
Engineer-to-Engineer Note EE-295

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Implementing Delay Lines on SHARC® Processors
Contributed by Divya Sunkara Rev 1 – October 25, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
This EE-Note discusses the implementation of a
delay line on the ADSP-2126x, ADSP-21362,
ADSP-21363, ADSP-21364, ADSP-21365, and
ADSP-21366 SHARC® series of processors,
hereafter representatively referred to as ADSP-
21262 processors.

Because ADSP-21262 processors access external
memory via the parallel port, special
considerations are required while implementing
delay lines on these processors when compared
to other SHARC processors.

Discrete filters can be implemented with sample-
based delay lines and a set of coefficients that
define the filter. Due to memory constraints,
delay lines are usually implemented in external
memory using various techniques.

This document discusses two delay-line
implementations using the parallel port. First, a
sample-based delay line using parallel port core
access is discussed. Later in the document,
techniques used in a block-based delay line
implemented via parallel port DMA are
described.

Sample-Based Delay Lines
Delay effects are achieved by implementing
finite impulse response (FIR) or infinite impulse
response (IIR) filters. For sample-based delay
lines, this document focuses on the
implementation of a simple stereo delay effect

algorithm with cross feedback. The left and right
channels are coupled by introducing cross-
feedback coefficients, so that the delayed output
of one channel is fed into the input of the other
channel, creating a stereo delay effect. For
details, refer to the sample-based delay line code
for the ADSP-21262 processor located in the
associated .ZIP file.

The implementation of the above algorithm
requires two delay lines: one for left channel, and
one for the right channel. The delay lines are
implemented as circular buffers in external
memory. The length of the delay line depends on
the required delay and the input sampling rate.
For example, a 0.5-second delay requires a
24000 tap delay line for an 48-KHz input
sampling rate. Since this implementation requires
feedback from the delayed output, the total delay
length is 24001, which includes the previous
sample for the delay. Since the external memory
is 8 bits wide, each tap (32-bit word) requires
four external memory locations. Hence, the total
delay-line buffer length is four times the number
of taps.

Due to its feedback structure, this algorithm
requires a read from the delay-line buffer
followed by a write. The read and write occur in
a sample-based manner. Because the core
accesses external memory via parallel port DMA
registers (EIPP, EMPP, and ECPP), the circular
buffers in external memory are implemented by
using the DAG registers. Even though the DAG
registers cannot access external memory, the
DAG registers' circular address capabilities are

 a

Implementing Delay Lines on SHARC® Processors (EE-295) Page 2 of 7

used to calculate the address to access the
external memory via the parallel port. The DAG
register pointing to external circular buffers are
then assigned to the parallel port external index
register (EIPP) in order for the core to access the
data. Initially, the read pointer points to the
buffer's last tap and the write pointer points to
the first tap. Following each read and write, both
pointers are decremented and the transfers
continue sample by sample. For sample-based
processing, a single output is transmitted at a
particular time.

Core-driven transfers to the external memory via
the parallel port can be initiated using four
techniques as described in the ADSP-2126x
SHARC Processors Peripherals Manual as well
as in the ADSP-2136x SHARC Processor
Hardware Reference. The known-duration access
technique, which is the most efficient of all the
accesses, is used for reads and writes. With 8-bit
external memory, each 32-bit access via the
parallel port requires a known duration of 15
cycles [(1 ALE-cycle * 3 CCLK) + (4 data-
cycles * 3 CCLK)] with a PPDUR (parallel port
duration setting) of 3. The program can use the
15 cycles that occur after the data is written to
the transmit register (or read from the receive
register of parallel port) efficiently for other
purposes.

Another consideration while accessing data via
the parallel port is the addressing of external
memory. This is due to the fact that the parallel
port no longer accepts logical addresses but
requires physical addresses of the external
memory to transfer data. Consecutive 32-bit
values in external memory are addressed by an
offset of 4 because each 32-bit value occupies
four-byte-wide locations of external memory.

Block-Based Delay Lines
For the block-based delay-line technique, this
document discusses the implementation of a low-
reflection setting FIR as shown in Figure 1.

Figure 1. FIR Filter

The impulse response of the filter is available in
Figure 2. Figure 3, which illustrates the FIR
implementation using block-based delay lines in
external memory, depicts the implementation
with a block of eight samples, a filter length of
six, and two tap accesses (tap2 and tap4).
Figure 1 shows the FIR implementation of a
single block of data.

The FIR implementation of a single block of
input data requires three processes: a write
DMA, read DMAs, and the delay process
(convolution of input and coefficient values).
Each of these processes is discussed in detail
below.

Even though the block-based delay line code
implements the filter shown in Figure 1 and
Figure 2, Figure 3 shows the implementation of
only two taps of the filter to simplify the
illustration; the additional taps follow the same
template.

Figure 2. FIR Filter Response

 a

Implementing Delay Lines on SHARC® Processors (EE-295) Page 3 of 7

Figure 3. FIR Filter Implementation

Write DMA

The sample data arrives as a block of
NUM_SAMPLES. The data in the input buffer
contains the left and right channel samples as
shown in Figure 4. Therefore, two delay lines are
required for each of the channel. The processing
on each of the channels is identical. The length
of each delay line is equal to:
Filter Length + ((NUM_SAMPLES/2) -1)

For block-based FIR implementations, the
processing starts with writing a block of data
(write DMA) to the delay-line buffer in external
memory. Figure 4 illustrates the write DMA
process to the left and right delay lines. With a
block length (NUM_SAMPLES) of eight and a filter
length of six, the delay length of each of the
channels is nine. Each of the nine locations of the
delay line shown in Figure 4 corresponds to four
locations in external byte-wide memory.
Therefore, the total delay line length in external
memory is 28 (9 x 4). The write pointers for each
of the channels are initialized to the first
locations of the left and right delay line buffers
shown as WrLptr and WrRptr in Figure 4. Two
write DMAs take place, one for each channel.
The function used to perform a write DMA for

both channels is the same (Listing 1). The
parameters passed to this function vary, and are
based on a particular channel. The DMA for the
left channel takes place with the internal index
register pointing to TrLptr and the external
index register of parallel port pointing to WrLptr.
Similarly, for the right channel, the internal
index register points to TrRptr and external
index register points to WrRptr. The internal
modify register is set to 2 and the external
modify register is set to -1, placing each channel
data in counter clockwise direction in external
delay line memory starting with the first sample
located at the start of the delay line buffer as
shown in Figure 4.

void TransDMA(int *Tinptr, int Tcount, int
*Textptr)
{
 *pPPCTL = 0;

/* initiate parallel port DMA registers for
first DMA*/
 *pIIPP = Tinptr;
 *pIMPP = 2;
 *pICPP = Tcount;

 *pEMPP = -1;
 *pEIPP = Textptr;
/* For 8-bit external memory, the External
count is four times the internal count */
 *pECPP = Tcount * 4;

 *pPPCTL = PPTRAN| PPBHC| PPDUR4;
 *pPPCTL |= PDEN|PPEN; // enalble parallel
port DMA

/*poll to ensure parallel port has completed
the transfer*/
 do{
 ;}
 while((*pPPCTL & (PPBS|PPDS)) != 0);

 *pPPCTL = 0; // disable parallel port
 // start of second DMA
}

Listing 1. TransmitDMA.c

 a

Implementing Delay Lines on SHARC® Processors (EE-295) Page 4 of 7

Figure 4. Write DMA

Circular Buffering
Since the parallel port DMA parameter registers
do not take into account the wrapping of circular
buffers, if the write pointer needs to wrap around
the end, the DMA is split into two separate DMA
sections. One of the DMA sections starts at the
write pointer and the other DMA section begins
at the end of circular delay line buffer for that
channel. For example, if the DMA for left
channel starts at WrLptr (see Figure 4), it would
be split into two DMAs with one starting at
WrLptr and transferring one word (4 bytes), and
the other starting at the end of the left channel
delay line buffer, transferring four words (16
bytes).

The function that tests for this wrapping appears
in Listing 2. In the function, the TestDMA
variable points to Num_Sample/2 locations (the
number of samples transferred in a particular
channel per DMA) offset from the start of
external delay line of a particular channel.

void WriteDMA(int *Inptr, int *Wrptr, int
*TestDMA, int *BUF)
{
int DMAcount1,DMAcount2,Inc;
 int*Wrptr1,*Wrptr2,*Inptr1,*Inptr2;

 if (Wrptr < TestDMA)
 {
 DMAcount2 = (TestDMA-Wrptr)/4;
 DMAcount1 = ((NUM_SAMPLES)/2) - DMAcount2;
 Wrptr1 = Wrptr; // Pointer to the start DMA
 Inc = -(DMAcount1 * 4);
 Wrptr2 = Wrptr1; // external pointer for
first DMA
 Wrptr2 = circptr(Wrptr2, Inc, BUF, LENGTH);
// external pointer for second DMA
 Inptr1 = Inptr; // internal pointer for
first DMA
 Inptr2 = Inptr1+ DMAcount1*2; // internal
pointer for second DMA

 TransDMA(Inptr1, DMAcount1, Wrptr1);
 TransDMA(Inptr2, DMAcount2, Wrptr2);
 }

 else
 {
 TransDMA(Inptr, NUM_SAMPLES/2, Wrptr);
 }

 RdptrInit= Wrptr; // Next Read pointer for
read DMA
 Inc =-((NUM_SAMPLES/2)*4);
 WrptrTemp = Wrptr;

WrptrTemp = circptr(WrptrTemp,Inc,BUF,LENGTH);
// Next write pointer for write DMA
}

Listing 2. writeDMA.c

Read DMA

For each write DMA to the external delay line
buffers, the number of read DMAs correspond to
the number of taps accessed in the FIR filter.
Figure 5 depicts the read DMA from the left and
right delay line buffers. As described above, two
taps are accessed in this illustration (tap2 and
tap4), and there are two read DMAs for every
write DMA. The length of the internal buffer to
perform these read DMAs is calculated by
multiplying the number of samples transferred
per DMA times the number of taps accessed.
With regard to Figure 5, the internal buffer
length for read DMAs of each of the channels is
eight [4 (number of samples per DMA) *
2 (number of taps accessed)]. The function

 a

Implementing Delay Lines on SHARC® Processors (EE-295) Page 5 of 7

that performs the DMA from the delay line
buffer to the internal buffer is given in Listing 3.

The DMA takes place with the internal modify
value set to number of taps and the external
modify value set to -1. As shown in Figure 5,
two read DMAs are performed for each of the
channels with the external index register pointing
to RdLptr1 and RdLptr2 for the left channel (and
RdRptr1 and Rdrptr2 for the right channel), and
the corresponding internal index register points
to ReLptr1 and ReLptr2 for left channel (and
RdRptr1 and RdRptr2 for right channel). Each
sample transferred from external memory
requires a corresponding location in internal
memory, based on the modify register values as
shown in Figure 5.

RdLptr and RdRptr act as the reference pointers,
obtaining the external index register values for
read DMAs for each of the channels; they are
always initialized to the current write DMA
pointers (WrLptr and WrRptr) of each of the
channels, respectively. The read pointer for each
of the taps is derived by offsetting the tap
number from the reference. The internal index
for each successive read DMAs is incremented
by one. The function that sets the external and
internal index pointers for each of the read DMA
is shown in Listing 4. This function also checks
for wrapping of circular buffers similar to that
discussed in the Write DMA section of this
document. The reference pointer for the read
DMAs of the left and right channels for next set
of data is set to the write pointers for the next set
of data, which are NextWrLptr (left channel
write pointer) and NextWrRptr (right channel
write pointer) with respect to Figure 4.

Figure 5. Read DMAs

void RecivDMA(int *Rinptr, int Rcount, int
*Rextptr)
{

 *pPPCTL = 0;

 *pIIPP = Rinptr;
 *pIMPP = NUM_TAPS;
 *pICPP = Rcount;

 *pEMPP = -1;
 *pEIPP = Rextptr;
/* For 8-bit external memory, the External
count is four times the internal count */
 *pECPP = Rcount * 4;

 pPPCTL = PPBHC|PPDUR4; / Receive(Read) */

 *pPPCTL |= PPDEN|PPEN; // Enable parallel
port DMA

/*poll to ensure parallel port has completed
the transfer*/
 do{
 ;}
 while((*pPPCTL & (PPBS|PPDS)) != 0);

 *pPPCTL = 0; // disable parallel port

}

Listing 3. ReceiveDMA.c

 a

Implementing Delay Lines on SHARC® Processors (EE-295) Page 6 of 7

void ReadDMA(int *Inptr, int *Rdptr, int
*TestDMA, int *BUF)
{

int DMAcount1,DMAcount2,Inc;
int *Rdptr1,*Rdptr2,*Inptr1,*Inptr2;

int *RdptrTemp,i,InptrTemp;

int Tapno[NUM_TAPS] =
{993,1315,2524,2700,3202,2700,3119,3123,3202,32
68,3321,3515};

InptrTemp = Inptr;

for(i=0; i<NUM_TAPS; i++)
{
 RdptrTemp = Rdptr;
 Inc = Tapno[i] *4;
 RdptrTemp = circptr(RdptrTemp, Inc,BUF,
LENGTH);

 if (RdptrTemp < TestDMA)
 {

 DMAcount2 = (TestDMA-RdptrTemp)/4;
 DMAcount1 = ((NUM_SAMPLES)/2) -
DMAcount2;
 Rdptr1 = RdptrTemp;
 Inc = -(DMAcount1 *4);
 Rdptr2 = Rdptr1;
 Rdptr2 = circptr(Rdptr2, Inc, BUF,
LENGTH);
 Inptr1 = InptrTemp;
 Inptr2 = Inptr1+ DMAcount1*NUM_TAPS;
// internal pointer for second DMA

 RecivDMA(Inptr1, DMAcount1, Rdptr1);
 RecivDMA(Inptr2, DMAcount2, Rdptr2);

 }
 else
 {
 RecivDMA(InptrTemp, NUM_SAMPLES/2,
RdptrTemp);
 }

InptrTemp = Inptr+1;

}

}

Listing 4. ReadDMA.c

Delay Process

After the read DMAs for all the required taps are
completed, processing takes place on the values
read into the internal memory.

Figure 6 shows the delay process on the internal
memory data. This process is identical for both
channels. The tap values for each of the channels
are in consecutive locations in internal memory
as a result of the read DMA. The delay process
implements an FIR filter, which involves
multiplying the tap data value times its
corresponding coefficient values and adding the
results to get the sample output. Consecutive
samples are calculated in the same manner for
both the left and right channels. The processed
left and right samples are placed in alternate
locations to be transmitted out in I2S mode.

DelayProcess(int*InBlockptr,int*InBufptr)
{
 int *TempInBufptr;
 float EarlyRef, InSample;
 int x,j,m,i,k,l;
 float
TapValue[NUM_TAPS]={0.490,0.346,0.192,0.181,0.1
76,0.181,0.180,0.181,0.176, 0.142,0.167,0.134};

 for (k=0;k<(NUM_SAMPLES/2);k++)
 {
 TempInBufptr = InBufptr;
 j = k*2; // increment for block
pointer
 m = k*NUM_TAPS;// increment for
Buffer pointer
 InSample = *(InBlockptr + j)*0.33 ;
 EarlyRef = 0.0;
 for (i=0; i<NUM_TAPS; i++)
 {
 x=m+i;
 EarlyRef = EarlyRef +
(*(TempInBufptr+x) * TapValue[i]);

 }

 *(InBlockptr + j) =
(int)(InSample + EarlyRef * 0.33);

}

Listing 5. Delayprocessing.c

 a

Implementing Delay Lines on SHARC® Processors (EE-295) Page 7 of 7

Figure 6. Delay Process

Conclusion
This document discusses the methods used to
implement delay lines for parallel port-based
processors such as the ADSP-2126x, ADSP-
21362, ADSP-21363, ADSP-21364, ADSP-
21365 and ADSP-21366 SHARC series of
processors. Implementation methods for sample-
based and block-based delay line are described.
The program code for each of these techniques
for ADSP-21262 processors is available in the
associated .ZIP file.

For an FIR filter implementation with a block-
based delay line, an input block of 512 samples
with a filter length (delay) of 3520 and 18 tap
accesses takes 463,814 core clock cycles at a
clock rate of 200 MHz for ADSP-21262.
Increasing the number of input block samples or
the number of tap accesses increases the
processing time for implementing the filter.

References
[1] ADSP-2126x SHARC® Processor Peripherals Manual. Revision 3.0, December, 2005. Analog Devices, Inc.

[2] ADSP-2136x SHARC® Processor Hardware Reference. Revision 1.0, October 2005. Analog Devices, Inc.

[3] Introduction to Signal Processing, S. J. Orfanidis, Prentice-Hall ,1996

[4] About This Reverberation Business, J. A. Moorer, Computer Music Journal, vol. 3(2), pp.13-18 (1979).

Document History

Revision Description

Rev 1 – October 25, 2006
by D.Sunkara

Initial version

	Introduction
	Sample-Based Delay Lines
	Block-Based Delay Lines
	Write DMA
	Circular Buffering

	Read DMA
	Delay Process

	Conclusion
	References
	Document History

