external
memory with Parallel Port.

Previous SHARC DSPs have always accessed
the external memory using logical (32-bit)
addressing (i.e., each external address in the
memory map corresponds to exactly one
complete word of data). The translation of each
logical address into the four corresponding
physical addresses is handled transparently by
the hardware of the port. For example, if a 32-bit
word is fetched from an external byte-wide
device, the core only needs to specify the single
32-bit logical address; then, the External Port
automatically calculates the four physical
addresses and performs the four fetches needed
to acquire the entire 32-bit word.

In contrast, the Parallel Port does not have the
address translation built-in, although it will still
perform the data packing (e.g., building a 32-bit
word from four 8-bit words). The Parallel Port
operates on physical addresses only. Note that
each external address in the memory map does
not correspond to a complete word of data.
Instead, each logical (32-bit) word of data
consumes multiple addresses in the external
range of the memory map.

To illustrate this fact, compare the handling of
two consecutive 32-bit fetches on a ADSP-21161
SHARC processor versus the same transaction
on an ADSP-21262 SHARC processor. Table 1
shows the corresponding physical addresses
generated by the External Port based on the
logical addresses from which data is fetched.
(Again, this assumes 32/8 bit packing). Note that

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 2 of 11

consecutive logical addresses correspond to
separate words externally.

Logical Address Physical (Byte)
Address Data

0x200000 0x200000 Word0 Byte1

 0x200001 Word0 Byte2

 0x200002 Word0 Byte3

 0x200003 Word0 Byte4

0x200001 0x200004 Word1 Byte1

 0x200005 Word1 Byte2

 0x200006 Word1 Byte3

 0x200007 Word1 Byte4

...

0x200100 0x200400 Word256 Byte1

 0x200401 Word256 Byte2

...

Table 1. ADSP-21161 logical-to-physical Address
Translation by the External Port.

Table 2 highlights the difference in operation on
the Parallel Port and illustrates the lack of
address translation between the logical (32-bit)
address and the physical (8-bit in this case)
address.

Logical Address Physical (Byte)
Address Data

0x200000 0x200000 Word0 Byte1

 0x200001 Word0 Byte2

 0x200002 Word0 Byte3

 0x200003 Word0 Byte4

0x200001 0x200001 Word0 Byte2

 0x200002 Word0 Byte3

 0x200003 Word0 Byte4

 0x200004 Word1 Byte1

...

0x200100 0x200100 Word32 Byte1

 0x200101 Word32 Byte2

...

Table 2. ADSP-21262/ADSP-21364 Logical to
Physical address mapping (not compatible with
previous SHARC addressing schemes).

Fetching from consecutive logical addresses does
not properly access unique data in external

memory. The rest of this EE-Note describes how
to deal with this new functionality in software.

The second change from previous SHARC DSPs
is that it is necessary to always use the External
Index register (EIPP) to access external memory;
there is no direct core access to external memory
via the Data Address Generators. The address in
the EIPP register is supplied directly to the AD
pins in the address cycle. (This ‘buffered-access’
architecture effectively decouples the core from
the Parallel Port, enabling the core clock speed to
be doubled. It also uses fewer pins, significantly
reducing both DSP and system cost.)

Organizing Data for placement in
External Memory using the LDF
The first problem that the new Parallel Port
introduces is that it uses a physical word address,
rather than a logical word address. Because of
this, it is necessary to perform address translation
and data reorganization in software. In
VisualDSP++, the LDF must include the
PACKING() command, enabling the linker to
generate addresses that the Parallel Port can use.
Listings 1 and 2 provide example packing
commands for a variety of possible cases when
packing into 8-bit memory and 16-bit memory,
respectively. The only case where a PACKING()
command would not be required is when
initializing 16-bit external memory with 16-bit
data. In this one case, it so happens that the
logical addresses directly match the physical
addresses, so no translation/packing is needed.

The PACKING() command directs the linker to
reformat the data as it is placed into the DXE.
For a memory section of TYPE(DM RAM), each
memory address holds five bytes in the DXE
(regardless of whether the data is 40-, 32-, or 16-
bit logical data). For a TYPE(PM RAM) section,
each address corresponds to six bytes (regardless
of whether the data is 48-, 40-, 32-, or 16-bit
logical data). Before each word of data is
assigned an address by the linker, the PACKING()
command reorganizes the order of the bytes in

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 3 of 11

the DXE, and can add null bytes to the DXE, if
needed.

The loader and debugging tools (simulator and
emulator) expect the external memory sections
DXE to be in a certain format to initialize
external memory correctly.

For example, when a DM (5-byte) word is
mapped into an address in a memory segment
that is WIDTH(8), only the data in the fourth most
significant byte is placed at that external address.

Similarly, for DM (5-byte) words mapped to a
memory segment that is WIDTH(16), only the data
in the third and fourth most significant bytes are
placed into the external address. (See Listings 1
and 2 for examples.)

This means that if 32-bit data is mapped into
external 8-bit memory, 3 bytes of data are
uninitialized. To remedy this, translate the 32-bit
word into four words, placing the valid data into
the 4th most significant byte of each new word, as

shown in Table 3. (Refer to the Parallel Port
chapter of ADSP-2126x SHARC DSP
Peripherals Manual [1] for information about
how data is packed in external memory.)

The DSP’s internal memory is organized as four
16-bit-wide by 64K-deep columns which are
addressable as a variety of word sizes:

• 64-bit long word data (four columns)
• 48-bit instruction words or 40-bit extended-

precision normal word data (3 columns)
• 32-bit normal word data (2 columns)
• 16-bit short word data (1 column)

The four-columned memory architecture of the
third generation SHARC family allows each
location in internal memory to be accessed in any
of the above formats, depending on the address
used. However, every access to the Parallel Port
is 32-bits (accesses are to 32-bit normal word
space, and counted in number of 32-bit words).

External Width Corresponding
Address

DM Packed for
External Memory

PM Packed for
External Memory

32-bit Word
Transferred by the
Processor

WIDTH(8) 0x01000000 0x0000001100 0x000000110000 0x44332211

 0x01000001 0x0000002200 0x000000220000

 0x01000002 0x0000003300 0x000000330000

 0x01000003 0x0000004400 0x000000440000

WIDTH(16) 0x02000000 0x0000112200 0x000011220000 0x33441122

 0x02000001 0x0000334400 0x000033440000

Table 3. Packing in the DXE file for external memory.

When transferring words that are not 32-bits
long, the External Count register must contain a
whole number of 32-bit words (i.e. it must be a
multiple of four). If it is not, the remainder bytes
are not transferred as expected. It is also
necessary to translate the internal address to 32-
bit word space.

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 4 of 11

48-bit Address Translation
The following example translates the 48-bit
address 0x82694 to its 32-bit equivalent.

Translating from 16- or 64-bit space to 32-bit
space is as simple as shifting the entire address
by one bit (left-shift for 16-bit addresses, and
right-shift for 64-bit addresses). For 40/48-bit
addresses, which also use the normal word space
addresses, 48-bit addresses are offset from the
base address (0x80000 or 0xC0000) by two-
thirds of the offset of the 32-bit word.

Word space mask = 0x80000 or 0xC0000
(0x80000 in this case)

First remove the word space mask.
48-bit Offset = 0x82694 - 0x80000 = 0x2694

Then multiply the offset by 3/2.

32-bit Offset = 0x2694 * 3/2 = 0x39DE

Finally, reinsert the word space mask.

32-bit equivalent address = 0x839DE

When translating from 48-bit to 32-bit address,
only even 48-bit address translations are valid.
Odd 48-bit addresses fall in the middle of a 32-
bit word, and cannot be accessed properly.

See the ADSP-2126x or ADSP-2136x Core
Manual for more information.

Operation of the Parallel Port
DMA Count (ECPP, ICPP)
Registers
The Parallel Port transfers data between internal
and external memory using the DMA controller.
As each transfer occurs, the DMA controller first
decrements the count register values (ECPP and
ICPP), performs the requested transfer, then
checks the left over count. The transfers continue
to take place until the count registers decrement
to zero (ECPP|ICPP=0). At this point, the
Parallel Port will stop transferring data, but both
the Parallel Port and its DMA will remain
enabled until explicitly disabled by the user.

Due to the above mentioned sequence of events
by the DMA controller, a problem arises when
enabling DMA with count registers set to zero.
With the count registers value set to zero,
enabling DMA decrements ICPP to 0xFFFF and
ECPP to 0xFFFF and a check is made on these
values which allows 64 K 32-bit transfers.
Therefore, it is unadvisable to enable DMA with
ECPP or ICPP=0;

This behavior does not apply to core-driven
accesses, since the count register is ignored by
the Parallel Port. (Core driven accesses are hard-
wired to operate single 32-bit word transfers,
regardless of the value of the count register.
Multiple transfers in core driven mode are based
on loops rather than the value of count register.)

Using the Emulator to View the
Contents of External Memory
VisualDSP++ includes support for viewing the
contents of external memory. By changing the
address to the location of your external memory,
the External Byte Memory window can be used
for 8-bit external memory, and the Short Word
Memory window for 16-bit external memory is
used. (In the Short word memory window each
address represents a 16-bit data word whereas in
External Byte Memory each address value points
to an 8-bit data word.)

Figure 1. Example External Byte Memory Window at
an External Address.

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 5 of 11

Figure 1 shows an example of the External Byte
memory window displaying an external address,
and Figure 2 shows the same for a Short Word
memory window.

Figure 2. Example Short Word Memory Window at an
External Address.

Since there is no direct core access to the
external memory, the emulator must the Parallel
Port to display the contents of external memory.
This may have an impact on settings from
software that exist when the window is opened or
updated.

To populate the memory windows, the emulator
uses the Parallel Port in core driven mode. For
core driven access the external DMA parameter
registers (EIPP, ECPP, EMPP) of the parallel
port provide an interface to external memory.
Therefore, populating the values in a memory
window consists of three steps:

1. The emulator stores the current state of
parallel port parameter (EIPP, ECPP, EMPP) and
control (PPCTL) registers that will be changed
during the population process.

2. The emulator enables the parallel port in core
driven mode for receiving data and reads enough
data to populate the entire window.

3. The parallel port is disabled again and then the
stored values of the parallel port parameter and
then control registers are restored.

Since the emulator uses the parallel port to
display the external memory values, it is
advisable to view external address values in a
memory window only after the parallel port
accesses are completely executed and the Parallel
Port has been disabled.

Even though the count is zero, if the
PPDEN and PPEN bits in PPCTL are
set, there is a possibility of data
corruption after the emulator reads the
contents of the memory as described in
the Operation of the Parallel Port DMA
Count Registers.

When the Emulator restores the values of the
ECPP and PPCTL registers under these
conditions (ECPP=0 and PPDEN and PPEN are
set), the Parallel Port will begin an undesired
DMA operation which will overwrite values in
either internal or external memory depending
upon the value of the PPTRAN bit.

The only way to avoid possible data corruption is
to ensure that PPDEN is not set before you view
the contents of external memory in a window in
VisualDSP++. Starting from VisualDSP++ 4.0,
we have added a check for this condition to
avoid the corruption of values in the external
memory. To avoid this issue, the emulator will
automatically disable the PPDEN bit and provide
a warning that the setting of the PPCTL register
has been changed.

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 6 of 11

8-bit External Memory Examples

MEMORY
{
 seg_ext8 { TYPE(DM RAM) WIDTH(8) START(0x1200000) LENGTH(0x3FFF) }
 seg_extpm8 { TYPE(PM RAM) WIDTH(8) START(0x1204000) LENGTH(0x3FFF) }
}

PROCESSOR p0
{
 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS
 {
 seg_ext40into8
 {
 INPUT_SECTIONS($OBJECTS(seg_ext40into8))
 PACKING(5 B0 B0 B0 B5 B0
 B0 B0 B0 B4 B0
 B0 B0 B0 B3 B0
 B0 B0 B0 B2 B0
 B0 B0 B0 B1 B0)
 } > seg_ext8

 seg_ext32into8
 {
 INPUT_SECTIONS($OBJECTS(seg_ext32into8))
 PACKING(5 B0 B0 B0 B4 B0
 B0 B0 B0 B3 B0
 B0 B0 B0 B2 B0
 B0 B0 B0 B1 B0)
 } > seg_ext8

 seg_ext16into8
 {
 INPUT_SECTIONS($OBJECTS(seg_ext16into8))
 PACKING(5 B0 B0 B0 B2 B0
 B0 B0 B0 B1 B0)
 } > seg_ext8

 seg_extpm8
 {
 INPUT_SECTIONS($OBJECTS(seg_extpm8))
 PACKING (6 B0 B0 B0 B6 B0 B0
 B0 B0 B0 B5 B0 B0
 B0 B0 B0 B4 B0 B0
 B0 B0 B0 B3 B0 B0
 B0 B0 B0 B2 B0 B0
 B0 B0 B0 B1 B0 B0)
 } > seg_extpm8
 }

Listing 1. Packing Examples for 8-bit External Memory

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 7 of 11

16-bit External Memory Examples

MEMORY
{
 seg_ext16 { TYPE(DM RAM) WIDTH(16) START(0x1000000) LENGTH(0x3FFF) }
 seg_extpm16 { TYPE(PM RAM) WIDTH(16) START(0x1004000) LENGTH(0x3FFF) }
}

PROCESSOR p0
{
 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS
 {
 seg_ext40into16
 {
 INPUT_SECTIONS($OBJECTS(seg_ext40into16))
 PACKING(5 B0 B0 B5 B0 B0
 B0 B0 B3 B4 B0
 B0 B0 B1 B2 B0)
 } > seg_ext16

 seg_ext32into16
 {
 INPUT_SECTIONS($OBJECTS(seg_ext32into16))
 PACKING(5 B0 B0 B3 B4 B0
 B0 B0 B1 B2 B0)
 } > seg_ext16

 seg_ext16into16
 {
 INPUT_SECTIONS($OBJECTS(seg_ext16into16))
 } > seg_ext16

 seg_extpm16
 {
 INPUT_SECTIONS($OBJECTS(seg_extpm16))
 PACKING (6 B0 B0 B0 B5 B6 B0
 B0 B0 B0 B3 B4 B0
 B0 B0 B0 B1 B2 B0)
 } > seg_extpm8
 }

Listing 2. Packing Examples for 16-bit External Memory

Symbols in External Memory
The Symbol Manager in VisualDSP++ supports
the use of logical addresses only. Therefore, any
symbol that resides in external memory, except
for the first in a declared memory section, will be
incorrect by a value dependent upon the width of
the external memory and the address decoder
setup. As explained above, the Parallel Port uses

physical addresses. The difference between the
logical and physical address depends on memory
type used (PM or DM), the width of the external
memory (8- or 16-bits), and the packing. Since
this difference is predictable, it is possible to use
a preprocessor macro to obtain the correct
address. (Declaring a separate memory section in
the LDF for each external buffer would also
avoid this problem, since each buffer would be

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 8 of 11

the first in its declared memory section. Because
this method requires pre-build knowledge of the
desired external buffers and hard coding the sizes
into the LDF, it may be undesirable.)

The packing commands in Listings 1 and 2
clearly shows the relationship between the
logical and physical address. Each packing
command represents one logical word, and each
line within the packing command represents one
physical address.

In the examples in Listings 3 and 4, one 32-bit
logical word is packed into four 8-bit physical
words. If two contiguous symbols are declared,
the second symbol will overlap with the first by

3 bytes (e.g., if the first resides physically at
0x1002000 and the second at 0x1002004, the
logical addresses stored by the Symbol Manager
will be 0x1002000 and 0x1002001,
respectively). If these symbols are used as
presented by the Symbol Manager, access to the
second word would begin at the second byte of
the first word and end with the first byte of the
second word. If a third 32-bit word is also
declared, access to this word would begin at the
third byte of the first word and end with the
second byte of the second word. Therefore, a
simple macro is necessary to correct the
inaccuracy of the Symbol Manager (see the
EXTERNAL_ADDRESS() macro in Listing 3).

Address Translation Macro Use Example

//Width of External Memory to be accessed (either 8 or 16 bits)
#define EXTERNAL_MEMORY_WIDTH 8

//Mask for address bits used by the address decoder
#define DECODER_MASK 0xFFFFFC00

//Mask for address bits used on the memory chip
#define ADDRESS_MASK 0x000003FF

//Define a macro to perform the calculation
#define EXTERNAL_ADDRESS(ADDR) ((ADDR & DECODER_MASK)|\
 ((ADDR & ADDRESS_MASK)*(32 / EXTERNAL_MEMORY_WIDTH)))

#include <def21262.h>

.section/dm seg_dm32;
 .var ext8holder[5];

// **
// External

.section/dm seg_ext8;
 .var ext8zeros[95];
 .var ext8[5] = 0xE0811111, 0xE0822222, 0xE0833333, 0xE0844444, 0xE0855555;

// **
.global _main;

//Main code section
.section/pm seg_pmco;
_main:
 //Enable the Parallel Port interrupt.
 bit set lirptl PPIMSK;
 bit set mode1 IRPTEN;

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 9 of 11

 //Read in the External DM sections on variable at a time
 r4=0;
 dm(PPCTL)=r4;

 r0=ext8holder;
 dm(IIPP)=r0;

 r0=1;
 dm(IMPP)=r0;
 dm(EMPP)=r0;

 r0=@ext8holder;
 dm(ICPP)=r0;

 /*Calculate the correct location of the external buffer
 (The symbol manager does not correctly calculate external locations)
 r0=(ext8&0xFFFFFC00)|((0x3FF&ext8)*4); dm(EIPP)=r0;
 So use the External Address Macro. */
 r0=EXTERNAL_ADDRESS(ext8); dm(EIPP)=r0;

 //External Count is 4x the internal count
 r0=@ext8*4; dm(ECPP)=r0;

 //Enable the Parallel Port
 ustat1= PPBHC|PPDUR4|PPEN|PPDEN;
 dm(PPCTL)=ustat1; nop;

 idle;

 r0=0;
 dm(PPCTL)=r0;

 r0=ext8zerosholder;
 dm(IIPP)=r0;

 r0=1;
 dm(IMPP)=r0;
 dm(EMPP)=r0;

 r0=@ext8zerosholder;
 dm(ICPP)=r0;

 /*Use the external address macro again.*/
 r0=EXTERNAL_ADDRESS(ext8zeros); dm(EIPP)=r0;

 //External Count is 4x the internal count
 r0=@ext8zeros*4; dm(ECPP)=r0;

 //Enable the Parallel Port
 ustat1= PPBHC|PPDUR4|PPEN|PPDEN;
 dm(PPCTL)=ustat1; nop;

 idle;
_main.end:
 jump(pc,0);

Listing 3. Using the Address Translation Macro

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page10 of 11

Memory Layout for Listing 3

MEMORY
{
 seg_rth { TYPE(PM RAM) START(0x00080000) END(0x000800ff) WIDTH(48) }
 seg_pmco { TYPE(PM RAM) START(0x00080100) END(0x000803ff) WIDTH(48) }
 seg_dm32 { TYPE(DM RAM) START(0x000c0400) END(0x000c2fff) WIDTH(32) }
 seg_ext8 { TYPE(DM RAM) WIDTH(8) START(0x1200000) LENGTH(0x3FF) }
}

PROCESSOR p0
{
 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS
 {
 seg_rth
 {
 INPUT_SECTIONS($OBJECTS(seg_rth))

 } >seg_rth

 seg_pmco
 {
 INPUT_SECTIONS($OBJECTS(seg_pmco))
 } >seg_pmco

 seg_dm32
 {
 INPUT_SECTIONS($OBJECTS(seg_dm32))
 } > seg_dm32

 seg_ext8
 {
 INPUT_SECTIONS($OBJECTS(seg_ext8))
 PACKING(5 B0 B0 B0 B4 B0
 B0 B0 B0 B3 B0
 B0 B0 B0 B2 B0
 B0 B0 B0 B1 B0)
 } > seg_ext8
 }
}

Listing 4. LDF Memory Section for Example in Listing 3

Listing 3 shows the EXTERNAL_ADDRESS() macro
as it applies to the ADSP-21262 EZ-KIT Lite™
development board. It is not sufficient to simply
multiply the value of the symbol by the ratio of
logical to physical words. Mask off the range
that is used by the address decoder before the
calculation, and OR it back in after the lower bits
have been transformed. For this example, the

address decoder range consists of the upper 3
address bits that are physically connected to the
address decoder on the ADSP-21262 EZ-KIT
Lite and the address range that memory sections
defined in the LDF have in common. The values
of the masks in the EXTERNAL_ADDRESS() macro
change, depending upon the specific memory
layout in use. Using the EXTERNAL_ADDRESS()

 a

Using External Memory with Third Generation SHARC® Processors and the Parallel Port (EE-220) Page 11 of 11

macro does not affect the performance of the
DSP, as the calculations are performed at build-
time by the preprocessor.

Conclusion
When using the Parallel Port of the third
generation SHARC family, special
considerations must be made regarding external
addresses. The macro provided in this document
allows the symbols provided in VisualDSP++ to

be useful when developing code that uses
external memory. Please review the
VisualDSP++ documentation for more
information on the linker, PACKING command, and
the preprocessor. See ADSP-2126x SHARC DSP
Peripherals Manual [1] for more information on
using the Parallel Port.

References
[1] ADSP-2126x SHARC DSP Peripherals Manual. Revision 2.0, January 2004. Analog Devices, Inc.

[2] VisualDSP++ 3.0 Linker and Utilities Manual for SHARC DSPs. Fourth Revision, January 2003. Analog Devices, Inc.

Document History

Version Description

Rev 2 – March 8, 2005
by Brian M. and Divya S.

Added relevant ADSP-2136x processors to discussion.
Added External Memory Window section.

Rev 1 – January 12, 2004
by Brian M.

Initial Release

	Introduction
	External Memory Addressing
	Organizing Data for placement in External Memory using the L
	48-bit Address Translation
	Operation of the Parallel Port DMA Count (ECPP, ICPP) Regist
	Using the Emulator to View the Contents of External Memory
	8-bit External Memory Examples
	16-bit External Memory Examples

	Symbols in External Memory
	Address Translation Macro Use Example
	Memory Layout for Listing 3

	Conclusion
	References
	Document History

