
a

W 5.0
VDK (Kernel) User’s Guide

(including the ADSP-BFxxx, ADSP-21xxx, ADSP-TSxxx)

Revision 3.5, January 2011

Part Number
82-000420-07

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2011 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC,
and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide iii

CONTENTS

PREFACE

Purpose of This Manual .. xix

Intended Audience ... xix

Manual Contents .. xx

What’s New in This Manual .. xx

Technical or Customer Support ... xxii

Supported Processors ... xxiii

Product Information ... xxiii

Analog Devices Web Site ... xxiii

VisualDSP++ Online Documentation xxiv

Technical Library CD .. xxv

EngineerZone .. xxv

Social Networking Web Sites .. xxvi

Notation Conventions .. xxvi

INTRODUCTION TO VDK

Rapid Application Development .. 1-2

Debugged Control Structures .. 1-2

Code Reuse ... 1-3

Contents

iv VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Hardware Abstraction ... 1-4

Partitioning an Application ... 1-4

Scheduling ... 1-5

Priorities ... 1-6

Preemption ... 1-7

Protected Regions ... 1-7

Disabling Scheduling .. 1-8

Disabling Interrupts .. 1-8

Thread and Hardware Interaction ... 1-9

Thread Domain With Software Scheduling 1-10

Interrupt Domain With Hardware Scheduling 1-10

Device Drivers .. 1-10

CONFIGURATION AND DEBUGGING OF VDK
PROJECTS

Configuring VDK Projects .. 2-1

Linker Description File ... 2-2

Thread-Safe Libraries .. 2-2

Header Files for the VDK API ... 2-2

Debugging VDK Projects .. 2-2

Instrumented Build Information .. 2-3

VDK State History Window .. 2-3

Target Load Graph Window .. 2-4

VDK Status Window .. 2-4

General Debugging Tips ... 2-5

VisualDSP++ 5.0 Kernel (VDK) User’s Guide v

Contents

KernelPanic ... 2-5

USING VDK

Threads .. 3-2

Thread Types .. 3-3

Thread Parameters .. 3-3

Stack Size .. 3-3

Priority ... 3-4

Required Thread Functionality .. 3-4

Run Function ... 3-4

Error Function .. 3-5

Create Function .. 3-5

InitFunction/Constructor .. 3-6

Destructor .. 3-6

Writing Threads in Different Languages 3-7

C++ Threads ... 3-7

C and Assembly Threads ... 3-8

Thread Parameterization ... 3-8

CreateThreadEx2() ... 3-9

User-Defined Thread Stacks .. 3-10

Global Variables .. 3-11

Error Handling Facilities ... 3-11

Scheduling ... 3-12

Ready Queue ... 3-12

Scheduling Methodologies ... 3-13

Contents

vi VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Cooperative Scheduling .. 3-14

Round-Robin Scheduling ... 3-14

Preemptive Scheduling .. 3-14

Disabling Scheduling .. 3-15

Entering the Scheduler From API Calls 3-16

Entering the Scheduler From Interrupts 3-16

Idle Thread ... 3-18

Signals .. 3-18

Semaphores ... 3-19

Behavior of Semaphores .. 3-19

Thread’s Interaction With Semaphores 3-20

Pending on a Semaphore ... 3-21

Posting a Semaphore ... 3-22

Periodic Semaphores ... 3-25

Mutexes .. 3-26

Behavior of Mutexes ... 3-26

Thread Interaction With Mutexes 3-27

Acquiring a Mutex .. 3-28

Releasing a Mutex ... 3-28

Messages ... 3-32

Behavior of Messages .. 3-32

Thread’s Interaction With Messages 3-34

Pending on a Message ... 3-34

Posting a Message ... 3-35

VisualDSP++ 5.0 Kernel (VDK) User’s Guide vii

Contents

Multiprocessor Messaging .. 3-37

Routing Threads (RThreads) ... 3-38

Data Transfer (Payload Marshalling) 3-43

Device Drivers for Messaging .. 3-46

Routing Topology ... 3-47

Events and Event Bits .. 3-48

Behavior of Events .. 3-48

Global State of Event Bits .. 3-49

Event Calculation .. 3-49

Effect of Unscheduled Regions on Event Calculation 3-51

Thread’s Interaction With Events 3-51

Pending on an Event ... 3-52

Setting or Clearing of Event Bits 3-53

Loading New Event Data into an Event 3-55

Device Flags .. 3-55

Behavior of Device Flags ... 3-55

Thread’s Interaction With Device Flags 3-56

Interrupt Service Routines ... 3-56

Enabling and Disabling Interrupts ... 3-56

Interrupt Architecture .. 3-57

Assembly Interrupts .. 3-57

C/C++ Interrupts .. 3-58

Vector Table .. 3-58

Global Data .. 3-59

Contents

viii VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Communication With Thread Domain 3-59

Timer ISR ... 3-61

Reschedule ISR ... 3-62

I/O Interface .. 3-62

I/O Templates ... 3-62

Device Drivers .. 3-63

Execution ... 3-63

Parallel Scheduling Domains ... 3-64

Using Device Drivers .. 3-66

Dispatch Function .. 3-68

Device Driver Parameterization 3-76

Device Flags ... 3-76

Pending on a Device Flag .. 3-76

Posting a Device Flag .. 3-78

General Notes .. 3-79

Variables ... 3-79

Critical/Unscheduled Regions 3-79

Memory Pools .. 3-80

Memory Pool Functionality ... 3-80

Multiple Heaps ... 3-81

Thread Local Storage .. 3-82

Custom VDK History Logging ... 3-83

Replacing History Logging Mechanism 3-83

UserHistoryLog() .. 3-85

VisualDSP++ 5.0 Kernel (VDK) User’s Guide ix

Contents

VDK File Attributes .. 3-86

VDK DATA TYPES

Data Type Summary ... 4-1

Data Type Descriptions ... 4-3

Bitfield .. 4-3

DeviceDescriptor ... 4-4

DeviceFlagID .. 4-5

DeviceInfoBlock .. 4-6

DispatchID ... 4-7

DispatchUnion .. 4-8

DSP_Family .. 4-10

DSP_Product .. 4-11

EventBitID .. 4-17

EventID .. 4-18

EventData ... 4-19

HeapID ... 4-20

HistoryEnum .. 4-21

HistoryEvent ... 4-25

IMASKStruct .. 4-28

IOID .. 4-29

IOTemplateID .. 4-30

MarshallingCode ... 4-31

MarshallingEntry .. 4-33

MessageDetails .. 4-34

Contents

x VisualDSP++ 5.0 Kernel (VDK) User’s Guide

MessageID .. 4-35

MsgChannel ... 4-36

MsgWireFormat .. 4-38

MutexID .. 4-40

PanicCode .. 4-41

PayloadDetails .. 4-44

PFMarshaller .. 4-45

PoolID ... 4-47

Priority ... 4-48

RoutingDirection .. 4-49

SemaphoreID .. 4-50

SystemError .. 4-51

TCBBitfield .. 4-57

ThreadCreationBlock .. 4-58

ThreadID ... 4-61

ThreadStatus ... 4-62

ThreadType .. 4-63

Ticks .. 4-64

VersionStruct .. 4-65

VDK API REFERENCE

Calling Library Functions ... 5-2

Linking Library Functions .. 5-2

Working With VDK Library Header ... 5-2

Passing Function Parameters ... 5-3

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xi

Contents

Library Naming Conventions .. 5-3

API Summary ... 5-5

VDK Error Codes and Error Values ... 5-11

VDK API Validity ... 5-19

AcquireMutex() ... 5-26

AllocateThreadSlot() ... 5-28

AllocateThreadSlotEx() ... 5-30

ClearEventBit() ... 5-32

ClearInterruptMaskBits() .. 5-34

ClearInterruptMaskBitsEx() .. 5-35

ClearThreadError() ... 5-37

CloseDevice() ... 5-38

CreateDeviceFlag() .. 5-40

CreateMessage() .. 5-41

CreateMutex() .. 5-43

CreatePool() ... 5-45

CreatePoolEx() .. 5-47

CreateSemaphore() .. 5-49

CreateThread() ... 5-51

CreateThreadEx() ... 5-53

CreateThreadEx2() ... 5-55

DestroyDeviceFlag() .. 5-58

DestroyMessage() .. 5-59

DestroyMessageAndFreePayload() .. 5-61

Contents

xii VisualDSP++ 5.0 Kernel (VDK) User’s Guide

DestroyMutex() .. 5-63

DestroyPool() ... 5-65

DestroySemaphore() ... 5-67

DestroyThread() ... 5-69

DeviceIOCtl() .. 5-71

DispatchThreadError() ... 5-73

ForwardMessage() ... 5-75

FreeBlock() ... 5-78

FreeDestroyedThreads() .. 5-80

FreeMessagePayload() ... 5-81

FreeThreadSlot() .. 5-83

GetAllDeviceFlags() .. 5-85

GetAllMemoryPools() ... 5-87

GetAllMessages() .. 5-89

GetAllSemaphores() .. 5-91

GetAllThreads() ... 5-93

GetBlockSize() ... 5-95

GetClockFrequency() .. 5-96

GetContextRecordSize() ... 5-97

GetCurrentHistoryEventNum() .. 5-99

GetDevFlagPendingThreads() ... 5-100

GetEventBitValue() ... 5-102

GetEventData() .. 5-103

GetEventPendingThreads() ... 5-104

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xiii

Contents

GetEventValue() ... 5-106

GetHeapIndex() .. 5-107

GetHistoryBufferSize() .. 5-108

GetHistoryEvent() .. 5-109

GetInterruptMask() .. 5-111

GetInterruptMaskEx() ... 5-113

GetLastThreadError() ... 5-115

GetLastThreadErrorValue() ... 5-116

GetMessageDetails() ... 5-117

GetMessagePayload() .. 5-119

GetMessageReceiveInfo() .. 5-121

GetMessageStatusInfo() ... 5-123

GetNumAllocatedBlocks() ... 5-125

GetNumFreeBlocks() .. 5-126

GetNumTimesRun() ... 5-127

GetPoolDetails() ... 5-129

GetPriority() ... 5-131

GetSemaphoreDetails() ... 5-132

GetSemaphorePendingThreads() ... 5-134

GetSemaphoreValue() ... 5-136

GetSharcThreadCycleData() .. 5-138

GetThreadBlockingID() .. 5-140

GetThreadCycleData() .. 5-142

GetThreadHandle() .. 5-144

Contents

xiv VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetThreadID() ... 5-145

GetThreadSlotValue() ... 5-146

GetThreadStackDetails() ... 5-147

GetThreadStack2Details() ... 5-149

GetThreadStackUsage() .. 5-151

GetThreadStack2Usage() .. 5-153

GetThreadStatus() .. 5-155

GetThreadTemplateName() .. 5-156

GetThreadTickData() ... 5-158

GetTickPeriod() ... 5-160

GetUptime() .. 5-161

GetVersion() ... 5-162

InstallMessageControlSemaphore() ... 5-163

InstrumentStack() ... 5-165

LoadEvent() ... 5-167

LocateAndFreeBlock() .. 5-169

LogHistoryEvent() .. 5-170

MakePeriodic() ... 5-171

MallocBlock() ... 5-173

MessageAvailable() .. 5-175

OpenDevice() ... 5-177

PendDeviceFlag() ... 5-179

PendEvent() ... 5-181

PendMessage() .. 5-184

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xv

Contents

PendSemaphore() .. 5-187

PopCriticalRegion() .. 5-190

PopNestedCriticalRegions() ... 5-192

PopNestedUnscheduledRegions() .. 5-194

PopUnscheduledRegion() .. 5-195

PostDeviceFlag() ... 5-197

PostMessage() ... 5-198

PostSemaphore() ... 5-201

PushCriticalRegion() ... 5-203

PushUnscheduledRegion() ... 5-204

ReleaseMutex() ... 5-205

RemovePeriodic() .. 5-207

ReplaceHistorySubroutine() .. 5-209

ResetPriority() .. 5-211

SetClockFrequency() ... 5-213

SetEventBit() .. 5-214

SetInterruptMaskBits() .. 5-216

SetInterruptMaskBitsEx() .. 5-218

SetMessagePayload() ... 5-220

SetPriority() .. 5-222

SetThreadError() .. 5-224

SetThreadSlotValue() .. 5-225

SetTickPeriod() ... 5-226

Sleep() .. 5-227

Contents

xvi VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SyncRead() ... 5-229

SyncWrite() .. 5-231

Yield() .. 5-233

VDK_ISR_ACTIVATE_DEVICE_() .. 5-237

VDK_ISR_CLEAR_EVENTBIT_() ... 5-238

VDK_ISR_LOG_HISTORY_() .. 5-239

VDK_ISR_POST_SEMAPHORE_() .. 5-240

VDK_ISR_SET_EVENTBIT_() ... 5-241

C_ISR_ActivateDevice() ... 5-242

C_ISR_ClearEventBit() .. 5-244

C_ISR_PostSemaphore() .. 5-246

C_ISR_SetEventBit() .. 5-248

PROCESSOR-SPECIFIC NOTES

VDK for Blackfin Processors ... A-1

User and Supervisor Modes ... A-1

Thread, Kernel, and Interrupt Execution Levels A-2

Exceptions .. A-3

ISR API Assembly Macros ... A-3

Interrupts ... A-4

Timer ... A-5

Idle Thread ... A-6

Blackfin Processor Memory ... A-6

Thread Stack ... A-7

Interrupt Nesting .. A-7

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xvii

Contents

System Stack .. A-7

Thread Stack Usage by Interrupts ... A-8

Interrupt Latency ... A-9

Multiprocessor Messaging ... A-9

Stack Overflow ... A-10

VDK for SHARC Processors .. A-11

Thread, Kernel and Interrupt Execution Levels A-12

VDK Interrupts and Run-Time Library Interrupt Dispatchers A-12

Interrupt Latency ... A-13

Interrupt Nesting ... A-14

Interrupts on ADSP-2106x Processors A-14

Interrupts on ADSP-2116x, ADSP-2126x, ADSP-213xx, and
ADSP-214xx Processors ... A-15

Timer ... A-16

Idle Thread .. A-16

Memory ... A-17

Register Usage .. A-18

40-bit Register Usage .. A-19

System Stack .. A-20

Multiprocessor Messaging ... A-21

VDK ISR Macros ... A-22

Stack Overflow ... A-23

VDK for TigerSHARC Processors .. A-23

Thread, Kernel, and Interrupt Execution Levels A-24

Exceptions .. A-24

Contents

xviii VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Interrupts ... A-25

Timer ... A-26

Idle Thread ... A-26

Memory .. A-26

System Stack ... A-27

Interrupt Nesting .. A-28

Interrupt Latency .. A-28

Multiprocessor Messaging ... A-29

INDEX

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xix

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
Analog Devices embedded processors.

Purpose of This Manual
The VisualDSP++ 5.0 Kernel (VDK) User’s Guide contains information
about the VisualDSP++® kernel, a real-time operating system that can run
on an Analog Devices processor and is integrated into the processor via the
VisualDSP++ 5.0 development tools. VDK incorporates scheduling and
resource allocation techniques tailored specially for the memory and tim-
ing constraints of embedded programming and facilitates the development
of structured applications using frameworks of template files. VDK is
designed for effective operations on Analog Devices processor
architectures.

This manual is designed so that users can quickly learn about the kernel
internal structure and operation.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as

Manual Contents

xx VisualDSP++ 5.0 Kernel (VDK) User’s Guide

hardware reference and programming reference manuals, that describe
their target architecture.

Manual Contents
The manual contains:

• Chapter 1, “Introduction to VDK”, concentrates on concepts,
motivation, and general architectural principles of the operating
system kernel.

• Chapter 2, “Configuration and Debugging of VDK Projects”, con-
centrates on configuration and debugging of VDK- enabled
projects.

• Chapter 3, “Using VDK”, describes how VDK implements the
general concepts described in Chapter 1.

• Chapter 4, “VDK Data Types”, describes the current set of pre-
defined data types.

• Chapter 5, “VDK API Reference”, describes the current set of the
Application Programming Interface (API) library.

• Appendix A, “Processor-Specific Notes”, provides processor-spe-
cific information.

What’s New in This Manual
This revision of the VisualDSP++ 5.0 Kernel (VDK) User’s Guide docu-
ments VDK functionality that is new to VisualDSP++ 5.0, including:

• Recursive mutexes

• APIs to access the data displayed in the VDK Status window

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xxi

Preface

• File attributes to increase control over the partitioning of VDK
code and data across the available memory hierarchy

• New timeout value kDoNotWait for the PendEvent(), PendMes-
sage(), and PendSemaphore() APIs. The value allows a thread to
pend on a signal and not to block if the signal is unavailable

In VisualDSP++ 5.0 update 4, VDK has introduced the kSSLInitFailure
value in the SystemError data type

In VisualDSP++ 5.0 update 8, VDK has introduced the kUnhandledEx-
ceptionError field to the SystemError data type.

In VisualDSP++ 5.0 update 9, VDK has introduced the
CreateThreadEx2() API as an extension to the existing CreateThreadEx().
The ThreadCreationBlock data type has a new data field passed as an
argument to the new thread creation function. The new TCBBitfield enu-
meration provides names for different bits that can be set in a thread. In
update 9, VDK also has introduced the GetContextRecordSize() API,
which returns the size of memory required to store the thread information
during a context switch.

This revision incudes modifications and corrections based on errata
reports against the previous revision of the manual have been made.

The manual documents VisualDSP++ kernel version 5.0.00.

Technical or Customer Support

xxii VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xxiii

Preface

Supported Processors
VDK of VisualDSP++ 5.0 supports the following Analog Devices, Inc.
processors.

• Blackfin® (ADSP-BFxxx)

• SHARC® (ADSP-21xxx)

• TigerSHARC® (ADSP-TSxxx)

The majority of the information in this manual applies to all processors.
Information applicable to a particular target processor, or to a particular
processor family, is provided in Appendix A, “Processor-Specific Notes”
on page A-1.

For a complete list of processors supported by VisualDSP++ 5.0, refer to
the online Help.

Product Information
Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual

http://www.analog.com
http://www.analog.com/processors/technical_library/

Product Information

xxiv VisualDSP++ 5.0 Kernel (VDK) User’s Guide

title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools software documenta-
tion. You can search easily across the entire VisualDSP++ documentation
set for any topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

File Description

.chm Help system files and manuals in Microsoft help format

.htm or

.html
Dinkum Abridged C++ library and FLEXnet License Tools software documenta-
tion. Viewing and printing the .html files requires a browser, such as Internet
Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xxv

Preface

Technical Library CD
The technical library CD contains seminar materials, product highlights, a
selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC, TigerSHARC, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the
latest manual revisions and associated documentation errata.

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/
http://ez.analog.com

Notation Conventions

xxvi VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Social Networking Web Sites
You can now follow Analog Devices processor development on Twitter
and LinkedIn. To access:

• Twitter: http://twitter.com/ADIsharc and
http://twitter.com/blackfin

• LinkedIn: Network with the LinkedIn group, Analog Devices
SHARC or Analog Devices Blackfin: http://www.linkedin.com

Notation Conventions
Text conventions used in this manual are identified and described as fol-
lows. Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close com-
mand appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or that.
One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with let-
ter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

http://twitter.com/ADIsharc
http://twitter.com/blackfin
http://www.linkedin.com

VisualDSP++ 5.0 Kernel (VDK) User’s Guide xxvii

Preface

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the

online version of this book, the word Note appears instead of this symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product that
could lead to undesirable results or product damage. In the online version
of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for the devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description

Notation Conventions

xxviii VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 1-1

1 INTRODUCTION TO VDK

This chapter concentrates on concepts, motivation, and general architec-
tural principles of the operating system kernel. It also provides
information on how to partition a VDK application into independent,
reusable functional units that are easy to maintain and debug.

The following sections provide information about the operating system
kernel concepts.

• “Motivation” on page 1-2

• “Partitioning an Application” on page 1-4

• “Scheduling” on page 1-5

• “Protected Regions” on page 1-7

• “Thread and Hardware Interaction” on page 1-9

1-2 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Motivation
All applications require control code as support for the algorithms that are
often thought of as the “real” program. The algorithms require data to be
moved to and/or from peripherals, and many algorithms consist of more
than one functional block. For some systems, this control code may be as
simple as a “superloop” blindly processing data that arrives at a constant
rate. However, as processors become more powerful, considerably more
sophisticated control may be needed to realize the processor’s potential, to
allow the processor to absorb the required functionality of previously sup-
ported chips, and to allow a single processor to do the work of many. The
following sections provide an overview of some of the benefits of using a
kernel on a processor.

Rapid Application Development
The tight integration between the VisualDSP++ environment and VDK
allows rapid development of applications compared to creating all of the
control code required by hand. The use of automatic code generation and
file templates, as well as a standard programming interface to device driv-
ers, allows you to concentrate on the algorithms and the desired control
flow rather than on the implementation details. VDK supports the use of
C, C++, and assembly language. You are encouraged to develop code that
is highly readable and maintainable, yet retaining the option of hand opti-
mizing if necessary.

Debugged Control Structures
Debugging a traditional DSP application can be laborious because devel-
opment tools (compiler, assembler, and linker among others) are not
aware of the architecture of the target application and the flow of control
that results. Debugging complex applications is much easier when instan-
taneous snapshots of the system state and statistical runtime data are
clearly presented by the tools. To help offset the difficulties in debugging

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 1-3

Introduction to VDK

software, VisualDSP++ includes three versions of the VDK libraries con-
taining full instrumentation (including error checking), only error
checking, and neither instrumentation nor error checking.

In the instrumented mode, the kernel maintains statistical information
and logging of all significant events into a history buffer. When the execu-
tion is paused, the debugger can traverse this buffer and present a
graphical trace of the program’s execution including context switches,
pending and posting of signals, changes in a thread’s status, and more.

Statistics are presented for each thread in a tabular view and show the total
amount of time the thread has executed, the number of times it has been
run, the signal it is currently blocked on, and other data. For more infor-
mation, see “Debugging VDK Projects” on page 2-2 and the online Help.

Code Reuse
Many programmers begin a new project by writing the infrastructure por-
tions that transfers data to, from, and between algorithms. This necessary
control logic usually is created from scratch by each design team and infre-
quently reused on subsequent projects. VDK provides much of this
functionality in a standard, portable and reusable library. Furthermore,
the kernel and its tight integration with the VisualDSP++ environment are
designed to promote good coding practice and organization by partition-
ing large applications into maintainable and comprehensible blocks. By
isolating the functionality of subsystems, the kernel helps to prevent the
morass all too commonly found in systems programming.

The kernel is designed specifically to take advantage of commonality in
user applications and to encourage code reuse. Each thread of execution is
created from a user-defined template, either at boot time or dynamically
by another thread. Multiple threads can be created from the same tem-
plate, but the state associated with each created instance of the thread
remains unique. Each thread template represents a complete encapsulation

Partitioning an Application

1-4 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

of an algorithm that is unaware of other threads in the system unless it has
a direct dependency.

Hardware Abstraction
In addition to a structured model for algorithms, VDK provides a hard-
ware abstraction layer. Presented programming interfaces allow you to
write most of the application in a platform independent, high-level lan-
guage (C or C++). The VDK Application Programming Interface (API) is
identical for all Analog Devices processors, allowing code to be easily
ported to a different processor core.

When porting an application to a new platform, programmers must
address the two areas necessarily specific to a particular processor—Inter-
rupt Service Routines (ISR) and device drivers. The VDK architecture
identifies a crisp boundary around these subsystems and supports the tra-
ditionally difficult development with a clear programming framework and
code generation. Both interrupts and device drivers are declared with a
graphical user interface in the VisualDSP++ Integrated Debugging and
Development Environment (IDDE), which generates well-commented
code that can be compiled without further effort.

Partitioning an Application
A VDK thread is an encapsulation of an algorithm and its associated data.
When beginning a new project, use this notion of a thread to leverage the
kernel architecture and to reduce the complexity of your system. Since
many algorithms may be thought of as being composed of “subalgorithm”
building blocks, an application can be partitioned into smaller functional
units that can be individually coded and tested. These building blocks
then become reusable components in more robust and scalable systems.

You define the behavior of VDK threads by creating thread types. Types
are templates that define the behavior and data associated with all threads

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 1-5

Introduction to VDK

of that type. Like data types in C or C++, thread types are not used
directly until an instance of the type is created. Many threads of the same
thread type can be created, but for each thread type, only one copy of the
code is linked into the executable code. Each thread has its own private set
of variables defined for the thread type, its own stack, and its own
C runtime context.

When partitioning an application into threads, identify portions of your
design in which a similar algorithm is applied to multiple sets of data.
These are, in general, good candidates for thread types. When data is pres-
ent in the system in sequential blocks, only one instance of the thread type
is required. If the same operation is performed on separate sets of data
simultaneously, multiple threads of the same type can coexist and be
scheduled for prioritized execution (based on when the results are
needed).

Scheduling
VDK is a preemptive multitasking kernel. Each thread begins execution at
its entry point. Then, it either runs to completion or performs its primary
function repeatedly in an infinite loop. It is the role of the scheduler to
preempt execution of a thread and to resume its execution when appropri-

Scheduling

1-6 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ate. Each thread is given a priority to assist the scheduler in determining
precedence of threads (see Figure 1-1).

The scheduler gives processor time to the thread with the highest priority
that is in the ready state (see Figure 3-2 on page 3-17). A thread is in the
ready state when it is not waiting for any system resources it has requested.
A reference to each ready thread is stored in a structure that is internal to
the kernel and known as the ready queue. For more information, see
“Scheduling” on page 3-12.

Priorities
Each thread is assigned a dynamically modifiable priority based on the
default for its thread type declared in the IDDE’s Project window. An
application is limited to thirty priority levels. However, the number of
threads at each priority is limited, in practice, only by system memory.
Priority level one is the highest priority, and priority thirty is the lowest.

Figure 1-1. VDK State Diagram

InterruptExecuting

Highest priority
thread is

thread last
executed

Request or
free

resources

Highest priority
thread has
changed

Done

Context Switch

Resources Reallocation
& Priorities Assessment

All ISRs serviced & no
scheduling state has changed

All ISRs serviced &
no scheduling state
has changed

ISR
Push/pop
nested
interrupts

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 1-7

Introduction to VDK

The system maintains an Idle thread that is set to a priority lower than
that of the lowest user thread.

Assigning priorities is one of the most difficult tasks of designing a real
time preemptive system. Although there has been research in the area of
rigorous algorithms for assigning priorities based on deadlines (for exam-
ple, rate monotonic scheduling), most systems are designed by considering
the interrupts and signals triggering the execution, while balancing the
deadlines imposed by the system’s input and output streams. For more
information, see “Thread Parameters” on page 3-3.

Preemption
A running thread continues execution unless it requests a system resource
using a kernel API. When a thread requests a signal (semaphore, event,
device flag, or message) and the signal is available, the thread resumes exe-
cution. If the signal is not available, the thread is removed from the ready
queue—the thread is blocked (see Figure 3-2 on page 3-17). The kernel
does not perform a context switch as long as the running thread maintains
the highest priority in the ready queue, even if the thread frees a resource
and enables other threads to move to the ready queue at the same or lower
priority. A thread can also be interrupted. When an interrupt occurs, the
kernel yields to the hardware interrupt controller. When the ISR com-
pletes, the highest priority thread resumes execution.

For more information, see “Preemptive Scheduling” on page 3-14.

Protected Regions
Frequently, system resources must be accessed atomically. The kernel pro-
vides two levels of protection for code that needs to execute sequentially—
unscheduled regions and critical regions.

Protected Regions

1-8 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Unscheduled and critical regions can be intertwined. You can enter criti-
cal regions from within unscheduled regions, or enter unscheduled regions
from within critical regions. For example, if you are in an unscheduled
region and call a function that pushes and pops a critical region, the sys-
tem is still in an unscheduled region when the function returns.

Disabling Scheduling
The VDK scheduler can be disabled by entering an unscheduled region.
The ability to disable scheduling is necessary when you need to free multi-
ple system resources without being switched out, or access global variables
that are modified by other threads without preventing interrupts from
being serviced. While in an unscheduled region, interrupts are still
enabled and ISRs execute. However, the kernel does not perform a thread
context switch even if a higher priority thread becomes ready. Unsched-
uled regions are implemented using a stack style interface. This enables
you to begin and end an unscheduled region within a function without
concern for whether or not the calling code is already in an unscheduled
region.

Disabling Interrupts
On occasions, disabling the scheduler does not provide enough protection
to keep a block of thread code reentrant. A critical region disables both
scheduling and interrupts. Critical regions are necessary when a thread is
modifying global variables that may also be modified by an ISR. Similar to
unscheduled regions, critical regions are implemented as a stack. Develop-
ers can enter and exit critical regions in a function without being
concerned about the critical region state of the calling code. Care should
be taken to keep critical regions as short as possible as they may increase
interrupt latency.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 1-9

Introduction to VDK

Thread and Hardware Interaction
Threads should have minimal knowledge of hardware; rather, they should
use device drivers for hardware control. A thread can control and interact
with a device in a portable and hardware abstracted manner through a
standard set of APIs.

The VDK Interrupt Service Routine framework encourages you to remove
specific knowledge of hardware from the algorithms encapsulated in
threads (see Figure 1-2). Interrupts relay information to threads through
signals to device drivers or directly to threads. Using signals to connect
hardware to the algorithms allows the kernel to schedule threads based on
asynchronous events.

Figure 1-2. Device Drivers Entry Points

Communication Manager

Application Algorithm (Thread)
OpenDevice()APIs:
CloseDevice()
SyncRead()
SyncWrite()
DeviceIOCtl()

Interrupt Service Routine

VDK_ISR_ACTIVATE_DEVICE_ ()
Macro

kIO_Init
kIO_Activate
kIO_Open
kIO_Close
kIO_SyncRead
kIO_SyncWrite
kIO_IOCtl

Device Driver

Dispatch IDs:

Kernel

init()
Function at Boot Time

MyDevice::: DispatchFunction()

Thread and Hardware Interaction

1-10 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The VDK runtime environment can be thought of as a bridge between
two domains, the thread domain and the interrupt domain. The interrupt
domain services the hardware with minimal knowledge of the algorithms,
and the thread domain is abstracted from the details of the hardware.
Device drivers and signals bridge the two domains. For more information,
see “Threads” on page 3-2.

Thread Domain With Software Scheduling
The thread domain runs under a C/C++ runtime model. The prioritized
execution is maintained by a software scheduler with full context switch-
ing. Threads should have little or no direct knowledge of the hardware;
rather, threads should request resources and then wait for them to become
available. Threads are granted processor time based on their priority and
requested resources. Threads should minimize time spent in critical and
unscheduled regions to avoid short-circuiting the scheduler and interrupt
controller.

Interrupt Domain With Hardware Scheduling
The interrupt domain runs outside the C/C++ runtime model. The prior-
itized execution is maintained by the hardware interrupt controller. ISRs
should be as small as possible. They should only do as much work as is
necessary to acknowledge asynchronous external events and to allow
peripherals to continue operations in parallel with the processor. ISRs
should only signal that more processing can occur and leave the processing
to threads. For more information, see “Interrupt Service Routines” on
page 3-56.

Device Drivers
ISRs can communicate with threads directly using signals. Alternatively,
an interrupt service routine and a thread can use a device driver to provide
more complex device-specific functionality that is abstracted from the

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 1-11

Introduction to VDK

algorithm. A device driver is a single function with multiple entry condi-
tions and domains of execution. For more information, see “Device
Drivers” on page 3-63.

Thread and Hardware Interaction

1-12 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 2-1

2 CONFIGURATION AND
DEBUGGING OF VDK
PROJECTS

This chapter contains information about configuration and debugging of
VDK- enabled projects.

If you are new to VisualDSP++ application development software, we rec-
ommend that you start with the VisualDSP++ 5.0 Getting Started Guide.

The information included in this chapter is split into two areas:

• “Configuring VDK Projects” on page 2-1

• “Debugging VDK Projects” on page 2-2

Configuring VDK Projects
VisualDSP++ is extended to manage all of the VDK components. You
start developing a VDK-based application by creating a set of source files.
The IDDE automatically generates a source code framework for each user
requested kernel object. Use the interface to supply the required informa-
tion for these objects.

For specific procedures on how to set up VDK system parameters or how
to create, modify, or delete a VDK component, refer to the VisualDSP++
online Help. Following the online procedures ensures your VDK projects
build consistently and accurately with minimal project management. The
process reduces development time and allows you to concentrate on algo-
rithm development.

Debugging VDK Projects

2-2 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Linker Description File
When a new project makes use of the kernel, a reference to a VDK-specific
default Linker Description File (.ldf) is added to the project. This file is
copied to your project directory to allow modifications to be made to suit
your individual hardware configurations.

Thread-Safe Libraries
Just as user threads must be reentrant, special “thread-safe” versions of the
standard C and C++ libraries are included for use with VDK. The default
.ldf file included in VDK projects links with these libraries. If you mod-
ify the Linker Description File, ensure that the file links with the thread
safe libraries. Your project’s .ldf file resides in the Linker Files folder and
is accessible via the Project tab of the Project window in VisualDSP++.

Header Files for the VDK API
When a VDK project is created in the development environment, one of
the automatically generated files in the project directory is VDK.h. This
header file contains enumerations for every user-defined object in the
development environment and all VDK API declarations. Your source
files must include VDK.h to access any VDK services.

Debugging VDK Projects
Debugging embedded software is a difficult task. To help offset the initial
difficulties present in debugging VDK-enabled projects, the kernel offers
special instrumented builds.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 2-3

Configuration and Debugging of VDK Projects

Instrumented Build Information
When building a VDK project, you have an option to include instrumen-
tation in your executable by choosing Full Instrumentation as the
instrumentation level in the Kernel tab of the Project window. An instru-
mented build differs from a non-instrumented build because the build
includes extra code for thread statistic logging. In addition, an instru-
mented build creates a circular buffer of system events. The extra logging
introduces slight overhead in thread switches and certain API calls but
helps you to trace system activities.

VDK State History Window
VDK logs user-defined events and system state changes in a circular buf-
fer. An event is logged in the history buffer with a call to
LogHistoryEvent(). The call to LogHistoryEvent() logs four data values:
the ThreadID of the calling thread, the tick when the call happened, the
enumeration, and a value that is specific to the enumeration. Enumera-
tions less than zero are reserved for use by VDK. For more information
about the history enumeration type, see HistoryEnum.

APIs are provided to obtain the majority of the data displayed in the VDK
Status window at run time. The details of these APIs are included in
Chapter 5,“VDK API Reference” on page 5-1.

Using the history log, the IDDE displays a graph of running threads and
system state changes in the State History window. Note that the data dis-
played in this window is only updated at halt. The State History window,
the Thread Status and Thread Event legends are described in detail in the
online Help.

It is possible either to replace the VDK history logging subroutines or to
add a user-supplied history logging function to the existing history logging
mechanism (see “Custom VDK History Logging” on page 3-83).

Debugging VDK Projects

2-4 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Target Load Graph Window
Instrumented VDK builds allow you to analyze the average load of the
processor over a period of time. The calculated load is displayed in the
Target Load graph window. Although this calculation is not precise, the
graph helps to estimate the utilization level of the processor. Note that the
information is updated at halt. For a more precise calculation refer to the
LoadMeasurement example in the VisualDSP++ installation.

The Target Load graph shows the percent of time the target spent in the
Idle thread. A load of 0% means VDK spent all of its time in the Idle
thread. A load of 100% means the target did not spend any time in the
Idle thread. Load data is processed using a moving window average. The
load percentage is calculated for every clock tick, and all the ticks are aver-
aged. The following formula is used to calculate the percentage of
utilization for every clock tick.
Load = 1 – (# of times idle thread ran this tick) / (# of threads

run this tick)

For more information about the Target Load graph, refer to the online
Help.

VDK Status Window
Besides history and processor load information, an instrumented build
collects statistics for relevant VDK components, such as when a thread
was created, last run, the number of times run, and so on. This data is dis-
played in the Status window and is updated at halt.

APIs are provided to obtain the majority of the data displayed in the VDK
Status window at runtime. The details of these APIs can be found in
Chapter 5, “VDK API Reference” on page 5-1.

For more information about the VDK Status window, refer to the online
Help.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 2-5

Configuration and Debugging of VDK Projects

General Debugging Tips
Even with the data collection features built into VDK, debugging thread
code is a difficult task. Due to the fact that multiple threads in a system
are interacting asynchronously with device drivers, interrupts, and the Idle
thread, it can become difficult to track down the source of an error.

Unfortunately, one of the oldest and easiest debugging methods—insert-
ing breakpoints—can have uncommon side effects in VDK projects. Since
multiple threads (either multiple instantiations of the same thread type or
different threads of different thread types) can execute the same function
with completely different contexts, the utilization of non-thread-aware
breakpoints is diminished. One possible workaround involves inserting
some “thread-specific” breakpoints:

if (VDK_GetThreadID() == <thread_with_error>)
{

<some statement>; /* Insert breakpoint */
}

KernelPanic
VDK calls an internal function named KernelPanic() under certain cir-
cumstances to indicate an error from which the system cannot recover. By
default, the function loops indefinitely so that users can determine that a
problem has occurred and provide information to facilitate debugging.

The KernelPanic() function disables interrupts on entry to ensure that
execution loops in the intended location. You can override KernelPanic()
in order to handle these types of errors differently; for example, you can
reset the hardware when a KernelPanic occurs.

Debugging VDK Projects

2-6 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The circumstances under which KernelPanic() is called include the
following.

• Errors in the creation of a VDK boot item during startup

• Runtime errors that are not handled by a C/C++ Thread’s error
handler

• VDK internal errors

See PanicCode for a complete list of the reasons for calling KernelPanic().

To allow users to determine the cause of the “panic”, VDK sets up the fol-
lowing variables.

VDK::PanicCode VDK::g_KernelPanicCode

VDK::SystemError VDK::g_KernelPanicError

int VDK::g_KernelPanicValue

int VDK::g_KernelPanicPC

where:

• g_KernelPanicCode indicates the reason why VDK has raised a
KernelPanic. For more information on the possible values of this
variable, see PanicCode.

• g_KernelPanicError indicates the cause of the error in more detail.
For example, if g_KernelPanicCode indicates a boot error,
g_KernelPanicError specifies if the boot problem is in a sema-
phore, device flag, and so on. For more information, see
SystemError.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 2-7

Configuration and Debugging of VDK Projects

• g_KernelPanicValue is a value whose meaning is determined by the
error enumeration. For example, if the problem is creating the boot
thread with ID of 4, g_KernelPanicValue is 4. For more informa-
tion about the values, refer to “VDK Error Codes and Error
Values” on page 5-11.

• g_KernelPanicPC provides the address that produced the
KernelPanic.

It is possible to provide your own version of KernelPanic() if required.
However, VDK does not expect a program to recover once KernelPanic()
has been called.

There is no support for systems that continue running after a Ker-
nelPanic has been reached, and the call should not be ignored in a
user version of KernelPanic().

The function prototype for KernelPanic() is as follows.

C++ Prototype

extern “C” void KernelPanic(

VDK::PanicCode, VDK::SystemError, const int);

C Prototype

void KernelPanic(VDK_PanicCode, VDK_SystemError, const int);

These prototypes are defined in VDK include files; and so when VDK.h is
included in a source file, the correct prototype is used.

In the VDK-supplied KernelPanic(), the variables g_KernelPanicCode,
g_KernelPanicError, and g_KernelPanicValue are set to the parameters
of the function before going into an infinite loop.

Debugging VDK Projects

2-8 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-1

3 USING VDK

This chapter describes how VDK implements the general concepts
described in Chapter 1, “Introduction to VDK”. For information about
the kernel library, see Chapter 5, “VDK API Reference”.

The following sections provide information about the operating system
kernel components.

• “VDK and main()” on page 3-2

• “Threads” on page 3-2

• “Scheduling” on page 3-12

• “Signals” on page 3-18

• “Interrupt Service Routines” on page 3-56

• “I/O Interface” on page 3-62

• “Memory Pools” on page 3-80

• “Multiple Heaps” on page 3-81

• “Thread Local Storage” on page 3-82

• “Custom VDK History Logging” on page 3-83

• “VDK File Attributes” on page 3-86

Threads

3-2 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK and main()
Unlike other real-time operating systems, VDK defines its own internal
main() function to initialize and start VDK.

The main() definition within the VDK libraries is:
int main(void) {

VDK::Initialize();

VDK::Run();

}

where the prototypes for the Initialize() and Run() functions are as
follows.

C++ Prototypes:
void VDK::Initialize(void);

void VDK::Run(void);

C Prototypes:
void VDK_Initialize(void);

void VDK_Run(void);

You can replace the VDK’s internally defined main(), provided that the
user-defined main() calls Initialize() and Run().

The ReplaceHistorySubroutine() API is the only VDK API that
can be used before VDK::Initialize(), and no APIs that can trig-
ger a context switch should be used before VDK::Run().

Threads
When designing an application, partition the application into threads,
where each thread is responsible for a piece of the work. Each thread oper-
ates independently of the others. A thread performs its duty as if it has its
own processor but can communicate with other threads.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-3

Using VDK

Thread Types
You do not directly define threads; instead, you define thread types. A
thread is an instance of a thread type and is similar to any other user
defined type.

You can create multiple instantiations of the same thread type. Each
instantiation of the thread type has its own stack, state, priority, and other
local variables. You can distinguish between different instances of the
same thread type. See “Thread Parameterization” on page 3-8 for further
information. Each thread is individually identified by its ThreadID, a han-
dle that can be used to reference that thread in kernel API calls. A thread
can gain access to its ThreadID by calling GetThreadID(). A ThreadID is
valid for the life of the thread—once a thread is destroyed, the ThreadID
becomes invalid.

Old ThreadIDs are eventually reused, but there is significant time between
a thread’s destruction and the ThreadID reuse—other threads have to rec-
ognize that the original thread is destroyed.

Thread Parameters

When a thread is created, the system allocates space in the heap to store a
data structure that holds the thread-specific parameters. The data struc-
ture contains internal information required by the kernel and the thread
type specifications provided by the user.

Stack Size

Each thread has its own stack, which is allocated from a heap specified by
the user in the VDK Kernel tab or in the CreateThreadEx() and
CreateThreadEx2() APIs. The full C/C++ run-time model, as specified in
the corresponding VisualDSP++ 5.0 C/C++ Compiler and Library Manual,
is maintained on a per thread basis. It is your responsibility to ensure that
each thread has enough room on its stack for the return addresses and
passed parameters of all function calls appropriate to the particular

Threads

3-4 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

run-time model, user code structure, use of libraries, and so on. Stack
overflows do not generate an exception, so an undersized stack has the
potential to cause difficulties when reproducing errors in your system.

In fully instrumented builds, when a thread is destroyed either by
reaching the end of its Run() function or by an explicit call to
DestroyThread(), an event of type kMaxStackUsed is logged in the
VDK History window. The value of the event indicates the amount
of stack used by the thread.

Priority

Each thread type specifies a default priority. Threads may change their
own (or another thread’s) priority dynamically using the SetPriority()
or ResetPriority() functions. Priorities are predefined by the kernel as
an enumeration of type Priority with a value of kPriority1 being the
highest priority (or the first to be scheduled) in the system. The priority
enumeration, such as kPriority1 > kPriority2 >..., is set up. The num-
ber of priorities is limited to the processor’s word size minus two.

Required Thread Functionality

Each thread type requires five particular functions to be declared and
implemented. Default null implementations of all five functions are pro-
vided in the templates generated by the VisualDSP++ development
environment. The thread’s run function is the entry point for the thread.
For many thread types, the thread’s run and error functions are the only
ones in the template you need to modify. The other functions allocate and
free system resources at appropriate times during the creation and destruc-
tion of a thread.

Run Function

The run function—called Run() in C++ and RunFunction() in C/assembly
implemented threads—is the entry point for a fully constructed thread;
Run() is roughly equivalent to main() in a C program. When a thread’s

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-5

Using VDK

run function returns, the thread is moved to the queue of threads waiting
to free their resources. If the run function never returns, the thread
remains running until destroyed.

Error Function

The thread’s error function is called by the kernel when an error occurs in
an API call made by the thread. The error function passes a description of
the error in the form of an enumeration (see SystemError). It can also pass
an additional piece of information whose exact definition depends on the
error enumeration. A thread’s default error-handling behavior makes
VDK go into a KernelPanic function. See “Error Handling Facilities” on
page 3-11 for more information about error handling in VDK.

Create Function

The create function is similar to the C++ constructor. The function pro-
vides an abstraction used by the kernel APIs (CreateThread(),
CreateThreadEx(), and CreateThreadEx2()) to enable dynamic thread
creation. The create function is the first function called in the process of
constructing a thread; it is also responsible for calling the thread’s Init-
Function()/constructor. Similar to the constructor, the create function
executes in the context of the thread that is spawning a new thread by call-
ing CreateThread(), CreateThreadEx(), or CreateThreadEx2(). The
thread being constructed does not have a run-time context fully estab-
lished until after these functions complete.

A create function calls the constructor for the thread and ensures that all
of the allocations that the thread type required have taken place correctly.
If any of the allocations failed, the create function deletes the partially cre-
ated thread instantiation and returns a null pointer. If the thread has been
constructed successfully, the create function returns the pointer to the
thread. A create function should not call DispatchThreadError() because
CreateThread(), CreateThreadEx(), and CreateThreadEx2() handle error
reporting to the calling thread when the create function returns a null
pointer.

Threads

3-6 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The create function is exposed completely in C++ source templates. For C
or assembly threads, the create function appears only in the thread’s
header file. If the thread allocates data in InitFunction(), you need to
modify the create function in the thread’s header to verify that the alloca-
tions are successful and delete the thread if not.

A thread of a certain thread type can be created at boot time by specifying
a boot thread of the given thread type in the development environment.
Additionally, if the number of threads in the system is known at build
time, all the threads can be boot threads.

InitFunction/Constructor

The InitFunction() (in C/assembly) and the constructor (in C++) pro-
vide a place for a thread to allocate system resources during the dynamic
thread creation. A thread uses malloc (or new) when allocating the thread’s
local variables. The VDK APIs that a thread’s InitFunction()/constructor
is allowed to call is limited because the API is called during VDK initial-
ization (for boot threads) or from within a different thread’s context (for
dynamically created threads). See Table 5-24 on page 5-19 for API valid-
ity levels.

Destructor

The destructor is called by the system when the thread is destroyed. A
thread can do this explicitly with a call to DestroyThread(). The thread is
destroyed also if it runs to completion by reaching the end of its run func-
tion and falling out of scope. In all cases, you are responsible for freeing
the memory and other system resources that the thread has claimed. Any
memory allocated with malloc or new in the constructor should be released
with a corresponding call to free or delete in the destructor.

A thread is not necessarily destroyed immediately when DestroyThread()
is called. DestroyThread() takes a parameter that provides a choice of pri-
ority as to when the thread’s destructor is called. If the second parameter,
inDestroyNow, is FALSE, the thread is placed in a queue of threads to be

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-7

Using VDK

cleaned up by the Idle Thread, and the destructor is called at a priority
lower than that of any user threads. While this scheme has many advan-
tages, it works, in essence, as the background garbage collector. This is not
deterministic and presents no guarantees of when the freed resources are
available to other threads. The threads queued to be cleaned up by the Idle
Thread can also be cleaned with a call to the FreeDestroyedThreads()
API.

If the inDestroyNow argument is passed to DestroyThread() with a value
of TRUE, the destructor is called immediately. This assures the resources are
freed when the function returns, but the destructor is effectively called at
the priority of the currently running thread even if a lower priority thread
is being destroyed.

Writing Threads in Different Languages

The code to implement different thread types may be written in C, C++,
or assembly. The choice of language is transparent to the kernel. The
development environment generates well commented skeleton code for all
three choices.

One of the key properties of threads is that they are separate instances of
the thread type templates—each with a unique local state. The mechanism
for allocating, managing, and freeing thread local variables varies from
language to language.

C++ Threads

C++ threads have the simplest template code of the three supported lan-
guages. User threads are derived classes of the abstract base class
VDK::Thread. C++ threads have slightly different function names and
include a Create() function as well as a constructor.

Since user thread types are derived classes of the abstract base class
VDK::Thread, member variables may be added to user thread classes in the
header as with any other C++ class. The normal C++ rules for object scope

Threads

3-8 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

apply so that threads may make use of public, private, and static mem-
bers. All member variables are thread-specific (or instantiation-specific).

Additionally, calls to VDK APIs in C++ are different from C and assembly
calls. All VDK APIs are in the VDK namespace. For example, a call to
CreateThread() in C++ is VDK::CreateThread(). Do not expose the entire
VDK namespace in your C++ threads with the using keyword.

C and Assembly Threads

Threads written in C rely on a C++ wrapper in their generated header file
but are otherwise ordinary C functions. C thread function implementa-
tions are compiled without the C++ compiler extensions.

In C and assembly programming, the state local to the thread is accessed
through a handle (a pointer to a pointer) that is passed as an argument to
each of the four user thread functions. When more than a single word of
state is needed, a block of memory is allocated with malloc() in the thread
type’s InitFunction(), and the handle is set to point to the new structure.

Each instance of the thread type allocates a unique block of memory, and
when a thread of that type is executing, the handle references the correct
memory reference. Note that, in addition to being available as an argu-
ment to all functions of the thread type, the handle can be obtained at any
time for the currently running thread using the API GetThreadHandle().
The InitFunction() and DestroyFunction() implementations for a
thread should not call GetThreadHandle() but should instead use the
parameter passed to these functions, as they do not execute in the context
of the thread being initialized or destroyed.

Thread Parameterization

To distinguish between different instances of boot threads of the same
thread type, users can provide a signed integer value. The value is entered
in the Initializer field in the VDK Kernel tab and is passed to the thread
constructor (thread’s InitFunction function if a C thread) via the

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-9

Using VDK

user_data_ptr field of the ThreadCreationBlock argument.
The DiningPhilosophers example provided with the VisualDSP++ instal-
lation shows how the Initializer field can be used in C threads.

To distinguish between different instances of dynamically created threads
of the same thread type, users can call the CreateThreadEx() or
CreateThreadEx2() API and provide a field of type void* via the
user_data_ptr field of the ThreadCreationBlock argument. The pointer
then can be accessed in the thread constructor (thread’s InitFunction
function if a C thread).

Because the user_data_ptr is a generic field and a pointer, the initializer
is passed by address. The initializer can be extracted with:

int initializer = *((int*)t.user_data_ptr);

in a C++ thread constructor, or:

int initializer;

initializer = *((int *)pTCB->user_data_ptr);

in a C thread InitFunction().

The initializer value typically is stored in a member variable of the thread
itself. In a C thread, the thread handle (which is passed also into the Init-
Function) can be used for this purpose, but this is more easily achieved in
C++.

Note also that for dynamically-created threads, the user_data_ptr can be
used in the same way (i.e. as a pointer to a unique integer) or as a com-
pletely general pointer to thread-specific data. This requires
CreateThreadEx() or CreateThreadEx2(), which takes a ThreadCreation-
Block as its argument, to create threads rather than CreateThread().

CreateThreadEx2()

The CreateThreadEx2() API takes a ThreadCreationBlock (TCB) and an
unsigned integer as its input arguments, inOutTCB and inFieldsRequired,

Threads

3-10 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

respectively. inOutTCB contains thread configuration information, while
inFieldsRequired specifies which fields from inOutTCB are used when cre-
ating the thread and which fields are ignored.

Each field in inOutTCB is represented by a corresponding bit in inField-
sRequired. If a bit in inFieldsRequired is set (1), the contents of the
matching field in inOutTCB is used to create the thread. If a bit in
inFieldsRequired is clear (0), the matching field in the inOutTCB is
ignored, and the default setting is used.

The TCBBitfield enumeration provides names for different bits that can
be set in the inFieldsRequired argument. The flags provided by TCBBit-
field can be ORed together.

For more information about parameter configuration via
CreateThreadEx2(), see the ThreadCreationBlock data type description.

User-Defined Thread Stacks

Typically, VDK allocates a thread stack automatically during a thread cre-
ation, but it is also possible to allocate a thread stack manually and then
create a thread that uses this stack. To do so, first allocate an area of mem-
ory for the thread stack. The size of the allocated memory must match the
stack size specified for that thread. Then the allocated memory is passed to
the CreateThreadEx2() API via the stack_pointer field of the ThreadCre-
ationBlock argument, and the kSetThreadStackPointer flag is set in the
inFieldsRequired argument.

On Blackfin processors, VDK uses the thread stack to store the thread’s
context information, so you must ensure that the allocated memory is
large enough to store this information. The memory size allocated for the
stack must be ‘the stack size + the context area size’. An API function Get-
ContextRecordSize() is provided to query the size of the context area.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-11

Using VDK

Global Variables

VDK applications can use global variables as normal variables. In C or
C++, a variable defined in exactly one source file is declared as extern in
other files in which that variable is used. In assembly, the .GLOBAL declara-
tion exposes a variable outside a source file, and the .EXTERN declaration
resolves a reference to a symbol at link time.

Plan carefully how you use global variables in a multithreaded system.
Limit access to a single thread (a single instantiation of a thread type)
whenever possible to avoid reentrancy problems. Critical and/or unsched-
uled regions should be used to protect operations on global entities that
can potentially leave the system in an undefined state if not completed
atomically.

Error Handling Facilities

VDK includes an error-handling mechanism that allows you to define
behavior independently for each thread type. Each function call in Chap-
ter 5, “VDK API Reference” lists the possible error codes. For the
complete list of all error codes, refer to “SystemError” on page 4-51.

The assumption underlying the error-handling mechanism in VDK is that
all function calls normally succeed and, therefore, do not require an
explicit error code to be returned and verified by the calling code. VDK’s
method differs from common C programming convention in which the
return value of every function call must be checked to assure that the call
has succeeded without an error. While that model is widely used in con-
ventional systems programming, real-time embedded system function calls
rarely, if ever, fail. When an error does occur, the system calls the
user-implemented ErrorFunction().

You can call GetLastThreadError() to obtain the running thread’s most
recent error. You also can call GetLastThreadErrorValue() to obtain an
additional descriptive value whose definition depends on the specific
error. For more information, see Table 5-23 on page 5-18. The thread’s

Scheduling

3-12 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ErrorFunction() should check if the value returned by GetLastThreadEr-
ror() is one that can be handled intelligently and can perform the
appropriate operations. Any errors that the thread cannot handle must be
passed to the default thread error function, which then raises Kernel-
Panic. For instructions on how to pass an error to the error function, see
comments included in the generated thread code.

Scheduling
The scheduler’s role is to ensure that the highest priority ready thread is
allowed to run at the earliest possible time. The scheduler is never invoked
directly by a thread but is executed whenever a kernel API—called from
either a thread or an Interrupt Service Routine (ISR) —changes the high-
est priority thread. The scheduler is not invoked during critical or
unscheduled regions, but can be invoked immediately at the close of either
type of protected region.

Ready Queue
The scheduler relies on an internal data structure known as the ready
queue. The queue holds references to all threads that are not blocked or
sleeping. All threads in the ready queue have every resource needed to run;
they are only waiting for processor time. The exception is the currently
running thread, which remains in the ready queue during execution.

The ready queue is called a queue because it is arranged as a prioritized
First-In First-Out (FIFO) buffer. That is, when a thread is moved to the
ready queue, it is added as the last entry at its priority. For example, there
are four threads in the ready queue at priorities kPriority3, kPriority5,

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-13

Using VDK

and kPriority7, and an additional thread is made ready with a priority of
kPriority5 (see Figure 3-1).

The additional thread is inserted after the old thread with the priority of
kPriority5 but before the thread with the priority of kPriority7.
Threads are added to and removed from the ready queue in a fixed num-
ber of cycles regardless of the size of the queue.

Scheduling Methodologies
VDK always operates as a preemptive kernel. However, you can take
advantage of a number of modes to expand the options for simpler or
more complex scheduling in your applications.

Figure 3-1. Ready Queue

Priority List
(List of Pointers)

kPriority0

kPriority2

kPriority1

kPriority3

kPriority6

kPriority7

kPriority5

kPriorityN

kPriority4

Running Thread

Thread 1

Thread 2

Thread 3

IDLE

Thread 4

Thread 5
(priority kPriority5)

Thread 1

Thread 4

Thread 2

Thread 3

IDLE

kPriority3

kPriority3

kPriority5

kPriority7

kPriorityN

Lowest, where
n is data word

size - 2

Highest

Reserved

Ready Queue
(ordered by priority, then FIFO)

New Thread
of Ready Status

Scheduling

3-14 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Cooperative Scheduling

Multiple threads may be created at the same priority level. In the simplest
scheduling scheme, all threads in the system are given the same priority,
and each thread has access to the processor until it manually yields con-
trol. This arrangement is called cooperative multithreading.

When a thread is ready to defer to the next thread at the same priority
level, the thread can do so by calling the Yield() function, placing the
currently running thread at the end of the list. In addition, any system call
that causes the currently running thread to block would have a similar
result. For example, if a thread pends on a signal that is not currently
available, the next thread in the queue at that priority starts running.

Round-Robin Scheduling

Round-robin scheduling, also called time slicing, allows multiple threads
with the same priority to be given processor time automatically in fixed
duration allotments. In VDK, priority levels may be designated as
round-robin mode at build time and their period specified in system ticks.
Threads at that priority are run for that duration, as measured by the
number of VDK Ticks. If the thread is preempted by a higher priority
thread for a significant amount of time, the time is not subtracted from
the time slice. When a thread’s round-robin period completes, it is moved
to the end of the list of threads at its priority in the ready queue. Note that
the round-robin period is subject to jitter when threads at that priority are
preempted.

Preemptive Scheduling

Full preemptive scheduling, in which a thread gets processor time as soon as
it is placed in the ready queue if it has a higher priority than the running
thread, provides more power and flexibility than pure cooperative or
round-robin scheduling.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-15

Using VDK

VDK allows the use of all three paradigms without any modal configura-
tion. For example, multiple non-time-critical threads can be set to a low
priority in the round-robin mode, ensuring that each thread gets processor
time without interfering with time critical threads. Furthermore, a thread
can yield the processor at any time, allowing another thread to run. A
thread does not need to wait for a timer event to swap the thread out when
it has completed the assigned task.

Disabling Scheduling
Sometimes it is necessary to disable the scheduler when manipulating
global entities. For example, when a thread tries to change the state of
more than one signal at a time, the thread can enter an unscheduled
region to ensure that all updates occur atomically. Unscheduled regions
are sections of code that execute without being preempted by a higher pri-
ority thread. Note that interrupts are serviced in an unscheduled region,
but the same thread runs on return to the thread domain. Unscheduled
regions are entered through a call to PushUnscheduledRegion(). To exit an
unscheduled region, a thread calls PopUnscheduledRegion().

Unscheduled regions (in the same way as critical regions, covered in
“Enabling and Disabling Interrupts” on page 3-56), are implemented with
a stack. Using nested critical and unscheduled regions allows you to write
code that activates a region without being concerned about the region
context when a function is called. For example:

void My_UnscheduledFunction()
{

VDK_PushUnscheduledRegion();
/* In at least one unscheduled region, but

this function can be used from any number
of unscheduled or critical regions */

/* ... */
VDK_PopUnscheduledRegion();

}
void MyOtherFunction()

Scheduling

3-16 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

{
VDK_PushUnscheduledRegion();
/* ... */
/* This call adds and removes one unscheduled region */
My_UnscheduledFunction();
/* The unscheduled regions are restored here */
/* ... */
VDK_PopUnscheduledRegion();

}

An additional function for controlling unscheduled regions is
PopNestedUnscheduledRegions(). This function completely pops the
stack of all unscheduled regions. Although VDK includes
PopNestedUnscheduledRegions(), applications should use the function
infrequently and balance regions correctly.

Entering the Scheduler From API Calls
Since the highest priority ready thread is the running thread, the scheduler
is called only when a higher priority thread becomes ready. Because a
thread interacts with the system through a series of API calls, the points at
which the highest priority ready thread may change are well defined.
Therefore, a thread invokes the scheduler only at these times, or whenever
it leaves an unscheduled region.

Entering the Scheduler From Interrupts
ISRs communicate with the thread domain through a set of APIs that do
not assume any context. Depending on the system state, an ISR API call
may require the scheduler to be executed. VDK reserves the lowest prior-
ity software interrupt to handle the reschedule process.

If an ISR API call affects the system state, the API raises the lowest prior-
ity software interrupt. When the lowest priority software interrupt is
scheduled to run by the hardware interrupt dispatcher, the interrupt
reduces to subroutine and enters the scheduler. If the interrupted thread is

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-17

Using VDK

not in an unscheduled region and a higher priority thread has become
ready, the scheduler swaps out the interrupted thread and swaps in the
new highest priority ready thread. The lowest priority software interrupt
respects any unscheduled regions the running thread is in. However, inter-
rupts can still service device drivers, post semaphores, and so on. On
leaving the unscheduled region, the scheduler is run again, and the highest
priority ready thread becomes the running thread (see Figure 3-2).

Figure 3-2. Thread State Diagram

BLOCKED

Thread is Instantiated

Thread is Destroyed

CreateThread()

DestroyThread()

Return from Interrupt
(remains Highest Priority Ready Thread)

Highest Priority
Ready Thread

PostSemaphore()
PostDeviceFlag()

PostMessage()
Sleep() ends

Thread pends on the
event that becomes

TRUE
Round-robin period

starts

Nested Interrupts

PendSemaphore()
PendDeviceFlag()
PendEvent()
PendMessage()
Sleep()
Round-robin period ends

Interrupt

Return from Interrupt
(no longer Highest

Priority Ready Thread)

READY

INTERRUPTED RUNNING

*
*

*

*
*

*

*

*
*
*
*
*

Signals

3-18 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Idle Thread
The Idle thread is a predefined, automatically-created thread with the
ThreadID set at zero and a priority lower than that of any user threads.
Thus, when there are no user threads in the ready queue, the Idle thread
runs. The only substantial work performed by the Idle thread is the free-
ing of resources of threads that have been destroyed. In other words, the
Idle thread handles destruction of threads that were passed to
DestroyThread() with a value of FALSE for inDestroyNow. Depending on
the platform, it may be possible to customize certain properties of the Idle
thread, such as its stack size and the heap from which all its memory
requirements (including the Idle thread stack) are allocated. (See online
Help for further details.) There may be processor-specific requirements
for particular Idle thread properties (See Appendix A, “Processor-Specific
Notes”, for further details.)

The time spent in threads other than the Idle thread is shown plotted as a
percentage over time on the Target Load tab of the State History window
in VisualDSP++. See “VDK State History Window” on page 2-3 and
online Help for more information about the State History window.

Signals
Threads have five different methods for communication and
synchronization:

• “Semaphores” on page 3-19

• “Mutexes” on page 3-26

• “Messages” on page 3-32

• “Events and Event Bits” on page 3-48

• “Device Flags” on page 3-55

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-19

Using VDK

Each communication method has a different behavior and use. A thread
pends on any of the five types of signals, and if a signal is unavailable, the
thread blocks until the signal becomes available or (optionally) a timeout
is reached.

Semaphores
Semaphores are protocol mechanisms offered by most operating systems.
Semaphores are used to:

• Control access to a shared resource

• Signal a certain system occurrence

• Allow threads to synchronize

• Schedule periodic execution of threads

The maximum number of active semaphores and initial state of the sema-
phores enabled at boot time are set up when your project is built.

Behavior of Semaphores

A semaphore is a token that a thread acquires so that the thread can con-
tinue execution. If the thread pends on the semaphore and the semaphore
is available (the count value associated with the semaphore is greater than
zero), the semaphore is acquired, its count value is decremented by one,
and the thread continues normal execution. If the semaphore is not avail-
able (its count is zero), the thread trying to acquire (pend on) the
semaphore blocks until the semaphore is available, or the specified time-
out occurs. If the semaphore does not become available in the time
specified, the thread continues execution in its error function.

Semaphores are global resources accessible to all threads in the system.
Threads of different types and priorities can pend on a semaphore. When
the semaphore is posted, the thread with the highest priority that has been
waiting the longest is moved to the ready queue. If there are no threads

Signals

3-20 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

pending on the semaphore, its count value is incremented by one. The
count value is limited by the maximum value specified at the time of the
semaphore creation. Additionally, unlike many operating systems, VDK
semaphores are not owned. In other words, any thread is allowed to post a
semaphore (make it available). If a thread has requested (pended on) and
acquired a semaphore and the thread is subsequently destroyed, the sema-
phore is not automatically posted by the kernel.

Besides operating as a flag between threads, a semaphore can be set up to
be periodic. A periodic semaphore is posted by the kernel every n ticks,
where n is the period of the semaphore. Periodic semaphores can be used
to ensure that a thread is run at regular intervals.

Thread’s Interaction With Semaphores

Threads interact with semaphores through the set of semaphore APIs.
These functions allow a thread to create a semaphore, destroy a sema-
phore, pend on a semaphore, post a semaphore, get a semaphore’s value,
and add or remove a semaphore from the periodic queue.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-21

Using VDK

Pending on a Semaphore

Figure 3-3 illustrates the process of pending on a semaphore.

Figure 3-3. Pending on a Semaphore

Thread 1's
ErrorFunction()

is called

Yes Is
kNoTimeoutError

set?

No
Semaphore's List

of Pending Threads

Order by priority,
then FIFO

No

Thread 1 adds itself to

Is
there a

timeout before
semaphore became

available?

Decrease
semaphore's

count

YesNo

Yes

Thread 1 continues execution

Is
Semaphore
available?
(count>0)

Thread 1

PendSemaphore()

Set
return value to

FALSE

Yes
Is

the timeout
kDoNotWait?

No

Signals

3-22 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Threads can pend on a semaphore with a call to PendSemaphore(). When a
thread calls PendSemaphore(), it performs one of the following.

• Acquires the semaphore, decrements its count by one, and contin-
ues execution

• Blocks until the semaphore is available or the specified timeout
occurs

• If the timeout is set to kDoNotWait1 and the semaphore is not avail-
able, the API returns FALSE and the thread continues execution

If the semaphore becomes available before the timeout occurs or a timeout
occurs and the kNoTimeoutError2 bit has been specified in the timeout
parameter, the thread continues execution; otherwise, the thread’s error
function is called and the thread continues execution. You should not call
PendSemaphore() within an unscheduled or critical region because if the
semaphore is not available, then the thread will block. However, with the
scheduler disabled, execution cannot be switched to another thread. Pend-
ing with a timeout of zero on a semaphore pends without timeout.

Posting a Semaphore

Semaphores can be posted from two different scheduling domains: the
thread domain and the interrupt domain. If there are threads pending on
the semaphore, posting it moves the highest priority thread from the
semaphore’s list of pending threads to the ready queue. All other threads
are left blocked on the semaphore until their timeout occurs, or the sema-
phore becomes available for them. If there are no threads pending on the
semaphore, posting it increments the count value by one. If the maximum
count (which is specified when the semaphore is created) is reached, post-
ing the semaphore has no effect.

1 VDK::kDoNotWait in C++ and VDK_kDoNotWait in C.
2 VDK::kNoTimeoutError in C++ and VDK_kNoTimeoutError in C.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-23

Using VDK

Posting from the Thread Domain:
Figure 3-4 and Figure 3-5 illustrate the process of posting semaphores
from the thread domain.

A thread can post a semaphore with a call to the PostSemaphore() API. If
a thread calls PostSemaphore() from within a scheduled region (see
Figure 3-4), and a higher priority thread is moved to the ready queue, the
thread calling PostSemaphore() is context switched out.

If a thread calls PostSemaphore() from within an unscheduled region
where the scheduler is disabled, the highest priority thread pending on the

Figure 3-4. Thread Domain/Scheduled Region: Posting a Semaphore

No

Ready Queue
Semaphore's List

of PendingThreads

Next Thread

Order threads
by priority,
then FIFO

Order threads
by priority,
then FIFO

Yes

Thread 1

PostSemaphore()

Thread 1 runs

Is
Semaphore

available
(count>0)?

Yes

No

Increase Semaphore's
count

No

Yes

1). Invoke Scheduler

2). Switch out the current thread

3). Switch in the highest priority pending thread

Is
Semaphore's

count < its
maximum

count?

Is
Thread 1

of the highest
priority?

Signals

3-24 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

semaphore is moved to the ready queue, but no context switch occurs (as
shown in Figure 3-4).

Figure 3-5. Thread Domain/Unscheduled Region: Posting a Semaphore

Thread 1

PostSemaphore()
Ready Queue

Semaphore's List
of Pending Threads

Thread 1 runs

Yes

No

Increase Semaphore's
count

No

Yes

Next Thread

Order threads
by priority,
then FIFO

Order threads
by priority,
then FIFO

Is
Semaphore's

count <
its maximum

count?

Is
Semaphore

available
(count>0)?

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-25

Using VDK

Posting from the Interrupt Domain:
Interrupt subroutines can also post semaphores. Figure 3-6 illustrates the
process of posting a semaphore from the interrupt domain.

An ISR posts a semaphore by calling the VDK_ISR_POST_SEMAPHORE_()
macro. The macro moves the highest priority thread pending on the sema-
phore to the ready queue and latches the low priority software interrupt if
a call to the scheduler is required. When the ISR completes execution and
the low priority software interrupt is run, the scheduler is run. If the inter-
rupted thread is in a scheduled region and a higher priority thread
becomes ready, the interrupted thread is switched out and the new thread
is switched in.

Periodic Semaphores

Semaphores can also be used to schedule periodic threads. The semaphore
is posted every n ticks (where n is the semaphore’s period). A thread can

Figure 3-6. Interrupt Domain: Posting a Semaphore

Yes

Increase Semaphore's
count

Ready QueueSemaphore's List
of Pending Threads

Next Thread

Order threads
by priority,
then FIFO

Order threads
by priority,
then FIFO

2). RTI

3). The low priority ISR runs

4). Kernel runs
VDK_ISR_POST_SEMAPHORE ()

The interrupted thread runs

No

Yes

Yes

ISR 1

ISR 2

ISR 3

Increase Semaphore's
count

5). Decrease Semaphore‘s count

1). Set the low priority
ISR

No

2). Switch into the highest
priority pending thread

1). Switch out the
interrupted thread

Is
the inter-

rupted thread
of the highest

priority?

Are
there threads

pending?

Is
Semaphore's

count < its
maximum

count?

No

Signals

3-26 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

then pend on the semaphore and be scheduled to run every time the sema-
phore is posted. A periodic semaphore does not guarantee that the thread
pending on the semaphore is the highest priority scheduled to run, or that
scheduling is enabled. All that is guaranteed is that the semaphore is
posted, and the highest priority thread pending on that semaphore moves
to the ready queue.

Periodic semaphores are posted by the kernel during the timer interrupt at
system tick boundaries. Periodic semaphores can also be posted at any
time with a call to PostSemaphore() or VDK_ISR_POST_SEMAPHORE_(). Calls
to these functions do not affect the periodic posting of the semaphore.

Mutexes
Many operating systems offer a synchronization mechanism know as
mutexes. Mutexes allow threads to synchronize access to a shared resource.

• VDK mutexes are purely dynamic entities. This means that there
are no boot mutexes, and that the maximum number of mutexes in
an application is limited only by memory restrictions—not set up
on the Kernel tab.

• VDK mutexes are owned—only the owner of a mutex can release
the mutex.

• VDK mutexes are recursive—the current owner can acquire a
mutex more than once, in a nested manner.

Behavior of Mutexes

A mutex is a token that a thread acquires to continue execution. If the
thread attempts to acquire the mutex, and the mutex is available (the
mutex either has no owner or the owner is the current thread), then the
mutex is acquired. When the mutex is acquired, its internal count value is
incremented, and the thread continues execution. If the mutex is not

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-27

Using VDK

available (the mutex is owned by a different thread), then the thread try-
ing to acquire the mutex blocks until the mutex becomes available.

Mutexes are global resources accessible to all threads in the system.
Threads of different types and priorities can acquire a mutex. When the
mutex is released, the thread with the highest priority that has been wait-
ing for the mutex the longest is moved to the ready queue. VDK mutexes
are owned; the only thread allowed to release a mutex is the mutex owner.
In the case of instrumented or error-checking libraries, if a thread is
destroyed while owning a mutex, then the next time a thread tries to
acquire the mutex, VDK dispatches an error and the mutex is released by
the kernel.

Thread Interaction With Mutexes

Threads interact with mutexes through the set of mutex APIs. The APIs
allow a thread to create, acquire, release, or destroy a mutex.

Signals

3-28 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Acquiring a Mutex

Figure 3-7 illustrates the process of acquiring a mutex. Threads can
acquire a mutex with a call to AcquireMutex(), which performs one of the
following actions.

• Makes the thread the mutex’s owner and continues execution

• Increments the mutex's internal count and continues execution

• Blocks until the mutex is available, then acquires the mutex

Do not call AcquireMutex() within an unscheduled (or critical) region. If
the mutex is not available, then the thread attempts to block, which is ille-
gal within an unscheduled region.

Releasing a Mutex

A mutex can be released only by the thread that owns the mutex. If a
thread has acquired the mutex multiple times, then releasing the mutex
decreases the mutex’s internal count, and the thread remains the mutex’s

Figure 3-7. Acquiring a Mutex

Mutex becomes
available for

AcquireMutex()

Yes

Thread 1 continues execution

Is Mutex
owned by

any thread?

No

Thread 1

Is
Thread 1
the Mutex

owner?

Yes

No

1). Thread 1 blocks
2). Thread 1 is added

to the list of threads
waiting for Mutex
(ordered by priority,
then FIFO)

Increase Mutex's
internal count

Make Thread 1
Mutex's ownerThread 1

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-29

Using VDK

owner. The mutex ownership is released only when ReleaseMutex() has
been called once for each time that the mutex was acquired, at which
point the internal count reaches zero, and the mutex becomes available to
all threads. If there are threads blocked on the mutex, then making the
mutex available moves the highest priority thread (only) from the mutex’s
list of pending threads to the ready queue. If there are no threads pending
on the mutex when the mutex is made available, then the mutex remains
in the available state. No thread can release a mutex that it does not cur-
rently own.

Signals

3-30 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Figure 3-8 and Figure 3-9 illustrate the process of releasing mutexes in
normal execution (a scheduled region) and in an unscheduled region.

Figure 3-8. Releasing a Mutex in a Scheduled Region

Ready Queue

Thread 1‘s Error
Function() is called

ReleaseMutex()

Yes

Is Mutex
owned by
Thread 1?

No
1). Invoke Scheduler
2). Switch out current thread
3). Switch in the highest

priority pending thread Yes

Thread 1

Is
Mutex internal
count greater

than 1?

Yes

No

No

Make Mutex
available to all threads
(set its owner to None)

Yes
Is

any thread
waiting on

Mutex?

Decrease Mutex's
internal count

Add highest
priority thread in

Mutex's list of
pending thread

Is
Thread 1
highest
priority?

No

Thread 1 continues execution

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-31

Using VDK

• If a thread calls ReleaseMutex() in normal execution (see
Figure 3-8), and a higher priority thread is moved to the ready
queue, then the thread calling ReleaseMutex() is context-switched
out.

• If a thread calls ReleaseMutex() from an unscheduled region (see
Figure 3-9) where the scheduler is disabled, then the highest prior-
ity thread waiting on the mutex is moved to the ready queue, but
no context switch occurs.

Figure 3-9. Releasing a Mutex in an Unscheduled/Critical Region

Ready Queue

Thread 1‘s Error
Function() is called

ReleaseMutex()

Yes

Thread 1 continues execution

Is Mutex
owned by
Thread 1?

No

Thread 1

Is
Mutex internal
count greater

than 1?

Yes

No

Make Mutex
available to all threads
(set its owner to None)

Yes
Is

any thread
waiting on

Mutex?

Decrease Mutex's
internal count

Add highest
priority thread in

Mutex's list of
pending thread

No

Signals

3-32 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Messages
Many operating systems offer an inter-thread communication mechanism
known as messages. Messages can be used to:

• Communicate information between two threads

• Control access to a shared resource

• Signal a certain occurrence and communicate information about
the occurrence

• Allow two threads to synchronize

The maximum number of messages supported in the system is set up when
the project is built. When the maximum number of messages is non-zero,
a system-owned memory pool is created to support messaging. The prop-
erties of this memory pool should not be altered. Further information on
memory pools is given in “Memory Pools” on page 3-80.

Each thread type can specify whether or not it is “message-enabled”.
There is a space saving if a thread type is not message-enabled because an
internal structure is not required. A thread type that is not mes-
sage-enabled can still send messages; however, it cannot receive messages.

Behavior of Messages

Messages allow two threads to communicate over logically separate chan-
nels. A message is sent on one of 15 possible channels, kMsgChannel1 to
kMsgChannel15. Messages are retrieved from these channels in priority
order: kMsgChannel1, kMsgChannel2, ... kMsgChannel15k, and messages
are received from each channel in FIFO order. Each message can pass a
reference to a data buffer, in the form of a message payload, from the
sending thread to the receiving thread.

A thread creates a message (optionally associating a payload) and then
posts (sends) the message to another thread. The posting thread continues

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-33

Using VDK

normal execution unless the posting of the message activates a higher pri-
ority thread which is pending on (waiting to receive) the message.

A thread can pend on the receipt of a message on one or more of its chan-
nels. If a message is already queued for the thread, it receives the message
and continues normal execution. If no suitable message is already queued,
the thread blocks until a suitable message is posted to the thread, or until
the specified timeout occurs. If a suitable message is not posted to the
thread in the time specified, the thread continues execution in its error
function. It is also possible to use a polling model, rather than a blocking
model, when waiting for the receipt of messages. The MessageAvailable()
API is provided to support the polling model.

Unlike semaphores, each message always has a defined owner at any given
time, and only the owning thread can perform operations on the message.
When a thread creates a message, it owns the message until it posts the
message to another thread. The message ownership changes to the receiv-
ing thread following the post, when it is queued on one of the receiving
message’s channels. The receiving thread is now the owner of the message.
The only operation that can be performed on the message at this time is
pending on the message, making the message and its contents available to
the receiving thread.

A message can only be destroyed by its owner; therefore, a thread that
receives a message is responsible for either destroying or reusing a message.
Ownership of the associated payload also belongs to the thread that owns
the message. The owner of the message is responsible for the control of
any memory allocation associated with the payload.

Each thread is responsible for destroying any messages it owns before it
destroys itself. If there are any messages left queued on a thread’s receiving
channels when it is destroyed, then the system destroys the queued mes-
sages. As the system has no knowledge of the contents of the payload, the
system does not free any resources used by the payload.

Signals

3-34 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Thread’s Interaction With Messages

Threads interact with messages through the set of message APIs. The
functions allow a thread to create a message, pend on a message, post a
message, get and set information associated with a message, and destroy a
message.

Pending on a Message

Figure 3-10 illustrates the process of pending on a message.

Figure 3-10. Pending on a Message

Thread is removed
from Ready Queue

Is
there a

timeout before
Message became

available?

Is
kNoTimeoutError

set?

Yes No
Ready Queue

Thread 1‘s Error
Function() is called

Yes

PendMessage()

Yes

Thread 1 continues execution

Is
Message
available?

No

Thread 1

No

Is
the timeout

kDoNotWait?

No

Yes

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-35

Using VDK

Threads can pend on a message with a call to PendMessage(), specifying
one or more channels that a message is to be received on. When a thread
calls PendMessage(), it does one of the following.

• Receives a message and continues execution

• Blocks until a message is available on the specified channel(s) or
the specified timeout occurs

• Continues execution if the timeout is set to kDoNotWait1 and the
message is not available

If messages are queued on the specified channels before the timeout
occurs, or if a timeout occurs and the kNoTimeoutError2 bit is specified in
the timeout parameter, the thread continues normal execution; otherwise,
the thread continues execution in its error function.

Once a message has been received, you can obtain the identity of the send-
ing thread and the channel the message was received on by calling
GetMessageReceiveInfo(). You can also obtain information about the
payload by calling GetMessagePayload(), which returns the type and
length of the payload in addition to its location. Do not call PendMes-
sage() within an unscheduled or critical region because if a message is not
available, then the thread blocks, but with the scheduler disabled, execu-
tion cannot be switched to another thread. Pending with a timeout of zero
on a message pends without timeout.

Posting a Message

Posting a message sends the specified message and its payload reference to
the specified thread and transfers ownership of the message to the receiv-
ing thread. The details of the message payload can be specified by a call on
the SetMessagePayload() function, which allows the thread to specify the
payload type, length, and location before posting the message. A thread

1 VDK::kDoNotWait in C++ and VDK_kDoNotWait in C.
2 VDK::kNoTimeoutError in C++ and VDK_kNoTimeoutError in C.

Signals

3-36 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

can send a message it currently owns with a call to PostMessage(), specify-
ing the destination thread and the channel the message is to be sent on.

Figure 3-11 illustrates the process of posting a message from a scheduled
region.

If a thread calls PostMessage() from within a scheduled region, and a
higher priority thread is moved to the ready queue on receiving the mes-
sage, then the thread calling PostMessage() is context switched out.

Figure 3-12 illustrates the process of posting a message from an unsched-
uled region.

Figure 3-11. Posting a Message From a Scheduled Region

Figure 3-12. Posting a Message From an Unscheduled Region

Invoke Scheduler

PostMessage() Yes

Thread 1 continues execution

Is
the desti-

nation thread
unblocked by this

Message?

No

Thread 1

Is
Thread 1

of the highest
priority?

Yes

No

Destination thread
is moved to

Ready Queue

PostMessage() Yes

Thread 1 continues execution

Thread 1

No

Is
the desti-

nation thread
unblocked by this

Message?

Destination thread
is moved to

Ready Queue

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-37

Using VDK

If a thread calls PostMessage() from within an unscheduled region, even if
a higher priority thread is moved to the ready queue to receive the mes-
sage, the thread that calls PostMessage() continues to execute.

Multiprocessor Messaging
VDK messaging functionality was extended in VisualDSP++ 3.5 to allow
messages to be passed between the processors in a multiprocessor configu-
ration. The APIs and corresponding behaviors are, as much as possible,
the same as for intra-processor messaging but with extensions.

Each processor in a multiprocessor configuration is referred to as a node
and must have its own VisualDSP++ project. This means that each node
runs its own instance of the VDK kernel and all VDK entities (such as
semaphores, event bits, events, and so on, but excepting threads) are pri-
vate to that node. Each node has a unique numeric node ID, which is set
in the project’s Kernel tab.

Threads are uniquely identified across the multiprocessor system by
embedding the node ID as a 5-bit field within the ThreadID. The size of
this field limits the maximum number of nodes in the system to 32.
Threads are permanently located on the node where they are created—
there is no “migration” of threads between nodes.

In order for threads to be referenced on other nodes, each project in a
multiprocessor system uses the Kernel tab’s Import list to import the proj-
ect files for all the other nodes in the system. This makes the boot
ThreadIDs for all the projects visible and usable across the system. Threads
located on other nodes may then be used as destinations for the
VDK::PostMessage() and VDK::ForwardMessage() functions, though not
for any other thread-related API function.

Boot threads serve as “anchor points” for node-to-node communications,
as their identities are known at build time. In order to communicate with
dynamically-created threads on other nodes, it is necessary to pass the
ThreadIDs as data between the nodes (that is, in a message payload). A

Signals

3-38 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

reply to an incoming message can always be sent, regardless of the identity
of the sending thread, as the sender’s ID is carried in the message itself.
Boot threads can therefore be used to provide information about dynami-
cally-created threads, but such arrangements are application-specific and
must form part of the system design.

Routing Threads (RThreads)

When a message is posted by a thread, the destination node ID (embedded
in the destination ThreadID) is examined. If it matches the node ID of the
node on which the thread is running, then the message is placed directly
into the message queue of the destination thread, exactly as in single-pro-
cessor messaging. If the node IDs do not match, then the message is
passed to one of the routing threads (RThreads), which is responsible for
the next stage in the process of moving the message to its destination.

Each RThread takes one of two roles, incoming or outgoing, which is
fixed at the time of its creation.

Each RThread employs a device driver, which manages the physical details
of moving messages between nodes. An outgoing RThread has its device
open for writing, while an incoming RThread has its device open for
reading.

Outgoing RThreads are referenced via a routing table, which is con-
structed by VisualDSP++ at build time. When a message must be sent to a
different node, the destination node ID is used as an index into this table
to select which outgoing RThread will handle transmission of the message.

Each node must contain at least one incoming and one outgoing RThread,
together with their corresponding device drivers. More RThreads may be
included, depending on the number of physical connections to other
nodes. However, the number of outgoing RThreads may be less than the
number of nodes in the system, so that more than one entry in the routing
table may map to the same RThread. This means that the topology of the

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-39

Using VDK

multiprocessor system may require that a message make more than one
“hop” to reach its final destination.

An outgoing RThread, when idle, waits for messages to be placed on any
channel of its message queue, and then transmits that message (as a mes-
sage packet) by making one or more SyncWrite() calls to its associated
device driver. These SyncWrite() calls may block waiting I/O completion.

An incoming RThread, when idle, blocks in a SyncRead() call to its device
driver awaiting reception of a message packet. Once the packet has been
received and expanded into a message object, the RThread forwards it to
its destination. This may involve passing the message to an outgoing
RThread if the current node is not the message’s final destination.

The actual message objects, as referenced by particular MessageID, are each
local to a particular node. When a message is transmitted between two
nodes, only the message contents are passed over (as a message packet).

The message object itself is destroyed on the sending side and recreated on
the receiving side with the following consequences.

• The message usually has a different ID on the receiving side than it
does on the sending.

• Message objects that are passed to an outgoing RThread are
destroyed after transmission and, hence, returned to the pool of
free messages.

• When a message packet is received by an incoming RThread, a
message object must be created from the pool of free messages.

Signals

3-40 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Figure 3-13 shows the path taken by a message being sent between two
threads on different nodes (A and B), where a direct connection exists
between the two nodes.

Figure 3-14 shows a scenario where node Y is an intermediate “hop” on
the way to a third node, Z. The message is posted by Y’s incoming

Figure 3-13. Sending Messages Between Adjacent Nodes

Sending
Thread

Outgoing
Rthread

Incoming
RThread

Receving
Thread

Transfer

PostMessage()

SyncWrite() SyncRead()

PostMessage()

CreateMessage()

DestroyMessage()

Physical Connection
(Link Port, Cluster Bus,
Internal Memory DMA)

DEVICE
DRIVER

DEVICE
DRIVER

NODE A NODE B

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-41

Using VDK

RThread, directly into the message queue of the routing thread for the
outgoing connection.

If the message allocation by the incoming RThread fails, then a system
error is raised and execution stops on that node. This is necessary because
the alternative of “dropping” the message is unacceptable (message
delivery is defined as being reliable in VDK).

Figure 3-14. Sending Messages Between Non-Adjacent Nodes via an
Intermediate Node

Incoming
RThread

Outgoing
RThread

SyncWrite()

SyncRead()

PostMessage()

CreateMessage()
Node X

Physical Connection
(Link Port, Cluster Bus)

DEVICE
DRIVER

DEVICE
DRIVER

DestroyMessage()

Node Y

Physical Connection
(Link Port, Cluster Bus)

Node Z

Signals

3-42 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

There are a number of ways of avoiding this problem.

1. Provide a careful design of the message flow in the application, and
careful choice of priorities for the RThreads. The use of loopback
(that is, returning messages to sender rather than destroying them)
may assist with this.

2. Preallocate all messages during initialization and use loopback so
that they never need to be explicitly destroyed. The maximum mes-
sages setting (on the Kernel tab) for each node must be set equal to
the total number of messages in the overall system. This ensures
that there is no failure even if all messages are sent to the same node
at once.

3. A counting semaphore may be installed to regulate the message
flow into the node, using the VDK::InstallMessageControlSema-
phore() API. The initial count of this semaphore should be set to
less than or equal to the number of free messages which are
reserved for use by the RThreads. This semaphore is pended on
prior to each message allocation by an incoming RThread, and
posted after each deallocation by an outgoing RThread. Provided
that the semaphore’s count is never less than the number of free
messages on the node, then the allocations never fail. However,
message flow into the node may stall if the semaphore count falls to
zero.

Option 1 requires a thorough understanding of application behavior.
Option 2 carries a memory space overhead, as more space may be reserved
for messages than is actually needed at runtime, but is the simplest solu-
tion if this is no problem. Option 3 carries a performance overhead due to
the semaphore pend and post operations. Additionally, if message flow
stalls, which may occur with Option 3, it may have other consequences for
the system.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-43

Using VDK

Data Transfer (Payload Marshalling)

Very simple messages can be sent between nodes without interpretation;
that is, if the message information is entirely conveyed by the two words
of message data (internal payload). However, if the message actually has
an in-memory (external) payload, then the address of this payload may not
be meaningful once the message arrives on another node. In these cases,
the payload must be transferred along with the message. This is done via
payload marshalling.

Any message type that has the MSB (sign bit) set (that is, a negative value)
is considered to be a marshalled type, meaning that the system expects to
allocate, deallocate, and transfer the payload automatically from node to
node.

Since the organization of the payload for a particular message type is
entirely the choice of the application designer (it might be a linked list or
a tree, rather than a plain memory block), the allocation, deallocation, and
transfer of the payload is the responsibility of a marshalling function.
Pointers to these functions are held in a static marshalling table, which is
indexed using the low-order bits of the message type.

The marshalling function implements (at least) the following operations:

• Allocate and receive

• Transmit and release

Note that it is not compulsory for the marshalling function to transfer the
payload via the device driver. It may, for example, only be necessary for it
to translate the payload address from a local value to a cluster bus address
(on those processors that have cluster bus functionality), so as to permit
in-place access to the payload from another processor. When the payloads
for a particular message type are always stored in a memory (for example,
SDRAM) which is visible to all nodes and mapped to the same address
range on each, then no marshalling is needed. The message type can be
given a non-marshalled value (that is, the sign bit is zero).

Signals

3-44 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Since the most common form of marshalled payload is likely to be a plain
memory block allocated either from a heap or from a VDK memory pool,
VDK provides built-in standard marshalling functions to handle these
cases. See Appendix A, “Processor-Specific Notes” on page A-1 for details
of other standard marshalling functions that may be available only for cer-
tain processor families. The more complex cases (linked data structures,
shared memory, and so on) require user-written custom marshalling
functions.

Marshalling functions are called from the routing threads and are passed
these arguments:

• Marshalling code—indicates which operation is to be performed

• A pointer to the formatted message packet, which includes payload
type, size, and address— for input and output

• Device descriptor—identifies the VDK device driver for the
connection

• Heap index or PoolID—used by standard marshalling

• I/O timeout duration—usually set to zero, for indefinite wait)

For transmission, the marshalling function is also responsible for first
transmitting the message packet. This allows the marshalling function to
modify the payload attributes prior to transmission if required. For exam-
ple, if the payload is to be accessed in-place across the cluster bus (on
processors with cluster bus functionality), then node-specific addresses
must be translated to the global address space and back.

The marshalling functions execute in the context of the Routing Threads.
The SyncRead() or SyncWrite() calls made by the marshalling functions
will (or may) cause the threads to block awaiting I/O completion; how-
ever, the original sending thread(s) is are not blocked. In this way, the
Routing Threads act as a buffer between user threads and the interproces-
sor message transfer mechanism.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-45

Using VDK

Note that it is not strictly necessary for the marshalling function to actu-
ally transfer the data. In certain circumstances, it may be sufficient for it
merely to perform the allocations and deallocations. An example of where
this may be useful is the message loopback. The message may be returned
to the sender after changing its payload type to one whose marshalling
function simply frees the payload when the message is transmitted and
allocates a payload when the message is received. This avoids the overhead
of transferring data that is no longer of interest but allows the payload to
still be automatically managed by the system.

The only added complexity is the need for two marshalled types instead of
one, and for the user threads to change the payload type between the two,
according to whether the message is “full” or “empty”. The Empty Pool
and Empty Heap standard marshalling functions are provided for this
purpose.

When defining a marshalled payload type in the Kernel tab, the user can
select either standard or custom marshalling. For standard marshalling,
the choice must be made between (at least) heap or pool marshalling,
according to whether the payloads are allocated from a C/C++ heap (using
the VisualDSP++ multiple heap API extensions) or a VDK memory pool.
The HeapID or PoolID must also be specified. For custom marshalling, the
name of the marshalling function must be supplied, and a source module
containing a skeleton of the marshalling function is automatically created.
It is then the user’s task to add the code that allocates and deallocates, and
reads and writes, the actual payload.

Signals

3-46 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Device Drivers for Messaging

Device drivers employed in message transfer must provide certain proper-
ties assumed in the design of the routing threads:

• Synchronous operation—once a write call returns, the caller knows
that the data has been sent.

• Flow control—no data is lost if a Write (by the sender) is initiated
before the corresponding read (by the receiver).

• Reliable delivery—all data sent (written) will be received (Read) at
the other side.

As mentioned above, the contents of messages are written to and read
from the device driver as message packets. These packets are 16 bytes
(128 bits) in size and are always read and written by a single operation of
that size. Device drivers can, therefore, be optimized for these transfers, as
they are the most frequent case, although, other sizes must still be
supported.

As well as the message packets, the device driver must also transfer the
message payloads which are written and read by the marshalling functions.
It is the responsibility of the application designer to ensure that the mar-
shalling functions and the device drivers operate together correctly, that is,
any transfer size or alignment restrictions imposed by the drivers are met
by the payloads. This is also true of marshalled payload types using stan-
dard marshalling—the sizes and alignments of the heap or memory pool
blocks must be acceptable to the messaging device drivers.

Where a bidirectional hardware device (such as a link port on
TigerSHARC or certain SHARC processors) is managed by a single device
driver instance on each of the two nodes that it connects, then it is neces-
sary for the device driver to permit itself to be opened by both an
incoming and an outgoing routing thread. A generalized multiple-open
capability is not required. The ability to be simultaneously open once for
reading and once for writing (sometimes known as a split open) is suffi-

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-47

Using VDK

cient. Alternatively, for some devices it may be preferable to create two
device driver instances on each node, so that the hardware appears as two
unidirectional connections.

Routing Topology

Application designers must choose the routing structure for a particular
application. This choice is closely linked to the organization of the target
hardware.

At one extreme, the ideal situation is to have a direct connection between
each node. In such a configuration, no through-routing is required: that
is, each message post requires only one “hop”. This can be achieved for a
small numbers of nodes (between two and five). However, the number of
connections quickly becomes prohibitive as the number of nodes
increases.

At the other extreme, the minimum number of connections required is
one incoming and one outgoing per node. This is sufficient to allow the
nodes to be connected in a simple “ring” configuration. However, a mes-
sage post may require many “hops” if the sender and receiver are widely
separated on the ring. If the connections are bidirectional (for example,
link ports) and each node has two, then a bidirectional ring—with mes-
sages circulating in both directions—is possible.

Between these two extremes many configurations are possible, including
grids, cubes, and hypercubes (if sufficient links are available per node).
Where a host system forms part of the design and is participating in mes-
saging, then it must also be included in the routing topology.

The design of the routing network is best begun “on paper”, as a Directed
Graph of bubbles (nodes) and arrowhead lines (connections). Designers
should consider how to assign threads to nodes so that as much message
communication as possible is over direct connections. Once the topology
has been established within the constraints of the available hardware, then
a system can be described in terms of node IDs, device drivers, and rout-

Signals

3-48 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ing threads. This information can then be entered into the Kernel tab of
the per-node projects for the application.

Example projects are supplied with VisualDSP++ for certain EZ-KIT Lite
boards that have more than one processor core (for example, the
ADSP-BF561 processor), or that have connections specifically designed
for connecting processors (for example, link ports on TigerSHARC and
certain SHARC processors). These examples have appropriate device driv-
ers and Routing Threads already in place (for fully-connected topologies,
since the numbers of nodes will be small) and may be used as a starting
point for new applications.

Events and Event Bits
Events and event bits are signals used to regulate thread execution based on
the state of the system. An event bit is used to signal that a certain system
element is in a specified state. An event is a Boolean operation performed
on the state of all event bits. When the Boolean combination of event bits
is such that the event evaluates to TRUE, all threads that are pending on the
event are moved to the ready queue and the event remains TRUE. Any
thread that pends on an event that evaluates as TRUE does not block, but
when event bits have changed causing the event to evaluate as FALSE, any
thread that pends on that event blocks.

The number of events and event bits is limited to a processor’s word size
minus one. Therefore, on Blackfin, SHARC and TigerSHARC processors
there can be 31 events and event bits.

Behavior of Events

Each event maintains the VDK_EventData data structure that encapsulates
all the information used to calculate an event’s value:

typedef struct
{

bool matchAll;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-49

Using VDK

unsigned int values;

unsigned int mask;
} VDK_EventData;

When setting up an event, configure a flag describing how to treat a mask
and target value:

• matchAll: TRUE when an event must have an exact match on all of
the masked bits. FALSE if a match on any of the masked bits results
in the event recalculating to TRUE.

• values: The target values for the event bits masked with the mask
field of the VDK_EventData structure.

• mask: The event bits that the event calculation is based on.

Unlike semaphores, events are TRUE whenever their conditions are TRUE,
and all threads pending on the event are moved to the ready queue. If a
thread pends on an event that is already TRUE, the thread continues to run,
and the scheduler is not called. Like a semaphore, a thread pending on an
event that is not TRUE blocks until the event becomes true, or the thread’s
timeout is reached. Pending with a timeout of zero on an event pends
without timeout.

Global State of Event Bits

The state of all the event bits is stored in a global variable. When a user
sets or clears an event bit, the corresponding bit number in the global
word is changed. If toggling the event bit affects any events, that event is
recalculated. This happens either during the call to SetEventBit() or
ClearEventBit() (if called within a scheduled region), or the next time
the scheduler is enabled with a call to PopUnscheduledRegion().

Event Calculation

To understand how events use event bits, see the following examples.

Example 1: Calculation for an All Event

Signals

3-50 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Event is FALSE because the global event bit 2 is not the target value.

Example 2: Calculation for an All Event

Event is TRUE.

Example 3: Calculation for an Any Event

Event is TRUE since bits 0 and 3 of the target and global match.

Example 4: Calculation for an Any Event

Event is FALSE since bits 0, 2, and 3 do not match.

4 3 2 1 0 event bit number

0 1 0 1 0 <— bit value

0 1 1 0 1 <— mask

0 1 1 0 0 <— target value

4 3 2 1 0 event bit number

0 1 1 1 0 <— bit value

0 1 1 0 1 <— mask

0 1 1 0 0 <— target value

4 3 2 1 0 event bit number

0 1 0 1 0 <— bit value

0 1 1 0 1 <— mask

0 1 1 0 0 <— target value

4 3 2 1 0 event bit number

0 1 0 1 1 <— bit value

0 1 1 0 1 <— mask

0 0 1 0 0 <— target value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-51

Using VDK

Effect of Unscheduled Regions on Event Calculation

Each time an event bit is set or cleared, the scheduler is entered to recalcu-
late all dependent event values. By entering an unscheduled region, you
can toggle multiple event bits without triggering spurious event calcula-
tions that could result in erroneous system conditions. Consider the
following code.

/* Code that accidentally triggers Event1 trying to set up

Event2. Assume the prior event bit state = 0x00. */

VDK_EventData data1 = { true, 0x1, 0x3 };

VDK_EventData data2 = { true, 0x3, 0x3 };

VDK_LoadEvent(kEvent1, data1);

VDK_LoadEvent(kEvent2, data2);

VDK_SetEventBit(kEventBit1); /* will trigger Event1 by accident

*/

VDK_SetEventBit(kEventBit2); /* Event1 is FALSE, Event2 is TRUE

*/

Whenever you toggle multiple event bits, enter an unscheduled region to
avoid the above loopholes. For example, to fix the accidental triggering of
Event1 in the above code, use the following code:

VDK_PushUnscheduledRegion();

VDK_SetEventBit(kEventBit1); /* Event1 has not been triggered */

VDK_SetEventBit(kEventBit2); /* Event1 is FALSE, Event2 is TRUE */

VDK_PopUnscheduledRegion();

Thread’s Interaction With Events

Threads interact with events by pending on events, setting or clearing
event bits, and by loading a new VDK_EventData into a given event.

Signals

3-52 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Pending on an Event

Like semaphores, threads can pend on an event’s condition becoming TRUE
with a timeout. Figure 3-15 illustrates the process of pending on an event.

A thread calls PendEvent() and specifies the timeout. If the event becomes
TRUE before the timeout is reached, the thread (and all other threads pend-
ing on the event) is moved to the ready queue. Calling PendEvent() with a
timeout of zero means that the thread is willing to wait indefinitely. Call-
ing PendEvent() with a timeout of kDoNotWait1 means that the thread will
continue execution even if the event is not available.

Figure 3-15. Pending on an Event

1 VDK::kDoNotWait in C++ and VDK_kDoNotWait in C.

Thread 1 blocks
until Event is TRUE

Is
there a time-
out before the
Event became

available?

Yes
Is

kNoTimeoutError
set?

No

Yes

Does
Event evaluate

as TRUE?

Is the timeout
kDoNotWait?

Yes

Is
Thread 1 of
the highest

priority?

No

PendEvent()

Thread 1 continues execution

Ready Queue

1). Invoke Scheduler

2). Switch out Thread 1

No

Thread 1

No

Order threads
by priority,

then
FIFO

All pending threads

Thread 1's
error function

is called

No

Yes

Yes

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-53

Using VDK

Setting or Clearing of Event Bits

Changing the status of the event bits can be accomplished in both the
interrupt domain and the thread domain. Each domain results in slightly
different results.

From the Thread Domain:
Figure 3-16 illustrates the process of setting or clearing an event bit from
the thread domain.

A thread can set an event bit by calling SetEventBit() and clear it by call-
ing ClearEventBit(). Calling either from within a scheduled region
recalculates all events that depend on the event bit and can result in a
higher priority thread being context switched in.

Figure 3-16. Setting or Clearing an Event Bit from Thread Domain

Thread 1

SetEventBit()
ClearEventBit()

Thread 1 continues execution

Yes

No

1). Invoke Scheduler

2). Recalculate dependent bits

Is
Thread 1

of the highest
priority?

Switch out Thread 1

Thread Domain/Scheduled Region

Signals

3-54 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

From the Interrupt Domain:
Figure 3-17 illustrates the process of setting or clearing of an event bit
from the interrupt domain.

An ISR can call VDK_ISR_SET_EVENTBIT_() and
VDK_ISR_CLEAR_EVENTBIT_() to change an event bit value and, possibly,
free a new thread to run. Calling these macros does not result in a recalcu-
lation of the events; however, the low priority software interrupt is set and
the scheduler entered. If the interrupted thread is in a scheduled region,
an event recalculation takes place and can cause a higher priority thread to
be context switched in. If an ISR sets or clears multiple event bits, the calls
do not need to be protected with an unscheduled region (since there is no
thread scheduling in the interrupt domain). For example,

/* The following two ISR calls do not need to be protected: */
VDK_ISR_SET_EVENTBIT_(kEventBit1);
VDK_ISR_SET_EVENTBIT_(kEventBit2);

Figure 3-17. Setting or Clearing an Event Bit from Interrupt Domain

ISR 1
ISR 2

ISR 3
Yes

NoVDK_ISR_SET_EVENTBIT_()
VDK_ISR_CLEAR_EVENTBIT_()

RTI returns to the interrupted thread

Interrupt Domain/Scheduled Region

Thread Domain

1). Set Reschedule ISR

2). Invoke Scheduler
Recalculate dependent

bits

Is
the inter-

rupted thread
of the highest

priority?

Switch out the
interrupted thread

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-55

Using VDK

Loading New Event Data into an Event

From the thread scheduling domain, a thread can get the VDK_EventData
associated with an event with the GetEventData() API. Additionally, a
thread can change the VDK_EventData with the LoadEvent() API. A call to
LoadEvent() causes a recalculation of the event’s value. If a higher priority
thread becomes ready because of the call, it starts running if the scheduler
is enabled.

Device Flags
Because of the special nature of device drivers, most require synchroniza-
tion methods that are similar to those provided by events and semaphores,
but with different operation. Device flags are created to satisfy the specific
circumstances device drivers might require. Much of their behavior cannot
be fully explained without an introduction to device drivers, which are
covered extensively in “Device Drivers” on page 3-63.

Behavior of Device Flags

Like events and semaphores, a thread can pend on a device flag, but unlike
semaphores and events, a device flag is always FALSE. A thread pending on
a device flag immediately blocks. When a device flag is posted, all threads
pending on it are moved to the ready queue.

Device flags are used to communicate to any number of threads that a
device has entered a particular state. For example, assume that multiple
threads are waiting for a new data buffer to become available from an A/D
converter device. While neither a semaphore nor an event can correctly
represent this state, a device flag’s behavior can encapsulate this system
state.

Interrupt Service Routines

3-56 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Thread’s Interaction With Device Flags

A thread accesses a device flag through two APIs: PendDeviceFlag() and
PostDeviceFlag(). Unlike most APIs that can cause a thread to block,
PendDeviceFlag() must be called from within a critical region.

PendDeviceFlag() is set up this way because of the nature of device driv-
ers. See “Device Drivers” on page 3-63 for a more information about
device flags and device drivers.

Interrupt Service Routines
Starting with VisualDSP++ 4.0, VDK ISRs can be written assembly, C, or
C++. All previous releases of VDK restricted users to using assembly for
writing ISRs. While the new support provides increased flexibility, it
should be noted that there are performance considerations and certain
restrictions associated with writing your ISRs in C/C++, as described
below.

The original VDK philosophy related to the writing of ISRs still holds
true. ISRs should be short routines that perform essential tasks and then
post semaphores, change event bit values, activate device drivers, and so
on, in order to switch execution to the relevant thread or device driver.
The bulk of any associated calculations should be performed at thread
level. This approach reduces the number of context saves/restores
required, decreases interrupt latency, and still keeps as much code as possi-
ble in a high-level language.

VDK’s interrupt architecture does not support the signal.h strategy for
handling interrupts.

Enabling and Disabling Interrupts
Each processor architecture has a slightly different mechanism for masking
and unmasking interrupts. Some architectures require that the state of the

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-57

Using VDK

interrupt mask be saved to memory before servicing an interrupt or an
exception, and the mask be manually restored before returning. Since the
kernel installs interrupts (and exception handlers on some architectures),
directly writing to the interrupt mask register may produce unintended
results. Therefore, VDK provides a simple and platform-independent API
to simplify access to the interrupt mask.

A call to GetInterruptMask() returns the actual value of the interrupt
mask, even if it has been saved temporarily by the kernel in private stor-
age. Likewise, SetInterruptMaskBits() and ClearInterruptMaskBits()
set and clear bits in the interrupt mask in a robust and safe manner. Inter-
rupt levels with their corresponding bits set in the interrupt mask are
enabled when interrupts are globally enabled. See the Hardware Reference
manual for your target processor for more information about the interrupt
mask.

VDK also presents a standard way of turning interrupts on and off glob-
ally. Like unscheduled regions (in which the scheduler is disabled), VDK
supports critical regions where interrupts are disabled. A call to PushCrit-
icalRegion() disables interrupts, and a call to PopCriticalRegion()
re-enables interrupts. These API calls implement a stack-style interface, as
described in “Protected Regions” on page 1-7. Users are discouraged from
turning interrupts off for long sections of code since this increases inter-
rupt latency.

Interrupt Architecture
VDK ISRs can be written in assembly or C/C++. The following sections
explain the advantages and disadvantages of each approach.

Assembly Interrupts

ISRs written in assembly are the most efficient way of servicing interrupts.
The overhead of saving and restoring processor state is eliminated, along
with need to set up a C run-time environment. ISRs written in assembly

Interrupt Service Routines

3-58 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

must save and restore only the registers that they use. The lightweight
nature of assembly ISRs also encourages the use of interrupt nesting to
further reduce latency. (VDK enables interrupt nesting by default on pro-
cessors that support it.)

C/C++ Interrupts

ISRs written in C/C++ may simplify the coding of the routines, but there
are inherent overheads with implementing ISRs in a high-level language.
A C/C++ run-time must be established on entry to the ISR, incurring a
delay before any actual ISR code is executed. Also, the necessary processor
state must be saved on entry to the ISR and restored on exit. If a C/C++
ISR calls any functions that are not present in the same module, then the
entire processor state will be saved and restored, unless the
regs_clobbered pragma is used to specify the registers modified by the
function. (Refer to your processor’s C/C++ Compiler and Library Manual
for details.) An additional point of note is that the majority of the
run-time library is not interrupt-safe, and so can not be used in ISRs.
(Refer to your processor’s C/C++ Compiler and Library Manual for
details.) Thus, there are certain limits imposed as to what can be done in a
C/C++ ISR.

Vector Table

The method VDK uses to install interrupt handlers depends on the pro-
cessor family used, and the underlying run-time library support. Refer to
the generated skeleton ISR code for further details on any restrictions,
requirements, or options associated with adding your own code to ISRs.

By default, VDK reserves at least two interrupts: the timer interrupt and
the lowest priority software interrupt. For a discussion about the timer
interrupt, see “Timer ISR” on page 3-61. For information about the low-
est priority software interrupt, see “Reschedule ISR” on page 3-62. For
information on any additional interrupts reserved by VDK for particular
processors, see Appendix A, “Processor-Specific Notes” on page A-1.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-59

Using VDK

Global Data

Often ISRs need to communicate data back and forth to the thread
domain besides semaphores, event bits, and device driver activations. ISRs
can use global variables to get data to the thread domain, but you must
remember to wrap any access to or from that global data in a critical
region and to declare the variable as volatile (in C/C++). For example,
consider the following,

/* MY_ISR.asm */

.EXTERN _my_global_integer;

<REG> = data;

DM(_my_global_integer) = <REG>;

/* finish up the ISR, enable interrupts, and RTI. */

and in the thread domain:

/* My_C_Thread.c */

volatile int my_global_integer;

/* Access the global ISR data */

VDK_PushCriticalRegion();

if (my_global_integer == 2)

my_global_integer = 3;

VDK_PopCriticalRegion();

Communication With Thread Domain

VDK supplies a set of assembly macros and APIs callable from C/C++
ISRs that can be used to communicate system state to the thread domain.
See “Assembly Macros and C/C++ ISR APIs” on page 5-235 for more
information.

The assembly macros are called from the interrupt domain; therefore, they
make no assumptions about processor state, available registers, or parame-
ters. In other words, the assembly macros can be called without

Interrupt Service Routines

3-60 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

consideration of saving state or having processor state trampled during a
call.

Take for example, the following three equivalent
VDK_ISR_POST_SEMAPHORE_() calls:

.VAR/DATA semaphore_id;

/* Pass the value directly */
VDK_ISR_POST_SEMAPHORE_(kSemaphore1);

/* Pass the value in a register */
<REG> = kSemaphore1;
VDK_ISR_POST_SEMAPHORE_(<REG>);
/* <REG> was not trampled */

/* Post the semaphore one last time using a DM */
DM(semaphore_id) = <REG>;
VDK_ISR_POST_SEMAPHORE_(DM(semaphore_id));

Additionally, no condition codes are affected by the assembly macros, no
assumptions are made about having space on any hardware stacks (for
example, PC or status), and all VDK internal data structures are
maintained.

The C/C++ ISR APIs provide equivalent functionality for use in ISRs
written in C/C++.

The assembly macros and APIs callable from C/C++ ISRs raise the low
priority software interrupt if thread domain scheduling is required after all
other interrupts are serviced. For a discussion of the low priority software
interrupt, see “Reschedule ISR” on page 3-62. Refer to Appendix A, “Pro-
cessor-Specific Notes” on page A-1, for additional information about ISR
APIs.

Within the interrupt domain, every effort should be made to enable inter-
rupt nesting. Nesting may be disabled when an ISR begins. However,

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-61

Using VDK

leaving it disabled is analogous to staying in an unscheduled region in the
thread domain; other ISRs are prevented from executing, even if they have
higher priority. Allowing nested interrupts potentially lowers interrupt
latency for high-priority interrupts.

Timer ISR
By default, VDK reserves a timer interrupt. The timer is used to calculate
round-robin times, sleeping thread time to keep sleeping, and periodic
semaphores. One VDK tick is defined as the time between timer inter-
rupts. It is the finest resolution measure of time in the kernel. The timer
interrupt can cause a low priority software interrupt (see “Reschedule ISR”
on page 3-62). It is possible to change the interrupt used for the VDK
timer interrupt from the default, leaving the default interrupt level free for
customer use. (Refer to “Specifying System Parameters” in online Help for
details.) Additionally, it is possible to specify “None” for the VDK timer
interrupt if VDK timing services are not required.

For the default configuration, VDK sets the appropriate timer registers to
produce a repeating interrupt at a set period. The values for these registers
are calculated from the information specified for the Clock Frequency and
Tick Period fields in the System section of the Kernel tab.

If a different interrupt is chosen, VDK will install the VDK timer ISR to
that interrupt level, and unmask that level after start-up. Once changed, it
is the user’s responsibility to configure and generate a repeating interrupt
for that interrupt level. Without a repeating interrupt, the timing services
for VDK will not work.

If the VDK timer ISR is reassigned to another interrupt or “None”
is specified as the interrupt, do not use the SetTickPeriod() and
SetClockFrequency() APIs as they modify the timer registers.

I/O Interface

3-62 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Reschedule ISR
VDK designates the lowest priority interrupt that is not tied to a hardware
device as the reschedule ISR. This ISR handles housekeeping when an
interrupt causes a system state change that can result in a new high prior-
ity thread becoming ready. If a new thread is ready and the system is in a
scheduled region, the software ISR saves off the context of the current
thread and switches to the new thread. If an interrupt has activated a
device driver, the low priority software interrupt calls the dispatch func-
tion for the device driver. For more information, see “Dispatch Function”
on page 3-68.

On systems where the lowest priority non-hardware-tied interrupt is not
the lowest priority interrupt, all lower priority interrupts must run with
interrupts turned off for their entire duration. Failure to do so may result
in undefined behavior.

I/O Interface
The I/O interface provides a mechanism for creating an interface between
the external environment and VDK applications. In VisualDSP++ 5.0,
only device driver objects can be used to construct the I/O interface.

On Blackfin processors, the VDK device driver model has been deprecated
in favour of the system services device driver model. The VDK device
driver model is used still to support I/O for SHARC processors, as well as
multiprocessor messaging for the dual-core Blackfin processors
(ADSP-BF561).

I/O Templates
I/O templates are analogous to thread types. I/O templates are used to
instantiate I/O objects. In VisualDSP++ 5.0, the only types of I/O tem-
plates available (therefore the only classes of I/O objects) are for device

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-63

Using VDK

drivers. In order to create an instance of a device driver, a boot I/O object
must be added to the VDK project using the device driver template. You
can distinguish between different instances of the same device driver. For
more information, see “Init” on page 3-71.

Device Drivers
The role of a device driver is to abstract the details of the hardware imple-
mentation from the software designer. For example, a software engineer
designing a Finite Impulse Response (FIR) filter does not need to under-
stand the intricacies of the converters and is able to concentrate on the
FIR algorithm. The software can then be reused on different platforms,
where the hardware interface differs.

The Communication Manager controls device drivers in VDK. Using the
Communication Manager APIs, you can maintain the abstraction layers
between device drivers, interrupt service routines, and executing threads.
This section details how the Communication Manager is organized.

Execution

Device drivers and interrupt service routines are tied very closely together.
Typically, DSP developers prefer to keep as much time critical code in
assembly as possible. The Communication Manager is designed such that
you can keep interrupt routines in assembly (the time critical pieces), and
interface and resource management for the device in a high-level language
without sacrificing speed. The Communication Manager attempts to keep
the number of context switches to a minimum, to execute management
code at reasonable times, and to preserve the order of priorities of running
threads when a thread uses a device. However, you need to thoroughly
understand the architecture of the Communication Manager to write your
device driver.

There is only one interface to a device driver—through a dispatch func-
tion. The dispatch function is called when the device is initialized, when a

I/O Interface

3-64 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

thread uses a device (open/close, read/write, control), or when an inter-
rupt service routine transfers data to or from the device. The dispatch
function handles the request and returns. Device drivers should not block
(pend) when servicing an initialize request or a request for more data by
an interrupt service routine. However, a device driver can block when ser-
vicing a thread request and the relevant resource is not ready or available.
Device driver initialization and ISR requests are handled within critical
regions enforced by the kernel, so their execution does not have to be
reentrant. A thread-level request must protect global variables within criti-
cal or unscheduled regions.

Parallel Scheduling Domains

This section focuses on a unique role of device drivers in the VDK archi-
tecture. Understanding device drivers requires some understanding of the
time and method by which device driver code is invoked. VDK applica-
tions may be factored into two domains, referred to as the thread domain
and the ISR domain (see Figure 3-18). This distinction is not an arbitrary
or unnecessary abstraction. The hardware architecture of the processor as
well as the software architecture of the kernel reinforces this notion. You

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-65

Using VDK

should consider this distinction when designing an application and appor-
tioning its code.

Threads are scheduled based on their priority and the order in which they
are placed in the ready queue. The scheduling portion of the kernel is
responsible for selecting the thread to run. However, the scheduler does
not have complete control over the processor. It may be preempted by a
parallel and higher priority scheduler—the interrupt and exception hard-
ware. While interrupts or exceptions are being serviced, thread priorities
are temporarily moot. The position of threads in the ready queue becomes
significant again only when the hardware relinquishes control back to the
software-based scheduler.

Each of the domains has strengths and weaknesses that dictate the type of
code suitable to be executed in that environment. The scheduler in the
thread domain is invoked when threads are moved to or from the ready
queue. Threads each have their own stack and may be written in a
high-level language. Threads always execute in “supervisor” or “kernel

Figure 3-18. Parallel Scheduling Domains

Interrupt

All ISRs complete
and DD activatedAll ISRs

complete and
state changed

All ISRs
complete and
no change
of state

Thread
selected

Device Flags

software/kernel
scheduling is
based on

thread priority

Thread Domain ISR Domain

hardware
scheduling is
based on

interrupt priority

Device
Drivers

Scheduler

I/O Interface

3-66 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

mode” (if the processor makes this distinction). Threads implement algo-
rithms and are allotted processor time based on the completion of higher
priority activity.

In contrast, scheduling in the interrupt domain has the highest system
wide priority. Any “ready” ISR takes precedence over any ready thread
(outside critical regions), and this form of scheduling is implemented in
hardware. If ISRs are written in assembly, they must manually restore any
registers that they modify. ISRs respond to asynchronous peripherals at
the lowest level only. The routine should perform only such activities that
are so time critical that data would be lost if the code is not executed as
soon as possible. All other activities should occur under the control of the
kernel’s scheduler based on priority.

Transferring from the thread domain to the interrupt domain is simple
and automatic, but returning to the thread domain can be much more
laborious. If the ready queue is not changed while in the interrupt
domain, then the scheduler need not run when it regains control of the
system. The interrupted thread resumes execution immediately. If the
ready queue has changed, the scheduler must further determine whether
the highest priority thread has changed. If it has changed, the scheduler
must initiate a context switch.

Device drivers fill the gap between the two scheduling domains. They are
neither thread code nor ISR code, and they are not directly scheduled by
either the kernel or the interrupt controller. Device drivers are imple-
mented as C++ objects and run on the stack of the currently running
thread. However, they are not “owned” by any thread, and may be used by
many threads concurrently.

Using Device Drivers

From the point of view of a thread, there are five functional interfaces to
device drivers: OpenDevice(), CloseDevice(), SyncRead(), SyncWrite(),
and DeviceIOCtl(). The names of the APIs are self-explanatory since

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-67

Using VDK

threads mostly treat device drivers as black boxes. Figure 3-19 illustrates
the device drivers’ interface.

A thread uses a device by opening it, reading and/or writing to it, and
closing it. The DeviceIOCtl() function is used for sending device-specific
control information messages. Each API is a standard C/C++ function call
that runs on the stack of the calling thread and returns when the function
completes. However, when the device driver does not have a needed
resource, one of these functions may cause the thread to be removed from
the ready queue and block on a signal, similar to a semaphore or an event,
called a “device flag.”

Interrupt service routines have only one API call relating to device drivers:
VDK_ISR_ACTIVATE_DEVICE_(). This macro is not a function call, and pro-
gram flow does not transfer from the ISR to the device driver and back.
Rather, the macro sets a flag indicating that the device driver’s “activate”
routine should execute after all interrupts have been serviced.

Figure 3-19. Device Driver APIs

VDK_ISR_ACTIVATE_DEVICE_
OpenDevice()
CloseDevice()
SyncRead()
SyncWrite()
DeviceIOCtl()

PendDeviceFlag()
PostDeviceFlag()

(return)

(interrupt)

MyThread::Run()

ISR

Device Driver

Device Flag

I/O Interface

3-68 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The remaining two API functions, PendDeviceFlag() and PostDe-
viceFlag(), are typically called from within the device driver itself. For
example, a call from a thread to SyncRead() might cause the device driver
to call PendDeviceFlag() if there is no data currently available. This
would cause the thread to block until the device flag is posted by another
code fragment within the device driver that is providing the data.

As another example, when an interrupt occurs because an incoming data
buffer is full, the ISR might move a pointer so that the device begins fill-
ing an empty buffer before calling VDK_ISR_ACTIVATE_DEVICE_(). The
device driver’s activate routine may respond by posting a device flag and
moving a thread to the ready queue so that it can be scheduled to process
the new data.

Dispatch Function

The dispatch function is the core of any device driver. This function takes
two parameters and returns a void* (the return value depends on the input
values). A dispatch function declaration for a device driver is as follows:

C Driver Code:

void* MyDevice_DispatchFunction(VDK_DispatchID inCode,

VDK_DispatchUnion inData);

C++ Driver Code:

void* MyDevice::DispatchFunction(VDK::DispatchID inCode,

VDK::DispatchUnion &inData);

The first parameter is an enumeration that specifies why the dispatch
function has been called:

enum VDK_DispatchID
{

VDK_kIO_Init,
VDK_kIO_Activate,
VDK_kIO_Open,

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-69

Using VDK

VDK_kIO_Close,
VDK_kIO_SyncRead,
VDK_kIO_SyncWrite,
VDK_kIO_IOCtl

};

The second parameter is a union whose value depends on the enumeration
value:

union VDK_DispatchUnion
{

struct OpenClose_t
{

void **dataH;
char *flags; /* used for kIO_Open only */

};
struct ReadWrite_t
{

void **dataH;
VDK_Ticks timeout;
unsigned int dataSize;
int *data;

};
struct IOCtl_t
{

void **dataH;
void *command;
char *parameters;

};
struct Init_t
{

void *pInitInfo;
};

};

The values in the union are only valid when the enumeration specifies that
the dispatch function has been called from the thread domain (kIO_Open,
kIO_Close, kIO_SyncRead, kIO_SyncWrite, kIO_IOCtl).

A device driver’s dispatch function can be structured as follows:

I/O Interface

3-70 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

In C:

void* MyDevice_DispatchFunction(VDK_DispatchID inCode,
VDK_DispatchUnion inData)

{
switch(inCode)
{

case VDK_kIO_Init:
/* Init the device */

case VDK_kIO_Activate:
/* Get more data ready for the ISR */

case VDK_kIO_Open:
/* A thread wants to open the device... */
/* Allocate memory and prepare everything else */

case VDK_kIO_Close:
/* A thread is closing a connection to the device...*/
/* Free all the memory, and do anything else */

case VDK_kIO_SyncRead:
/* A thread is reading from the device */
/* Return an unsigned int of the num. of bytes read */

case VDK_kIO_SyncWrite:
/* A thread is writing to the device */
/* Return an unsigned int of the number of bytes */
/* written */

case VDK_kIO_IOCtl:
/* A thread is performing device-specific actions: */

default:
/* Invalid DispatchID code */

return 0;
}

}

In C++:

void* MyDevice::DispatchFunction(VDK::DispatchID inCode,
VDK::DispatchUnion &inData)

{
switch(inCode)
{

case VDK::kIO_Init:

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-71

Using VDK

/* Init the device */
case VDK::kIO_Activate:

/* Get more data ready for the ISR */
case VDK::kIO_Open:

/* A thread wants to open the device... */
/* Allocate memory and prepare everything else */

case VDK::kIO_Close:
/* A thread is closing a connection to the device...*/
/* Free all the memory, and do anything else */

case VDK::kIO_SyncRead:
/* A thread is reading from the device */
/* Return an unsigned int of the num. of bytes read */

case VDK::kIO_SyncWrite:
/* A thread is writing to the device */
/* Return an unsigned int of the number of bytes */
/* written */

case VDK::kIO_IOCtl:
/* A thread is performing device-specific actions: */

default:
/* Invalid DispatchID code */

return 0;
}

}

Each of the different cases in the dispatch function are discussed below.

Init

The device dispatch function is called with the VDK_kIO_Init parameter
for C-style device and VDK::kIO_Init for C++-style drivers at system boot
time. All device-specific data structures and system resources should be set
up at this time. The device driver init function is called within a critical
region and so should not call any APIs that dispatch an error or can block.
As all device driver init functions are executed before any threads have
been run, they can be used to run any required initialization code. This is
applicable even if the device driver type is a stub whose only purpose is to
contain the initialization code.

I/O Interface

3-72 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

A union is passed to the device dispatch function whose value is defined
with the Init_t of the VDK_DispatchUnion. The Init_t is defined as
follows.

struct Init_t

{

void *pInitInfo;

}

Init_t.pInitInfo: A pointer (type void*) to the value defined in the Ini-
tializer field of the Kernel tab for boot I/O objects (see “Device Driver
Parameterization” on page 3-76).

Open and Close

When a thread opens or closes a device with OpenDevice() or
CloseDevice(), the device dispatch function is called with VDK_kIO_Open
or VDK_kIO_Close. The dispatch function is called from the thread
domain, so any stack-based variables are local to that thread. Access to
shared data (data that may be accessed by threads and/or interrupts and/or
device driver activate functions) should be appropriately protected by the
use of unscheduled regions, critical regions, or other means.

When a thread calls the dispatch function attempting to open or close a
device, the API passes a union to the device dispatch function whose value
is defined with the OpenClose_t of the VDK_DispatchUnion. The
OpenClose_t is defined as follows.

struct OpenClose_t
{

void **dataH;
char *flags; /* used for kIO_Open only */

};

OpenClose_t.dataH: A pointer to a thread-specific location that a device
driver can use to hold any thread-specific resources. For example, a thread
can malloc space for a structure that describes the state of a thread associ-

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-73

Using VDK

ated with a device. The pointer to the structure can be stored in *dataH,
which is then accessible to every other dispatch call involving this thread.
A device driver can free the space when the thread calls CloseDevice().

OpenClose_t.flags: The second parameter passed to an OpenDevice()
call is supplied to the dispatch function as the value of
OpenClose_t.flags. This is used to pass any device-specific flags relevant
to the opening of a device. Note that this part of the union is not used on
a call to CloseDevice().

A maximum of eight devices can be opened per thread at any one
time.

Read and Write

A thread that needs to read or write to a device it has opened calls
SyncRead() or SyncWrite(). The dispatch function is called in the thread
domain and on the thread’s stack. These functions call the device dispatch
function with the parameters passed to the API in the VDK_DispatchUnion,
and the flags VDK_kIO_SyncRead or VDK_kIO_SyncWrite. The ReadWrite_t
is defined as follows:

struct ReadWrite_t
{

void **dataH;
VDK::Ticks timeout;
unsigned int dataSize;
int *data;

};

ReadWrite_t.dataH: A thread-specific location, which is passed to the dis-
patch function on the opening of a device by an OpenDevice() call. This
variable can be used to store a pointer to a thread-specific data structure
detailing what state the thread is in while dealing with the device.

ReadWrite_t.timeout: The amount of time in Ticks that a thread is will-
ing to wait for the completion of a SyncRead() or SyncWrite() call. If this

I/O Interface

3-74 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

timeout behavior is required, it must be implemented by using the value
of ReadWrite_t.timeout as an argument to an appropriate PendDe-
viceFlag() call in the dispatch function.

ReadWrite_t.dataSize: The amount of data that the thread reads from or
writes to the device.

ReadWrite_t.data: A pointer to the location that the thread writes the
data to (on a read), or reads from (on a write).

Like calls to the device dispatch function for opening and closing, the calls
to read and write are not protected with a critical or unscheduled region.
If a device driver accesses global data structures during a read or write, the
access should be protected with critical or unscheduled regions. See the
discussion in “Device Drivers” on page 3-63 for more information about
regions and pending.

IOCtl

VDK supplies an interface for threads to control a device’s parameters
with the DeviceIOCtl() API. When a thread calls DeviceIOCtl(), the
function sets up some parameters and calls the specified device’s dispatch
function with the value VDK_kIO_IOCtl and the VDK_DispatchUnion set up
as a IOCtl_t.

The IOCtl_t is defined as follows.

struct IOCtl_t

{

void **dataH;

void *command;

char *parameters;

};

IOCtl_t.dataH: A thread-specific location, which is passed to the dispatch
function on the opening of a device by an OpenDevice() call. This variable

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-75

Using VDK

can be used to store a pointer to a thread-specific data structure detailing
what state the thread is in while dealing with the device.

IOCtl_t.command: A device-specific pointer (second parameter from the
DeviceIOCtl() function).

IOCtl_t.parameters: A device-specific pointer (third parameter from the
DeviceIOCtl() function).

Like read/write and open/close, a device dispatch function call for IOCtl is
not protected by a critical or unscheduled region. If a device accesses
global data structures, the device driver should protect them with a critical
or an unscheduled region.

Activate

Often a device driver needs to respond to state changes caused by ISRs.
The device dispatch function is called with a value VDK_kIO_Activate at
some point after an ISR has called the macro
VDK_ISR_ACTIVATE_DEVICE_().

When the ISR calls VDK_ISR_ACTIVATE_DEVICE_(), a flag is set indicating
that a device has been activated, and the low priority software interrupt is
triggered to run (see “Reschedule ISR” on page 3-62). When the scheduler
is entered through the low priority software interrupt, the device’s dis-
patch function is called with the VDK_kIO_Activate value.

The activate part of a device dispatch function should handle posting sig-
nals, so that threads waiting on certain device states can continue running.
For example, assume that a D/A ISR runs out of data in its buffer. The
ISR calls VDK_ISR_ACTIVATE_DEVICE_() with the IOID of the device driver.
When the device dispatch function is called with the VDK_kIO_Activate,
the device posts a device flag or semaphore that reschedules any threads
that are pending.

I/O Interface

3-76 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The PostDeviceFlag(), PostSemaphore(), PushCriticalRegion(),
and PopCriticalRegion() APIs are the only VDK APIs that are
safe to call from the activate function.

Device Driver Parameterization

Where more than one instance of a particular device driver is to be used,
an ‘initializer’ value can be passed to each boot I/O object to provide a
unique instance number. The Initializer field in the Kernel tab is used to
do this for boot I/O objects (see the online Help for details). The initial-
izer is passed into the init dispatch function via Init_t.pInitInfo. This
is a pointer (type void*) to the value defined in the Initializer field.

The value can be extracted with:
int initializer = *((int *)inUnion.Init_t.pInitInfo);

The value should be then stored in private data belonging to the device;
for example, in a member variable.

Device Flags

Device flags are synchronization primitives, similar to semaphores, events,
and messages, but device flags have a special association with device driv-
ers. Like semaphores and events, a thread can pend on a device flag. This
means that the thread waits until the flag is posted by a device driver. The
post typically occurs from the activate function of a device driver’s dis-
patch function.

Pending on a Device Flag

When a thread pends on a device flag (unlike with semaphores, events,
and messages), the thread always blocks. The thread waits until the flag is
posted by another call to the device’s dispatch function. When the flag is
posted, all threads that are pending on the device flag are moved to the
ready queue. Since posting a device flag with the PostDeviceFlag() API
moves an indeterminate number of threads to the ready queue, the call is

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-77

Using VDK

not deterministic. For more information about posting device flags, see
“Posting a Device Flag” on page 3-78.

The rules for pending on device flags are strict compared to other types of
signals. The “stack” of critical regions must be exactly one level deep when
a thread pends on a device flag. In other words, with interrupts enabled,
call PushCriticalRegion() exactly once prior to calling PendDeviceFlag()
from a thread. The reason for this condition becomes clear if you consider
the reason for pending. A thread pends on a device flag when it is waiting
for a condition to be set from an ISR. However, you must enter a critical
region before examining any condition that may be modified from an ISR
to ensure that the value you read is valid. Furthermore, PendDeviceFlag()
pops the critical region stack once, effectively balancing the earlier call to
PushCriticalRegion().

For example, a typical device driver uses device flags in the following
manner.

VDK_PushCriticalRegion();
while(should_loop != 0)
{

/* ... */
/* access global data structures */
/* and figure out if we should keep looping */
/* ... */
/* Wait for some device state */
VDK_PendDeviceFlag();
/* Must reenter the critical region */
VDK_PushCriticalRegion();

}
VDK_PopCriticalRegion();

I/O Interface

3-78 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Figure 3-20 illustrates the process of pending on a device flag.

Posting a Device Flag

Like semaphores and messages, a device flag can be posted. A device dis-
patch function posts a device flag with a call to PostDeviceFlag(). Unlike
semaphores and messages, the call moves all threads pending on the device
flag to the ready queue and continues execution. Once PostDeviceFlag()
returns, subsequent calls to PendDeviceFlag() cause the thread to block
(as before).

Note that the PostDeviceFlag() API does not dispatch any errors. The
reason being is this API function is called typically from the dispatch func-
tion when the dispatch function is called with VDK_kIO_Activate. This
happens because the device dispatch function operates on the kernel’s
stack when it is called with VDK_kIO_Activate rather than on the stack of a
thread.

Figure 3-20. Pending on a Device Flag

Device Flag is
unavailable

Order threads by
priority, then FIFO

...

...

...

Thread 1

Thread 1 continues execution

Call Thread 1's
ErrorFunction()

Yes

No

Is
timeout

reached?
Yes

No

DeviceDriver's
MyDispatch()

function

Yes

No

Ready Queue

PendDeviceFlag()

Device Driver posts
Device Flag

All pending threads

Is
kNoTimeoutError

set?

Is
Thread 1

of the high-
est priority?

2). Switch out Thread 1

1). Invoke Scheduler

Open()
Close()

SyncRead()
SyncWrite()

IOCtl()

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-79

Using VDK

Figure 3-21 illustrates the process of posting a device flag.

General Notes

Keep the following tips in mind while writing device drivers. Although
many of these topics also apply to threads, they deserve special mention
with respect to device drivers.

Variables

Device drivers and ISRs are closely linked. Since ISRs and the dispatch
function access the same variables, declare the variables in the C/C++
device driver routine and access them as extern from within the ISR.
When declaring these variables in the C/C++ source file, you must declare
them as volatile to ensure that the compiler optimizer is aware that their
values may be changed externally to the C/C++ code at any time. Addi-
tionally, care must be taken in the ISR to refer to variables defined in
C/C++ code correctly, by their decorated/mangled names.

Critical/Unscheduled Regions

Since many of the data structures and variables associated with a device
driver are shared between multiple threads and ISRs, access to them must

Figure 3-21. Posting a Device Flag

Order threads by
priority, then FIFO

...

...

...

Ready Queue

All pending threads

Thread 1 continues execution

Device Flag
is unavailable

Device Flag
is available

Thread 1

Open()
Close()
SyncRead()
SyncWrite()
IOCtl()

Device Driver's
MyDispatch()

function

PostDeviceFlag()

Memory Pools

3-80 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

be protected within critical regions and unscheduled regions. Critical
regions keep ISRs from modifying data structures unexpectedly, and
unscheduled regions prevent other threads from modifying data
structures.

When pending on device flags, care must be taken to remain in the correct
regions. Device flags must be pended on from within a non-nested critical
region, as discussed in “Pending on a Device Flag” on page 3-76.

Memory Pools
Common problems experienced with memory allocation using malloc are
fragmentation of the heap as well as non-deterministic search times for
finding a free area of the heap with the requested size. The memory pool
manager uses the defined pools to provide an efficient, deterministic
memory allocation scheme as an alternative to malloc. The use of memory
pools for memory allocation can be advantageous when an application
requires significant allocation and deallocation of objects of the same size.

A memory pool is an area of memory subdivided into equally-sized mem-
ory blocks. Each memory pool contains memory blocks of a single size,
but multiple pools can be defined, each with a different block size. Fur-
thermore, on architectures that support the definition of multiple heaps,
the heap that is used by a pool can be specified. The maximum number of
active memory pools in the system is set up when the project is built.

Memory Pool Functionality
Memory pools can be created either at boot time, or dynamically at
runtime using the CreatePool() or CreatePoolEx() APIs. When creating
a memory pool, the block size and number of blocks in the pool are speci-
fied. The memory pool manager allocates the memory required for the
pool and splits it into blocks at creation time, if required. VDK allows
blocks to be created on demand at run time (during a call

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-81

Using VDK

to MallocBlock())rather than during the creation of a pool. On demand,
creation of blocks reduces the overhead at the time the pool is created but
increases the run-time overhead when obtaining a new block from the
pool. Additionally, allocation and deallocation (by a call to FreeBlock()
or LocateAndFreeBlock()) of a block from a pool is deterministic if the
blocks are created when the pool is created.

In order to conform to memory alignment constraints, the block size spec-
ified for a pool is rounded up internally, so that its size is a multiple of the
size of a pointer on the architecture in question—all block addresses
returned by MallocBlock() are a multiple of sizeof(void *).

The GetNumAllocatedBlocks() and GetNumFreeBlocks() APIs can be used
to determine the number of used or available blocks respectively in a par-
ticular pool.

Multiple Heaps
By default, all VDK elements are allocated in the system heap(s).

Depending on the processor used, VDK creates one or two system
heaps. See Appendix A, “Processor-Specific Notes” on page A-1,
for information on specific processors.

In previous versions of VDK, multiple heaps could be used in the defini-
tion of memory pools on processors where multiple heap support is
provided. This mechanism has been extended and VDK can now use mul-
tiple heaps defined at link time (dynamically created heaps are not
allowed) to specify which area of memory is used to allocate the various
VDK elements (semaphores, messages, thread stacks, and so on). The
developer is responsible for setting up the heaps. For more information
regarding how to specify multiple heaps, refer to the C/C++ Compiler and
Library Manual for your target processor(s).

Thread Local Storage

3-82 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

To specify a VDK heap, create a new heap in VisualDSP++ (which has a
VDK HeapID). An ID is then associated with this name. This ID must be
the same one used in setting up the heap under the C/C++ run-time
(which is an integer or a string depending on the processor). For more
information on how to set up VDK heaps, see the online documentation.

Thread Local Storage
Thread local storage allows the association of data with threads on a per
thread basis. A typical usage of this functionality involves allocating the
data required by individual threads for a thread-safe library function (for
example, to store the thread-specific value of errno for each thread for the
C runtime libraries).

There are eight thread local storage slots available for this purpose. Before
a value is stored in the relevant slot in the thread’s slot table, an entry
must be allocated in the global slot table by using either
AllocateThreadSlot() or AllocateThreadSlotEx(). If a slot is available
in the global table, then the corresponding slot is also reserved in each
thread slot table. These APIs return FALSE if there are no free slots avail-
able. An allocated entry in the global slot table can subsequently be freed
by a call to FreeThreadSlot(). This mechanism for allocating slots pro-
vides one time initialization of slots for thread-specific data for library
functions. Slots are allocated in every thread’s slot table on the first calling
of the library function by any thread.

Once a slot has been allocated in the global slot table, the corresponding
value in the slot table of a particular thread can be set by a call to
SetThreadSlotValue() from the thread in question. The value is of type
void * and can be used to store an integer value or a pointer to allocated
memory. The use of AllocateThreadSlotEx() to allocate a slot allows the
specification of a cleanup function to be called on thread destruction to
deal with any dynamically allocated memory that has been associated with

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-83

Using VDK

a thread slot. Finally, GetThreadSlotValue() can be used to obtain the
value stored in the slot table of a particular thread.

Custom VDK History Logging
For fully instrumented libraries, VDK maintains a record of significant
system and user events to aid the debug and development process. VDK
logs details for each event—the event time lines can be viewed graphically
via the VDK State History window.

The history events are logged at runtime into a circular buffer that is que-
ried by the VDK State History window when the application hits a
breakpoint or comes to a halt. The history circular buffer is maintained
and updated internally by VDK and should not be accessed directly. VDK
provides the APIs GetHistoryEvent() and LogHistoryEvent() to access
the buffer. Any attempt to access the buffer directly can produce unpre-
dictable behavior and may not function with future VisualDSP++ releases
or updates.

Previous versions of VDK provide a mechanism for users to add and addi-
tional step to the history logging process with the UserHistoryLog() call.
In addition to this, VDK now allows users to replace the VDK history log-
ging with their own code to control what is stored (if anything) in the
VDK history buffer.

Replacing History Logging Mechanism
The VDK history logging mechanism stores a history event in a circular
buffer with the VDK_ISRAddHistoryEvent() API. Users can modify this
behavior and replace the call to VDK_ISRAddHistoryEvent() with a call to
their own customized version by calling the ReplaceHistorySubroutine()
API. See “ReplaceHistorySubroutine()” on page 5-209 for more
information.

Custom VDK History Logging

3-84 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The new functionality provides more flexibility when a history event
occurs. VDK can log history information at thread, kernel and interrupt
levels, so the custom history logging subroutine is called always with inter-
rupts disabled and must comply with certain rules:

• It must be written in assembly and cannot assume the presence of a
C run-time environment

• It must not call any functions that assume the presence of a C
run-time environment

• It must not call any VDK APIs

• It must save and restore all the registers it uses, either implicitly or
explicitly

• Calls to the custom history logging subroutine should not be made
from any other part of a VDK application

• It should be used only to trace/monitor system activity, either for
debug or system analysis, and should not be used to affect the oper-
ation of the application

The custom history code receives the following arguments when called.

• The time, in Ticks, when the event occurred

• A HistoryEnum, an enumerated value that describes the event

• An integer value used to pass further details of the event

• A ThreadID

The arguments passed to the history logging subroutine are the compo-
nents of the VDK HistoryEvent data type. For more info, see
“HistoryEvent” on page 4-25.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-85

Using VDK

Before calling the customized history code, the arguments are placed in
the following registers (Table 3-1).

User’s can call VDK_ISRAddHistoryEvent() from the customized history
logging code if they wish to store information in the VDK history buffer.
VDK_ISRAddHistoryEvent() should be called only from the customized
history logging subroutine and not from any other part of an application.
VDK_ISRAddHistoryEvent() expects its arguments in the same registers as
registers listed in Table 3-1.

The VDK History window may not be able to display the flow of
threads that have been running in the application if the events
kThreadSwitched or kThreadStatusChange are removed or misused.

UserHistoryLog()
Users that do not require changes to the events logged in the VDK history
buffer can still add an extra function to the VDK history logging mecha-
nism to suit their needs. The intention of this function is to enable a
custom history logging function that may be required to do something
other than simply add an entry to the VDK history buffer.

Table 3-1. Argument Placements for History Logging Subroutines

Argument Type Blackfin
Registers

TigerSHARC
Registers

SHARC Registers

Time VDK::Ticks R3 J7 R0

Event type VDK::HistoryEnum R0 J4 R4

Value int R1 J5 R8

Thread ID VDK::ThreadID R2 J6 R12

VDK File Attributes

3-86 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

To use this feature, a _UserHistoryLog() assembly function must be cre-
ated and added to a VDK project. There are some points to be aware of
when writing the function:

• VDK calls the function whenever a history log is made, which can
happen at thread, kernel, and interrupt levels. As such, a proper
stack may not be in place when the function is being called; there-
fore, the function must only be written in assembly.

• As the function can be called from interrupt level, it must save and
restore any registers that are either explicitly or implicitly modified.

• _UserHistoryLog() is called in addition to VDK history logging.
The definition of _UserHistoryLog() does not replace the standard
history logging functions.

The following C/C++ definition is used by VDK to call
_UserHistoryLog().

extern “C” void UserHistoryLog (const VDK::HistoryEnum,

const int,

const VDK::ThreadID);

Each function parameter relates to one of the HistoryEvent data type
members, a description of which can be found in “HistoryEvent” on
page 4-25.

VDK File Attributes
VDK-based applications generally are large and can require external mem-
ory. To help partitioning an application and to mark the code intended
for internal memory, VDK is built with several file attributes in addition
to file attributes used in the runtime libraries.

The entire VDK and TMK libraries are built with the attributes
prefersMem=internal and prefersMemNum=30; with the additional
ADI_OS=VDK attribute in case of the VDK libraries or ADI_OS=TMK attribute

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-87

Using VDK

in case of the TMK library. Files in the VDK libraries can have other attri-
butes to aid the partitioning of a VDK application into different memory
areas. A VDK file can have one or more of these attributes, depending on
the functions defined in the file. A list of the VDK-specific file attributes
is as follows.

DeviceDrivers

DeviceFlags

ErrorHandling

Events

HeapMarshaller

HistoryAndStatus

ISR

MemoryPools

Messages

MP_Messages

Mutex

OS_Component=DeviceDrivers

OS_Component=DeviceFlags

OS_Component=Events

OS_Component=MemoryPools

OS_Component=Messages

OS_Component=MP_Messages

OS_Component=Mutex

OS_Component=Regions

OS_Component=Semaphores

OS_Component=Threads

OS_Internals

PoolMarshaller

Regions

RoundRobin

Semaphores

Startup

System

Threads

VDK File Attributes

3-88 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Many VDK-specific file attributes indicate the VDK components to
which the APIs in the source file are related. Two attributes are added to
all of these files: the component itself (for example, Semaphores) and the
attribute OS_Component with the value of the particular component (for
example, OS_Component=Semaphores). The component attributes are:

OS_Component=DeviceDrivers

OS_Component=DeviceFlags

OS_Component=Events

OS_Component=MemoryPools

OS_Component=Messages

OS_Component=MP_Messages

OS_Component=Mutex

OS_Component=Regions

OS_Component=Semaphores

OS_Component=Threads

In addition, some VDK files have an extra attribute to specify a particular
type of component, different from the attributes listed above.

• RoundRobin: the attribute is set in conjunction with the Threads
attribute. The marked code will be linked in only if there are
round-robin priorities in the application.

• HeapMarshaller: the attribute is set in conjunction with the
MP_Messages attribute. The marked code will be linked in only if
there are multi-processor messages in the application, and the mes-
sages are heap-marshalled.

• PoolMarshaller: the attribute is set in conjunction with the
MP_Messages attribute. The marked code will be linked in only if
there are multi-processor messages in the application, and the mes-
sages are pool-marshalled.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 3-89

Using VDK

Other attributes found in VDK are not related to the VDK component to
which the file refers. These attributes are:

• ISR: functions and macros that are likely to be called from ISR
level, therefore, should be placed in internal memory if possible

• OS_Internals: functions used internally by VDK, should be placed
in internal memory if possible

• System: functions that can read or modify application-wide proper-
ties, such as timer properties or interrupt mask changes

• Startup: functions used by VDK before the start of the Run() func-
tion of the highest priority boot thread

• ErrorHandling: functions dealing with VDK error management,
such as the DispatchThreadError() API

• HistoryAndStatus: functions used by the VDK history logging
mechanism or APIs used to obtain information displayed in the
VDK Status window

VDK File Attributes

3-90 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-1

4 VDK DATA TYPES

VDK comes with a predefined set of data types. This chapter describes the
current release of the kernel. Future releases may include further types.

This chapter contains:

• “Data Type Summary” on page 4-1

• “Data Type Descriptions” on page 4-3

Data Type Summary
VDK data types are summarized in Table 4-1. A description of each type
begins on page 4-3.

Table 4-1. VDK Data Types

Data Type Reference Page

Bitfield on page 4-3

DeviceDescriptor on page 4-4

DeviceFlagID on page 4-5

DeviceInfoBlock on page 4-6

DispatchID on page 4-7

DispatchUnion on page 4-8

DSP_Family on page 4-10

DSP_Product on page 4-11

EventBitID on page 4-17

Data Type Summary

4-2 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

EventID on page 4-18

EventData on page 4-19

HeapID on page 4-20

HistoryEnum on page 4-21

HistoryEvent on page 4-25

IMASKStruct on page 4-28

IOID on page 4-29

IOTemplateID on page 4-30

MarshallingCode on page 4-31

MarshallingEntry on page 4-33

MessageDetails on page 4-34

MessageID on page 4-35

MsgChannel on page 4-36

MsgWireFormat on page 4-38

MutexID on page 4-40

PanicCode on page 4-41

PayloadDetails on page 4-44

PFMarshaller on page 4-45

PoolID on page 4-47

Priority on page 4-48

RoutingDirection on page 4-49

SemaphoreID on page 4-50

SystemError on page 4-51

TCBBitfield on page 4-57

ThreadCreationBlock on page 4-58

ThreadID on page 4-61

Table 4-1. VDK Data Types (Cont’d)

Data Type Reference Page

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-3

VDK Data Types

Data Type Descriptions
The following sections provide descriptions of VDK data types.

Bitfield
The Bitfield type is used to store a bit pattern. The size of a Bitfield
item is the size of a data word, which is 32 bits on SHARC, TigerSHARC,
and Blackfin processors.

In C:
typedef unsigned int VDK_Bitfield;

In C++:
typedef unsigned int VDK::Bitfield;

ThreadStatus on page 4-62

ThreadType on page 4-63

Ticks on page 4-64

VersionStruct on page 4-65

Table 4-1. VDK Data Types (Cont’d)

Data Type Reference Page

Data Type Descriptions

4-4 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

DeviceDescriptor
The DeviceDescriptor type is used to store the unique identifier of an
opened device. The value is obtained dynamically as the return value from
OpenDevice().

In C:
typedef unsigned int VDK_DeviceDescriptor;

In C++:
typedef unsigned int VDK::DeviceDescriptor;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-5

VDK Data Types

DeviceFlagID
The DeviceFlagID type is used to store the unique identifier of a device
flag.

enum DeviceFlagID

{

/* Defined by IDDE in the VDK.h file. */

};

The enumeration in VDK.h will only contain the IDs of the device flags
enabled at boot time. Any dynamically-created device flags will have an ID
of the same type to allow the compiler to do type checking and prevent
errors.

In C:
typedef enum DeviceFlagID VDK_DeviceFlagID;

In C++:
typedef enum DeviceFlagID VDK::DeviceFlagID;

Data Type Descriptions

4-6 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

DeviceInfoBlock
The DeviceInfoBlock structure holds information on the device driver
that is being used by a routing thread and is passed as an argument to mar-
shalling functions. All fields except the DeviceDescriptor are private to
VDK and should not be used by user code.

In C:

typedef struct

{

VDK_DeviceDescriptor dd;

VDK_PFDispatchFunction pfDispatchFunction;

struct VDK_IOAbstractBase *pDevObj;

struct VDK_DeviceControlBlock *pDcb;

} VDK_DeviceInfoBlock;

In C++:

typedef struct

{

VDK::DeviceDescriptor dd;

VDK::PFDispatchFunction pfDispatchFunction;

struct VDK::IOAbstractBase *pDevObj;

struct VDK::DeviceControlBlock *pDcb;

} VDK::DeviceInfoBlock;

where dd is the descriptor for the device. Marshalling functions may use it
as an argument for their SyncRead() and SyncWrite() calls.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-7

VDK Data Types

DispatchID
The DispatchID type enumerates a device driver’s dispatch commands.

In C:

enum VDK_DispatchID
{

VDK_kIO_Init,
VDK_kIO_Activate,
VDK_kIO_Open,
VDK_kIO_Close,
VDK_kIO_SyncRead,
VDK_kIO_SyncWrite,
VDK_kIO_IOCtl

};

In C++:

enum VDK::DispatchID
{

VDK::kIO_Init,
VDK::kIO_Activate,
VDK::kIO_Open,
VDK::kIO_Close,
VDK::kIO_SyncRead,
VDK::kIO_SyncWrite,
VDK::kIO_IOCtl

};

Data Type Descriptions

4-8 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

DispatchUnion
A variable of the DispatchUnion type is passed as a parameter to a device
driver dispatch function. Calls to OpenDevice(), CloseDevice(), Syn-
cRead(), SyncWrite(), and DeviceIOCtl() set up the relevant members of
this union before calling the device driver’s dispatch function.

In C:

union VDK_DispatchUnion
{

struct
{

void **dataH;
char *flags; /* used for kIO_Open only */

} OpenClose_t;
struct
{

void **dataH;
VDK_Ticks timeout;
unsigned int dataSize;
char *data;

} ReadWrite_t;
struct
{

void **dataH;
void *command;
char *parameters;

} IOCtl_t;
struct
{

void *pInitInfo;
} Init_t;

};

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-9

VDK Data Types

In C++:

union VDK::DispatchUnion
{

struct
{

void **dataH;
char *flags; /* used for kIO_Open only */

} OpenClose_t;
struct
{

void **dataH;
VDK::Ticks timeout;
unsigned int dataSize;
char *data;

} ReadWrite_t;
struct
{

void **dataH;
void *command;
char *parameters;

} IOCtl_t;
struct
{

void *pInitInfo;

} Init_t;

};

Data Type Descriptions

4-10 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

DSP_Family
The DSP_Family type enumerates the processor families supported by
VDK. See also VersionStruct.

In C:

enum VDK_DSP_Family

{

VDK_kUnknownFamily,

VDK_kSHARC,

VDK_kTSXXX,

VDK_kBLACKFIN

};

In C++:

enum VDK::DSP_Family

{

VDK::kUnknownFamily,

VDK::kSHARC,

VDK::kTSXXX,

VDK::kBLACKFIN

};

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-11

VDK Data Types

DSP_Product
The DSP_Product type enumerates the devices supported by VDK. See also
VersionStruct.

In C:

Type name: VDK_DSP_Product

Possible values: VDK_kUnknownProduct
VDK_k21060

VDK_k21061

VDK_k21062

VDK_k21065

VDK_k21160

VDK_k21161

VDK_k21261

VDK_k21262

VDK_k21266

VDK_k21267

VDK_k21362

VDK_k21363

VDK_k21364

VDK_k21365

VDK_k21366

VDK_k21367

VDK_k21368

VDK_k21369

VDK_k21371

VDK_k21375

VDK_k21462

VDK_k21465

VDK_k21467

VDK_k21469

VDK_k21472

Data Type Descriptions

4-12 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK_k21475

VDK_k21478

VDK_k21479

VDK_k21481

VDK_k21482

VDK_k21483

VDK_k21485

VDK_k21486

VDK_k21487

VDK_k21488

VDK_k21489

VDK_kBF504

VDK_kBF504F

VDK_kBF506F

VDK_kBF512

VDK_kBF514

VDK_kBF516

VDK_kBF518

VDK_kBF522

VDK_kBF523

VDK_kBF524

VDK_kBF525

VDK_kBF526

VDK_kBF527

VDK_kBF531

VDK_kBF532

VDK_kBF533

VDK_kBF534

VDK_kBF535

VDK_kBF536

VDK_kBF537

VDK_kBF538

VDK_kBF539

VDK_kBF541

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-13

VDK Data Types

VDK_kBF542

VDK_kBF544

VDK_kBF548

VDK_kBF549

VDK_kBF542M

VDK_kBF544M

VDK_kBF547M

VDK_kBF548M

VDK_kBF549M

VDK_kBF561

VDK_kBF592A

VDK_kAD6531

VDK_kAD6532

VDK_kAD6901

VDK_kAD6902

VDK_kAD6903

VDK_kTS101

VDK_kTS201

VDK_kTS202

VDK_kTS203

In C++:

Type name: VDK::DSP_Product

Possible values: VDK::kUnknownProduct
VDK::k21060

VDK::k21061

VDK::k21062

VDK::k21065

VDK::k21160

VDK::k21161

VDK::k21261

VDK::k21262

VDK::k21266

VDK::k21267

Data Type Descriptions

4-14 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK::k21362

VDK::k21363

VDK::k21364

VDK::k21365

VDK::k21366

VDK::k21367

VDK::k21368

VDK::k21369

VDK::k21371

VDK::k21375

VDK::k21462

VDK::k21465

VDK::k21467

VDK::k21469

VDK::k21472

VDK::k21475

VDK::k21478

VDK::k21479

VDK::k21481

VDK::k21482

VDK::k21483

VDK::k21485

VDK::k21486

VDK::k21487

VDK::k21488

VDK::k21489

VDK::kBF504

VDK::kBF504F

VDK::kBF506F

VDK::kBF512

VDK::kBF514

VDK::kBF516

VDK::kBF518

VDK::kBF522

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-15

VDK Data Types

VDK::kBF523

VDK::kBF524

VDK::kBF525

VDK::kBF526

VDK::kBF527

VDK::kBF531

VDK::kBF532

VDK::kBF533

VDK::kBF534

VDK::kBF535

VDK::kBF536

VDK::kBF537

VDK::kBF538

VDK::kBF539

VDK::kBF541

VDK::kBF542

VDK::kBF544

VDK::kBF548

VDK::kBF549

VDK::kBF542M

VDK::kBF544M

VDK::kBF547M

VDK::kBF548M

VDK::kBF549M

VDK::kBF561

VDK::kBF592A

VDK::kAD6531

VDK::kAD6532

VDK::kAD6901

VDK::kAD6902

VDK::kAD6903

VDK::kTS101

VDK::kTS201

Data Type Descriptions

4-16 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK::kTS202

VDK::kTS203

Some of the listed processors are not supported in all updates of
VisualDSP++ 5.0. See the VisualDSP++ update release notes for
more information about new processors supported in each update.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-17

VDK Data Types

EventBitID
The EventBitID type is used to store the unique identifier of an event bit.
The total number of event bits in a system is the size of a data word minus
one, which is 31 bits on SHARC, TigerSHARC, and Blackfin processors.

enum EventBitID

{

/* Defined by IDDE in the VDK.h file. */

};

In C:
typedef enum EventBitID VDK_EventBitID;

In C++:
typedef enum EventBitID VDK::EventBitID;

Data Type Descriptions

4-18 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

EventID
The EventID type is used to store the unique identifier of an event. The
total number of events in a system is the size of a data word minus one,
which is 31 bits on SHARC, TigerSHARC, and Blackfin processors.

enum EventID

{

/* Defined by IDDE in the VDK.h file. */

};

In C:
typedef enum EventID VDK_EventID;

In C++:
typedef enum EventID VDK::EventID;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-19

VDK Data Types

EventData
The EventData type is used to store the data associated with an event. See
also “Behavior of Events” on page 3-48.

In C:

typedef struct

{

bool matchAll;

unsigned int values;

unsigned int mask;

} VDK_EventData;

In C++:

typedef struct

{

bool matchAll;

unsigned int values;

unsigned int mask;

} VDK::EventData;

Data Type Descriptions

4-20 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

HeapID
The HeapID type is used to store the unique identifier of a VDK Heap.
This data type is only available on processors for which multiple heap sup-
port is provided.

enum HeapID

{

/* Defined by IDDE in the VDK.h file */

};

In C:

typedef enum HeapID VDK_HeapID;

In C++:

typedef enum HeapID VDK::HeapID;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-21

VDK Data Types

HistoryEnum
The HistoryEnum type describes the events that can be logged with a call
to the LogHistoryEvent() API or VDK_ISR_LOG_HISTORY_() macro. A vari-
able of type HistoryEnum can have the following values.

In C:

Type name: VDK_HistoryEnum

Possible values: VDK_kThreadCreated
VDK_kThreadDestroyed

VDK_kSemaphorePosted

VDK_kSemaphorePended

VDK_kEventBitSet

VDK_kEventBitCleared

VDK_kEventPended

VDK_kDeviceFlagPended

VDK_kDeviceFlagPosted

VDK_kDeviceActivated

VDK_kThreadTimedOut

VDK_kThreadStatusChange

VDK_kThreadSwitched

VDK_kMaxStackUsed

VDK_kPoolCreated

VDK_kPoolDestroyed

VDK_kDeviceFlagCreated

VDK_kDeviceFlagDestroyed

VDK_kMessagePosted

VDK_kMessagePended

VDK_kSemaphoreCreated

VDK_kSemaphoreDestroyed

VDK_kMessageCreated

VDK_kMessageDestroyed

VDK_kMessageTakenFromQueue

Data Type Descriptions

4-22 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK_kThreadResourcesFreed

VDK_kThreadPriorityChanged

VDK_kMutexCreated

VDK_kMutexDestroyed

VDK_kMutexAcquired

VDK_kMutexReleased

VDK_kUserEvent = 1

In C++:

Type name: VDK::HistoryEnum

Possible values: VDK::kThreadCreated

VDK::kThreadDestroyed

VDK::kSemaphorePosted

VDK::kSemaphorePended

VDK::kEventBitSet

VDK::kEventBitCleared

VDK::kEventPended

VDK::kDeviceFlagPended

VDK::kDeviceFlagPosted

VDK::kDeviceActivated

VDK::kThreadTimedOut

VDK::kThreadStatusChange

VDK::kThreadSwitched

VDK::kMaxStackUsed

VDK::kPoolCreated

VDK::kPoolDestroyed

VDK::kDeviceFlagCreated

VDK::kDeviceFlagDestroyed

VDK::kMessagePosted

VDK::kMessagePended

VDK::kSemaphoreCreated

VDK::kSemaphoreDestroyed

VDK::kMessageCreated

VDK::kMessageDestroyed

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-23

VDK Data Types

VDK::kMessageTakenFromQueue

VDK::kThreadResourcesFreed

VDK::kThreadPriorityChanged

VDK::kMutexCreated

VDK::kMutexDestroyed

VDK::kMutexAcquired

VDK::kMutexReleased

VDK::kUserEvent = 1

In Assembly:

Type name: no HistoryEnum type defined
Possible values: _VDK_kThreadCreated

_VDK_kThreadDestroyed

_VDK_kSemaphorePosted

_VDK_kSemaphorePended

_VDK_kEventBitSet

_VDK_kEventBitCleared

_VDK_kEventPended

_VDK_kDeviceFlagPended

_VDK_kDeviceFlagPosted

_VDK_kDeviceActivated

_VDK_kThreadTimedOut

_VDK_kThreadStatusChange

_VDK_kThreadSwitched

_VDK_kMaxStackUsed

_VDK_kPoolCreated

_VDK_kPoolDestroyed

_VDK_kDeviceFlagCreated

_VDK_kDeviceFlagDestroyed

_VDK_kMessagePosted

_VDK_kMessagePended

_VDK_kSemaphoreCreated

_VDK_kSemaphoreDestroyed

_VDK_kMessageCreated

Data Type Descriptions

4-24 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

_VDK_kMessageDestroyed

_VDK_kMessageTakenFromQueue

_VDK_kThreadResourcesFreed

_VDK_kThreadPriorityChanged

_VDK_kMutexCreated

_VDK_kMutexDestroyed

_VDK_kMutexAcquired

_VDK_kMutexReleased

_VDK_kUserEvent

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-25

VDK Data Types

HistoryEvent
The HistoryEvent structure combines the four attributes of an event
logged in the history buffer.

In C:
typedef struct

{

VDK_Ticks time;

VDK_ThreadID threadID;

VDK_HistoryEnum type;

int value;

} VDK_HistoryEvent;

In C++:
typedef struct

{

VDK::Ticks time;

VDK::ThreadID threadID;

VDK::HistoryEnum type;

int value;

} VDK::HistoryEvent;

time is the time (in Ticks) that the history event is logged.

threadID is the identifier of the thread against which the event is logged.
See ThreadID for more information about thread IDs.

type is used to store the cause of the history event, such as a semaphore
being posted or an event bit being set (see HistoryEnum data type).

value is used to provide further information relevant to the history event;
its meaning is dependant on the value of type. value is used to store addi-
tional information relevant to the event such as the MessageID when a
message is being posted.

Data Type Descriptions

4-26 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The table below details the data values stored for each HistoryEnum.

History Event Value

kDeviceActivated IOID

kDeviceFlagCreated DeviceFlagID

kDeviceFlagDestroyed DeviceFlagID

kDeviceFlagPended DeviceFlagID

kDeviceFlagPosted DeviceFlagID

kEventBitCleared EventBitID or (EventBitID | INT_MIN) if the event bit
was set to 1

kEventBitSet EventBitID or (EventBitID | INT_MIN) if the event bit
was already set to 1

kEventPended EventID or (EventID | INT_MIN) if the event evaluated to
TRUE

kMaxStackUsed Bytes used

kMessageCreated MessageID

kMessageDestroyed MessageID

kMessagePended Channel mask

kMessagePosted MessageID

kMutexAcquired MutexID

kMutexCreated MutexID

kMutexDestroyed MutexID

kMutexReleased MutexID

kPoolCreated PoolID

kPoolDestroyed PoolID

kSemaphoreCreated SemaphoreID

kSemaphoreDestroyed SemaphoreID

kSemaphorePended SemaphoreID or (SemaphoreID | INT_MIN) if the sema-
phore was available.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-27

VDK Data Types

kSemaphorePosted SemaphoreID or (SemaphoreID | INT_MIN) if the sema-
phore was already available

kThreadCreated ThreadID

kThreadDestroyed ThreadID

kThreadPriorityChanged New priority

kThreadResourcesFreed ThreadID

kThreadStatusChange Previous status

kThreadSwitched Incoming ThreadID

kThreadTimedOut Object ID

kUserEvent Value

History Event Value

Data Type Descriptions

4-28 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

IMASKStruct
The IMASKStruct type is a platform-dependent type used by the ClearIn-
terruptMaskBits(), GetInterruptMask(), and SetInterruptMaskBits()
APIs to modify the interrupt mask.

For TigerSHARC processors, this type is defined as:

In C:
typedef unsigned long long VDK_IMASKStruct;

In C++:
typedef unsigned long long VDK::IMASKStruct;

For Blackfin and SHARC processors, the type is defined as:

In C:
typedef unsigned int VDK_IMASKStruct;

In C++:
typedef unsigned int VDK::IMASKStruct;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-29

VDK Data Types

IOID
The IOID type is used to store the unique identifier of an I/O object.

enum IOID

{

/* Defined by IDDE in the VDK.h file. */

};

In C:

typedef enum IOID VDK_IOID;

In C++:

typedef enum IOID VDK::IOID;

Data Type Descriptions

4-30 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

IOTemplateID
The IOTemplateID type is used to store the unique identifier of an I/O
object class.

enum IOTemplateID

{

/* Defined by IDDE in the VDK.h file. */

};

In C:

typedef enum IOTemplateID VDK_IOTemplateID;

In C++:

typedef enum IOTemplateID VDK::IOTemplateID;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-31

VDK Data Types

MarshallingCode
The MarshallingCode type enumerates the possible reasons for calling a
payload marshalling function.

In C:

enum VDK_MarshallingCode

{

TRANSMIT_AND_RELEASE,

ALLOCATE_AND_RECEIVE,

ALLOCATE,

RELEASE

};

In C++:

enum VDK::MarshallingCode

{

TRANSMIT_AND_RELEASE,

ALLOCATE_AND_RECEIVE,

ALLOCATE,

RELEASE

};

TRANSMIT_AND_RELEASE indicates that the marshalling function must per-
form the following steps in sequence.

1. Modify the message packet, if necessary (optional)

2. Transmit the message packet

3. Transmit the payload contents (optional in certain cases)

4. Deallocate the payload memory

Data Type Descriptions

4-32 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ALLOCATE_AND_RECEIVE indicates that the marshalling function must per-
form the following steps in sequence.

1. Allocate memory for a payload of the type (and size) specified by
the message packet

2. Receive the payload contents into the payload memory

ALLOCATE indicates that the marshalling function must allocate memory
for a payload of the type and size specified by the message packet.

RELEASE indicates that the marshalling function must deallocate the pay-
load memory.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-33

VDK Data Types

MarshallingEntry
The MarshallingEntry structure forms the elements of the marshalling
table array g_vMarshallingTable (defined by the IDDE in VDK.cpp).

In C:

typedef struct

{

VDK_PFMarshaller pfMarshaller;

unsigned int area;

} VDK_MarshallingEntry;

In C++:

typedef struct

{

VDK::PFMarshaller pfMarshaller;

unsigned int area;

} VDK::MarshallingEntry;

pfMarshaller is a pointer to a system- or user-defined marshalling
function.

area is used by standard marshalling to hold the Heap index (for heap
marshalling) or PoolID (for pool marshalling) in order to parameterize the
operation of the standard functions. It may also be used to parameterize
the operation of custom marshalling functions.

Data Type Descriptions

4-34 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

MessageDetails
The MessageDetails structure combines the three attributes that describe
the most recent posting of a message.

In C:

typedef struct

{

VDK_MsgChannel channel;

VDK_ThreadID sender;

VDK_ThreadID target;

} VDK_MessageDetails;

In C++:

typedef struct

{

VDK::MsgChannel channel;

VDK::ThreadID sender;

VDK::ThreadID target;

} VDK::MessageDetails;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-35

VDK Data Types

MessageID
The MessageID type is used to store the unique identifier of a message.

enum MessageID

{

/* Defined by IDDE in the VDK.h file. */

};

The enumeration in VDK.h will be empty. All the messages are dynamically
allocated and will have an ID of the MessageID type to allow the compiler
to do type checking and prevent errors.

In C:

typedef enum MessageID VDK_MessageID;

In C++:

typedef enum MessageID VDK::MessageID;

Data Type Descriptions

4-36 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

MsgChannel
The MsgChannel type enumerates the channels a message can be posted or
pended on.

In C:

enum VDK_MsgChannel
{

VDK_kMsgWaitForAll = 1 << 15,
VDK_kMsgChannel1 = 1 << 14,
VDK_kMsgChannel2 = 1 << 13,
VDK_kMsgChannel3 = 1 << 12,
VDK_kMsgChannel4 = 1 << 11,
VDK_kMsgChannel5 = 1 << 10,
VDK_kMsgChannel6 = 1 << 9,
VDK_kMsgChannel7 = 1 << 8,
VDK_kMsgChannel8 = 1 << 7,
VDK_kMsgChannel9 = 1 << 6,
VDK_kMsgChannel10 = 1 << 5,
VDK_kMsgChannel11 = 1 << 4,
VDK_kMsgChannel12 = 1 << 3,
VDK_kMsgChannel13 = 1 << 2,
VDK_kMsgChannel14 = 1 << 1,
VDK_kMsgChannel15 = 1 << 0

};

In C++:

enum VDK::MsgChannel
{

VDK::kMsgWaitForAll = 1 << 15,
VDK::kMsgChannel1 = 1 << 14,
VDK::kMsgChannel2 = 1 << 13,
VDK::kMsgChannel3 = 1 << 12,
VDK::kMsgChannel4 = 1 << 11,
VDK::kMsgChannel5 = 1 << 10,

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-37

VDK Data Types

VDK::kMsgChannel6 = 1 << 9,
VDK::kMsgChannel7 = 1 << 8,
VDK::kMsgChannel8 = 1 << 7,
VDK::kMsgChannel9 = 1 << 6,
VDK::kMsgChannel10 = 1 << 5,
VDK::kMsgChannel11 = 1 << 4,
VDK::kMsgChannel12 = 1 << 3,
VDK::kMsgChannel13 = 1 << 2,
VDK::kMsgChannel14 = 1 << 1,
VDK::kMsgChannel15 = 1 << 0

};

Data Type Descriptions

4-38 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

MsgWireFormat
The MsgWireFormat structure is used to transfer a message across a com-
munication link. It is the structure written to and read from the device
drivers that manage the links.

In C:

typedef struct

{

unsigned int header;

VDK_PayloadDetails payload;

} VDK_MsgWireFormat;

In C++:

typedef struct

{

unsigned int header;

VDK::PayloadDetails payload;

} VDK::MsgWireFormat;

MsgWireFormat is four words (16 bytes or 128 bits) in size, of which three
words are made up of the payload description. The remaining (first) word
is the message header, which contains the additional information about
the message, packed using the following format:

Bit Position 31 to 28 27 to 23 22 to 14 13 to 9 8 to 0

Word 0 Channel Destination
node

Destination
thread

Source node Source thread

Word 1 Payload type

Word 2 Payload address

Word 3 Payload length

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-39

VDK Data Types

The header bit allocation allows for up to 32 nodes in the system and up
to 512 threads per node.

Because there are only 15 message channel numbers (1 to 15) used by
VDK, message packets having header bits 28 to 31 set to all zeros (that is,
the non-existent channel 0) are special cases, which may be used internally
by VDK (or by the device drivers) as private control messages.

The message ID is not transferred in the packet, as the message will
have a different ID on the destination processor.

Data Type Descriptions

4-40 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

MutexID
The MutexID type is used to store the unique identifier of a mutex.

enum MutexID

{

/* Defined by IDDE in the VDK.h file. */

};

The enumeration in VDK.h is empty. All of the mutexes are dynamically
allocated and will have IDs of the MutexID type to allow the compiler to
do type checking and prevent errors.

In C:
typedef enum MutexID VDK_MutexID;

In C++:
typedef enum MutexID VDK::MutexID;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-41

VDK Data Types

PanicCode
The PanicCode type enumerates the possible causes of VDK raising a Ker-
nelPanic. When VDK enters KernelPanic(), the cause is stored in the
variable VDK::g_KernelPanicCode in C++ (C++ syntax must be used).

In C:

Type name: VDK_PanicCode

Possible values: VDK_kNoPanic=0
VDK_kThreadError

VDK_kBootError

VDK_kISRError

VDK_kDeprecatedAPI

VDK_kInternalError

VDK_kStackCheckFailure

VDK_kUnhandledException

In C++:

Type name: VDK::PanicCode

Possible values: VDK::kNoPanic=0
VDK::kThreadError

VDK::kBootError

VDK::kISRError

VDK::kDeprecatedAPI

VDK::kInternalError

VDK::kStackCheckFailure

VDK::kUnhandledException

The g_KernelPanicCode variable has a value of kNoPanic when
KernelPanic() has not been called.

Data Type Descriptions

4-42 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The g_KernelPanicCode variable has a value of kThreadError when a
thread’s error function does not handle the error (default behavior) or
when an attempt is made to dispatch an error when the running thread is
the Idle thread.

The g_KernelPanicCode variable has a value of kBootError when there has
been a problem creating any of the VDK boot components (threads, sema-
phores, memory pools, and so on).

The g_KernelPanicCode variable has a value of kISRError when either an
ISR API is invoked with an ID greater than the maximum allowed for the
particular function, or when a VDK API that is not safe to use at ISR or
kernel level has been called from ISR level or kernel level (see “VDK API
Validity” on page 5-19).

The g_KernelPanicCode variable has a value of kDeprecatedAPI when the
API in question is no longer supported.

The g_KernelPanicCode variable has a value of InternalError when VDK
detected internal problems from which it cannot recover.

The g_KernelPanicCode variable has a value of kStackCheckFailure when
VDK has detected a thread which has overrun its stack. Users should not
rely on this to verify that threads have not overrun their stacks as VDK

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-43

VDK Data Types

can only detect a specific limited number of cases. This panic code is used
only under the following circumstances:

• On all platforms in fully instrumented builds, this panic code is
raised if a pre-emptive context switch detects a write to the last
word in the stack.

• On SHARC processors, if the compiler stack overflow detection
mechanism reports a stack overflow, and the application does not
have its own ISR for CB7I. Stack overflow detection is enabled by
default on SHARC processors.

• On Blackfin processors, if the compiler stack overflow detection
mechanism reports a stack overflow. Stack overflow detection is
disabled by default on Blackfin processors.

Refer to the stack overflow detection section in the processor-specific
appendix for more information.

The g_KernelPanicCode variable has a value of kUnhandledException
when the default UserExceptionHandler added to new projects has
detected an exception that it cannot handle. This panic code is only used
in Blackfin projects created with VisualDSP++ 5.0 update 9 or later.

Data Type Descriptions

4-44 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

PayloadDetails
The PayloadDetails structure combines three attributes that describe a
message payload.

In C:

typedef struct
{

int type;
unsigned int size;
void *addr;

} VDK_PayloadDetails;

In C++:

typedef struct
{

int type;
unsigned int size;
void *addr;

} VDK::PayloadDetails;

The type variable is an application-defined value that specifies the inter-
pretation given to the contents of the payload. Negative values of payload
type indicate a user-defined marshalled type, which can be managed auto-
matically by VDK for the purposes of inter-processor messaging.

The size variable is typically the size of the payload in the smallest
addressable units of the processor (sizeof(char)).

The addr variable is typically a pointer to the beginning of the payload
buffer.

However, depending on the application-defined interpretation of the pay-
load’s type, the payload addr and size attributes may contain any
user-defined data that can be stored in two 32-bit fields.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-45

VDK Data Types

PFMarshaller
The PFMarshaller type is a pointer-to-function type, used to hold the
address of a system- or user-defined marshalling function.

In C:

typedef int (*VDK_PFMarshaller)(VDK_MarshallingCode code,
VDK_MsgWireFormat *inOutMsgPacket,
VDK_DeviceInfoBlock *pDev,
unsigned int area,
VDK_Ticks timeout);

In C++:

typedef int (*VDK::PFMarshaller)(VDK::MarshallingCode code,
VDK::MsgWireFormat *inOutMsgPacket,
VDK::DeviceInfoBlock *pDev,
unsigned int area,
VDK::Ticks timeout);

Parameters

code tells the marshalling function which operation(s) to perform (see
MarshallingCode).

inOutMsgPacket is a pointer to the formatted message packet.

pDev is a pointer to a DeviceInfoBlock structure describing the VDK
device driver for the connection.

area is the Heap index or PoolID used by standard marshalling.

timeout is the I/O timeout duration (usually set to 0 for indefinite wait).

The marshalling function may invoke the scheduler, depending on the
implementation. The return value from a marshalling function will usu-
ally be the result of a SyncRead() or SyncWrite() call that has been

Data Type Descriptions

4-46 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

performed internally, but this value is not presently used. Errors can be
dispatched by the marshalling function or by functions called by the mar-
shalling function.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-47

VDK Data Types

PoolID
The PoolID type is used to store the unique identifier of a memory pool.

enum PoolID

{

/* Defined by IDDE in the VDK.h file. */

};

The enumeration in VDK.h will contain only the IDs for the memory pools
enabled at boot time. Any dynamically-created memory pools will have an
ID of the same type to allow the compiler to perform type checking and
prevent errors.

In C:
typedef enum PoolID VDK_PoolID;

In C++:
typedef enum PoolID VDK::PoolID;

Data Type Descriptions

4-48 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Priority
The Priority type is used to denote the scheduling priority level of a
thread:

• The highest priority is one (zero is reserved)

• The lowest priority is the size of a data word minus two.
For SHARC, TigerSHARC, or Blackfin processors, this value is 30.

In C:

enum VDK_Priority

{

VDK_kPriority1,

VDK_kPriority2,

VDK_kPriority3,

…

VDK_kPriority30

};

In C++:

enum VDK::Priority

{

VDK::kPriority1,

VDK::kPriority2,

VDK::kPriority3,

…

VDK::kPriority30

};

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-49

VDK Data Types

RoutingDirection
The RoutingDirection type enumerates the two distinct operating modes
of a routing thread. It is used to specify the operating mode of a routing
thread at the time of its creation.

In C:

enum VDK_RoutingDirection

{

kINCOMING,

kOUTGOING

};

In C++:

enum VDK::RoutingDirection

{

kINCOMING,

kOUTGOING

};

Data Type Descriptions

4-50 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SemaphoreID
The SemaphoreID type is used to store the unique identifier of a
semaphore.

enum SemaphoreID

{

/* Defined by IDDE in the VDK.h file. */

};

The enumeration in VDK.h will contain the IDs only for the semaphores
enabled at boot time. Any dynamically-created semaphores will have an
ID of the same type to allow the compiler to perform type checking and
prevent errors.

In C:
typedef enum SemaphoreID VDK_SemaphoreID;

In C++:
typedef enum SemaphoreID VDK::SemaphoreID;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-51

VDK Data Types

SystemError
The SystemError type enumerates system-defined errors dispatched to the
error handler.

In C:

Type name: VDK_SystemError

Possible values: VDK_kUnknownThreadType
VDK_kUnknownThread

VDK_kInvalidThread

VDK_kThreadCreationFailure

VDK_kUnknownSemaphore

VDK_kUnknownEventBit

VDK_kUnknownEvent

VDK_kInvalidPriority

VDK_kInvalidDelay

VDK_kSemaphoreTimeout

VDK_kEventTimeout

VDK_kBlockInInvalidRegion

VDK_kDbgPossibleBlockInRegion

VDK_kInvalidPeriod

VDK_kAlreadyPeriodic

VDK_kNonperiodicSemaphore

VDK_kDbgPopUnderflow

VDK_kBadIOID

VDK_kBadDeviceDescriptor

VDK_kSSLInitFailure1

VDK_kOpenFailure

VDK_kCloseFailure

1 kSSLInitFailure is introduced in VisualDSP++ 5.0 update 4 and does not exist in releases prior to that
one.

Data Type Descriptions

4-52 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK_kReadFailure

VDK_kWriteFailure

VDK_kIOCtlFailure

VDK_kBadIOTemplateID

VDK_kInvalidDeviceFlag

VDK_kDeviceTimeout

VDK_kDeviceFlagCreationFailure

VDK_kMaxCountExceeded

VDK_kSemaphoreCreationFailure

VDK_kSemaphoreDestructionFailure

VDK_kPoolCreationFailure

VDK_kInvalidBlockPointer

VDK_kInvalidPoolParms

VDK_kInvalidPoolID

VDK_kErrorPoolNotEmpty

VDK_kErrorMallocBlock

VDK_kMessageCreationFailure

VDK_kInvalidMessageID

VDK_kInvalidMessageOwner

VDK_kInvalidMessageChannel

VDK_kInvalidMessageRecipient

VDK_kMessageTimeout

VDK_kMessageInQueue

VDK_kInvalidTimeout

VDK_kInvalidTargetDSP

VDK_kIOCreateFailure

VDK_kHeapInitialisationFailure

VDK_kInvalidHeapID

VDK_kNewFailure

VDK_kInvalidMarshalledType

VDK_kUncaughtException

VDK_kAbort

VDK_kInvalidMaskBit

VDK_kInvalidThreadStatus

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-53

VDK Data Types

VDK_kThreadStackOverflow

VDK_kMaxIDExceeded

VDK_kThreadDestroyedInInvalidRegion

VDK_kNotMutexOwner

VDK_kMutexNotOwned

VDK_kMutexCreationFailure

VDK_kMutexDestructionFailure

VDK_kMutexSpaceTooSmall

VDK_kInvalidMutexID

VDK_kInvalidMutexOwner

VDK_kAPIUsedfromISR

VDK_kMaxHistoryEventExceeded

VDK_kUnhandledExceptionError1

VDK_kInvalidPointer

VDK_kIntsAreDisabled

VDK_kRescheduleIntIsMasked

VDK_kNoError = 0

VDK_kFirstUserError

VDK_kLastUserError

In C++:

Type name: VDK::SystemError

Possible values: VDK::kUnknownThreadType
VDK::kUnknownThread

VDK::kInvalidThread

VDK::kThreadCreationFailure

VDK::kUnknownSemaphore

VDK::kUnknownEventBit

VDK::kUnknownEvent

VDK::kInvalidPriority

1 kUnhandledExceptionError is introduced in VisualDSP++ 5.0 update 9 and does not exist in releases
prior to that one.

Data Type Descriptions

4-54 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK::kInvalidDelay

VDK::kSemaphoreTimeout

VDK::kEventTimeout

VDK::kBlockInInvalidRegion

VDK::kDbgPossibleBlockInRegion

VDK::kInvalidPeriod

VDK::kAlreadyPeriodic

VDK::kNonperiodicSemaphore

VDK::kDbgPopUnderflow

VDK::kBadIOID

VDK::kBadDeviceDescriptor

VDK::kSSLInitFailure1

VDK::kOpenFailure

VDK::kCloseFailure

VDK::kReadFailure

VDK::kWriteFailure

VDK::kIOCtlFailure

VDK::kBadIOTemplateID

VDK::kInvalidDeviceFlag

VDK::kDeviceTimeout

VDK::kDeviceFlagCreationFailure

VDK::kMaxCountExceeded

VDK::kSemaphoreCreationFailure

VDK::kSemaphoreDestructionFailure

VDK::kPoolCreationFailure

VDK::kInvalidBlockPointer

VDK::kInvalidPoolParms

VDK::kInvalidPoolID

VDK::kErrorPoolNotEmpty

VDK::kErrorMallocBlock

VDK::kMessageCreationFailure

VDK::kInvalidMessageID

1 kSSLInitFailure is introduced in VisualDSP++ 5.0 update 4 and does not exist in releases prior to that
one.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-55

VDK Data Types

VDK::kInvalidMessageOwner

VDK::kInvalidMessageChannel

VDK::kInvalidMessageRecipient

VDK::kMessageTimeout

VDK::kMessageInQueue

VDK::kInvalidTimeout

VDK::kInvalidTargetDSP

VDK::kIOCreateFailure

VDK::kHeapInitialisationFailure

VDK::kInvalidHeapID

VDK::kNewFailure

VDK::kInvalidMarshalledType

VDK::kUncaughtException

VDK::kAbort

VDK::kInvalidMaskBit

VDK::kInvalidThreadStatus

VDK::kThreadStackOverflow

VDK::kMaxIDExceeded

VDK::kThreadDestroyedInInvalidRegion

VDK::kNotMutexOwner

VDK::kMutexNotOwned

VDK::kMutexCreationFailure

VDK::kMutexDestructionFailure

VDK::kMutexSpaceTooSmall

VDK::kInvalidMutexID

VDK::kInvalidMutexOwner

VDK::kAPIUsedfromISR

VDK::kMaxHistoryEventExceeded

VDK::kUnhandledExceptionError1

VDK::kInvalidPointer

VDK::kIntsAreDisabled

VDK::kRescheduleIntIsMasked

1 kUnhandledExceptionError is introduced in VisualDSP++ 5.0 update 9 and does not exist in releases
prior to that one.

Data Type Descriptions

4-56 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK::kNoError = 0

VDK::kFirstUserError

VDK::kLastUserError

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-57

VDK Data Types

TCBBitfield
The TCBBitfield1 type enumerates the different bits that can be set in the
second argument in a call to CreateThreadEx2(). The argument specifies
the default parameters of a ThreadType that should be overridden with
user-specified values when creating a new thread. To specify multiple
parameters that should be overridden, the flags defined in this enumera-
tion must be ORed together.

In C:

Type name: VDK_TCBBitfield

Possible values: VDK_kSetThreadTemplateID
VDK_kSetThreadStackSize

VDK_kSetThreadPriority

VDK_kSetUserDataPointer
VDK_kSetThreadTemplatePointer
VDK_kSetThreadStackPointer

In C++:

Type name: VDK::TCBBitfield

Possible values: VDK::kSetThreadTemplateID
VDK::kSetThreadStackSize

VDK::kSetThreadPriority

VDK::kSetUserDataPointer
VDK::kSetThreadTemplatePointer
VDK::kSetThreadStackPointer

1 TCBBitfield is available only in VisualDSP++ 5.0 update 9 or later.

Data Type Descriptions

4-58 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ThreadCreationBlock
A variable of type ThreadCreationBlock is passed to the Create-
ThreadEx() and CreateThreadEx2() functions.

The CreateThreadEx() API utilizes any non-zero fields from ThreadCre-
ationBlock, which exists in VisualDSP++ 5.0 or earlier (it cannot use any
new fields for backwards compatibility).

The CreateThreadEx2() API requires a second argument, which indicates
the ThreadCreationBlock fields to set. This makes CreateThreadEx2() an
extensible API if new fields are introduced in later versions of Visu-
alDSP++. See the individual API description for details.

CreateThreadEx2() is introduced in VisualDSP++ 5.0 update 9 and is
available for Blackfin and SHARC processors only.

In C:

typedef struct VDK_ThreadCreationBlock

{

VDK_ThreadType template_id;

VDK_ThreadID thread_id;

unsigned int thread_stack_size;

VDK_Priority thread_priority;

void *user_data_ptr;

struct VDK_ThreadTemplate *pTemplate;

unsigned int *stack_pointer;

} VDK_ThreadCreationBlock;

In C++:

typedef struct VDK::ThreadCreationBlock

{

VDK::ThreadType template_id;

VDK::ThreadID thread_id;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-59

VDK Data Types

unsigned int thread_stack_size;

VDK::Priority thread_priority;

void *user_data_ptr;

struct VDK::ThreadTemplate *pTemplate;

unsigned int *stack_pointer;

} VDK::ThreadCreationBlock;

• template_id corresponds to a ThreadType defined in the VDK.h and
VDK.cpp files. These files contain the default values for the stack
size and initial priority, which may optionally be overridden by the
following fields.

• thread_id is an output only field. On a successful return, it con-
tains the same value as the function return.

• thread_stack_size is expressed in 32-bit words and overrides the
default stack size implied by the ThreadType.

• thread_priority overrides the default thread priority implied by
the ThreadType.

• user_data_ptr allows a generic argument to be passed (without
interpretation) to the thread creation function and, hence, to the
thread constructor. This allows individual thread instances to be
parameterized at creation time, without the need to resort to global
variables for argument passing.

• pTemplate is a pointer to the thread template that is used to gener-
ate the thread. This is only required if the template_id is set to
kDynamicThreadType. The stack size and initial priority are
(optionally) overridden by the values specified in the
thread_stack_size and thread_priority fields.

• stack_pointer is a pointer to a user-allocated area of memory of
size thread_stack_size. This field is ignored in calls to Create-
ThreadEx(). On Blackfin processors, VDK stores the thread

Data Type Descriptions

4-60 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

context in the stack and, therefore, the area of memory allocated
must be stack_size + context_size, where context_size can be
obtained with a call to the GetContextRecordSize() API.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-61

VDK Data Types

ThreadID
The ThreadID type is used to store the unique identifier of a thread.

enum ThreadID

{

/* Defined by IDDE in the VDK.h file. */

};

The enumeration in VDK.h will contain the IDs only for the threads
enabled at boot time. Any dynamically-created threads will have an ID of
the same type to allow the compiler to perform type checking and prevent
errors.

In C:
typedef enum ThreadID VDK_ThreadID;

In C++:
typedef enum ThreadID VDK::ThreadID;

There are two values that strictly are not thread IDs but are used by
VDK as such:

0xC0000000 means kernel level
0x80000000 means interrupt level

Data Type Descriptions

4-62 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ThreadStatus
The ThreadStatus type is used to enumerate the state of a thread.

In C:

Type name: VDK_ThreadStatus

Possible values: VDK_kReady
VDK_kSemaphoreBlocked
VDK_kEventBlocked
VDK_kDeviceFlagBlocked,
VDK_kSemaphoreBlockedWithTimeout
VDK_kEventBlockedWithTimeout
VDK_kDeviceFlagBlockedWithTimeout
VDK_kSleeping
VDK_MessageBlocked
VDK_kMessageBlockedWithTimeout
VDK_kMutexBlocked
VDK_kUnknown

In C++:

Type name: VDK::ThreadStatus

Possible values: VDK::kReady
VDK::kSemaphoreBlocked

VDK::kEventBlocked
VDK::kDeviceFlagBlocked
VDK::kSemaphoreBlockedWithTimeout
VDK::kEventBlockedWithTimeout
VDK::kDeviceFlagBlockedWithTimeout
VDK::kSleeping
VDK::MessageBlocked
VDK::kMessageBlockedWithTimeout
VDK::kMutexBlocked
VDK::kUnknown

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-63

VDK Data Types

ThreadType
ThreadType is used to store the unique identifier of a Thread class.

enum ThreadType

{

/* Defined by IDDE in the VDK.h file. */

};

In C:
typedef enum ThreadType VDK_ThreadType;

In C++:
typedef enum ThreadType VDK::ThreadType;

Data Type Descriptions

4-64 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Ticks
Time is measured in system Tick. A tick is the amount of time between
hardware interrupts generated by a hardware timer.

In C:
typedef unsigned int VDK_Ticks;

In C++:
typedef unsigned int VDK::Ticks;

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 4-65

VDK Data Types

VersionStruct
The VersionStruct constant is used to store four integers that describe the
system parameters: VDK API version number, processor family sup-
ported, base processor product supported, and build number.

In C:

typedef struct

{

int mAPIVersion;

VDK_DSP_Family mFamily;

VDK_DSP_Product mProduct;

long mBuildNumber;

} VDK_VersionStruct;

In C++:

typedef struct

{

int mAPIVersion;

VDK::DSP_Family mFamily;

VDK::DSP_Product mProduct;

long mBuildNumber;

} VDK::VersionStruct;

mAPIVersion is an integer of the 0xMMmmUURR format, where MM is the major
version number, mm is the minor version number, UU is the update number,
and RR is reserved. This field does not change in any releases of Visu-
alDSP++ but only when the VDK API changes. See the DSP_Family and
DSP_Product data types for more information.

Different processors can use a common set of the VDK libraries.
Because of this, the field mProduct can not correspond to the pro-
cessor in a particular application.

Data Type Descriptions

4-66 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-1

5 VDK API REFERENCE

The VDK Application Programming Interface (API) is a library of func-
tions and macros that may be called from your application programs.
Application programs depend on API functions to perform services that
are basic to VDK. These services include interrupt handling, scheduler
management, thread management, semaphore management, memory pool
management, events and event bits, device drivers, and message passing.
All of the VDK functions are written in the C++ programming language.

This chapter describes the current release of the API library. Future
releases may include additional functions.

This chapter provides information on the following topics:

• “Calling Library Functions” on page 5-2

• “Linking Library Functions” on page 5-2

• “Working With VDK Library Header” on page 5-2

• “Passing Function Parameters” on page 5-3

• “Library Naming Conventions” on page 5-3

• “API Summary” on page 5-5

• “VDK Error Codes and Error Values” on page 5-11

• “VDK API Validity” on page 5-19

• “API Functions” on page 5-25

• “Assembly Macros and C/C++ ISR APIs” on page 5-235

Calling Library Functions

5-2 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Calling Library Functions
To use an API function or a macro, call it by name and provide the appro-
priate arguments. The name and arguments for each library entity appear
on its reference page. Note that the function names are C and C++ func-
tion names. If you call a C run-time library function from an assembly
language program, prefix the function name with an underscore.

Similar to other functions, library functions should be declared. Declara-
tions are supplied in the VDK.h header file. For more information about
the kernel header file, see “Working With VDK Library Header” on
page 5-2.

The reference pages appear in the “API Summary” on page 5-5.

Linking Library Functions
When your code calls an API function, the call creates a reference resolved
by the linker when linking your program. One way to direct the linker to
the library’s location is to use the default VDK Linker Description File
(VDK-<your_target>.ldf). The default VDK Linker Description File
automatically directs the linker to the *.dlb file in the lib subdirectory of
your VisualDSP++ installation.

If you do not use the default VDK .ldf file, add the library file to your
project’s .ldf file. Alternatively, use the compiler’s -l (library directory)
switch to specify the library to be added to the link line. Library functions
are not linked into the .dxe file unless they are referenced.

Working With VDK Library Header
If one of your program source files needs to call a VDK API library func-
tion, include the VDK.h header file with the #include preprocessor

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-3

VDK API Reference

command. The header file provides prototypes for all VDK public func-
tions. The compiler uses prototypes to ensure each function is called with
the correct arguments. The VDK.h file also provides declarations for
user-accessible global variables, macros, type definitions, and
enumerations.

Passing Function Parameters
All parameters passed through the VDK library functions listed in “API
Summary” on page 5-5 are either passed by value or as constant objects.
This means VDK does not modify any of the variables passed. Where
arguments need to be modified, they are passed by the address (pointer).

Library Naming Conventions
Table 5-1 and Table 5-2 show coding style conventions that apply to the
entities in the library reference section. By following the library and func-
tion naming conventions, you can review VDK sources or documentation
and recognize whether the identifier is a function, macro, variable param-
eter, or a constant.

Table 5-1. Library Naming Conventions

Notation Description

VDK_Ticks VDK-defined types are written with the first letter
uppercase

kPriority1 Constants are prefixed with a “k”

inType Input parameters are prefixed with an “in”

mDevice Data members are prefixed with an “m”

Library Naming Conventions

5-4 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Table 5-2. Function and Macro Naming Conventions

Notation Description

VDK_ C-callable function names are prefixed by “VDK_” to
distinguish VDK library functions from user func-
tions

VDK:: C++-callable functions are located in the VDK
namespace, thus function names are preceded by
“VDK::”

VDK_Yield(void) The remaining portion of the function name is writ-
ten with the first letter of each sub-word in upper-
case

VDK_ISR_SET_EVENTBIT_() Assembly macros are written in uppercase with
words separated by underscores and a trailing under-
score

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-5

VDK API Reference

API Summary
Table 5-3 through Table 5-21 list the VDK library entities included in the
current software release. These tables list the library entities grouped by a
particular service. The reference pages beginning on page 5-28 appear in
alphabetic order.

Table 5-3. Interrupt Handling Functions

Function Name Reference Page

PopCriticalRegion() on page 5-190

PopNestedCriticalRegions() on page 5-192

PushCriticalRegion() on page 5-203

Table 5-4. Interrupt Mask Handling Functions

ClearInterruptMaskBits() on page 5-34

ClearInterruptMaskBitsEx() on page 5-35

GetInterruptMask() on page 5-111

GetInterruptMaskEx() on page 5-113

SetInterruptMaskBits() on page 5-216

SetInterruptMaskBitsEx() on page 5-218

Table 5-5. Scheduler Management Functions

PopNestedUnscheduledRegions() on page 5-194

PopUnscheduledRegion() on page 5-195

PushUnscheduledRegion() on page 5-204

API Summary

5-6 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Table 5-6. Block Memory Management Functions

CreatePool() on page 5-45

CreatePoolEx() on page 5-47

DestroyPool() on page 5-65

FreeBlock() on page 5-78

GetBlockSize() on page 5-95

GetNumAllocatedBlocks() on page 5-125

GetNumFreeBlocks() on page 5-126

LocateAndFreeBlock() on page 5-169

MallocBlock() on page 5-173

Table 5-7. Thread and System Information Functions

GetClockFrequency() on page 5-96

GetContextRecordSize() on page 5-97

GetHeapIndex() on page 5-107

GetThreadHandle() on page 5-144

GetThreadID() on page 5-145

GetThreadStackUsage() on page 5-151

GetThreadStack2Usage() on page 5-153

GetThreadStatus() on page 5-155

GetTickPeriod() on page 5-160

GetUptime() on page 5-161

GetVersion() on page 5-162

InstrumentStack() on page 5-165

LogHistoryEvent() on page 5-170

ReplaceHistorySubroutine() on page 5-209

SetClockFrequency() on page 5-213

SetTickPeriod() on page 5-226

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-7

VDK API Reference

Table 5-8. Application Status Information Functions

Function Name Reference Page

GetAllDeviceFlags() on page 5-85

GetAllMemoryPools() on page 5-87

GetAllMessages() on page 5-89

GetAllSemaphores() on page 5-91

GetAllThreads() on page 5-93

GetCurrentHistoryEventNum() on page 5-99

GetDevFlagPendingThreads() on page 5-100

GetEventPendingThreads() on page 5-104

GetHistoryBufferSize() on page 5-108

GetHistoryEvent() on page 5-109

GetMessageStatusInfo() on page 5-123

GetNumTimesRun() on page 5-127

GetPoolDetails() on page 5-129

GetSemaphoreDetails() on page 5-132

GetSemaphorePendingThreads() on page 5-134

GetSharcThreadCycleData() on page 5-138

GetThreadBlockingID() on page 5-140

GetThreadCycleData() on page 5-142

GetThreadStackDetails() on page 5-147

GetThreadStack2Details() on page 5-149

GetThreadTemplateName() on page 5-156

GetThreadTickData() on page 5-158

Table 5-9. Thread Creation and Destruction Functions

CreateThread() on page 5-51

CreateThreadEx() on page 5-53

API Summary

5-8 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

CreateThreadEx2() on page 5-55

DestroyThread() on page 5-69

FreeDestroyedThreads() on page 5-80

Table 5-10. Thread Local Storage Functions

AllocateThreadSlot() on page 5-28

AllocateThreadSlotEx() on page 5-30

FreeThreadSlot() on page 5-83

GetThreadSlotValue() on page 5-146

SetThreadSlotValue() on page 5-225

Table 5-11. Thread Error Management Functions

ClearThreadError() on page 5-37

DispatchThreadError() on page 5-73

GetLastThreadError() on page 5-115

GetLastThreadErrorValue() on page 5-116

SetThreadError() on page 5-224

Table 5-12. Thread Priority Management Functions

GetPriority() on page 5-131

ResetPriority() on page 5-211

SetPriority() on page 5-222

Table 5-13. Thread Scheduling Control Functions

Sleep() on page 5-227

Yield() on page 5-233

Table 5-9. Thread Creation and Destruction Functions (Cont’d)

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-9

VDK API Reference

Table 5-14. Semaphore Management Functions

CreateSemaphore() on page 5-49

DestroySemaphore() on page 5-67

GetSemaphoreValue() on page 5-136

InstallMessageControlSemaphore() on page 5-163

MakePeriodic() on page 5-171

PendSemaphore() on page 5-187

PostSemaphore() on page 5-201

RemovePeriodic() on page 5-207

Table 5-15. Event and EventBit Functions

ClearEventBit() on page 5-32

GetEventBitValue() on page 5-102

GetEventData() on page 5-103

GetEventValue() on page 5-106

LoadEvent() on page 5-167

PendEvent() on page 5-181

SetEventBit() on page 5-214

Table 5-16. Device Flags Functions

CreateDeviceFlag() on page 5-40

DestroyDeviceFlag() on page 5-58

PendDeviceFlag() on page 5-179

PostDeviceFlag() on page 5-197

Table 5-17. Device Driver Functions

CloseDevice() on page 5-38

DeviceIOCtl() on page 5-71

API Summary

5-10 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

OpenDevice() on page 5-177

SyncRead() on page 5-229

SyncWrite() on page 5-231

Table 5-18. Message Functions

CreateMessage() on page 5-41

DestroyMessage() on page 5-59

DestroyMessageAndFreePayload() on page 5-61

ForwardMessage() on page 5-75

FreeMessagePayload() on page 5-81

GetMessageDetails() on page 5-117

GetMessagePayload() on page 5-119

GetMessageReceiveInfo() on page 5-121

InstallMessageControlSemaphore() on page 5-163

MessageAvailable() on page 5-175

PendMessage() on page 5-184

PostMessage() on page 5-198

SetMessagePayload() on page 5-220

Table 5-19. Mutex Management Functions

AcquireMutex() on page 5-26

CreateMutex() on page 5-43

DestroyMutex() on page 5-63

ReleaseMutex() on page 5-205

Table 5-17. Device Driver Functions (Cont’d)

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-11

VDK API Reference

VDK Error Codes and Error Values
The entry for each VDK API function lists the error codes that may result
from calling that function. Additional information is provided, where
appropriate, in the form of an integer value relating to the error code in

Table 5-20. Assembly Macros

Macro Name Reference Page

VDK_ISR_ACTIVATE_DEVICE_() on page 5-237

VDK_ISR_CLEAR_EVENTBIT_() on page 5-238

VDK_ISR_LOG_HISTORY_() on page 5-239

VDK_ISR_POST_SEMAPHORE_() on page 5-240

VDK_ISR_SET_EVENTBIT_() on page 5-241

Table 5-21. C/C++ ISR API

Function Name Reference Page

C_ISR_ActivateDevice() on page 5-242

C_ISR_ClearEventBit() on page 5-244

C_ISR_PostSemaphore() on page 5-246

C_ISR_SetEventBit() on page 5-248

VDK Error Codes and Error Values

5-12 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

question. Table 5-22 summarizes the possible error codes dispatched by
all VDK API functions, along with the associated error value.

Table 5-22. VDK API Error Codes and Error Values

Function Name Error Code Error Value

All functions kAPIUsedfromISR Blackfin processors - IPEND1

SHARC processors - IMASKP2

TigerSHARC processors - 0

All functions kThreadStackOverflow If raised by the compiler stack
overflow detection:
SHARC processors - PCSTK
Blackfin processors - RETS
If detected by a pre-emptive
context switch:
All processors - Thread ID

AcquireMutex() kInvalidMutexID inMutexID

AcquireMutex() kDbgPossibleBlockInRegion Number of nested unscheduled
regions

AcquireMutex() kBlockInInvalidRegion Number of nested unscheduled
regions

AcquireMutex() kInvalidMutexOwner MutexID owner

ClearEventBit() kUnknownEventBit inEventBitID

ClearInterruptMaskBitsEx() kInvalidMaskBit Bit that does not refer to an
interrupt mask bit

CloseDevice() kBadDeviceDescriptor inDD

CreateDeviceFlag() kDeviceFlagCreationFail-
ure

-1

CreateMessage() kErrorMallocBlock Number of free blocks in the
pool reserved for messages

CreateMutex() kMutexCreationFailure Size of the mutex structure

CreatePool() kPoolCreationFailure 0

CreatePool() kInvalidPoolParms 0

CreatePoolEx() kPoolCreationFailure 0

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-13

VDK API Reference

CreatePoolEx() kInvalidPoolParms 0

CreateSemaphore() kMaxCountExceeded -1

CreateSemaphore() kSemaphoreCreationFailure -1

CreateThread() kUnknownThreadType inType

CreateThread() kThreadCreationFailure inType

CreateThreadEx() kUnknownThreadType inOutTCB –> Template ID

CreateThreadEx() kThreadCreationFailure inOutTCB –> Template ID

CreateThreadEx2() kIncompatibleArguments inFieldsRequired

CreateThreadEx2() kInvalidPointer inOutTCB –> pTemplate if the
error was a bad template or
inOutTCB –> stack_pointer
if the error was a misaligned
stack pointer

CreateThreadEx2() kThreadCreationFailure inOutTCB –> Template ID

CreateThreadEx2() kUnknownThreadType inOutTCB –> Template ID

DestroyDeviceFlag() kInvalidDeviceFlag inDeviceFlagID

DestroyMessage() kInvalidMessageID inMessageID

DestroyMessage() kMessageInQueue inMessageID

DestroyMessage() kInvalidMessageOwner inMessageID

DestroyMessageAndFreePay-
load()

kInvalidMessageID inMessageID

DestroyMessageAndFreePay-
load()

kMessageInQueue inMessageID

DestroyMessageAndFreePay-
load()

kInvalidMessageOwner inMessageID

DestroyMutex() kInvalidMutexID inMutexID

DestroyMutex() kMutexDestructionFailure inMutexID

DestroyPool() kErrorPoolNotEmpty inPoolID

Table 5-22. VDK API Error Codes and Error Values (Cont’d)

Function Name Error Code Error Value

VDK Error Codes and Error Values

5-14 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

DestroyPool() kInvalidPoolID inPoolID

DestroySemaphore() kSemaphoreDestruction-
Failure

inSemaphoreID

DestroySemaphore() kUnknownSemaphore inSemaphoreID

DestroyThread() kInvalidThread inThreadID

DestroyThread() kUnknownThread inThreadID

DeviceIOCtl() kBadDeviceDescriptor inDD

ForwardMessage() kInvalidMessageID inMessageID

ForwardMessage() kMessageInQueue inMessageID

ForwardMessage() kInvalidMessageOwner inMessageID

FreeBlock() kInvalidPoolID inPoolID

FreeBlock() kInvalidBlockPointer inBlockPtr

FreeMessagePayload() kInvalidMessageID inMessageID

FreeMessagePayload() kMessageInQueue inMessageID

FreeMessagePayload() kInvalidMessageOwner inMessageID

GetAllDeviceFlags() kInvalidPointer 0

GetAllMemoryPools() kInvalidPointer 0

GetAllMessages() kInvalidPointer 0

GetAllSemaphores() kInvalidPointer 0

GetAllThreads() kInvalidPointer 0

GetDevFlagPendingThreads() kInvalidPointer 0

GetSemaphorePend-
ingThreads()

kInvalidPointer 0

GetBlockSize() kInvalidPoolID inPoolID

GetEventBitValue() kUnknownEventBit inEventBitID

GetEventData() kUnknownEvent inEventID

GetEventValue() kUnknownEvent inEventID

Table 5-22. VDK API Error Codes and Error Values (Cont’d)

Function Name Error Code Error Value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-15

VDK API Reference

GetHeapIndex() kInvalidHeapID inHeapID

GetMessageDetails() kInvalidMessageID inMessageID

GetMessageDetails() kMessageInQueue inMessageID

GetMessageDetails() kInvalidMessageOwner inMessageID

GetMessagePayload() kInvalidMessageID inMessageID

GetMessagePayload() kMessageInQueue inMessageID

GetMessagePayload() kInvalidMessageOwner inMessageID

GetMessageReceiveInfo() kInvalidMessageID inMessageID

GetMessageReceiveInfo() kMessageInQueue inMessageID

GetMessageReceiveInfo() kInvalidMessageOwner inMessageID

GetNumAllocatedBlocks() kInvalidPoolID inPoolID

GetNumFreeBlocks() kInvalidPoolID inPoolID

GetPriority() kUnknownThread inThreadID

GetSemaphoreValue() kUnknownSemaphore 0

GetThreadStackUsage() kUnknownThread inThreadID

GetThreadStack2Usage() kUnknownThread inThreadID

LoadEvent() kUnknownEvent inEventID

LocateAndFreeBlock() kInvalidBlockPointer inBlkPtr

MakePeriodic() kInvalidPeriod inPeriod

MakePeriodic() kUnknownSemaphore inSemaphoreID

MakePeriodic() kInvalidDelay inDelay

MakePeriodic() kAlreadyPeriodic inSemaphoreID

MallocBlock() kInvalidPoolID inPoolID

MallocBlock() kErrorMallocBlock NumFreeBlocks

MessageAvailable() kInvalidThread 0

MessageAvailable() kInvalidMessageChannel inMsgChannelMask

Table 5-22. VDK API Error Codes and Error Values (Cont’d)

Function Name Error Code Error Value

VDK Error Codes and Error Values

5-16 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

OpenDevice() kBadIOID inIDNum

OpenDevice() kOpenFailure inIDNum

PendDeviceFlag() kDeviceTimeout inTimeout

PendDeviceFlag() kBlockInInvalidRegion Number of nested unscheduled
regions

PendDeviceFlag() kInvalidDeviceFlag inFlagID

PendDeviceFlag() kInvalidTimeout inTimeout

PendEvent() kDbgPossibleBlockInRegion Number of nested unscheduled
regions

PendEvent() kBlockInInvalidRegion Number of nested unscheduled
regions

PendEvent() kEventTimeout inTimeout

PendEvent() kUnknownEvent inEventID

PendEvent() kInvalidTimeout inTimeout

PendMessage() kInvalidThread 0

PendMessage() kInvalidTimeout inTimeout

PendMessage() kDbgPossibleBlockInRegion Number of nested unscheduled
regions

PendMessage() kInvalidMessageChannel inMessageChannelMask

PendMessage() kBlockInInvalidRegion Number of nested unscheduled
regions

PendMessage() kMessageTimeout inTimeout

PendMessage() kInvalidMessageID 0

PendSemaphore() kInvalidTimeout inTimeout

PendSemaphore() kDbgPossibleBlockInRegion Number of nested unscheduled
regions

PendSemaphore() kUnknownSemaphore inSemaphoreID

PendSemaphore() kSemaphoreTimeout inTimeout

Table 5-22. VDK API Error Codes and Error Values (Cont’d)

Function Name Error Code Error Value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-17

VDK API Reference

PendSemaphore() kBlockInInvalidRegion Number of nested unscheduled
regions

PopCriticalRegion() kDbgPopUnderflow kFromPopCriticalRegion

PopNestedCriticalRegions() kDbgPopUnderflow kFromPopNestedCriticalRe-
gions

PopNestedUnscheduledRe-
gions()

kDbgPopUnderflow kFromPopNestedUnschedule-
dRegions

PopUnscheduledRegion() kDbgPopUnderflow kFromPopUnscheduledRegion

PostDeviceFlag() kInvalidDeviceFlag inFlagID

PostMessage() kInvalidMessageChannel inChannel

PostMessage() kInvalidTargetDSP dstNode (MP only)

PostMessage() kInvalidMessageOwner MessageID owner

PostMessage() kInvalidMessageRecipient Recipient ThreadID

PostMessage() kMessageInQueue MessageID owner

PostMessage() kInvalidMessageID inMessageID

PostMessage() kUnknownThread inRecipient

PostSemaphore() kUnknownSemaphore inSemaphoreID

ReleaseMutex() kInvalidMutexID inMutexID

ReleaseMutex() kMutexNotOwned 0

ReleaseMutex() kNotMutexOwner MutexID owner

RemovePeriodic() kUnknownSemaphore inSemaphoreID

RemovePeriodic() kNonperiodicSemaphore inSemaphoreID

ResetPriority() kInvalidThread inThreadID

ResetPriority() kUnknownThread inThreadID

SetEventBit() kUnknownEventBit inEventBitID

SetInterruptMaskBitsEx() kInvalidMaskBit Bit that does not refer to an
interrupt mask bit

Table 5-22. VDK API Error Codes and Error Values (Cont’d)

Function Name Error Code Error Value

VDK Error Codes and Error Values

5-18 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

When using the VDK multiprocessor messaging functionality, the Rout-
ing Thread Run functions dispatch errors when appropriate. Table 5-23
summarizes the possible error codes dispatched by Routing Threads, along
with the associated error value.

SetMessagePayload() kInvalidMessageID inMessageID

SetMessagePayload() kMessageInQueue inMessageID

SetMessagePayload() kInvalidMessageOwner inMessageID

SetPriority() kInvalidPriority inPriority

SetPriority() kUnknownThread inThreadID

SetPriority() kInvalidThread inThreadID

Sleep() kBlockInInvalidRegion Number of nested unscheduled
regions

Sleep() kInvalidDelay inSleepTicks

SyncRead() kBadDeviceDescriptor inDD

SyncWrite() kBadDeviceDescriptor inDD

Yield() kBlockInInvalidRegion Number of nested unscheduled
regions

1 IVG15 and the reschedule ISR (IVG14) are masked out in the value.
2 The reschedule ISR (SFT2I) is masked out in the value.

Table 5-23. Routing Thread Run Function Error Codes and Error Values

Error Code Error Value

kBadIOID IOID

kInvalidMarshalledType Payload type

kInvalidMessageID 0

kMaxCountExceeded Payload type

kOpenFailure IOID

Table 5-22. VDK API Error Codes and Error Values (Cont’d)

Function Name Error Code Error Value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-19

VDK API Reference

VDK API Validity
In a VDK application, user code can execute at different levels – startup,
thread level, kernel level, and interrupt level (see Appendix A “Proces-
sor-Specific Notes”). By startup we understand the constructor/Create
function of a boot thread or the Init part of a device driver’s dispatch
function. VDK does not get initialized until main() is reached, so none of
the VDK APIs should be called in global constructors. It is not safe to use
all VDK APIs at all levels. Table 5-24 details the validity of calling each
VDK API at each of the levels and also from startup code. If an API is
called from an inappropriate level, a KernelPanic is typically raised.

Table 5-24. API Validity Levels

API Function Thread Level Kernel Level ISR Level Startup

AcquireMutex() Yes No No No

AllocateThreadSlot() Yes No No No

AllocateThreadSlotEx() Yes No No No

C_ISR_ActivateDevice() No No Yes No

C_ISR_ClearEventBit() No No Yes No

C_ISR_PostSemaphore() No No Yes No

C_ISR_SetEventBit() No No Yes No

ClearEventBit() Yes No No No

ClearInterruptMaskBits() Yes Yes No Yes

ClearInterruptMaskBitsEx() Yes Yes No Yes

ClearThreadError() Yes No No No

CloseDevice() Yes No No No

CreateDeviceFlag() Yes No No Yes

CreateMessage() Yes No No Yes

CreateMutex() Yes No No Yes

CreatePool() Yes No No Yes

VDK API Validity

5-20 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

CreatePoolEx() Yes No No Yes

CreateSemaphore() Yes No No Yes

CreateThread() Yes No No No

CreateThreadEx() Yes No No No

CreateThreadEx2() Yes No No Yes

DestroyDeviceFlag() Yes No No No

DestroyMessage() Yes No No No

DestroyMessageAndFreePayload() Yes No No No

DestroyMutex() Yes No No No

DestroyPool() Yes No No No

DestroySemaphore() Yes No No No

DestroyThread() Yes No No No

DeviceIOCtl() Yes No No No

DispatchThreadError() Yes No No No

ForwardMessage() Yes No No No

FreeBlock() Yes Yes No No

FreeDestroyedThreads() Yes No No No

FreeMessagePayload() Yes No No No

FreeThreadSlot() Yes No No No

GetAllDeviceFlags() Yes Yes No No

GetAllMemoryPools() Yes Yes No No

GetAllMessages() Yes Yes No No

GetAllSemaphores() Yes Yes No No

GetAllThreads() Yes Yes No No

GetBlockSize() Yes Yes No No

GetClockFrequency() Yes Yes Yes Yes

Table 5-24. API Validity Levels (Cont’d)

API Function Thread Level Kernel Level ISR Level Startup

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-21

VDK API Reference

GetContextRecordSize() Yes Yes Yes Yes

GetCurrentHistoryEventNum() Yes Yes No No

GetDevFlagPendingThreads() Yes Yes No No

GetEventBitValue() Yes No No No

GetEventData() Yes No No No

GetEventPendingThreads() Yes Yes No No

GetEventValue() Yes No No No

GetHeapIndex() Yes No No No

GetHistoryBufferSize() Yes Yes No No

GetHistoryEvent() Yes Yes No No

GetInterruptMask() Yes No No No

GetInterruptMaskEx() Yes No No No

GetLastThreadError() Yes No No No

GetLastThreadErrorValue() Yes No No No

GetMessageDetails() Yes No No No

GetMessagePayload() Yes No No No

GetMessageReceiveInfo() Yes No No No

GetMessageStatusInfo() Yes No No No

GetNumAllocatedBlocks() Yes Yes No No

GetNumFreeBlocks() Yes Yes No No

GetNumTimesRun() Yes Yes No No

GetPoolDetails() Yes Yes No No

GetPriority() Yes No No No

GetSemaphoreDetails() Yes Yes No No

GetSemaphorePendingThreads() Yes Yes No No

GetSemaphoreValue() Yes No No No

Table 5-24. API Validity Levels (Cont’d)

API Function Thread Level Kernel Level ISR Level Startup

VDK API Validity

5-22 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetSharcThreadCycleData() Yes Yes No No

GetThreadBlockingID() Yes Yes No No

GetThreadCycleData() Yes Yes No No

GetThreadHandle() Yes No No No

GetThreadID() Yes No No No

GetThreadSlotValue() Yes No No No

GetThreadStackDetails() Yes Yes No No

GetThreadStack2Details() Yes Yes No No

GetThreadStackUsage() Yes No No No

GetThreadStack2Usage() Yes No No No

GetThreadStatus() Yes No No No

GetThreadTemplateName() Yes Yes No No

GetThreadTickData() Yes Yes No No

GetTickPeriod() Yes Yes Yes Yes

GetUptime() Yes Yes Yes Yes

GetVersion() Yes Yes Yes Yes

InstallMessageControlSema-
phore()

Yes No No No

InstrumentStack() Yes No No No

LoadEvent() Yes No No No

LocateAndFreeBlock() Yes Yes No No

LogHistoryEvent() Yes Yes No No

MakePeriodic() Yes No No No

MallocBlock() Yes Yes No No

MessageAvailable() Yes No No No

OpenDevice() Yes No No No

Table 5-24. API Validity Levels (Cont’d)

API Function Thread Level Kernel Level ISR Level Startup

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-23

VDK API Reference

PendDeviceFlag() Yes No No No

PendEvent() Yes No No No

PendMessage() Yes No No No

PendSemaphore() Yes No No No

PopCriticalRegion() Yes Yes No No

PopNestedCriticalRegions() Yes Yes No No

PopNestedUnscheduledRegions() Yes No No No

PopUnscheduledRegion() Yes No No No

PostDeviceFlag() Yes Yes No No

PostMessage() Yes No No No

PostSemaphore() Yes Yes No No

PushCriticalRegion() Yes Yes No No

PushUnscheduledRegion() Yes No No No

ReleaseMutex() Yes No No No

RemovePeriodic() Yes No No No

ReplaceHistorySubroutine() Yes Yes No Yes

ResetPriority() Yes No No No

SetClockFrequency() Yes No No Yes

SetEventBit() Yes No No No

SetInterruptMaskBits() Yes Yes No Yes

SetInterruptMaskBitsEx() Yes Yes No Yes

SetMessagePayload() Yes No No No

SetPriority() Yes No No No

SetThreadError() Yes No No No

SetThreadSlotValue() Yes No No No

SetTickPeriod() Yes No No Yes

Table 5-24. API Validity Levels (Cont’d)

API Function Thread Level Kernel Level ISR Level Startup

VDK API Validity

5-24 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Sleep() Yes No No No

SyncRead() Yes No No No

SyncWrite() Yes No No No

VDK_ISR_ACTIVATE_DEVICE_() No No Yes No

VDK_ISR_CLEAR_EVENTBIT_() No No Yes No

VDK_ISR_LOG_HISTORY_() No No Yes No

VDK_ISR_POST_SEMAPHORE_() No No Yes No

VDK_ISR_SET_EVENTBIT_() No No Yes No

Yield() Yes No No No

Table 5-24. API Validity Levels (Cont’d)

API Function Thread Level Kernel Level ISR Level Startup

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-25

VDK API Reference

API Functions
The following format applies to all of the entries in the library reference
section.

• C Prototype – Provides the C prototype (as it is found in VDK.h)
describing the interface to the function

• C++ Prototype – Provides the C++ prototype (as it is found in
VDK.h) describing the interface to the function

• Description – Describes the function’s operation

• Parameters – Describes the function’s parameters

• Scheduling – Specifies whether the function invokes the scheduler

• Determinism – Specifies whether the function is deterministic

• Return Value – Describes the function’s return value

• Errors Dispatched – Specifies errors detected by VDK that can be
dealt with by the thread’s error-handling routines

VDK API Validity

5-26 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

AcquireMutex()

C Prototype
void VDK_AcquireMutex(VDK_MutexID inMutexID);

C++ Prototype
void VDK::AcquireMutex(VDK::MutexID inMutexID);

Description

Provides the mechanism that allows threads to acquire ownership of
mutexes.

When a mutex is created, it has no owner. If a thread acquires a mutex,
and the mutex is not owned, then that thread becomes the mutex owner,
and the processor control returns to the running thread.

A mutex is available and can be acquired by the current thread when the
mutex has no owner and there are no threads of higher priority waiting to
acquire the mutex. If a thread tries to acquire a mutex owned by a differ-
ent thread, the current thread stops execution until the mutex is released
by its owner and becomes available.

VDK mutexes are recursive, enabling calls to AcquireMutex() be nested.
This means that a mutex can be acquired by its owner multiple times. The
mutex ownership is released only when ReleaseMutex() has been called
once for each time that the mutex was acquired. At that point the mutex
becomes available to all threads, and the mutex can be acquired without
stopping execution.

Parameters

inMutexID of type MutexID is the mutex the thread is trying to acquire.

Scheduling

Invokes the scheduler and can result in a context switch

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-27

VDK API Reference

Determinism

Constant time if no other threads own the mutex

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMutexID indicates that inMutexID is not a mutex created
by the CreateMutex() API

• kDbgPossibleBlockInRegion indicates that AcquireMutex() is
being called in an unscheduled region, causing a potential schedul-
ing conflict

• kBlockInInvalidRegion indicates that AcquireMutex() is trying to
block in an unscheduled region, causing a scheduling conflict

• kInvalidMutexOwner indicates that the mutex owner was destroyed,
and the mutex could never become available

Non error-checking libraries: none

VDK API Validity

5-28 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

AllocateThreadSlot()

C Prototype
bool VDK_AllocateThreadSlot(int *ioSlotNum);

C++ Prototype
bool VDK::AllocateThreadSlot(int *ioSlotNum);

Description

Assigns a new slot number if *ioSlotNum = VDK::kTLSUnallocated and
enters the allocated *ioSlotNum into the global slot identifier table.

• Returns FALSE immediately if the value of *ioSlotNum is not equal
to VDK::kTLSUnallocated (INT_MIN) to guard against multiple
attempts to allocate the same key variable

• Returns FALSE if there are no free slots, in which case *ioSlotNum is
still VDK::kTLSUnallocated

• Otherwise allocates the first available slot, places the slot number
in *ioSlotNum, and returns TRUE

• Does not access (change) any thread state

• Guaranteed to return TRUE once only for a given key variable, so
the return value may be used to control other one-time library
initializations

• May be safely called during system initialization (that is, before any
threads are running)

• Equivalent to calling AllocateThreadSlot() with a NULL cleanup
function

Parameters

ioSlotNum is a pointer to a slot identifier.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-29

VDK API Reference

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

TRUE upon success and FALSE upon failure

Errors Dispatched

None

VDK API Validity

5-30 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

AllocateThreadSlotEx()

C Prototype

bool VDK_AllocateThreadSlotEx(int *ioSlotNum,

void(*cleanupFn)(void*));

C++ Prototype

bool VDK::AllocateThreadSlotEx(int *ioSlotNum,

void(*cleanupFn)(void*));

Description

Assigns a new slot number if *ioSlotNum = VDK::kTLSUnallocated and
enters the allocated *ioSlotNum into the global slot identifier table.

• Returns FALSE immediately if the value of *ioSlotNum is not equal
to VDK::kTLSUnallocated (INT_MIN) to guard against multiple
attempts to allocate the same key variable

• Returns FALSE if there are no free slots, in which case *ioSlotNum is
still VDK::kTLSUnallocated

• Otherwise, allocates the first available slot, places the slot number
in *ioSlotNum, stores the cleanupFn pointer internally, and returns
TRUE

• Does not access (change) any thread state

• Guaranteed to return TRUE once only for a given key variable, so
the return value may be used to control other one time library
initialization

• May be safely called during system initialization; that is, before any
threads are running

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-31

VDK API Reference

Parameters

ioSlotNum is a pointer to a slot identifier.

cleanupFn is a pointer to a function to handle cleanup of thread-specific
data in the event of thread destruction and:

• May be NULL, in which case it does nothing

• Is called from within DestroyThread()

• Executes in the context of the calling thread, not the thread that is
being destroyed

• Is only called when the slot value is not NULL

• The free() function may be used as the cleanup function where
the slot is used to hold malloc’ed data

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

TRUE upon success and FALSE upon failure

Errors Dispatched

None

VDK API Validity

5-32 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ClearEventBit()

C Prototype
void VDK_ClearEventBit(VDK_EventBitID inEventBitID);

C++ Prototype
void VDK::ClearEventBit(VDK::EventBitID inEventBitID);

Description

The ClearEventBit() clears the value of the event bit; that is, sets it to
FALSE, NULL, or 0. Once the event bit is cleared, the value of each depen-
dent event is recalculated. If several event bits are to be cleared (or set) as a
single operation, then the SetEventBit() and/or ClearEventBit() calls
are made from within an unscheduled region. Event recalculation does not
occur until the unscheduled region is popped.

Parameters

inEventBitID is the system event bit to clear (see EventBitID).

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-33

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownEventBit indicates that inEventBitID is not a valid
EventBitID

Non error-checking libraries: none

VDK API Validity

5-34 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ClearInterruptMaskBits()

C Prototype
void VDK_ClearInterruptMaskBits(VDK_IMASKStruct inMask);

C++ Prototype
void VDK::ClearInterruptMaskBits(VDK::IMASKStruct inMask);

Description

Clears bits in the interrupt mask (see IMASKStruct). In other words, the
new mask is computed as the bitwise AND of the old mask and the one’s
complement of the inMask parameter.

The API does not have the expected behavior when called before
VDK_Initialize(), from boot thread constructors or from the Init part of
device drivers.

Parameters

inMask specifies which bits are cleared in the IMASKStruct.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-35

VDK API Reference

ClearInterruptMaskBitsEx()

C Prototype

void VDK_ClearInterruptMaskBitsEx(VDK_IMASKStruct inMask,

VDK_IMASKStruct inLMask);

C++ Prototype

void VDK::ClearInterruptMaskBitsEx(VDK::IMASKStruct inMask,

VDK::IMASKStruct inLMask);

Description

Clears bits in the IMASK and LMASK interrupt masks (where LMASK is the
mask component of the IRPTL register). Any bits set in the parameters are
cleared in the relevant interrupt mask. In other words, the new masks are
computed as the bitwise AND of the old mask and the one’s complement of
the specified IMASKStruct. The bits specified for inLMask are shifted by
the relevant amount for the processor in question, thereby allowing the
use of the bit definitions for the LIRPTL register.

The API does not have the expected behavior when called before
VDK_Initialize(), from boot thread constructors or from the Init part of
device drivers.

The API applies to the ADSP-2116x, ADSP-2126x, ADSP-213xx,
and ADSP-2146x SHARC processors.

Parameters

inMask specifies which bits should be cleared in the IMASK interrupt mask.

inLMask specifies which bits should be cleared in the LMASK interrupt
mask.

VDK API Validity

5-36 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMaskBit if any of the bits in inLmask do not refer to an
interrupt mask (see IMASKStruct)

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-37

VDK API Reference

ClearThreadError()

C Prototype
void VDK_ClearThreadError(void);

C++ Prototype
void VDK::ClearThreadError(void);

Description

Sets the running thread’s error status to kNoError and the error value to
zero

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

None

VDK API Validity

5-38 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

CloseDevice()

C Prototype
void VDK_CloseDevice(VDK_DeviceDescriptor inDD);

C++ Prototype
void VDK::CloseDevice(VDK::DeviceDescriptor inDD);

Description

Closes the specified device. The function calls the dispatch function of the
device opened with inDD.

Parameters

inDD is the DeviceDescriptor returned from OpenDevice()

Scheduling

Does not invoke the scheduler, but the user-written device driver can call
the scheduler

Determinism

Constant time. Note that this function calls user-written device driver
code that may not be deterministic.

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kBadDeviceDescriptor indicates that inDD is not a valid
DeviceDescriptor

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-39

VDK API Reference

Non error-checking libraries: none

Other errors can be dispatched by user-written device driver code
executed by this API.

VDK API Validity

5-40 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

CreateDeviceFlag()

C Prototype
VDK_DeviceFlagID VDK_CreateDeviceFlag(void);

C++ Prototype
VDK::DeviceFlagID VDK::CreateDeviceFlag(void);

Description

Creates a new device flag and returns its identifier (DeviceFlagID)

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

New DeviceFlagID upon success and UINT_MAX upon failure

Errors Dispatched

Full instrumentation and error-checking libraries:

• kDeviceFlagCreationFailure indicates that the kernel is not able
to allocate and/or initialize memory for the device flag

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-41

VDK API Reference

CreateMessage()

C Prototype

VDK_MessageID VDK_CreateMessage(int inPayloadType,

unsigned int inPayloadSize,

void *inPayloadAddr);

C++ Prototype

VDK::MessageID VDK::CreateMessage(int inPayloadType,

unsigned int inPayloadSize,

void *inPayloadAddr);

Description

Creates and initializes a new message object. The return value is the iden-
tifier of the new message (see MessageID). The values passed to
CreateMessage() can be read by calling GetMessagePayload() and can be
reset by calling FreeMessagePayload(). The calling thread becomes the
owner of the new message.

Parameters

The inPayloadType is a user-defined value that may be used to convey
additional information about the message and/or the payload to the
receiving thread. This value is not used or modified by the kernel, except
that negative values of payload type are reserved for use by VDK. Positive
payload types are reserved for use by the application code. It is recom-
mended that the payload address and size are always interpreted in the
same way for each distinct message type.

The inPayloadSize is the length of the payload buffer in the smallest
addressable unit on the processor architecture (sizeof(char)). When
inPayloadSize has a value of zero, the kernel assumes inPayloadAddr is
not a pointer and may contain any user value of the same size.

VDK API Validity

5-42 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The inPayloadAddr is a pointer to the start of the data being passed in the
message.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

New MessageID upon success and UINT_MAX upon failure

Errors Dispatched

Full instrumentation and error-checking libraries:

• kErrorMallocBlock indicates that there are no free blocks in the
system memory pool used to allocate messages

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-43

VDK API Reference

CreateMutex()

C Prototype
VDK_MutexID VDK_CreateMutex(void);

C++ Prototype
VDK::MutexID VDK::CreateMutex(void);

Description

Creates and initializes a new mutex object, which can be used for mutual
exclusion. The return value is the identifier of the new mutex. When a
mutex is created, it has no owner. If a thread wants to acquire the owner-
ship of a mutex, it must use AcquireMutex().

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

New MutexID upon success and UINT_MAX upon failure

Errors Dispatched

Full instrumentation and error-checking libraries:

• kMutexCreationFailure indicates that the kernel is not able to allo-
cate and/or initialize memory for the mutex

VDK API Validity

5-44 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-45

VDK API Reference

CreatePool()

C Prototype

VDK_PoolID VDK_CreatePool(unsigned int inBlockSz,

unsigned int inBlockCount,

bool inCreateNow);

C++ Prototype

VDK::PoolID VDK::CreatePool(unsigned int inBlockSz,

unsigned int inBlockCount,

bool inCreateNow);

Description

Creates a new memory pool in the system heap and returns the pool iden-
tifier (PoolID).

Parameters

inBlockSz specifies the block size in the lowest addressable unit.

inBlockCount specifies the total number of blocks in the pool.

inCreateNow indicates whether the block construction is done at runtime
on an on-demand basis (FALSE) or as a part of the creation process (TRUE).

Scheduling

Does not invoke the scheduler

Determinism

Constant time if inCreateNow is FALSE.

Not deterministic if inCreateNow value is TRUE.

VDK API Validity

5-46 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

New PoolID upon success and UINT_MAX upon failure

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidPoolParms indicates that either inBlockSz or inBlock-
Count is zero

• kPoolCreationFailure indicates that the kernel is not able to allo-
cate and/or initialize memory for the pool

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-47

VDK API Reference

CreatePoolEx()

C Prototype

VDK_PoolID VDK_CreatePoolEx(unsigned int inBlockSz,

unsigned int inBlockCount,

bool inCreateNow,

int inWhichHeap);

C++ Prototype

VDK::PoolID VDK::CreatePoolEx(unsigned int inBlockSz,

unsigned int inBlockCount,

bool inCreateNow,

int inWhichHeap);

Description

Creates a new memory pool in the specified heap and returns the pool
identifier (PoolID). When architectures do not support multiple heaps,
inWhichHeap must be initialized to zero. Refer to Appendix A, “Proces-
sor-Specific Notes” on page A-1 for architecture-specific information.

Parameters

inBlockSz specifies the block size in the lowest addressable units.

inBlockCount specifies the total number of blocks in the pool.

inCreateNow indicates whether block construction is done at runtime on
an done on-demand basis (FALSE) or as a part of the creation process
(TRUE).

inWhichHeap specifies the heap in which the pool is to be created. This
parameter is ignored on single heap architectures. Setting the value of
inWhichHeap to zero specifies the default heap to be used.

VDK API Validity

5-48 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not invoke the scheduler

Determinism

Constant time if inCreateNow is FALSE. Not deterministic if inCreateNow
value is TRUE.

Return Value

New PoolID upon success and UINT_MAX upon failure

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidPoolParms indicates that either inBlockSz or inBlock-
Count is zero

• kPoolCreationFailure indicates that the kernel is not able to allo-
cate and/or initialize memory for the pool

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-49

VDK API Reference

CreateSemaphore()

C Prototype

VDK_SemaphoreID VDK_CreateSemaphore(

unsigned int inInitialValue,

unsigned int inMaxCount,

VDK_Ticks inInitialDelay,

VDK_Ticks inPeriod);

C++ Prototype

VDK::SemaphoreID VDK::CreateSemaphore(

unsigned int inInitialValue,

unsigned int inMaxCount,

VDK::Ticks inInitialDelay,

VDK::Ticks inPeriod);

Description

Creates and initializes a dynamic semaphore. If the value of inPeriod is
non-zero, a periodic semaphore is created.

Parameters

The inInitialValue is the value the semaphore has once it is created. A
value of zero indicates that the semaphore is unavailable. This value
should be between zero and inMaxCount.

The inMaxCount is the maximum number the semaphore’s count can reach
when posting it. An inMaxCount of one creates a binary semaphore.

The inInitialDelay is the number of Ticks before the first posting of a
periodic semaphore. inInitialDelay must be equal to or greater than one.

VDK API Validity

5-50 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The inPeriod specifies the period property of the semaphore and the
number of Ticks to sleep at each cycle after the semaphore is first posted.
If inPeriod is zero, the created semaphore is not periodic.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

New SemaphoreID upon success and UINT_MAX upon failure

Errors Dispatched

Full instrumentation and error-checking libraries:

• kMaxCountExceeded indicates that inInitialValue is greater than
inMaxCount

• kSemaphoreCreationFailure indicates that the kernel is not able to
allocate and/or initialize memory for the semaphore

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-51

VDK API Reference

CreateThread()

C Prototype
VDK_ThreadID VDK_CreateThread(VDK_ThreadType inType);

C++ Prototype
VDK::ThreadID VDK::CreateThread(VDK::ThreadType inType);

Description

Creates a thread of the specified type and returns the new thread. The
CreateThread() API must not be called from within a thread constructor.

Parameters

The inType corresponds to a ThreadType defined in the VDK.h and
VDK.cpp files. These files contain the default values for the stack size, ini-
tial priority, and other properties.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

New ThreadID upon success and UINT_MAX upon failure

VDK API Validity

5-52 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownThreadType indicates that inType is not an element of the
ThreadType, as defined in VDK.h

• kThreadCreationFailure indicates that the kernel is not able to
allocate and/or initialize memory for the thread

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-53

VDK API Reference

CreateThreadEx()

C Prototype
VDK_ThreadID VDK_CreateThreadEx(

VDK_ThreadCreationBlock *inOutTCB);

C++ Prototype
VDK::ThreadID VDK::CreateThreadEx(

VDK::ThreadCreationBlock *inOutTCB);

Description

Creates a thread with the specified characteristics and returns the new
thread. The CreateThreadEx() API must not be called from within a
thread constructor.

Parameters

inOutTCB is a pointer to a structure of the ThreadCreationBlock data type.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

New ThreadID upon success and UINT_MAX upon failure

VDK API Validity

5-54 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownThreadType indicates that inType is not an element of the
ThreadType, as defined in VDK.h

• kThreadCreationFailure indicates that the kernel is not able to
allocate and/or initialize memory for the thread

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-55

VDK API Reference

CreateThreadEx2()

C Prototype
VDK_ThreadID VDK_CreateThreadEx2(

VDK_ThreadCreationBlock *inOutTCB,

unsigned int inFieldsRequired);

C++ Prototype
VDK::ThreadID VDK::CreateThreadEx2(

VDK::ThreadCreationBlock *inOutTCB,

unsigned int inFieldsRequired);

Description

VDK_CreateThreadEx2() is available in VisualDSP++ 5.0 update 9 and
later. The API applies to Blackfin and SHARC processors only.

Creates a thread with the specified characteristics and returns the new
thread.

When creating a new thread using CreateThreadEx2(), the inFieldsRe-
quired argument specifies which default ThreadType parameters are
overridden with values from inOutTCB.

Each field in inOutTCB is represented by a corresponding bit in inField-
sRequired. If a bit in inFieldsRequired is set (1), the contents of the
matching field in inOutTCB is used when creating the thread. If a bit in
inFieldsRequired is clear (0), the matching field in the inOutTCB is
ignored, and the default setting is used.

VDK provides an enumeration, TCBBitfield, which provides names for
the different bits that can be asserted in inFieldsRequired. The flags pro-
vided by the enumeration can be ORed together to specify multiple
parameters to override.

When creating a thread using a ThreadType defined in the Kernel tab, you
must pass the kSetThreadTemplateID flag into inFieldsRequired.

VDK API Validity

5-56 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

On Blackfin processors, VDK uses the thread stack to store the thread’s
context information. When manually allocating a thread stack for a Black-
fin application, ensure that the area of allocated memory is large enough
to store the information. In this case, it is important that the size of allo-
cated memory is ‘the stack size + the context area size’. The API
GetContextRecordSize() is provided to query the size of the context area.

Parameters

inOutTCB is a pointer to a structure of the ThreadCreationBlock data type.

inFieldsRequired specifies which fields in the ThreadCreationBlock
structure are used to replace the default parameters for the ThreadType.
For a list of valid flags that can be passed into this parameter, see the TCB-
Bitfield data type description

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

New ThreadID upon success and UINT_MAX upon failure

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-57

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• kIncompatibleArguments indicates one of the following.

• Neither kSetThreadTemplateID nor kSetThreadTemplate-
Pointer has been specified in inFieldsRequired.

• Both kSetThreadTemplateID and kSetThreadTemplate-
Pointer have been specified in inFieldsRequired.

• Both kSetThreadStackPointer and kSetStackHeap have
been specified in inFieldsRequired.

• kSetThreadStackPointer has been specified in inFieldsRe-
quired, but kSetThreadStackSize has not been specified.

• kInvalidPointer indicates one of the following.

• inOutTCB—>stack_pointer is not correctly aligned. This
error is only checked when kSetThreadStackPointer has
been specified in inFieldsRequired.

• inOutTCB—>pTemplate is NULL, and kSetThreadTemplate-
Pointer has been specified in inFieldsRequired.

• kThreadCreationFailure indicates that the kernel is not able to
allocate and/or initialize memory for the thread.

• kUnknownThreadType indicates that inOutTCB–>template_id is not
a valid thread type (ThreadType) as declared in the VDK Kernel
tab.

Non error-checking libraries: none

VDK API Validity

5-58 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

DestroyDeviceFlag()

C Prototype
void VDK_DestroyDeviceFlag(VDK_DeviceFlagID inDeviceFlagID);

C++ Prototype
void VDK::DestroyDeviceFlag(VDK::DeviceFlagID inDeviceFlagID);

Description

Deletes the device flag from the system and releases the associated memory

Parameters

inDeviceFlagID specifies the device flag (DeviceFlagID) to be destroyed.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidDeviceFlag indicates that inDeviceFlagID is not a valid
DeviceFlagID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-59

VDK API Reference

DestroyMessage()

C Prototype
void VDK_DestroyMessage(VDK_MessageID inMessageID);

C++ Prototype
void VDK::DestroyMessage(VDK::MessageID inMessageID);

Description

Destroys a message object. Only the thread that is the owner of a message
can destroy it. The message payload memory is assumed to be freed by the
user thread. DestroyMessage() does not free the payload and results in a
memory leak if the memory is not freed.

Parameters

inMessageID is the MessageID of the message to be destroyed.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

VDK API Validity

5-60 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageID indicates the inMessageID is not a valid
MessageID

• kInvalidMessageOwner indicates the thread attempting to destroy
the message is not the current owner

• kMessageInQueue indicates the message is posted to a thread which
ThreadID is not known at this point, and the message needs to be
removed from the message queue by a call to PendMessage()

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-61

VDK API Reference

DestroyMessageAndFreePayload()

C Prototype

void VDK_DestroyMessageAndFreePayload(

VDK_MessageID inMessageID);

C++ Prototype

void VDK::DestroyMessageAndFreePayload(

VDK::MessageID inMessageID);

Description

Destroys a message object. Only the thread that is the owner of a message
can destroy it. If the payload is of a marshalled type (that is, the sign bit of
the payload type code is set), then the payload is freed by calling the type
marshalling function with the RELEASE code.

Parameters

inMessageID is the MessageID of the message to be destroyed.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

VDK API Validity

5-62 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageID indicates the inMessageID is not a valid
MessageID

• kInvalidMessageOwner indicates the thread attempting to destroy
the message is not the current owner

• kMessageInQueue indicates the message is posted to a thread which
ThreadID is not known at this point, and the message needs to be
removed from the message queue by a call to PendMessage()

Non error-checking libraries: none

Other errors can be dispatched by the user-supplied marshalling
function or by functions called by it.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-63

VDK API Reference

DestroyMutex()

C Prototype
void VDK_DestroyMutex(VDK_MutexID inMutexID);

C++ Prototype
void VDK::DestroyMutex(VDK::MutexID inMutexID);

Description

Destroys the mutex associated with inMutexID and frees any memory asso-
ciated with the mutex. The destruction does not take place if the mutex
has an owner because threads might be waiting to acquire it. This case
results in an error dispatched in full instrumentation and error-checking
builds.

Parameters

inMutexID of type MutexID is the mutex the thread is trying to release

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

VDK API Validity

5-64 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMutexID indicates that inMutexID is not a mutex created
by the CreateMutex() API

• kMutexDestructionFailure indicates that the mutex cannot be
destroyed because it has an owner and other threads may be wait-
ing to acquire it

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-65

VDK API Reference

DestroyPool()

C Prototype
void VDK_DestroyPool(VDK_PoolID inPoolID);

C++ Prototype
void VDK::DestroyPool(VDK::PoolID inPoolID);

Description

Deletes the pool and cleans up the memory associated with it. If there are
any allocated blocks (which are not freed yet), an error is dispatched in the
fully instrumented and error-checking builds, and the pool is not
destroyed. In the non error-checking build, the pool is destroyed.

Parameters

inPoolID specifies the pool to delete (see PoolID).

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

VDK API Validity

5-66 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidPoolID indicates that the inPoolID (PoolID) is not valid

• kErrorPoolNotEmpty indicates the pool is not empty (there are
some blocks that are not freed) and cannot be destroyed

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-67

VDK API Reference

DestroySemaphore()

C Prototype
void VDK_DestroySemaphore(VDK_SemaphoreID inSemaphoreID);

C++ Prototype
void VDK::DestroySemaphore(VDK::SemaphoreID inSemaphoreID);

Description

Destroys the semaphore associated with inSemaphoreID. The destruction
does not take place if there is any thread pending on the semaphore,
resulting in an error dispatched in fully instrumented and error-checking
builds.

Parameters

inSemaphoreID is the semaphore to destroy (see SemaphoreID).

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

VDK API Validity

5-68 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kSemaphoreDestructionFailure indicates the semaphore cannot be
destroyed because there are threads pending on it

• kUnknownSemaphore indicates inSemaphoreID is not a valid
SemaphoreID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-69

VDK API Reference

DestroyThread()

C Prototype

void VDK_DestroyThread(VDK_ThreadID inThreadID,

bool inDestroyNow);

C++ Prototype

void VDK::DestroyThread(VDK::ThreadID inThreadID,

bool inDestroyNow);

Description

Initiates the process of removing the specified thread from the system.
Although the scheduler never runs the thread again once this function
completes, the kernel may optionally defer deallocation of the memory
resources associated with the thread to the Idle thread. Any references to
the destroyed thread are invalid and can dispatch an error. For more infor-
mation about the low-priority thread, see “Idle Thread” on page 3-18.

Parameters

inThreadID of type ThreadID specifies the thread to remove from the
system.

inDestroyNow indicates whether the thread’s memory is recovered now
(TRUE) or recovered in the low-priority IDLE thread (FALSE).

Scheduling

Invokes the scheduler and results in a context switch only if a thread
passes itself to DestroyThread()

Determinism

Constant time if inDestroyNow is FALSE, not deterministic otherwise

VDK API Validity

5-70 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownThread indicates inThreadID is not a valid ThreadID

• kInvalidThread indicates there is a intention to destroy the Idle
Thread

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-71

VDK API Reference

DeviceIOCtl()

C Prototype

int VDK_DeviceIOCtl(VDK_DeviceDescriptor inDD,

void *inCommand,

char *inParameters);

C++ Prototype

int VDK::DeviceIOCtl(VDK::DeviceDescriptor inDD,

void *inCommand,

char *inParameters);

Description

Controls the specified device. The inCommand and inParameters are passed
unchanged to the device driver.

Parameters

inDD is the DeviceDescriptor returned from OpenDevice().

inCommand are the device driver’s specific commands.

inParameters are the device driver’s specific parameters for the above
commands.

Scheduling

Does not invoke the scheduler, but the user-written device driver can call
the scheduler

Determinism

Constant time

VDK API Validity

5-72 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Note that this function calls user-written device driver code that may not
be deterministic.

Return Value

Returns the dispatch function’s value if the device exists. If the device does
not exist, DeviceIOCtl() returns the return value of the DispatchThread-
Error() API for the particular error if the thread’s error function does not
go to KernelPanic.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kBadDeviceDescriptor indicates that inDD is not a valid
DeviceDescriptor

Non error-checking libraries: none

Other errors can be dispatched by user-written device driver code
executed by this API.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-73

VDK API Reference

DispatchThreadError()

C Prototype

int VDK_DispatchThreadError(VDK_SystemError inErr,
const int inVal);

C++ Prototype

int VDK::DispatchThreadError(VDK::SystemError inErr,

const int inVal);

Description

Sets the error and error’s value in the currently running thread and calls
the thread’s error function. If DispatchThreadError() is called before
VDK is initialized, DispatchThreadError() goes to KernelPanic with Pan-
icCode kBootError. The SystemError and panic values are the arguments
inErr and inVal passed to DispatchThreadError().

Parameters

inErr is the error enumeration. See SystemError for more information
about errors.

inVal is the value whose meaning is determined by the error enumeration.

Scheduling

Does not invoke the scheduler, but the thread exception handler can
invoke the scheduler

Determinism

Not deterministic

VDK API Validity

5-74 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

The return value of the current thread’s error handler

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-75

VDK API Reference

ForwardMessage()

C Prototype

void VDK_ForwardMessage(VDK_ThreadID inRecipient,

VDK_MessageID inMessageID,

VDK_MsgChannel inChannel,

VDK_ThreadID inPseudoSender);

C++ Prototype

void VDK::ForwardMessage(VDK::ThreadID inRecipient,

VDK::MessageID inMessageID,

VDK::MsgChannel inChannel,

VDK::ThreadID inPseudoSender);

Description

Identical to PostMessage(), except that the sender attribute of the message
is set to the value of the inPseudoSender argument, instead of the ID of
the current thread.

This function is useful where message loopback is being employed between
two threads (that is, the received message is returned to the sender rather
than being destroyed), and a third thread needs to be inserted transpar-
ently into the loop.

By querying the message’s sender attribute (using
GetMessageReceiveInfo(), and then passing it as the inPseudoSender
argument to ForwardMessage(), this third thread can ensure that the mes-
sage is returned to the original sender rather than to itself.

Parameters

inRecipient is the ThreadID of the thread receiving the message.

VDK API Validity

5-76 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

inMessageID is the MessageID of the sent message. A message must be cre-
ated before it is posted. This parameter is a return value of the call to
CreateMessage().

inChannel is the FIFO within the recipient’s message queue on which the
message is appended. Its value is kMsgChannel1 through
kMessageChannel15 (see MsgChannel).

inPseudoSender is the ThreadID stored in the sender attribute of the
message.

Scheduling

Non-blocking but invokes the scheduler and may result in a context
switch

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageChannel indicates the inChannel is not a value
defined in MsgChannel

• kUnknownThread indicates inRecipient is not a valid ThreadID

• kInvalidMessageID indicates inMessageID is not a valid MessageID

• kInvalidMessageRecipient indicates inRecipient does not have a
message queue as it has not been enabled for messaging

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-77

VDK API Reference

• kInvalidMessageOwner indicates the thread attempting to post the
message is not the current owner. The error value is the ThreadID
of the owner

• kMessageInQueue indicates the message is posted to a thread which
ThreadID is not known at this point, and the message needs to be
removed from the message queue by a call to PendMessage()

Non error-checking libraries: none

VDK API Validity

5-78 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

FreeBlock()

C Prototype
void VDK_FreeBlock(VDK_PoolID inPoolID, void *inBlockPtr);

C Prototype
void VDK::FreeBlock(VDK::PoolID inPoolID, void *inBlockPtr);

Description

Frees the specified block and returns it to the free block list

Parameters

inPoolID specifies the pool from which the block is to be freed (see
PoolID).

inBlockPtr specifies the block to free.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-79

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidBlockPointer indicates inBlockPtr is not a valid pointer
from inPoolID

• kInvalidPoolID indicates inPoolID is not a valid PoolID

 Non error-checking libraries: none

VDK API Validity

5-80 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

FreeDestroyedThreads()

C Prototype
void VDK_FreeDestroyedThreads(void);

C++ Prototype
void VDK::FreeDestroyedThreads(void);

Description

Frees the memory held by the destroyed threads whose resources have not
been released by the Idle thread. For more information, see “Idle Thread”
on page 3-18.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-81

VDK API Reference

FreeMessagePayload()

C Prototype
void VDK_FreeMessagePayload(VDK_MessageID inMessageID);

C++ Prototype
void VDK::FreeMessagePayload(VDK::MessageID inMessageID);

Description

If the payload of the specified message object is of a marshalled type (that
is, the sign bit of the payload type code is set), then the payload is freed
without destroying the message object itself. Only the thread that is the
owner of a message can free its payload. The payload is freed by calling the
type marshalling function with the RELEASE code.

The payload type, size, and address attributes of the message object are all
set to zero.

Parameters

inMessageID is the MessageID of the message to be destroyed.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

VDK API Validity

5-82 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageID indicates inMessageID is not a valid MessageID

• kInvalidMessageOwner indicates the thread attempting to destroy
the message is not the current owner

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and the message
needs to be removed from the message queue by a call to
PendMessage()

Non error-checking libraries: none

Other errors may be dispatched by the user-supplied marshalling
function, or by functions called by it.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-83

VDK API Reference

FreeThreadSlot()

C Prototype
bool VDK_FreeThreadSlot(int inSlotNum);

C++ Prototype
bool VDK::FreeThreadSlot(int inSlotNum);

Description

Releases and clears the slot table entry in the currently running thread’s
slot table associated with inSlotNum and:

• Returns FALSE if (and only if) the key does not identify a currently
allocated slot

• Releases the slot identified by inSlotNum, which was previously cre-
ated with the AllocateThreadSlot() function

The application must ensure that no thread local data is associated with
the key at the time it is freed. Any specified cleanup functions
(see AllocateThreadSlot()) are called only on thread destruction.

Parameters

inSlotNum is the static library’s preallocated slot number.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

VDK API Validity

5-84 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

TRUE upon success and FALSE upon failure.

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-85

VDK API Reference

GetAllDeviceFlags()

C Prototype

int VDK_GetAllDeviceFlags(

VDK_DeviceFlagID outDevFlagIDArray[],

int inArraySize);

C++ Prototype

int VDK::GetAllDeviceFlags(

VDK::DeviceFlagID outDevFlagIDArray[],

int inArraySize);

Description

Returns the current number of device flags in the system and fills a sup-
plied array with the corresponding device flag identifiers. Where the
number of identified device flags is greater than the size of the supplied
array, the array is filled to capacity and the function returns. It is the
responsibility of the user to allocate sufficient memory for this API call.
The macro VDK_kMaxNumActiveDevFlags defined in VDK.h is set to the
maximum number of device flags allowed in the application, as defined on
the VDK Kernel tab.

Parameters

outDevFlagIDArray points to an array for the return of the device flags
identified in the system. The memory for the array must be allocated prior
to calling the API. If the size of the array is not sufficient to hold all of the
identified device flags, then the array is filled with as many DeviceFlagIDs
as possible before the function returns.

Note that the supplied array is not populated in any order. DeviceFlagIDs
are entered into the array as they are identified in the system.

VDK API Validity

5-86 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

inArraySize is the number of DeviceFlagID elements in the supplied
array. If inArraySize is zero, then only the number of device flags in the
system is determined and returned.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

Returns the number of device flags identified in the system

Errors Dispatched

• Fully instrumented and error checking libraries:

• kInvalidPointer if outDevFlagIDArray is NULL and inAr-
raySize is not 0.

• Non error checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-87

VDK API Reference

GetAllMemoryPools()

C Prototype
int VDK_GetAllMemoryPools(VDK_PoolID outPoolIDArray[],

int inArraySize);

C++ Prototype
int VDK::GetAllMemoryPools(VDK::PoolID outPoolIDArray[],

int inArraySize);

Description

Returns the current number of memory pools in the system and fills a sup-
plied array with the corresponding memory pool identifiers. Where the
number of identified memory pools is greater than the size of the supplied
array, the array is filled to capacity and the function returns. It is the
responsibility of the user to allocate sufficient memory for this API call.
The VDK_kMaxNumActiveMemoryPools macro, defined in VDK.h, is set to the
maximum number of memory pools allowed in the application, as defined
on the VDK Kernel tab.

Parameters

outPoolIDArray points to an array for the return of the memory pools
identified in the system. The memory for the array must be allocated prior
to calling the API. If the size of the array is not sufficient to hold all of the
identified memory pools, then the array is filled to capacity with PoolIDs
and then the function returns.

Please note that the supplied array is not populated in any order. PoolIDs
are entered into the array as they are identified in the system.

inArraySize is the number of PoolID elements in the supplied array. If
inArraySize is zero, then only the number of memory pools in the system
is determined and returned.

VDK API Validity

5-88 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

Returns the number of memory pools identified in the system

Errors Dispatched

• Fully instrumented and error checking libraries:

• kInvalidPointer if outPoolIDArray is NULL and inArray-
Size is not 0.

• Non error checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-89

VDK API Reference

GetAllMessages()

C Prototype
int VDK_GetAllMessages(VDK_MessageID outMessageIDArray[],

int inArraySize);

C++ Prototype
int VDK::GetAllMessages(VDK::MessageID outMessageIDArray[],

int inArraySize);

Description

Returns the current number of messages in the system and fills a supplied
array with the corresponding message identifiers. Where the number of
identified messages is greater than the size of the supplied array, the array
is filled to capacity. It is the responsibility of the user to allocate sufficient
memory for this API call. The VDK_kMaxNumActiveMessages macro,
defined in VDK.h, is set to the maximum number of messages allowed in
the application, as defined on the VDK Kernel tab.

Parameters

outMessageIDArray points to an array for the return of the messages iden-
tified in the system. The memory for the array must be allocated prior to
the API call. If the size of the array is not sufficient to hold all of the iden-
tified messages, then the array is filled to capacity with MessageIDs and
then the function returns.

Please note that the supplied array is not populated in any order. Message-
IDs are entered into the array as they are identified in the system.

inArraySize is the number of MessageID elements allocated by the user in
the supplied array. If inArraySize is zero, then only the number of mes-
sages in the system is determined.

VDK API Validity

5-90 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

Returns the current number of messages in the system

Errors Dispatched

• Fully instrumented and error checking libraries:

• kInvalidPointer if outMessageIDArray is NULL and inAr-
raySize is not 0

• Non error checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-91

VDK API Reference

GetAllSemaphores()

C Prototype
int VDK_GetAllSemaphores(

VDK_SemaphoreID outSemaphoreIDArray[],

int inArraySize);

C++ Prototype
int VDK::GetAllSemaphores(

VDK::SemaphoreID outSemaphoreIDArray[],

int inArraySize);

Description

Returns the current number of semaphores in the system and fills a sup-
plied array with the corresponding semaphore identifiers. Where the
number of identified semaphores is greater than the size of the supplied
array, the array is filled to capacity. It is the responsibility of the user to
allocate sufficient memory for this API call. The
VDK_kMaxNumActiveSemaphores macro, defined in VDK.h, is set to the max-
imum number of semaphores allowed in the application, as defined on the
VDK Kernel tab.

Parameters

outSemaphoreIDArray points to an array for the return of the semaphores
identified in the system. The memory for the array must be allocated prior
to the API call. If the size of the array is not sufficient to hold all of the
identified semaphores, then the array is filled to capacity with Semaphore-
IDs and then the function returns.

Please note that the supplied array is not populated in any order. Sema-
phoreIDs are entered into the array as they are identified in the system.

VDK API Validity

5-92 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

inArraySize is the number of SemaphoreID elements in the supplied array.
If inArraySize is zero, then only the number of semaphores in the system
is determined.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

The current number of semaphores in the system

Errors Dispatched

• Fully instrumented and error checking libraries:

• kInvalidPointer if outSemaphoreIDArray is NULL and inAr-
raySize is not 0

• Non error checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-93

VDK API Reference

GetAllThreads()

C Prototype

int VDK_GetAllThreads(VDK_ThreadID outThreadIDArray[],

int inArraySize);

C++ Prototype

int VDK::GetAllThreads(VDK::ThreadID outThreadIDArray[],

int inArraySize);

Description

Returns the current number of threads in the system and fills a supplied
array with the corresponding thread identifiers. Where the number of
identified threads is greater than the size of the supplied array, the array is
filled to capacity. It is the responsibility of the user to allocate memory for
this API call. The VDK_kMaxNumThreads macro, defined in VDK.h, is set to
the maximum number of threads allowed in the application, as defined on
the VDK Kernel tab.

Parameters

outThreadArray points to an array for the return of the threads identified
in the system. The memory for the array must be allocated prior to the
API call. If the size of the array is not sufficient to hold all of the identified
threads, then the array is filled to capacity with ThreadIDs and then the
function returns.

Please note that the supplied array is not populated in any order. Thread-
IDs are entered into the array as they are identified in the system; priority,
creation time, and current state have no impact on the array order.

inArraySize is the number of ThreadID elements allocated by the user in
the supplied array. If inArraySize is zero, then only the number of
threads in the system is determined.

VDK API Validity

5-94 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

Returns the number of threads currently in the system, including the Idle
Thread

Errors Dispatched

• Fully instrumented and error checking libraries:

• kInvalidPointer if outThreadIDArray is NULL and inArray-
size is not 0

• Non error checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-95

VDK API Reference

GetBlockSize()

C Prototype
unsigned int VDK_GetBlockSize(VDK_PoolID inPoolID);

C ++ Prototype
unsigned int VDK::GetBlockSize(VDK::PoolID inPoolID);

Description

Returns the configured block size for the specified memory pool

Parameters

inPoolID of type PoolID specifies the pool.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Block size for the specified pool upon success. Upon failure, UINT_MAX if
using fully instrumented or error checking libraries, and an undefined
value if using non-error checking libraries.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidPoolID indicates that inPoolID is not a valid PoolID

Non error-checking libraries: none

VDK API Validity

5-96 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetClockFrequency()

C Prototype
unsigned int VDK_GetClockFrequency (void);

C++ Prototype
unsigned int VDK::GetClockFrequency (void);

Description

Returns the value of the clock frequency (in MHz) for the application.
The value of clock frequency is specified as part of the configuration of a
VDK project and can be changed at runtime by SetClockFrequency(). It
is the responsibility of the application designer to ensure that the clock
frequency matches that of the hardware used.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Value of the clock frequency in MHz

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-97

VDK API Reference

GetContextRecordSize()

C Prototype
unsigned int VDK_GetContextRecordSize(void);

C++ Prototype
unsigned int VDK::GetContextRecordSize(void);

Description

This API applies to Blackfin and SHARC processors only.

Returns the size of the area of memory required to store the thread infor-
mation during a context switch.

For any Blackfin applications that manually allocate a thread stack, the
GetContextRecordSize() function can be used to determine the addi-
tional amount of space to add to the stack size.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Returns the size of the context record

VDK API Validity

5-98 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-99

VDK API Reference

GetCurrentHistoryEventNum()

C Prototype
unsigned int VDK_GetCurrentHistoryEventNum(void);

C++ Prototype
unsigned int VDK::GetCurrentHistoryEventNum(void);

Description

Returns the current history event number. This is the event number that is
about to be written, not the most recently written event. This API can be
called only when using fully instrumented VDK libraries.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Returns the index, within the history buffer, of the event that is about to
be written

Errors Dispatched

None

VDK API Validity

5-100 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetDevFlagPendingThreads()

C Prototype

VDK_SystemError VDK_GetDevFlagPendingThreads(

VDK_DeviceFlagID inDevFlagID,

int *outNumThreads,

VDK_ThreadID outThreadArray[],

int inArraySize);

C++ Prototype

VDK::SystemError VDK::GetDevFlagPendingThreads(

VDK::DeviceFlagID inDevFlagID,

int *outNumThreads,

VDK::ThreadID outThreadArray[],

int inArraySize);

Description

Returns the current number of threads pending on a device flag and fills a
supplied array with the corresponding thread identifiers. The array is pop-
ulated with threads in the same order as their positions in the pending
queue. Where the number of identified threads is greater than the size of
the supplied array, the array is filled to capacity. It is the responsibility of
the user to allocate sufficient memory for this API call. The
VDK_kMaxNumThreads macro, defined in VDK.h, is set to the maximum
number of threads allowed in the application, as defined on the VDK Ker-
nel tab.

Parameters

inDevFlagID is the device flag identifier (DeviceFlagID) to be queried.

outNumThreads is populated with the number of threads identified as
pending on the device flag.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-101

VDK API Reference

outThreadArray points to an array to be populated with the ThreadIDs of
the threads that are pending on the device flag. The memory for the array
must be allocated prior to the API call. If the size of the array is not suffi-
cient to hold all of the identified threads, then the array is filled to
capacity with ThreadIDs and then the function returns.

inArraySize is the number of ThreadID elements in the supplied array. If
inArraySize is zero, then only the number of threads in the queue is
determined and returned.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

Full instrumentation and error-checking libraries:

• kUnknownSemaphore if SemaphoreID is not a valid identifier

• kInvalidPointer if the outThreadArray array is NULL and inAr-
raySize is not 0

• kNoError otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VDK API Validity

5-102 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetEventBitValue()

C Prototype
bool VDK_GetEventBitValue(VDK_EventBitID inEventBitID);

C++ Prototype
bool VDK::GetEventBitValue(VDK::EventBitID inEventBitID);

Description

Returns the value of the event bit

Parameters

inEventBitID specifies the system event bit to query (see EventBitID).

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Value of the specified event bit if the event bit exists, and the return value
of the current thread’s error handler if the event bit does not exist

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownEventBit indicates that the inEventBitID is not a valid
EventBitID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-103

VDK API Reference

GetEventData()

C Prototype
VDK_EventData VDK_GetEventData(VDK_EventID inEventID);

C++ Prototype
VDK::EventData VDK::GetEventData(VDK::EventID inEventID);

Description

Returns the EventData associated with the queried event. Threads can use
this function to get an event’s current values.

Parameters

inEventID is the event to query (see EventID).

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

EventData associated with the specified event bit if it exists, and a struc-
ture filled with zeros if the event bit does not exist

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownEvent indicates inEventID is not a valid EventID

Non error-checking libraries: none

VDK API Validity

5-104 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetEventPendingThreads()

C Prototype

VDK_SystemError VDK_GetEventPendingThreads(

VDK_EventID inEventID,

int *outNumThreads,

VDK_ThreadID outThreadArray[],

int inArraySize);

C++ Prototype

VDK::SystemError VDK::GetEventPendingThreads(

VDK::EventID inEventID,

int *outNumThreads,

VDK::ThreadID outThreadArray[],

int inArraySize);

Description

Returns the current number of threads pending on an event and fills a
supplied array with the corresponding thread identifiers. The array is pop-
ulated with threads in the same order as their positions in the pending
queue. Where the number of identified threads is greater than the size of
the supplied array, the array is filled to capacity. It is the responsibility of
the user to allocate sufficient memory for this API call. The
VDK_kMaxNumThreads macro, defined in VDK.h, is set to the maximum
number of threads allowed in the application, as defined on the VDK Ker-
nel tab.

Parameters

inEventID is the event identifier (EventID) to be queried.

outNumThreads is populated with the number of threads identified as
pending on the event.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-105

VDK API Reference

outThreadArray points to an array to be populated with the ThreadIDs of
the threads that are pending on the event. The memory for the array must
be allocated prior to the API call. If the size of the array is not sufficient to
hold all of the identified threads, then the array is filled to capacity with
ThreadIDs and then the function returns.

outThreadArray is populated in the order that the threads are present in
the pending queue: the highest priority thread that has been waiting the
longest is placed in the initial element of the array.

inArraySize is the number of ThreadID elements in the supplied array. If
inArraySize is zero, then only the number of threads in the queue is
determined.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

Full instrumentation and error-checking libraries:

• kUnknownSemaphore if SemaphoreID is not a valid identifier

• kInvalidPointer if the outThreadArray array is NULL andinAr-
raySize is not 0

• kNoError otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VDK API Validity

5-106 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetEventValue()

C Prototype
bool VDK_GetEventValue(VDK_EventID inEventID);

C++ Prototype
bool VDK::GetEventValue(VDK::EventID inEventID);

Description

Returns the value of the specified event

Parameters

inEventID specifies the event to query (see EventID).

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Value of the specified event if it exists, and the return value of the current
thread’s error handler if it does not

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownEvent indicates inEventID is not a valid EventID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-107

VDK API Reference

GetHeapIndex()

C Prototype

unsigned int VDK_GetHeapIndex(VDK_HeapID inHeapID);

C++ Prototype

unsigned int VDK::GetHeapIndex(VDK::HeapID inHeapID);

Description

Translates a HeapID (as configured in the Kernel tab of the IDDE Project
window) to a Heap index, which can be passed to heap_malloc(),
heap_calloc(), heap_realloc(), and heap_free()

Parameters

inHeapID is the HeapID for the returned corresponding Heap index.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Heap index

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidHeapID indicates that inHeapID is not a valid HeapID

Non error-checking libraries: none

VDK API Validity

5-108 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetHistoryBufferSize()

C Prototype
unsigned int VDK_GetHistoryBufferSize(void);

C++ Prototype
unsigned int VDK::GetHistoryBufferSize(void);

Description

Returns the maximum number of history events the history buffer can
hold. This API can be called only when using fully instrumented VDK
libraries.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Returns the maximum number of history events the history buffer can
hold

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-109

VDK API Reference

GetHistoryEvent()

C Prototype

VDK_SystemError VDK_GetHistoryEvent(

unsigned int inHistEventNum,

VDK_HistoryEvent *outHistoryEvent);

C++ Prototype

VDK::SystemError VDK::GetHistoryEvent(

unsigned int inHistEventNum,

VDK::HistoryEvent *outHistoryEvent);

Description

Returns a history event from the VDK history buffer based on the sup-
plied index within the buffer. The API can be called only when using fully
instrumented VDK libraries.

Parameters

inHistEventNum is the index of the required history event. Indexing
increases from 0, to the capacity of the history buffer minus 1.

outHistoryEvent is populated with the desired history event on success.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

VDK API Validity

5-110 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

Returns kNoError on success. If the inHistEventNum is greater than the
size of the history buffer, then kMaxHistoryEventExceeded is returned.

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-111

VDK API Reference

GetInterruptMask()

C Prototype
VDK_IMASKStruct VDK_GetInterruptMask(void);

C++ Prototype
VDK::IMASKStruct VDK::GetInterruptMask(void);

Description

Returns the current value of the interrupt mask (IMASKStruct). Any bits
that are permanently asserted in the IMASK register are masked out in the
return value of this API function.

On Blackfin processors, the VDK modifies the value of the IMASK register
in order to disable interrupts. When interrupts are disabled on Blackfin
processors, GetInterruptMask() returns an internally saved version of the
IMASK register, which reflects its state when interrupts are enabled.

The API does not have the expected behavior when called before
VDK_Initialize().

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Current value of the interrupt mask (see IMASKStruct)

VDK API Validity

5-112 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-113

VDK API Reference

GetInterruptMaskEx()

C Prototype

void VDK_GetInterruptMaskEx(VDK_IMASKStruct *outMask,
VDK_IMASKStruct *outLMask);

C++ Prototype

Void VDK::GetInterruptMaskEx(VDK::IMASKStruct *outMask,
VDK::IMASKStruct *outLMask);

Description

Returns the current value of the IMASK and LMASK interrupt masks (see
IMASKStruct) in *outMask and *outLMask (where LMASK is the mask com-
ponent of the IRPTL register). Any bits that are permanently asserted in the
IMASK register are masked out in the return value of this API function.

The API applies to the ADSP-2116x, ADSP-2126x, ADSP-213xx, and
ADSP-2146x SHARC processors.

The API does not have the expected behavior when called before
VDK_Initialize(), from boot thread constructors or from the Init part of
device drivers.

Parameters

*outMask is the current value of IMASK.

*outLMask is the current value of LMASK.

Scheduling

Does not invoke the scheduler

VDK API Validity

5-114 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Determinism

Constant time

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-115

VDK API Reference

GetLastThreadError()

C Prototype
VDK_SystemError VDK_GetLastThreadError(void);

C++ Prototype
VDK::SystemError VDK::GetLastThreadError(void);

Description

Returns the running thread’s most recent error. See SystemError for more
information about errors.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

The running thread’s most recent error

Errors Dispatched

None

VDK API Validity

5-116 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetLastThreadErrorValue()

C Prototype
int VDK_GetLastThreadErrorValue(void);

C++ Prototype
int VDK::GetLastThreadErrorValue(void);

Description

Returns the value parameter of the call with the most recent error

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

An additional descriptive value whose definition depends on the last error
that has been dispatched. See Table 5-22 on page 5-12 for further details.

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-117

VDK API Reference

GetMessageDetails()

C Prototype

void VDK_GetMessageDetails(

VDK_MessageID inMessageID,

VDK_MessageDetails *pOutMessageDetails,

VDK_PayloadDetails *pOutPayloadDetails);

C++ Prototype

void VDK::GetMessageDetails(

VDK::MessageID inMessageID,

VDK::MessageDetails *pOutMessageDetails,

VDK::PayloadDetails *pOutPayloadDetails);

Description

Returns the full set of attributes associated with a message object. The
results are divided into details about the message (channel, sender and tar-
get) and about the payload (type, size and address).

The meaning of the message attributes corresponds to the arguments from
the most recent posting of the message. The meaning of the payload values
is application-specific and corresponds to the arguments passed to
CreateMessage().

Only the thread that is the owner of a message may examine the attributes
of its payload. If other threads call this API, an error is dispatched, and the
contents of *pOutMessageDetails and *pOutPayloadDetails remain
unchanged.

Parameters

The inMessageID of type MessageID specifies the message to query.

VDK API Validity

5-118 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The pOutMessageDetails is a pointer to a structure of type MessageDe-
tails, which contains channel, sender, and target fields. Channel is of
type MsgChannel, and sender and target are of type ThreadID. The pOut-
MessageDetails may be NULL, in which case no message details are
returned.

The pOutPayloadDetails is a pointer of type PayloadDetails, which con-
tains type, size, and address fields to describe the message payload. This
information is the same as the one retrieved by GetMessagePayload(). The
pOutPayloadDetails may be NULL, in which case no payload details are
returned.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageID indicates inMessageID is not a valid MessageID

• kInvalidMessageOwner indicates the thread attempting to destroy
the message is not the current owner

• kMessageInQueue indicates the message is posted to a thread (the
ThreadID is not known at this point), and the message needs to be
removed from the message queue by a call to PendMessage()

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-119

VDK API Reference

GetMessagePayload()

C Prototype

void VDK_GetMessagePayload(VDK_MessageID inMessageID,

int *outPayloadType,

unsigned int *outPayloadSize,

void **outPayloadAddr);

C++ Prototype

void VDK::GetMessagePayload(VDK::MessageID inMessageID,

int *outPayloadType,

unsigned int *outPayloadSize,

void **outPayloadAddr);

Description

Returns the attributes associated with a message payload: type, size, and
address.

The meaning of these values is application-specific and corresponds to the
arguments passed to CreateMessage(). Only the thread that is the owner
of a message may examine the attributes of its payload. If other threads
call this API, an error is dispatched, and the contents of outPayloadType,
outPayloadSize, and outPayloadAddr remain unchanged.

Parameters

The inMessageID of type MessageID specifies the message to query.

The *outPayloadType is an application-specific value that may be used to
describe the contents of the payload. Negative values of payload type are
reserved for use by VDK.

The *outPayloadSize is typically the size of the payload in the smallest
addressable units of the processor (sizeof(char)).

VDK API Validity

5-120 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

The *outPayloadAddr is typically a pointer to the beginning of the pay-
load buffer. However, if the payload size has a value of zero, then the
payload address may contain any user-defined data.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageOwner indicates the argument inMessageID is not
the current owner of the message

• kInvalidMessageID indicates the argument inMessageID is not a
valid MessageID

• kMessageInQueue indicates that the message is posted to a thread
(the ThreadID is not known at this point), and the message needs to
be removed from the message queue by a call to PendMessage()

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-121

VDK API Reference

GetMessageReceiveInfo()

C Prototype

void VDK_GetMessageReceiveInfo(VDK_MessageID inMessageID,

VDK_MsgChannel *outChannel,

VDK_ThreadID *outSender);

C++ Prototype

void VDK::GetMessageReceiveInfo(VDK::MessageID inMessageID,

VDK::MsgChannel *outChannel,

VDK::ThreadID *outSender);

Description

Returns the parameters associated with how a message is received.

Only the thread that is the owner of a message should call this API. If a
different thread calls the API, there is an error dispatched, and the
outChannel and outSender variables do not contain the right information.

Parameters

inMessageID of type MessageID specifies the message to query.

*outChannel of type MsgChannel identifies the channel of the recipient
thread’s message queue the message is posted on.

*outSender of type ThreadID identifies the thread that posted the message.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

VDK API Validity

5-122 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageOwner indicates the argument inMessageID is not
the current owner of the message

• kInvalidMessageID indicates the argument inMessageID is not a
valid MessageID

• kMessageInQueue indicates that the message is posted to a thread
(the ThreadID is not known at this point), and the message needs to
be removed from the message queue by a call to PendMessage()

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-123

VDK API Reference

GetMessageStatusInfo()

C Prototype

VDK_SystemError VDK_GetMessageStatusInfo(

VDK_MessageID inMessageID,

VDK_MessageDetails *outMessageDetails,

VDK_PayloadDetails *outPayloadDetails);

C++ Prototype

VDK::SystemError VDK::GetMessageStatusInfo(

VDK::MessageID inMessageID,

VDK::MessageDetails *outMessageDetails,

VDK::PayloadDetails *outPayloadDetails);

Description

This API performs the same function as VDK::GetMessageDetails() but
does not dispatch an error if the calling thread is not the owner of the
message.

Parameters

inMessageID specifies the message (MessageID) to be queried.

outMessageDetails is a pointer to a structure of type MessageDetails.
The outMessageDetails may be NULL, in which case no message details are
returned.

outPayloadDetails is a pointer of type PayloadDetails. This information
is the same as the one retrieved by the GetMessagePayload() API. The
outPayloadDetails may be NULL, in which case no payload details are
returned.

VDK API Validity

5-124 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Returns kInvalidMessageID if the MessageID is not a valid identifier; kNo-
Error otherwise

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-125

VDK API Reference

GetNumAllocatedBlocks()

C Prototype
unsigned int VDK_GetNumAllocatedBlocks(VDK_PoolID inPoolID);

C++ Prototype
unsigned int VDK::GetNumAllocatedBlocks(VDK::PoolID inPoolID);

Description

Gets the number of allocated blocks in the pool

Parameters

inPoolID of type PoolID specifies the pool.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Number of allocated blocks from the specified pool upon success. Upon
failure, UINT_MAX if using fully instrumented or error checking libraries,
and an undefined value if using non-error checking libraries.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidPoolID indicates that inPoolID is not a valid PoolID

Non error-checking libraries: none

VDK API Validity

5-126 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetNumFreeBlocks()

C Prototype
unsigned int VDK_GetNumFreeBlocks(VDK_PoolID inPoolID);

C ++ Prototype
unsigned int VDK::GetNumFreeBlocks(VDK::PoolID inPoolID);

Description

Gets the number of free blocks in the pool

Parameters

inPoolID of type PoolID specifies the pool to query.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Number of free blocks in the specified pool upon success. Upon failure,
UINT_MAX if using fully instrumented or error-checking libraries, and an
undefined value if using non-error checking libraries.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidPoolID indicates that inPoolID is not a valid PoolID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-127

VDK API Reference

GetNumTimesRun()

C Prototype

VDK_SystemError VDK_GetNumTimesRun(VDK_ThreadID inThreadID,

unsigned int *outRunCount);

C++ Prototype

VDK::SystemError VDK::GetNumTimesRun(VDK::ThreadID inThreadID,

unsigned int *outRunCount);

Description

Retrieves the number of times a thread has run. The API can be called
only when using fully instrumented VDK libraries as this information is
not available for error checking and non-error checking libraries.

Parameters

inThreadID is the thread identifier (ThreadID) of the required thread.

outRunCount is populated with the number of times execution has trans-
ferred to the given thread’s Run() function.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Returns kUnknownThread if the ThreadID is not a valid identifier; kNoError
otherwise

VDK API Validity

5-128 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-129

VDK API Reference

GetPoolDetails()

C Prototype

VDK_SystemError VDK_GetPoolDetails(

 VDK_PoolID inPoolID,

unsigned int *outNumBlocks,

void **outMemoryAddress);

C++ Prototype

VDK::SystemError VDK::GetPoolDetails(

 VDK::PoolID inPoolID,

unsigned int *outNumBlocks,

void **outMemoryAddress);

Description

Returns a set of attributes for the pool object, the number of blocks in the
pool, and the starting address of the pool

Parameters

inPoolID is the identifier of the pool (PoolID) to be queried.

outNumBlocks is populated with the total number of blocks in the pool,
including those blocks that are free and those that are allocated. outNumB-
locks can be NULL, in which case the number of blocks in the memory
pool is not returned.

outMemoryAddress is populated with the starting address of the memory
pool queried. outMemoryAddress can be NULL, in which case the start
address of the memory pool is not returned.

Scheduling

Does not invoke the scheduler

VDK API Validity

5-130 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Determinism

Constant time

Return Value

Full instrumentation and error-checking libraries:

• Returns kInvalidPoolID if PoolID is not a valid identifier; kNoEr-
ror otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-131

VDK API Reference

GetPriority()

C Prototype
VDK_Priority VDK_GetPriority(VDK_ThreadID inThreadID);

C++ Prototype
VDK::Priority VDK::GetPriority(VDK::ThreadID inThreadID);

Description

Returns the Priority of the specified thread

Parameters

inThreadID of type ThreadID is the thread whose priority is being queried.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Priority of the specified thread if the thread exists. If the thread does not
exist, UINT_MAX if using fully instrumented or error checking libraries, and
an undefined value if using non-error checking libraries.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownThread indicates that inThreadID is not a valid ThreadID

Non error-checking libraries: none

VDK API Validity

5-132 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetSemaphoreDetails()

C Prototype

VDK_SystemError VDK_GetSemaphoreDetails(

VDK_SemaphoreID inSemID,

VDK_Ticks *outPeriod,

unsigned int *outMaxCount);

C++ Prototype

VDK::SystemError VDK::GetSemaphoreDetails(

VDK::SemaphoreID inSemID,

VDK::Ticks *outPeriod,

unsigned int *outMaxCount);

Description

Returns a set of attributes associated with the semaphore object

Parameters

inSemID specifies the semaphore (SemaphoreID) to query.

outPeriod returns the period of the semaphore. outPeriod can be NULL, in
which case the period of the semaphore is not returned.

outMaxCount returns the maximum count for the semaphore. outMaxCount
can be NULL, in which case the maximum count for the semaphore is not
returned.

Scheduling

Does not invoke the scheduler

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-133

VDK API Reference

Determinism

Constant time

Return Value

Full instrumentation and error-checking libraries:

• Returns kUnknownSemaphore if SemaphoreID is not a valid identi-
fier; kNoError otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VDK API Validity

5-134 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetSemaphorePendingThreads()

C Prototype

VDK_SystemError VDK_GetSemaphorePendingThreads(

VDK_SemaphoreID inSemID,

int *outNumThreads,

VDK_ThreadID outThreadArray[],

int inArraySize);

C++ Prototype

VDK::SystemError VDK::GetSemaphorePendingThreads(

VDK::SemaphoreID inSemID,

int *outNumThreads,

VDK::ThreadID outThreadArray[],

int inArraySize);

Description

Returns the current number of threads pending on a semaphore and fills a
supplied array with the corresponding thread identifiers. The array is pop-
ulated with threads in the same order as their positions in the pending
queue. Where the number of identified threads is greater than the size of
the supplied array, the array is filled to capacity. It is the responsibility of
the user to allocate sufficient memory for this API call. The
VDK_kMaxNumThreads macro, defined in VDK.h, is set to the maximum
number of threads allowed in the application, as defined on the VDK Ker-
nel tab.

Parameters

inSemID is the semaphore identifier (SemaphoreID) to query.

outNumThreads is populated with the number of threads identified as
pending on the semaphore.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-135

VDK API Reference

outThreadArray points to an array to be populated with the ThreadIDs of
the threads that are pending on the semaphore. The memory for the array
must be allocated prior to the API call. If the size of the array is not suffi-
cient to hold all of the identified threads, then the array is filled to
capacity with ThreadIDs and then the function returns.

The outThreadArray is populated in the order that the threads are present
in the pending queue: the highest priority thread that has been waiting the
longest is placed in the initial element of the array.

inArraySize is the number of ThreadID elements in the supplied array. If
inArraySize is zero, then only the number of threads in the queue is
determined and returned.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

Full instrumentation and error-checking libraries:

• kUnknownSemaphore if SemaphoreID is not a valid identifier

• kInvalidPointer if the outThreadArray array is NULL and inAr-
raySize is not 0

• kNoError otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VDK API Validity

5-136 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetSemaphoreValue()

C Prototype
unsigned int VDK_GetSemaphoreValue(

VDK_SemaphoreID inSemaphoreID);

C++ Prototype
unsigned int VDK::GetSemaphoreValue(

VDK::SemaphoreID inSemaphoreID);

Description

Returns the value of the specified semaphore

Parameters

inSemaphoreID of type SemaphoreID points to the semaphore to query.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Value of the specified semaphore if the semaphore exists. If the semaphore
does not exist, UINT_MAX if using fully instrumented or error-checking
libraries, and an undefined value if using non-error checking libraries.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-137

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownSemaphore indicates that inSemaphoreID is not a valid
SemaphoreID

Non error-checking libraries: none

VDK API Validity

5-138 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetSharcThreadCycleData()

C Prototype

VDK_SystemError VDK_GetSharcThreadCycleData (

VDK_ThreadID inThreadID,

unsigned int outCreationTime[2],

unsigned int outStartTime[2],

unsigned int outLastTime[2],

unsigned int outTotalTime[2]);

C++ Prototype

VDK::SystemError VDK::GetSharcThreadCycleData (

VDK::ThreadID inThreadID,

unsigned int outCreationTime[2],

unsigned int outStartTime[2],

unsigned int outLastTime[2],

unsigned int outTotalTime[2]);

Description

Retrieves the cycle count information for a given thread. The API can be
called only when using fully instrumented VDK libraries as this informa-
tion is not available for error checking and non-error checking libraries.

The GetSharcThreadCycleData() API is available only for SHARC
processors; for other processors, use GetThreadCycleData().

Parameters

inThreadID is the thread identifier (ThreadID) of the thread to query.

outCreationTime is populated with the cycle count when the thread was
created. outCreationTime can be NULL, in which case no creation cycles are
returned.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-139

VDK API Reference

outStartTime is populated with the cycle count when execution trans-
ferred to the thread for the first time.outStartTime can be NULL, in which
case no start time information is returned.

outLastTime is populated with the number of cycles for which the thread
executed during the most recent period of execution. outLastTime can be
NULL, in which case the number of cycles is not returned.

outTotalTime is populated with the cumulative number of cycles for
which the thread has executed since its creation. outTotalTime can be
NULL, in which case no total time information is returned.

The arrays are populated with the upper (most significant) word of the
cycle count in the first element, and the lower (least significant) word in
the second.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Returns kUnknownThread if the ThreadID is not a valid identifier; kNoError
otherwise

Errors Dispatched

None

VDK API Validity

5-140 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetThreadBlockingID()

C Prototype

VDK_SystemError VDK_GetThreadBlockingID(

VDK_ThreadID inThreadID,

int *outBlockingID);

C++ Prototype

VDK::SystemError VDK::GetThreadBlockingID(

VDK::ThreadID inThreadID,

int *outBlockingID);

Description

Returns the enumerated identifier of the VDK object on which a thread
was last blocked or returns the message channel mask if the thread was
blocked waiting for a message. The object type can be determined from
the thread status, such that if the thread status is kSemaphoreBlocked, then
this API returns the semaphore identifier. This attribute is only updated
when a thread blocks and not when a thread unblocks. It is recommended
that GetThreadBlockingID() is used in conjunction with
GetThreadStatus().

Parameters

inThreadID specifies the thread (ThreadID) to query.

outBlockingID is populated with the ID of the object on which the thread
was last blocked or the message channel mask if the thread was blocked
waiting for a message.

Scheduling

Does not invoke the scheduler

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-141

VDK API Reference

Determinism

Constant time

Return Value

Full instrumentation and error-checking libraries:

• Returns kUnknownThread if ThreadID is not a valid identifier; kNo-
Error otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VDK API Validity

5-142 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetThreadCycleData()

C Prototype

VDK_SystemError VDK_GetThreadCycleData (

VDK_ThreadID inThreadID,

unsigned long long int *outCreationTime,

unsigned long long int *outStartTime,

unsigned long long int *outLastTime,

unsigned long long int *outTotalTime);

C++ Prototype

VDK::SystemError VDK::GetThreadCycleData (

VDK::ThreadID inThreadID,

unsigned long long int *outCreationTime,

unsigned long long int *outStartTime,

unsigned long long int *outLastTime,

unsigned long long int *outTotalTime);

Description

Retrieves the cycle count information for a given thread. This API can be
called only when using fully instrumented VDK libraries as this informa-
tion is not available for error checking and non-error checking libraries.

The VDK_GetThreadCycleData() API is supported only for
the TigerSHARC and Blackfin processors. To retrieve the cycle
data for a SHARC processor, use the GetSharcThreadCycleData()
API.

Parameters

inThreadID is the thread identifier (ThreadID) of the thread to query.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-143

VDK API Reference

outCreationTime is populated with the cycle count when the thread was
created. outCreationTime can be NULL, in which case no creation cycles are
returned.

outStartTime is populated with the cycle count when the thread was
switched in for the last time. outStartTime can be NULL, in which case no
start time information is returned.

outLastTime is populated with the number of cycles for which the thread
executed during the most recent period of execution. outLastTime can be
NULL, in which case the number of cycles is not returned.

outTotalTime is populated with the cumulative number of cycles for
which the thread has executed since its creation. outTotalTime can be
NULL, in which case no total time information is returned.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Returns kUnknownThread if ThreadID is not a valid identifier; kNoError
otherwise

Errors Dispatched

None

VDK API Validity

5-144 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetThreadHandle()

C Prototype
void** VDK_GetThreadHandle(void);

C++ Prototype
void** VDK::GetThreadHandle(void);

Description

Returns a pointer to a thread’s user-defined, allocated data pointer. This
pointer can be used in C and assembly threads for holding thread local
state; for example, member variables.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Pointer to a thread’s user-defined, allocated data pointer

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-145

VDK API Reference

GetThreadID()

C Prototype
VDK_ThreadID VDK_GetThreadID(void);

C++ Prototype
VDK::ThreadID VDK::GetThreadID(void);

Description

Returns the identifier (ThreadID) of the currently running thread

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Currently running thread’s ID of type ThreadID or VDK_KERNEL_LEVEL_ if
the code is running at kernel level

Errors Dispatched

None

VDK API Validity

5-146 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetThreadSlotValue()

C Prototype
void* VDK_GetThreadSlotValue(int inSlotNum);

C++ Prototype
void* VDK::GetThreadSlotValue(int inSlotNum);

Description

Returns the value in the currently running thread’s slot table associated
with inSlotNum. Returns NULL if the key does not identify a currently allo-
cated slot; otherwise, returns the current value held in the slot, which may
also be NULL.

Parameters

inSlotNum is the static library’s preallocated slot number.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Slot value for the slot number specified

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-147

VDK API Reference

GetThreadStackDetails()

C Prototype

VDK_SystemError VDK_GetThreadStackDetails(

VDK_ThreadID inThreadID,

unsigned int *outStackSize,

void **outStackAddress);

C++ Prototype

VDK::SystemError VDK::GetThreadStackDetails(

VDK::ThreadID inThreadID,

unsigned int *outStackSize,

void **outStackAddress);

Description

Returns the stack attributes of a given thread: size and start address

Parameters

inThreadID specifies the thread (ThreadID) to query.

outStackSize returns the size of the stack in 32-bit words. outstackSize
can be NULL, in which case no stack size information is returned.

outStackAddress returns the start address of the thread’s stack. outStack-
Address can be NULL, in which case the start address of the stack is not
returned.

Scheduling

Does not invoke the scheduler

VDK API Validity

5-148 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Determinism

Constant time

Return Value

Full instrumentation and error-checking libraries:

• Returns kUnknownThread if ThreadID is not a valid identifier; kNo-
Error otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-149

VDK API Reference

GetThreadStack2Details()

C Prototype

VDK_SystemError VDK_GetThreadStack2Details(

VDK_ThreadID inThreadID,

unsigned int *outStackSize,

void **outStackAddress)

;

C++ Prototype

VDK::SystemError VDK::GetThreadStack2Details(

VDK::ThreadID inThreadID,

unsigned int *outStackSize,

void **outStackAddress);

Description

Returns the stack2 attributes for a given thread: size and start address

This API is applicable only to processors using two stacks, cur-
rently, those in the ADSP-TSxxx processor family.

Parameters

inThreadID specifies the thread (ThreadID) to query.

outStackSize returns the size of the stack in 32-bit words. outstackSize
can be NULL, in which case no stack size information is returned.

outStackAddress returns the start address of the thread’s stack. outStack-
Address can be NULL, in which case the start address of the stack is not
returned.

VDK API Validity

5-150 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Full instrumentation and error-checking libraries:

• Returns kUnknownThread if ThreadID is not a valid identifier; kNo-
Error otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-151

VDK API Reference

GetThreadStackUsage()

C Prototype
unsigned int VDK_GetThreadStackUsage(

const VDK_ThreadID inThreadID);

C++ Prototype
unsigned int VDK::GetThreadStackUsage(

const VDK::ThreadID inThreadID);

Description

Gets the maximum used stack for the specified thread at the time of the
call. For applications built with “Full Instrumentation”, the maximum
stack usage returned is either the amount used since the thread creation,
or the last call to the InstrumentStack() API. For applications not built
with “Full Instrumentation”, the thread stacks are not instrumented by
default. Therefore, this function does not return a meaningful value in
these cases unless the InstrumentStack() API has previously been called
to instrument the stack.

Parameters

inThreadID of type ThreadID specifies the thread’s stack usage to query.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

VDK API Validity

5-152 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

Maximum stack used since the thread was created (if the application was
built with “Full Instrumentation”) or since the last call to Instrument-
Stack(). Note that the stack is expressed in 32-bit words.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownThread indicates that inThreadID is not a valid ThreadID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-153

VDK API Reference

GetThreadStack2Usage()

C Prototype
unsigned int VDK_GetThreadStack2Usage(

const VDK_ThreadID inThreadID);

C++ Prototype
unsigned int VDK::GetThreadStack2Usage(

const VDK::ThreadID inThreadID);

Description

Gets the maximum used stack2 for the specified thread at the time of the
call. For applications built with “Full Instrumentation”, the maximum
stack usage returned is either the amount used since the thread creation,
or the last call to the InstrumentStack() API. For applications not built
with “Full Instrumentation”, the thread stacks are not instrumented by
default. Therefore, this function does not return a meaningful value in
these cases unless the InstrumentStack() API has previously been called
to instrument the stack.

This API is applicable only to certain processors which use two
stacks, currently those in the ADSP-TSxxx processor families.

Parameters

inThreadID of type ThreadID specifies the thread’s stack usage to query.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

VDK API Validity

5-154 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

Maximum stack2 used since the thread was created (if the application was
built with “Full Instrumentation”) or since the last call to Instrument-
Stack(). Note that the stack is expressed in 32-bit words.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownThread indicates that inThreadID is not a valid ThreadID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-155

VDK API Reference

GetThreadStatus()

C Prototype
VDK_ThreadStatus VDK_GetThreadStatus(

const VDK_ThreadID inThreadID);

C++ Prototype
VDK::ThreadStatus VDK::GetThreadStatus(

const VDK::ThreadID inThreadID);

Description

Reports the enumerated status (ThreadStatus) of the specified thread

Parameters

inThreadID of type ThreadID points to the thread whose status is being
queried.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Status of the specified thread if it exists and VDK::kUnknown if it does not.
For more information, see ThreadStatus.

Errors Dispatched

None

VDK API Validity

5-156 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetThreadTemplateName()

C Prototype

VDK_SystemError VDK_GetThreadTemplateName(

VDK_ThreadID inThreadID,

char **outName)

C++ Prototype

VDK::SystemError VDK::GetThreadTemplateName(

VDK::ThreadID inThreadID,

char **outName)

Description

The API retrieves the address of the null-terminated string that contains
the template name of the given thread.

Parameters

inThreadID is the thread identifier (ThreadID) of the thread to query.

outName is populated with a pointer to the thread’s template name for the
given thread.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-157

VDK API Reference

Return Value

Full instrumentation and error-checking libraries:

• Returns kUnknownThread if ThreadID is not a valid identifier; kNo-
Error otherwise

Non error-checking libraries: kNoError

Errors Dispatched

None

VDK API Validity

5-158 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetThreadTickData()

C Prototype

VDK_SystemError VDK_GetThreadTickData(

VDK_ThreadID inThreadID,

VDK_Ticks *outCreationTime,

VDK_Ticks *outStartTime,

VDK_Ticks *outLastTime,

VDK_Ticks *outTotalTime);

C++ Prototype

VDK::SystemError VDK::GetThreadTickData(

VDK::ThreadID inThreadID,

VDK::Ticks *outCreationTime,

VDK::Ticks *outStartTime,

VDK::Ticks *outLastTime,

VDK::Ticks *outTotalTime);

Description

Retrieves the tick information for a given thread. This API can be called
only with fully instrumented VDK libraries as this information is not
available for error checking and non-error checking libraries.

Parameters

inThreadID is the thread identifier (ThreadID) of the thread to query.

outCreationTime is populated with the tick (Ticks) when the thread was
created. outCreationTime can be NULL, in which case no creation cycles are
returned.

outStartTime is populated with the tick (Ticks) when execution trans-
ferred to the thread for the first time. outStartTime can be NULL, in which
case no start time information is returned.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-159

VDK API Reference

outLastTime is populated with the number of Ticks for which the thread
executed during the most recent period of execution. outLastTime can be
NULL, in which case no execution information is returned.

outTotalTime is populated with the cumulative number of Ticks for
which the thread has executed since its creation.outTotalTime can be
NULL, in which case no total time information is returned.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Returns kUnknownThread if ThreadID is not a valid identifier; kNoError
otherwise

Errors Dispatched

None

VDK API Validity

5-160 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetTickPeriod()

C Prototype
float VDK_GetTickPeriod(void);

C++ Prototype
float VDK::GetTickPeriod(void);

Description

Returns the value in milliseconds of the tick period for the application

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Value in milliseconds of the tick period

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-161

VDK API Reference

GetUptime()

C Prototype
VDK_Ticks VDK_GetUptime(void);

C++ Prototype
VDK::Ticks VDK::GetUptime(void);

Description

Returns the time in Ticks since the last system reset

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Time in Ticks since the last system reset

Errors Dispatched

None

VDK API Validity

5-162 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

GetVersion()

C Prototype
VDK_VersionStruct VDK_GetVersion(void);

C++ Prototype
VDK::VersionStruct VDK::GetVersion(void);

Description

Returns the current version of VDK (see VersionStruct).

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Current version of VDK in the VersionStruct form

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-163

VDK API Reference

InstallMessageControlSemaphore()

C Prototype

void VDK_InstallMessageControlSemaphore(

VDK_SemaphoreID inSemaphore);

C++ Prototype

void VDK::InstallMessageControlSemaphore(

VDK::SemaphoreID inSemaphore);

Description

Sets up a counting semaphore to regulate the allocation and deallocation
of message objects by the routing threads. The initial value of the sema-
phore should be set to the number of free messages reserved for use by the
incoming routing threads. The semaphore is pended (by the incoming
routing threads) prior to each message allocation, and posted (by the out-
going routing threads) after each message deallocation. Provided that the
value of the semaphore is always less than or equal to the number of free
messages, the allocation by the routing threads never fails (although the
routing threads may block, pended on the semaphore) waiting for a free
message to become available.

Parameters

inSemaphore is the SemaphoreID of the semaphore to be installed.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

VDK API Validity

5-164 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-165

VDK API Reference

InstrumentStack()

C Prototype
void VDK_InstrumentStack(void);

C++ Prototype
void VDK::InstrumentStack(void);

Description

Instruments the stack of the calling thread to allow the determination of
maximum thread stack usage. The GetThreadStackUsage() API is used to
obtain the maximum stack usage for instrumented thread stacks.

If the fully instrumented libraries are used, the thread’s stack is instru-
mented on creation. In this case, the InstrumentStack() API is used to
reset the instrumentation of the stack to cover the currently unused sec-
tion of the stack (for example, to determine the maximum stack used
while executing a section of code). If the libraries without full instrumen-
tation are used, the thread’s stack is not instrumented by default and so
InstrumentStack() has to be used to obtain meaningful results from
GetThreadStackUsage().

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

VDK API Validity

5-166 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-167

VDK API Reference

LoadEvent()

C Prototype

void VDK_LoadEvent(VDK_EventID inEventID,

const VDK_EventData inEventData);

C++ Prototype

void VDK::LoadEvent(VDK::EventID inEventID,

const VDK::EventData inEventData);

Description

Loads the data associated with the event. For more information, see
EventData.

Parameters

inEventID of type EventID is the event to be reinitialized.

inEventData of type EventData contains the new values for the event.

Scheduling

Causes the value of the event to be recalculated, invokes the scheduler,
and may result in a context switch

Determinism

Not deterministic

Return Value

No return value

VDK API Validity

5-168 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownEvent indicates that inEventID is not a valid EventID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-169

VDK API Reference

LocateAndFreeBlock()

C Prototype
void VDK_LocateAndFreeBlock(void *inBlkPtr);

C++ Prototype
void VDK::LocateAndFreeBlock(void *inBlkPtr);

Description

Determines the pool in which the to-be-freed block resides, then frees the
block and returns the block to the free-block list

Parameters

inBlockPtr specifies the block to be freed.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidBlockPointer indicates that inBlkPtr does not belong to
any of the active memory pools and cannot be freed

Non error-checking libraries: none

VDK API Validity

5-170 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

LogHistoryEvent()

C Prototype
void VDK_LogHistoryEvent(VDK_HistoryEnum inEnum, int inValue);

C++ Prototype
void VDK::LogHistoryEvent(VDK::HistoryEnum inEnum, int inValue);

Description

Adds a record to the history buffer. This function does not perform any
action if the project is not linked with the fully instrumented libraries.

Parameters

inEnum is the enumeration value for this type of event. For more informa-
tion, see HistoryEnum.

inValue is the value defined by enumeration.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-171

VDK API Reference

MakePeriodic()

C Prototype

void VDK_MakePeriodic(VDK_SemaphoreID inSemaphoreID,

VDK_Ticks inDelay,

VDK_Ticks inPeriod);

C++ Prototype

void VDK::MakePeriodic(VDK::SemaphoreID inSemaphoreID,

VDK::Ticks inDelay,

VDK::Ticks inPeriod);

Description

Directs the scheduler to post the specified semaphore after inDelay num-
ber of Ticks. After every inPeriod Ticks, the semaphore is posted and the
scheduler is invoked. This allows the running thread to acquire the signal
and, if the thread is at the highest priority level, to continue execution.

To be periodic, the running thread must repeat in sequence: perform task
and then pend on the semaphore. Note that this differs from “sleeping” at
the completion of activity.

Parameters

inSemaphoreID of type SemaphoreID is the semaphore to make periodic.

inDelay is the number of Ticks before the first posting of the semaphore.
inDelay must be equal to or greater than one and less than INT_MAX.

inPeriod is the number of Ticks to sleep at each cycle after the first cycle.
inPeriod must be equal to or greater than one and less than INT_MAX.

VDK API Validity

5-172 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownSemaphore indicates inSemaphoreID is not a valid
SemaphoreID

• kInvalidPeriod indicates inPeriod is zero or greater than INT_MAX

• kInvalidDelay indicates inDelay is zero or greater than INT_MAX.
Zero is not an accepted delay because the first posting does not
occur until the next tick.

• kAlreadyPeriodic indicates the semaphore is already periodic and
cannot be made periodic again. If the intention is to change the
period, the semaphore has to be made non-periodic first.

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-173

VDK API Reference

MallocBlock()

C Prototype
void* VDK_MallocBlock(VDK_PoolID inPoolID);

C++ Prototype
void* VDK::MallocBlock(VDK::PoolID inPoolID);

Description

Returns pointer to the next available block from the specified pool

Parameters:

inPoolID of type PoolID specifies the pool from which the block is to be
allocated.

Scheduling:

Does not invoke the scheduler

Determinism

Constant time if inCreateNow was specified to be TRUE when the specified
pool was created.

Not deterministic if inCreateNow was specified to be FALSE

Return Value

Void pointer to a free memory block upon success; NULL if the call fails to
allocate a block

VDK API Validity

5-174 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidPoolID indicates inPoolID is not a valid PoolID

• kErrorMallocBlock indicates there are no free blocks in the pool,
so a new block cannot be allocated

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-175

VDK API Reference

MessageAvailable()

C Prototype
bool VDK_MessageAvailable(unsigned int inMessageChannelMask);

C++ Prototype
bool VDK::MessageAvailable(unsigned int inMessageChannelMask);

Description

Enables a thread to use a polling model (rather than a blocking model) to
wait for messages in its message queue. This function returns TRUE if a
subsequent call to PendMessage() with the same channel mask does not
block.

Parameters

inMessageChannelMask specifies the receive channels. A set bit corre-
sponds to a receive channel, and a clear bit corresponds to a channel that
is ignored.

If the VDK::kMsgWaitForAll flag is set in the channel mask, then the query
operates with AND logic, rather than the default OR logic. By default, only
one message—on any of the receive channels designated in the channel
mask—is required for a true result. The VDK::kMsgWaitForAll flag
requires at least one message be queued on each of the specified receive
channels channel in order for the function to return TRUE.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

VDK API Validity

5-176 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Return Value

TRUE if there is a message available and FALSE if there is not

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageChannel indicates inMessageChannelMask is not a
valid mask

• kInvalidThread indicates the current thread does not have a mes-
sage queue because it has not been enabled for messaging

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-177

VDK API Reference

OpenDevice()

C Prototype

VDK_DeviceDescriptor VDK_OpenDevice(VDK_IOID inIDNum,

char *inFlags);

C++ Prototype

VDK::DeviceDescriptor VDK::OpenDevice(VDK::IOID inIDNum,

char *inFlags);

Description

Opens the specified device. Note that the returned DeviceDescriptor is
valid only for the thread that made the call to OpenDevice(). Each thread
using a device must make its own call to OpenDevice(). Currently, the
return value of the device driver dispatch function is ignored by OpenDe-
vice(), so OpenDevice() cannot recognize any failure modes.

A maximum of eight device drivers can be opened per thread at any one
time.

Parameters

inIDNum is the boot I/O identifier (IOID).

inFlags is uninterpreted data passed through to the device being opened.

Scheduling

Does not call the scheduler, but the user-written device driver can call the
scheduler

VDK API Validity

5-178 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Determinism

Constant time. Note that this function calls user-written device driver
code that may not be deterministic.

Return Value

New DeviceDescriptor upon success. Upon failure, if the thread’s Error
function does not go to KernelPanic, OpenDevice() returns one of the
following:

• the return value of the current thread’s Error function
for kBadIOID if the IOID was incorrect

• the return value of the current thread’s Error function
for kOpenFailure if there was any other error

Errors Dispatched

Full instrumentation and error-checking libraries:

• kBadIOID indicates that inIDNum is not a valid IOID

• kOpenFailure indicates that no more devices can be open
simultaneously

Non error-checking libraries: none

Other errors can be dispatched by user-written device driver code
executed by this API.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-179

VDK API Reference

PendDeviceFlag()

C Prototype

bool VDK_PendDeviceFlag(VDK_DeviceFlagID inFlagID,

VDK_Ticks inTimeout);

C++ Prototype

bool VDK::PendDeviceFlag(VDK::DeviceFlagID inFlagID,

VDK::Ticks inTimeout);

Description

Allows a thread to block on a specified device flag.

The thread is blocked and swapped out. Once the device flag is made
available via PostDeviceFlag(), all threads waiting for this flag are made
ready-to-run. If the thread does not resume execution within inTimeout
Ticks, the thread’s reentry point is changed to its error function, and the
thread is made available for scheduling. This behavior can be changed by
ORing the timeout with the constant VDK_kNoTimeoutError in C or
VDK::kNoTimeoutError in C++. In this case, no errors are dispatched on
timeout and the API simply returns after making the thread available for
scheduling. If the value of inTimeout is passed as zero, then the thread
may pend indefinitely.

Note that PendDeviceFlag() must be called from within a non-nested
critical region (a critical region with a stack depth of one), but from out-
side of any unscheduled regions (as explained in “Pending on a Device
Flag” on page 3-76). PendDeviceFlag() pops one level of the critical
region stack.

Parameters

inFlagID of type DeviceFlagID is the device flag on which the thread
pends.

VDK API Validity

5-180 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

inTimeout of type Ticks is a value less than INT_MAX that specifies the
maximum duration in ticks for which the thread pends on the device flag.

Scheduling

Invokes the scheduler

Determinism

Not deterministic

Return Value

TRUE if the device flag has been successfully pended on. FALSE if the
PendDeviceFlag() call has timed out but kNoTimeoutError was specified

Errors Dispatched

Full instrumentation and error-checking libraries:

• kBlockInInvalidRegion indicates that PendDeviceFlag() is called
in an unscheduled region or nested critical region (must be called
in a non-nested critical region)

• kInvalidDeviceFlag indicates that inFlagID is not a valid
DeviceFlagID

• kDeviceTimeout indicates that the timeout value has expired before
the device flag was posted. This error is not dispatched if the time-
out was ORed with the constant kNoTimeoutError

• kInvalidTimeout indicates that inTimeout is UINT_MAX, INT_MAX, or
INT_MIN (equivalent to 0|kNoTimeoutError)

Non error-checking libraries: kDeviceTimeout as above

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-181

VDK API Reference

PendEvent()

C Prototype
bool VDK_PendEvent(VDK_EventID inEventID, VDK_Ticks inTimeout);

C++ Prototype
bool VDK::PendEvent(VDK::EventID inEventID, VDK::Ticks inTimeout);

Description

Provides the mechanism by which threads pend on events.

If the named event calculates as being available, execution returns to the
running thread. If the event is not available and the timeout specified is
kDoNotWait1, the API returns FALSE and the thread continues execution. If
the event is not available and the timeout is something other than kDoNot-
Wait, the thread pauses execution until the event is available. When the
event becomes available, all threads pending on the event are moved to the
ready queue.

If the thread does not resume execution within inTimeout Ticks, the
thread’s reentry point is changed to its error function, and the thread is
made available for scheduling. This behavior can be changed by ORing the
timeout with the constant VDK_kNoTimeoutError in C or VDK::kNoTimeou-
tError in C++. In this case, no errors are dispatched on timeout, and the
API simply returns after making the thread available for scheduling. If the
value of inTimeout is passed as zero, then the thread may pend
indefinitely.

Parameters

inEventID is the EventID on which the thread pends.

1 VDK::kDoNotWait in C++ and VDK_kDoNotWait in C.

VDK API Validity

5-182 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

inTimeout is a value less than INT_MAX that specifies the maximum dura-
tion in Ticks for which the thread pends on the event. This value can be
ORed with kNoTimeoutError if no errors are to be dispatched in the case of
a timeout. The value kDoNotWait indicates that the API should not block
when the event is not available.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Constant time if event is available

Return Value

TRUE if:

• the event has been successfully pended on.

FALSE if:

• the PendEvent() call has timed out, but kNoTimeoutError was
specified

• inTimeout is kDoNotWait and there was no event available

Errors Dispatched

Full instrumentation and error-checking libraries:

• kEventTimeout indicates the timeout value has expired before the
event was available. This error is not dispatched if the timeout was
ORed with the constant kNoTimeoutError

• kUnknownEvent indicates inEventID is not a valid EventID

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-183

VDK API Reference

• kBlockInInvalidRegion indicates PendEvent() is trying to block in
an unscheduled region, causing a scheduling conflict

• kDbgPossibleBlockInRegion indicates PendEvent() is being called
in an unscheduled region, causing a potential scheduling conflict

• kInvalidTimeout indicates inTimeout is either INT_MAX or
(0 | kNoTimeoutError)

Non error-checking libraries: kEventTimeout as above

VDK API Validity

5-184 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

PendMessage()

C Prototype

VDK_MessageID VDK_PendMessage(unsigned int inMessageChannelMask,

VDK_Ticks inTimeout);

C++ Prototype

VDK::MessageID VDK::PendMessage(unsigned int inMessageChannelMask,

VDK::Ticks inTimeout);

Description

Retrieves a message from a thread’s message queue. Unless the timeout
specified is kDoNotWait1, PendMessage() is a blocking call—when the
specified conditions for a valid message in the queue are not met, the
thread suspends execution. If the timeout is kDoNotWait and the condi-
tions for a valid message in the message queue are not met, PendMessage()
returns UINT_MAX and the thread continues its execution.

The channel mask allows you to specify which channels (kMsgChannel1
through kMsgChannel15) to examine for incoming messages. The Mes-
sageAvailable() API can be used to poll for the presence of a valid
message instead of the blocking behavior of PendMessage().

In addition, the flag VDK::kMsgWaitForAll may be included in (ORed into)
the channel mask to specify that at least one message must be present on
each of the channels specified in the mask. Messages are retrieved from the
lowest numbered channels first (kMsgChannel1, then kMsgChannel2, ...).
Once a MessageID is returned by PendMessage(), the message is no longer
in the queue and is owned by the calling thread. If the thread does not
resume execution within inTimeout Ticks, the thread’s reentry point is
changed to its error function, and the thread is made available for schedul-

1 VDK::kDoNotWait in C++ and VDK_kDoNotWait in C.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-185

VDK API Reference

ing. This behavior can be changed by ORing the timeout with the constant
VDK_kNoTimeoutError in C or VDK::kNoTimeoutError in C++. In this case,
no errors are dispatched on timeout and the API simply returns after mak-
ing the thread available for scheduling. If the value for inTimeout is passed
as zero, then the thread may pend indefinitely.

Parameters

inMessageChannelMask specifies the receive channels. A set bit corre-
sponds to a receive channel. A clear bit corresponds to a channel that is
ignored. The parameter may not be zero.

If the VDK::kMsgWaitForAll flag is set in the channel mask, then the pend
operates with AND logic, rather than the default OR logic. By default, only
one message—on any of the receive channels designated in the channel
mask—is required to unblock the pending thread. The VDK::kMsgWait-
ForAll flag requires at least one message to be queued on each of the
specified receive channels channel in order to unblock.

inTimeout is a value less than INT_MAX that specifies the maximum dura-
tion in Ticks for which the thread pends on the receipt of the required
message(s). This value can be ORed with kNoTimeoutError if no errors are
to be dispatched in the case of a timeout. The value kDoNotWait indicates
that the API should not block when there is no message available.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Constant time if there is no need to block

Return Value

Identifier of the message the thread pended on upon success; UINT_MAX
otherwise

VDK API Validity

5-186 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kDbgPossibleBlockInRegion indicates PendMessage() is being
called in an unscheduled region, causing a potential scheduling
conflict

• kInvalidMessageChannel indicates inMessageChannelMask does
not specify a correct group of channels to mask

• kMessageTimeout indicates the timeout value has expired before the
thread removed the message from its message queue. This error is
not dispatched if the timeout was ORed with the constant
kNoTimeoutError

• kBlockInInvalidRegion indicates PendMessage() is trying to block
in an unscheduled region, causing a scheduling conflict

• kInvalidTimeout indicates inTimeout is either INT_MAX or
(0 | kNoTimeouterror)

• kInvalidThread indicates the current thread does not have a mes-
sage queue as it has not been enabled for messaging

Non error-checking libraries: kMessageTimeout as above

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-187

VDK API Reference

PendSemaphore()

C Prototype

bool VDK_PendSemaphore(VDK_SemaphoreID inSemaphoreID,

VDK_Ticks inTimeout);

C++ Prototype

bool VDK::PendSemaphore(VDK::SemaphoreID inSemaphoreID,

VDK::Ticks inTimeout);

Description

Provides the mechanism that allows threads to pend on semaphores.

If the named semaphore is available (its count is greater than zero), the
semaphore’s count is decremented by one, and processor control returns
to the running thread. If the semaphore is not available (its count is zero)
and the timeout specified is kDoNotWait1, the API returns FALSE and the
thread continues execution.

If the semaphore is not available and the timeout is something other than
kDoNotWait, the thread pauses execution until the semaphore is posted. If
the thread does not resume execution within inTimeout Ticks, the
thread’s reentry point is changed to its error function, and the thread is
made available for scheduling. This behavior can be changed by ORing the
timeout with the constant VDK_kNoTimeoutError in C or VDK::kNoTimeou-
tError in C++. In this case, no errors are dispatched on timeout and the
API simply returns after making the thread available for scheduling. If the
value of inTimeout is passed as zero, then the thread may pend
indefinitely.

1 VDK::kDoNotWait in C++ and VDK_kDoNotWait in C.

VDK API Validity

5-188 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Parameters

inSemaphoreID of type SemaphoreID is the semaphore on which the thread
pends.

inTimeout is a value less than INT_MAX that specifies the maximum dura-
tion in Ticks for which the thread pends on the semaphore. This value
can be ORed with kNoTimeoutError if no errors are to be dispatched in the
case of a timeout. The value kDoNotWait indicates that the API should not
block when the semaphore is not available.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Constant time if semaphore is available

Return Value

TRUE if:

• the semaphore has been successfully pended on by SemaphoreID

FALSE if:

• the PendSemaphore() call has timed out, but kNoTimeoutError was
specified

• inTimeout was kDoNotWait and there was no semaphore available

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-189

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• kSemaphoreTimeout indicates that the timeout value has expired
before the semaphore became available. This error is not be dis-
patched if the timeout was ORed with the constant
kNoTimeoutError

• kUnknownSemaphore indicates inSemaphoreID is not a valid
SemaphoreID

• kBlockInInvalidRegion indicates PendSemaphore() is trying to
block in an unscheduled region, causing a scheduling conflict

• kDbgPossibleBlockInRegion indicates PendSemaphore() may be
called in an unscheduled region, causing a potential scheduling
conflict

• kInvalidTimeout indicates inTimeout is either INT_MAX or
(0 | kNoTimeoutError)

Non error-checking libraries: kSemaphoreTimeout as above

VDK API Validity

5-190 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

PopCriticalRegion()

C Prototype
void VDK_PopCriticalRegion(void);

C++ Prototype
void VDK::PopCriticalRegion(void);

Description

Decrements the count of nested critical regions. Use it as a close bracket
call to PushCriticalRegion(). A count is maintained to ensure that each
entered critical region calls PopCriticalRegion() before interrupts are
re-enabled.

Each critical region is also (implicitly) an unscheduled region.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch if interrupts are
re-enabled by this call

Determinism

Not deterministic

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-191

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• kDbgPopUnderflow indicates that there were no critical regions to
pop

Non error-checking libraries: none

VDK API Validity

5-192 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

PopNestedCriticalRegions()

C Prototype
void VDK_PopNestedCriticalRegions(void);

C++ Prototype
void VDK::PopNestedCriticalRegions(void);

Description

Resets the count of nested critical regions to zero, thereby, re-enabling
interrupts.

This function does not change the interrupt mask.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch unless interrupts
are already enabled

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kDbgPopUnderflow indicates there are no critical regions to pop

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-193

VDK API Reference

Non error-checking libraries: none

VDK API Validity

5-194 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

PopNestedUnscheduledRegions()

C Prototype

void VDK_PopNestedUnscheduledRegions(void);

C++ Prototype

void VDK::PopNestedUnscheduledRegions(void);

Description

Resets the count of nested unscheduled regions to zero, thereby,
re-enabling scheduling.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch unless scheduling
is already enabled

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kDbgPopUnderflow indicates there were no critical regions to pop

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-195

VDK API Reference

PopUnscheduledRegion()

C Prototype
void VDK_PopUnscheduledRegion(void);

C++ Prototype
void VDK::PopUnscheduledRegion(void);

Description

Decrements the count of nested unscheduled regions. Use it as a close
bracket call to PushUnscheduledRegion(). A nesting count is maintained
to ensure that each entered unscheduled region calls PopUnscheduledRe-
gion() before scheduling is resumed.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch if scheduling is
reenabled by this call

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kDbgPopUnderflow indicates there are no critical regions to pop

VDK API Validity

5-196 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-197

VDK API Reference

PostDeviceFlag()

C Prototype
void VDK_PostDeviceFlag(VDK_DeviceFlagID inFlagID);

C++ Prototype
void VDK::PostDeviceFlag(VDK::DeviceFlagID inFlagID);

Description

Posts the specified device flag (see DeviceFlagID). Once the device flag is
made available, all threads waiting for the flag are in the ready-to-run
state.

Parameters

inFlagID is the DeviceDescriptor returned from OpenDevice().

Scheduling

Invokes the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidDeviceFlag indicates inFlagID is not a valid
DeviceFlagID

Non error-checking libraries: none

VDK API Validity

5-198 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

PostMessage()

C Prototype

void VDK_PostMessage(VDK_ThreadID inRecipient,

VDK_MessageID inMessageID,

VDK_MsgChannel inChannel);

C++ Prototype

void VDK::PostMessage(VDK::ThreadID inRecipient,

VDK::MessageID inMessageID,

VDK::MsgChannel inChannel);

Description

Appends the message inMessageID to the message queue of the thread
with identifier inRecipient on the channel inChannel. The PostMes-
sage() is a non-blocking function—returns execution to the calling
thread without waiting for the recipient to run or to acknowledge the new
message in its queue. The message is considered delivered when PostMes-
sage() returns. Only the thread that is the owner of a message may post it.

At delivery time, ownership of the message and the associated payload is
transferred from the sending thread to the recipient thread. Once deliv-
ered, all memory references to the payload, which may be held by the
sending thread, are invalid. Memory read and write privileges and the
responsibility for freeing the payload memory are passed to the recipient
thread along with ownership.

Parameters

inRecipient is the ThreadID of the thread receiving the message.

inMessageID is the MessageID of the message being sent. A message must
be created before it is posted. This parameter is a return value of the call to
CreateMessage().

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-199

VDK API Reference

inChannel is the FIFO within the recipient’s message queue on which the
message is appended. Its value is kMsgChannel1 through kMsgChannel15
(see MsgChannel).

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageChannel indicates the inChannel is not a channel
value (see MsgChannel)

• kUnknownThread indicates inRecipient is not a valid ThreadID

• kInvalidMessageID indicates inMessageID is not a valid MessageID

• kInvalidMessageRecipient indicates inRecipient does not have a
message queue because it has not been enabled for messaging

• kInvalidMessageOwner indicates the thread attempting to post the
message is not the current owner. The error value is the ThreadID
of the owner

VDK API Validity

5-200 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

• kMessageInQueue indicates that the message is posted to a thread
(the ThreadID is not known at this point), and the message needs to
be removed from the message queue by a call to PendMessage()

• kInvalidTargetDSP indicates that the recipient of the message is
located in a core that is not declared in the VDK Kernel tab. This
error is only dispatched in multiprocessor messaging.

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-201

VDK API Reference

PostSemaphore()

C Prototype
void VDK_PostSemaphore(VDK_SemaphoreID inSemaphoreID);

C++ Prototype
void VDK::PostSemaphore(VDK::SemaphoreID inSemaphoreID);

Description

Provides the mechanism by which threads post semaphores. Every time a
semaphore is posted, its count increases by one until it reaches the maxi-
mum value, as specified on creation. Any further posts have no effect.
Note that Interrupt Service Routines (ISRs) must use a different interface,
as described in “Assembly Macros and C/C++ ISR APIs” on page 5-235.

Parameters

inSemaphoreID of type SemaphoreID identifies the semaphore to post.

Scheduling

May invoke the scheduler and may result in a context switch

Determinism

• No thread pending: constant time

• Low priority thread pending: constant time

• High priority thread pending: constant time plus a context switch

Return Value

No return value

VDK API Validity

5-202 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownSemaphore indicates that inSemaphoreID is not a valid
SemaphoreID

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-203

VDK API Reference

PushCriticalRegion()

C Prototype
void VDK_PushCriticalRegion(void);

C++ Prototype
void VDK::PushCriticalRegion(void);

Description

Disables interrupts to enable atomic execution of a critical region of code.
Note that critical regions may be nested. A count is maintained to ensure a
matching number of calls to PopCriticalRegion() are made before restor-
ing interrupts. Each critical region is also (implicitly) an unscheduled
region.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

None

VDK API Validity

5-204 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

PushUnscheduledRegion()

C Prototype
void VDK_PushUnscheduledRegion(void);

C++ Prototype
void VDK::PushUnscheduledRegion(void);

Description

Disables the scheduler. While in an unscheduled region, the current
thread does not become de-scheduled, even if a higher-priority thread
becomes ready to run. Note that unscheduled regions may be nested. A
count is maintained to ensure a matching number of calls to
PopUnscheduledRegion() are made before scheduling is re-enabled.

Scheduling

Suspends scheduling until a matching PopUnscheduledRegion() call

Parameters

None

Determinism

Constant time

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-205

VDK API Reference

ReleaseMutex()

C Prototype
void VDK_ReleaseMutex(VDK_MutexID inMutexID);

C++ Prototype
void VDK::ReleaseMutex(VDK::MutexID inMutexID);

Description

Provides the mechanism by which threads release ownership of the VDK
mutexes.

When a thread no longer requires to keep ownership of a mutex, the
thread can release the mutex with a call to ReleaseMutex(). A VDK mutex
is recursive and can be acquired by its owner without blocking with nested
AcquireMutex() calls. The mutex ownership will be released only when
ReleaseMutex() has been called once for each time that the mutex was
acquired. At that point, the mutex becomes available to all threads, and it
can be acquired without stopping execution.

The API fails if the calling thread does not own the mutex.

Parameters

inMutexID of type MutexID is the mutex the thread is trying to release.

Scheduling

Invokes the scheduler and may result in a context switch

VDK API Validity

5-206 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Determinism

• ReleaseMutex() call that does not change the running thread: con-
stant time

• ReleaseMutex() call that changes the running thread: constant
time plus a context switch

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMutexID indicates that inMutexID is not a mutex created
by the CreateMutex() API

• kMutexNotOwned indicates that the mutex had not been acquired by
any threads so it cannot be released

• kNotMutexOwner indicates that a thread other than the running
thread had acquired the mutex

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-207

VDK API Reference

RemovePeriodic()

C Prototype

void VDK_RemovePeriodic(VDK_SemaphoreID inSemaphoreID);

C++ Prototype

void VDK::RemovePeriodic(VDK::SemaphoreID inSemaphoreID);

Description

Stops periodic posting of the specified semaphore. Trying to stop a
non-periodic semaphore has no effect and raises a run-time error.

Parameters

inSemaphoreID specifies the semaphore for which periodic posting is
halted (see SemaphoreID).

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

VDK API Validity

5-208 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownSemaphore indicates inSemaphoreID is not a valid
SemaphoreID

• kNonperiodicSemaphore indicates the semaphore is not periodic

Non-error checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-209

VDK API Reference

ReplaceHistorySubroutine()

C Prototype
void VDK_ReplaceHistorySubroutine (HistoryLoggingFunc inFunc);

where inFunc has the following prototype.

void inFunc(VDK_Ticks inTick,

const VDK_HistoryEnum inEnum,

const int inValue,

const VDK_ThreadID inThreaID);

C++ Prototype
void VDK::ReplaceHistorySubroutine (HistoryLoggingFunc inFunc);

where inFunc has the following prototype.

void inFunc(VDK::Ticks inTick,

const VDK::HistoryEnum inEnum,

const int inValue,

const VDK::ThreadID inThreaID);

Description

Allows customers to replace the VDK history logging mechanism with the
user-defined subroutine inFunc.

Because the history logging mechanism can be invoked from thread, ker-
nel and ISR levels, inFunc must comply with certain rules. See “Replacing
History Logging Mechanism” on page 3-83 for details.

The arguments passed to inFunc are members of the HistoryEvent struc-
ture. VDK sets up the arguments to inFunc in the following registers.

The user-defined subroutine can call VDK_ISRAddHistoryEvent() to add
history events to the VDK circular buffer in order to display the events in
the VDK History window. VDK_ISRAddHistoryEvent() takes the same

VDK API Validity

5-210 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

arguments in the same registers as inFunc. VDK_ISRAddHistoryEvent() is
called by VDK by default if the VDK history mechanism is not replaced.

ReplaceHistorySoubroutine() can be called at startup or in the construc-
tor of a global variable and is only available when using fully instrumented
libraries.

Parameters

inFunc is the subroutine that will replace the default VDK logging code.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

None

Argument Type Blackfin
Registers

TigerSHARC
Registers

SHARC
Registers

Time VDK::Ticks R3 J7 R0

Event type VDK::HistoryE-
num

R0 J4 R4

Value int R1 J5 R8

Thread ID VDK::ThreadID R2 J6 R12

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-211

VDK API Reference

ResetPriority()

C Prototype

void VDK_ResetPriority(const VDK_ThreadID inThreadID);

C++ Prototype

void VDK::ResetPriority(const VDK::ThreadID inThreadID);

Description

Restores the priority of the named thread to the default value specified in
the thread’s template

Parameters

inThreadID specifies the thread whose priority is reset (see ThreadID).

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownThread indicates inThreadID is not a valid ThreadID

• kInvalidThread indicates inThreadID specifies the Idle Thread

VDK API Validity

5-212 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-213

VDK API Reference

SetClockFrequency()

C Prototype
void VDK_SetClockFrequency(unsigned int inFrequency);

C++ Prototype
void VDK::SetClockFrequency(unsigned int inFrequency);

Description

Sets the clock frequency (in MHz) to inFrequency. The clock is stopped,
the clock parameters are recalculated using the new value for clock fre-
quency, and then the clock is restarted. It is the responsibility of the
application designer to ensure that the clock frequency matches that of the
hardware being used.

Parameters

inFrequency is the new value for the clock frequency in MHz.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

None

VDK API Validity

5-214 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SetEventBit()

C Prototype
void VDK_SetEventBit(VDK_EventBitID inEventBitID);

C++ Prototype
void VDK::SetEventBit(VDK::EventBitID inEventBitID);

Description

Sets the value of the event bit. Once the event bit is set (meaning its value
equals to TRUE, 1, occurred, and so on), the value of all dependent events is
recalculated.

If several event bits are set (or cleared) as a single operation, then the
SetEventBit() and/or ClearEventBit() calls should be made from within
an unscheduled region. Event recalculation does not occur until the
unscheduled region is popped.

Parameters

inEventBitID specifies the system event bit to set (see EventBitID).

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-215

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownEventBit indicates inEventBitID is not a valid
EventBitID

Non error-checking libraries: none

VDK API Validity

5-216 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SetInterruptMaskBits()

C Prototype
void VDK_SetInterruptMaskBits(VDK_IMASKStruct inMask);

C++ Prototype

void VDK::SetInterruptMaskBits(VDK::IMASKStruct inMask);

Description

Sets bits in the interrupt mask (see IMASKStruct). Any bits set in the
parameter are set in the interrupt mask. In other words, the new mask is
computed as the bitwise OR of the old mask and the parameter inMask.

The API does not have the expected behavior when called before
VDK_Initialize(), from boot thread constructors or from the Init part of
device drivers.

Parameters

inMask of type IMASKStruct specifies which bits should be set in the inter-
rupt mask.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-217

VDK API Reference

Errors Dispatched

None

VDK API Validity

5-218 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SetInterruptMaskBitsEx()

C Prototype

void VDK_SetInterruptMaskBitsEx(VDK_IMASKStruct inMask,

VDK_IMASKStruct inLMask);

C++ Prototype

void VDK::SetInterruptMaskBitsEx(VDK::IMASKStruct inMask,

VDK::IMASKStruct inLMask);

Description

Sets bits in the IMASK and LMASK interrupt masks (where LMASK is the mask
component of the IRPTL register). Any bits set in the parameters are set in
the relevant interrupt mask. In other words, the new masks are computed
as the bitwise OR of the old mask and the specified IMASKStruct. The bits
specified for inLMask are shifted by the relevant amount for the processor
in question, thereby allowing the use of the bit definitions for the LIRPTL
register.

The API does not have the expected behavior when called before
VDK_Initialize(), from boot thread constructors or from the Init part of
device drivers.

The API applies to the ADSP-2116x, ADSP-2126x, and
ADSP-2136x, ADSP-2137x, and ADSP-2146x SHARC
processors.

Parameters

inMask specifies which bits should be set in the IMASK interrupt mask.

inLMask specifies which bits should be set in the LMASK interrupt mask.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-219

VDK API Reference

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMaskBit if any of the bits in inLmask do not refer to an
interrupt mask

Non error-checking libraries: none

VDK API Validity

5-220 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SetMessagePayload()

C Prototype

void VDK_SetMessagePayload(VDK_MessageID inMessageID,

int inPayloadType,

unsigned int inPayloadSize,

void *inPayloadAddr);

C++ Prototype

void VDK::SetMessagePayload(VDK::MessageID inMessageID,

int inPayloadType,

unsigned int inPayloadSize,

void *inPayloadAddr);

Description

Sets the values in a message header that describes the payload. The mean-
ing of these values is application-specific and corresponds to the
arguments passed to CreateMessage(). This function overwrites the exist-
ing values in the message. Only the thread that is the owner of a message
may set the attributes of its payload.

Parameters

inMessageID specifies the message to be modified (see MessageID).

inPayloadType is an application-specific value that may be used to
describe the contents of the payload. Negative values of payload type are
reserved for use by VDK.

inPayloadSize indicates the size of the payload in the smallest addressable
units of the processor (sizeof(char)).

inPayloadAddr is (typically) a pointer to the beginning of the payload
buffer.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-221

VDK API Reference

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kInvalidMessageOwner indicates the running thread is not the cur-
rent owner of the message

• kInvalidMessageID indicates the argument inMessageID is not a
valid MessageID

• kMessageInQueue indicates the message is posted to a thread (the
ThreadID is not known at this point), and the message needs to be
removed from the message queue by a call to PendMessage()

Non error-checking libraries: none

VDK API Validity

5-222 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SetPriority()

C Prototype

void VDK_SetPriority(const VDK_ThreadID inThreadID,

const VDK_Priority inPriority);

C++ Prototype

void VDK::SetPriority(const VDK::ThreadID inThreadID,

const VDK::Priority inPriority);

Description

Dynamically sets the Priority of the named thread while overriding the
default value. All threads are given an initial priority level at creation time.
The thread’s template specifies the priority initial value.

Parameters

inPriority of type Priority is the new priority level.

inThreadID of type ThreadID is the thread to modify.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-223

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• kUnknownThread indicates inThreadID is not a valid ThreadID

• kInvalidPriority indicates inPriority is not a valid Priority

• kInvalidThread indicates inThreadID specified the Idle Thread

Non error-checking libraries: none

VDK API Validity

5-224 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SetThreadError()

C Prototype
void VDK_SetThreadError(VDK_SystemError inErr, int inVal);

C++ Prototype
void VDK::SetThreadError(VDK::SystemError inErr, int inVal);

Description

Sets the running thread’s error value.

Parameters

inErr is the error enumeration. See SystemError for more information
about errors.

inVal is the value whose meaning is determined by the error enumeration.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-225

VDK API Reference

SetThreadSlotValue()

C Prototype
bool VDK_SetThreadSlotValue(int inSlotNum, void *inValue);

C++ Prototype
bool VDK::SetThreadSlotValue(int inSlotNum, void *inValue);

Description

Sets the value in the currently running thread’s slot table associated with
inSlotNum. Returns FALSE if (and only if) inSlotNum does not identify a
currently allocated slot. Otherwise, stores inValue in the thread slot iden-
tified by inSlotNum and returns TRUE.

Parameters

inSlotNum is the static library’s preallocated slot number.

inValue is the value to store in thread’s slot table (at inSlotNum entry).

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

FALSE if inSlotNum does not identify a currently allocated slot and TRUE
otherwise

Errors Dispatched

None

VDK API Validity

5-226 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SetTickPeriod()

C Prototype
void VDK_SetTickPeriod(float inPeriod);

C++ Prototype
void VDK::SetTickPeriod(float inPeriod);

Description

Sets the tick period to inPeriod milliseconds. The clock is stopped, the
clock parameters are recalculated using the new value for tick period, and
then the clock is restarted.

Parameters

inPeriod is the new value for the tick period in milliseconds.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

None

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-227

VDK API Reference

Sleep()

C Prototype
void VDK_Sleep(VDK_Ticks inSleepTicks);

C++ Prototype
void VDK::Sleep(VDK::Ticks inSleepTicks);

Description

Causes a thread to pause execution for at least the given number of VDK
Ticks, where each tick represents one occurrence of the VDK Timer ISR.
Once the number of sleep ticks have elapsed, the calling thread returns to
the ready-to-run state and resumes execution only when it is the high-
est-priority ready thread.

The minimum number of ticks that can be given as an argument to
Sleep() is 1. A call to Sleep() with a timeout of 1 tick causes the current
thread to enter a sleeping state until the next time the Timer ISR executes.

Depending on the timing of the call to Sleep(), the Timer ISR can exe-
cute between 0 and <Timer Period> ms after the call to Sleep(). The
reason for this is that the timer interrupt can be about to expire when the
call to Sleep() is made. In general, if you make a call to Sleep() with a
timeout of N, the thread enters a sleeping state for a time between
<Timer Period> * (N - 1) and <Timer Period> * N, depending on the
exact timing of the call to Sleep().

Parameters

inSleepTicks is a value less than INT_MAX that specifies the duration (in
Ticks) for the thread “sleep”.

Scheduling

Invokes the scheduler and results in a context switch

VDK API Validity

5-228 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Determinism

Not deterministic

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kBlockInInvalidRegion indicates Sleep() is being called in an
unscheduled region, causing a scheduling conflict

• kInvalidDelay indicates inSleepTicks is not within the valid
range of 1 to (INT_MAX — 1)

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-229

VDK API Reference

SyncRead()

C Prototype

unsigned int VDK_SyncRead(VDK_DeviceDescriptor inDD,

char *outBuffer,

const unsigned int inSize,

VDK_Ticks inTimeout);

C++ Prototype

unsigned int VDK::SyncRead(VDK::DeviceDescriptor inDD,

char *outBuffer,

const unsigned int inSize,

VDK::Ticks inTimeout);

Description

Invokes the read functionality of the driver

Parameters

inDD is the DeviceDescriptor returned from OpenDevice().

outBuffer is the address of the data buffer filled by the device.

inSize is the number of words read from the device.

inTimeout is the number of Ticks before timeout occurs.

Scheduling

Does not call the scheduler, but the user-written device driver can call the
scheduler

VDK API Validity

5-230 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Determinism

Constant time. Note that this function calls user-written device driver
code that may not be deterministic.

Return Value

Returns the dispatch function’s value if the device exists. Otherwise, Syn-
cRead() returns the return value of the current thread’s Error function for
kBadDeviceDescriptor if the thread’s Error function does not go to
KernelPanic.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kBadDeviceDescriptor indicates that inDD is not a valid
DeviceDescriptor

Non error-checking libraries: none

Other errors can be dispatched by user-written device driver code
executed by this API.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-231

VDK API Reference

SyncWrite()

C Prototype

unsigned int VDK_SyncWrite(VDK_DeviceDescriptor inDD,

char *outBuffer,

const unsigned int inSize,

VDK_Ticks inTimeout);

C++ Prototype

unsigned int VDK::SyncWrite(VDK::DeviceDescriptor inDD,

char *outBuffer,

const unsigned int inSize,

VDK::Ticks inTimeout);

Description

Invokes the write functionality of the driver

Return Value

Returns the dispatch function’s value if the device exists. Otherwise, Sync-
Write() returns the return value of the current thread’s Error function for
kBadDeviceDescriptor if the thread’s Error function does not go to
KernelPanic.

Parameters

inDD is the DeviceDescriptor returned from OpenDevice().

outBuffer is the address of the data buffer read by the device.

inSize is the number of words written to the device.

inTimeout is the number of Ticks before timeout occurs.

VDK API Validity

5-232 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Scheduling

Does not call the scheduler, but the use- written device driver can call the
scheduler

Determinism

Constant time. Note that this function calls user-written device driver
code that may not be deterministic.

Errors Dispatched

Full instrumentation and error-checking libraries:

• kBadDeviceDescriptor indicates that inDD is not a valid
DeviceDescriptor

Non error-checking libraries: none

Other errors can be dispatched by user-written device driver code
executed by this API.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-233

VDK API Reference

Yield()

C Prototype
void VDK_Yield(void);

C++ Prototype
void VDK::Yield(void);

Description

Yields control of the processor and moves the thread to the end of the wait
queue of threads at its priority level. When Yield() is called from a thread
at a priority level using round-robin multithreading, the call also yields
the remainder of the thread’s time slice.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Constant time and conditional context switch

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• kBlockInInvalidRegion indicates that Yield() is called in an
unscheduled region, causing a scheduling conflict

VDK API Validity

5-234 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-235

VDK API Reference

Assembly Macros and C/C++ ISR APIs
This section describes the assembly-language macros and C/C++ ISR APIs
that allow Interrupt Service Routines (ISRs) to communicate with VDK.
These are known collectively as the ISR API and are the only part of VDK
that can be safely called from interrupt level.

In VDK applications, ISRs should execute quickly and should leave as
much of the processing as possible to be performed either by a thread or
by a device driver activation. The principle purpose of the ISR API is
therefore to provide the means to initiate such (thread or driver) activity.

In VisualDSP++ 3.5 and earlier releases, VDK provides direct support for
ISRs written in assembly language only. Starting with VisualDSP++ 4.0
release, VDK supports ISRs written in assembly and C/C++.

Writing ISRs in assembly eliminates the overhead of saving and restoring
the processor state, and of setting up a C run-time environment for each
ISR entry. Assembly ISRs are responsible for saving and restoring any reg-
isters that they use. No assumptions can be made about the processor state
at the time of entry to an ISR. Each ISR assembly macro saves and restores
all of the registers that it uses, and the macros are safe to use with nested
interrupts enabled.

The ISR assembly macros are:

• VDK_ISR_ACTIVATE_DEVICE_()

• VDK_ISR_CLEAR_EVENTBIT_()

• VDK_ISR_LOG_HISTORY_()

• VDK_ISR_POST_SEMAPHORE_()

• VDK_ISR_SET_EVENTBIT_()

Writing ISRs in C/C++ may simplify the coding of these routines. How-
ever, it must be remembered that there is a performance cost associated

VDK API Validity

5-236 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

with executing ISRs that have been written in C/C++. Additionally, it
should be noted that the majority of the run-time library is not inter-
rupt-safe and so can not be used in ISRs (see the VisualDSP++ 5.0 C/C++
Compiler and Libraries Manual for details).

The VDK APIs callable from C/C++ ISRs are:

• C_ISR_ActivateDevice()

• C_ISR_ClearEventBit()

• C_ISR_PostSemaphore()

• C_ISR_SetEventBit()

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-237

VDK API Reference

VDK_ISR_ACTIVATE_DEVICE_()

Prototype
VDK_ISR_ACTIVATE_DEVICE_(VDK_IOID inID);

Description

Executes the named device driver prior to execution returning to the
thread domain

Parameters

inID specifies the device driver to run (see IOID).

Scheduling

Invokes the scheduler prior to returning to the thread domain

Determinism

Constant time

Errors Dispatched

Full instrumentation and error-checking libraries:

• Goes to KernelPanic with a g_KernelPanicCode of kISRError and
a g_KernelPanicError of kBadIOID if inID is greater than the maxi-
mum number of I/O objects allowed in the system

Non error-checking libraries: none

VDK API Validity

5-238 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK_ISR_CLEAR_EVENTBIT_()

Prototype
VDK_ISR_CLEAR_EVENTBIT_(VDK_EventBitID inEventBit);

Description

Clears the value of inEventBit by setting it to 0 (FALSE). All event bit
clears that occur in the interrupt domain are processed immediately prior
to returning to the thread domain.

Parameters

inEventBit specifies the event bit to clear (see EventBitID).

Scheduling

If inEventBit is currently set (1), the macro invokes the scheduler prior to
returning to the thread domain. This allows the value of all dependent
events to be recalculated and may cause a thread context switch.

Determinism

Constant time

Errors Dispatched

Full instrumentation and error-checking libraries:

• Goes to KernelPanic with a g_KernelPanicCode of kISRError and
a g_KernelPanicError of kUnknownEventBit if the value of
inEventBit is greater than the number of event bits used in the
system

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-239

VDK API Reference

VDK_ISR_LOG_HISTORY_()

Prototype

VDK_ISR_LOG_HISTORY_(VDK_HistoryEnum inEnum,

int inVal,

VDK_ThreadID inThreadID);

Description

Adds a record to the history buffer. It is NULL if the
VDK_INSTRUMENTATION_LEVEL_ macro is set to 0 or 1. The value of 2 indi-
cates that fully instrumented libraries are in use. See online Help for more
information.

Parameters

inEnum is the enumeration value for this type of event. For more informa-
tion, see HistoryEnum.

inVal is the information defined by the enumeration.

inThreadID is the ThreadID stored with History Event.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Errors Dispatched

None

VDK API Validity

5-240 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VDK_ISR_POST_SEMAPHORE_()

Prototype
VDK_ISR_POST_SEMAPHORE_(VDK_SemaphoreID inSemaphoreID);

Description

Posts the named semaphore. Every time a semaphore is posted, its count
increases until it reaches its maximum value, as specified on creation. Any
further posts have no effect. All semaphore posts that occur in the inter-
rupt domain are processed immediately prior to returning to the thread
domain.

Parameters

inSemaphoreID specifies the semaphore to post (see SemaphoreID).

Scheduling

If a thread is pending on inSemaphoreID, the macro invokes the scheduler
prior to returning to the thread domain

Determinism

Constant time

Errors Dispatched

Full instrumentation and error-checking libraries:

• Goes to KernelPanic with a g_KernelPanicCode of kISRError and
a g_KernelPanicError of kUnknownSemaphore if inSemaphoreID is
greater than the maximum number of semaphores allowed in the
system

Non error-checking libraries: none

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-241

VDK API Reference

VDK_ISR_SET_EVENTBIT_()

Prototype
VDK_ISR_SET_EVENTBIT_(VDK_EventBitID inEventBit);

Description

Sets the value of inEventBit (see EventBitID) by setting it to 1 (TRUE). All
event bit sets that occur in the interrupt domain are processed immedi-
ately prior to returning to the thread domain.

Parameters

inEventBit of type EventBitID specifies the event bit to set.

Scheduling

If inEventBit is currently clear (zero), the macro invokes the scheduler
prior to returning to the thread domain. This allows the value of all
dependent events to be recalculated and may cause a thread context
switch.

Determinism

Constant time

Errors Dispatched

Full instrumentation and error-checking libraries:

• Goes to KernelPanic with a g_KernelPanicCode of kISRError and
a g_KernelPanicError of kUnknownEventBit if the value of
inEventBit is greater than the number of event bits used in the
system

Non error-checking libraries: none

VDK API Validity

5-242 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

C_ISR_ActivateDevice()

C Prototype
void VDK_C_ISR_ActivateDevice(VDK_IOID inID);

C++ Prototype
void VDK::C_ISR_ActivateDevice(VDK::IOID inID);

Description

Executes the named device driver prior to execution returning to the
thread domain.

Parameters

inID specifies the device driver to run (see IOID).

Scheduling

Invokes the scheduler prior to returning to the thread domain

Determinism

Constant time

Return Value

No return value

Errors Dispatched

Full instrumentation and error-checking libraries:

• Goes to KernelPanic with a g_KernelPanicCode of kISRError and
a g_KernelPanicError of kBadIOID if inID is greater than the maxi-
mum number of I/O objects allowed in the system

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-243

VDK API Reference

Non error-checking libraries: none

VDK API Validity

5-244 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

C_ISR_ClearEventBit()

C Prototype
void VDK_C_ISR_ClearEventBit(VDK_EventBitID inEventBitID);

C++ Prototype
void VDK::C_ISR_ClearEventBit(VDK::EventBitID inEventBitID);

Description

Clears the value of inEventBitID (see EventBitID) by setting it to 0
(FALSE). All event bit clears that occur in the interrupt domain are pro-
cessed immediately prior to returning to the thread domain.

Parameters

inEventBitID of type EventBitID specifies the event bit to clear.

Scheduling

If inEventBitID is currently set (1), the macro invokes the scheduler prior
to returning to the thread domain. This allows the value of all dependent
events to be recalculated and may cause a thread context switch.

Determinism

Constant time

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-245

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• Goes to KernelPanic with a g_KernelPanicCode of kISRError and
a g_KernelPanicError of kUnknownEventBit if the value of
inEventBit is greater than the number of event bits used in the
system

Non error-checking libraries: none

VDK API Validity

5-246 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

C_ISR_PostSemaphore()

C Prototype

void VDK_C_ISR_PostSemaphore(VDK_SemaphoreID inSemaphoreID);

C++ Prototype
void VDK::C_ISR_PostSemaphore(VDK::SemaphoreID inSemaphoreID);

Description

Posts the named semaphore. Every time a semaphore is posted, its count
increases until it reaches its maximum value, as specified on creation. Any
further posts have no effect. All semaphore posts that occur in the inter-
rupt domain are processed immediately prior to returning to the thread
domain.

Parameters

inSemaphoreID of type SemaphoreID specifies the semaphore to post.

Scheduling

If a thread is pending on inSemaphoreID, the scheduler is invoked prior to
returning to the thread domain

Determinism

Constant time

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-247

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• Goes to KernelPanic with a g_KernelPanicCode of kISRError and
a g_KernelPanicError of kUnknownSemaphore if inSemaphoreID is
greater than the maximum number of semaphores allowed in the
system

Non error-checking libraries: none

VDK API Validity

5-248 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

C_ISR_SetEventBit()

C Prototype
void VDK_C_ISR_SetEventBit(VDK_EventBitID inEventBitID);

C++ Prototype
void VDK::C_ISR_SetEventBit(VDK::EventBitID inEventBitID);

Description

Sets the value of inEventBitID by setting it to 1 (TRUE). All event bit sets
that occur in the interrupt domain are processed immediately prior to
returning to the thread domain.

Parameters

inEventBitID of type EventBitID specifies the event bit to set.

Scheduling

If inEventBitID is currently clear (zero), the macro invokes the scheduler
prior to returning to the thread domain. This allows the value of all
dependent events to be recalculated and may cause a thread context
switch.

Determinism

Constant time

Return Value

No return value

VisualDSP++ 5.0 Kernel (VDK) User’s Guide 5-249

VDK API Reference

Errors Dispatched

Full instrumentation and error-checking libraries:

• Goes to KernelPanic with a g_KernelPanicCode of kISRError and
a g_KernelPanicError of kUnknownEventBit if the value of
inEventBit is greater than the number of event bits used in the
system

Non error-checking libraries: none

VDK API Validity

5-250 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-1

A PROCESSOR-SPECIFIC
NOTES

This appendix provides processor-specific information for Blackfin,
SHARC and TigerSHARC processors.

This section describes:

• “VDK for Blackfin Processors” on page A-1

• “VDK for SHARC Processors” on page A-11

• “VDK for TigerSHARC Processors” on page A-23

VDK for Blackfin Processors
This section provides information relevant to the ADSP-BF504,
ADSP-BF504F ADSP-BF506F, ADSP-BF512, ADSP-BF514,
ADSP-BF516, ADSP-BF518, ADSP-BF522, ADSP-BF523,
ADSP-BF524, ADSP-BF525, ADSP-BF526, ADSP-BF527,
ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF534,
ADSP-BF535, ADSP-BF536, ADSP-BF537, ADSP-BF538,
ADSP-BF539, ADSP-BF542, ADSP-BF544, ADSP-BF548,
ADSP-BF549, ADSP-BF561, and ADSP-BF592-A processors.

User and Supervisor Modes
The Blackfin processor’s architecture makes a distinction between execu-
tion in user and supervisor modes. However, all VDK application code
runs entirely in supervisor mode, including all user thread code.

VDK for Blackfin Processors

A-2 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Since supervisor mode provides a superset of the capabilities of user mode,
applications using VDK do not need to be aware of the processor mode
and do not need to raise exceptions in order to access protected resources.

Thread, Kernel, and Interrupt Execution Levels
VDK reserves execution level 15 as the run-time execution level for most
user and VDK API code, and reserves execution level 14 for internal VDK
operations. In the following text, these are referred to as “thread level” and
“kernel level”, respectively. Execution levels 13–6 are collectively referred
to as “interrupt level”. All of these levels (15–6) execute in supervisor
mode.

All thread functions execute at thread level (execution level 15), including
Run() and ErrorHandler(). Conversely, all Interrupt Service Routines
(ISRs) execute at higher priority (lower numbered) execution levels,
according to the interrupt source that invoked them. The implementation
function for device drivers (their single entry point) may be called by the
kernel at either thread level (execution level 15) or at kernel level (execu-
tion level 14), depending on the purpose of the call.

Device driver “activate” functionality (kIO_Activate) is the only user code
that executes at kernel level. All other device driver code executes at thread
level. Entry to kernel level is, in this case, initiated by an ISR calling
VDK_ISR_ACTIVATE_DEVICE_() or C_ISR_ActivateDevice() and is, there-
fore, asynchronous with respect to thread level, except within a critical
region. Thus, care must be taken to synchronize access to shared data
between thread level and kernel level, as well as between thread level and
interrupt level (and also between kernel level and interrupt level). Critical
regions may be used for both of these purposes.

As VDK runs entirely in supervisor mode, system memory-mapped regis-
ters (MMRs) can be accessed directly and at any time. It is, however, the
user’s responsibility to ensure the operations are performed correctly and
at appropriate times.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-3

Processor-Specific Notes

Exceptions
VDK reserves user exception 0 (EXCPT 0) for internal use.

The IDDE automatically adds a source file to all VDK projects for Black-
fin processors. The source file contains template code for a user exception
handler and defines an entry point for any service or error exceptions you
wish to trap. When an exception occurs, VDK intercepts the exception. If
it is not the VDK exception, VDK will try to determine whether the
exception is a CPLB miss, in which case cplb_hdr will be invoked. If VDK
cannot identify the exception as either VDK or a CPLB miss, then the
user exception handler executes.

The VDK User Exception handler does not return from jumps to either
UserExceptionHandler or cplb_hdr, so short jumps must be used to avoid
potential corruption of the P1 register. Because of this, the LDF must set
the sections L1_code and cplb_code close in memory to avoid link errors.

ISR API Assembly Macros
The Blackfin processor’s assembly syntax requires the use of separate API
macros, depending on whether the arguments are constants (immediate
values, enumerations) or data registers (R0 through R7). The arguments to
the default assembly macros, described in Chapter 5, “VDK API Refer-
ence”, must be constants. When passing data registers as arguments,
append “REG_” to the macro name as follows:

VDK_ISR_POST_SEMAPHORE_REG_(semaphore_num_);

VDK_ISR_ACTIVATE_DEVICE_REG_(dev_num_);

VDK_ISR_SET_EVENTBIT_REG_(eventbit_num_);

VDK_ISR_CLEAR_EVENTBIT_REG_(eventbit_num_);

VDK_ISR_LOG_HISTORY_REG_(enum_, value_, threadID_);

The assembly macros, as defined in “Assembly Macros and C/C++ ISR
APIs” (without “REG_”), only accept constants as arguments. Passing a reg-
ister name results in an assembler error.

VDK for Blackfin Processors

A-4 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Interrupts
The following hardware events (interrupts) are reserved by default for use
by VDK on Blackfin processors.

• EVT_EVX – the software exception handler. User code handles soft-
ware exceptions by modifying the source file created by
VisualDSP++ named ExceptionHandler-<processor_name>.asm,
for example ExceptionHandler-BF533.asm.

• EVT_IVTMR – the interrupt associated with the timer integral to the
processor core. This timer generates the interrupts for system ticks
and provides all VDK timing services. Disabling the timer stops
sleeping, round-robin scheduling, pending with timeout, periodic
semaphores, and meaningful VDK history logging. The interrupt
dedicated for the timer can be changed or set to none on the Kernel
tab.

• EVT_IVG14 – general interrupt #14. This interrupt is reserved for
use by VDK and may not be used in any other manner.

• EVT_IVG15 – general interrupt #15. This interrupt is reserved to
provide a supervisor mode runtime for user and VDK code and
may not be used in any other manner.

Blackfin processors designate hardware events seven (EVT_IVG7) through
thirteen (EVT_IVG13) as “general interrupts” and maps each to more than
one physical peripheral. The IDDE generates source code templates with a
single entry point per interrupt level, rather than for each peripheral.
Therefore, you are responsible for dispatching interrupts when more than
one peripheral is used at the same level. The technique used depends on
the application, but, typically, either chaining or a jump table is used.
When chaining, a handler will check to see whether the interrupt was
caused by the specific peripheral it knows how to handle. If not, execution
is passed to the next handler in the chain. A jump table uses an identifier

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-5

Processor-Specific Notes

or a constant as an index to a table of function pointers when searching for
the appropriate interrupt handler.

Due to the nature of the non-maskable interrupt (EVT_NMI), the VDK ISR
APIs cannot be used in ISRs that service the NMI interrupt.

On Blackfin processors, it is possible to manipulate the IMASK regis-
ter directly, rather than being restricted to the
SetInterruptMaskBits() or ClearInterruptMaskBits() API. This
direct manipulation is not permitted in boot thread constructors or
device drivers’ Init() functions.

It is recommended that the System Services initialization is done in
main() after a call to VDK_Initialize() in C or VDK::Initial-
ize() in C++ because many of the System Services initialization
APIs modify IMASK directly. See “VDK and main()” on page 3-2
for more information.

Timer
VDK Ticks are derived from the timer implemented in the inner proces-
sor core of Blackfin processors and are synchronized to the main core
clock CCLK. However, this timer is disabled when a Blackfin processor
enters low power mode. Thus, all VDK timing services (such as sleeping,
timeouts, and periodic semaphores) do not operate while the core is in
IDLE or low power mode. By default, VDK does not use or modify the
general-purpose timers.

On Blackfin processors, you can register interrupts with the run-time
library function register_handler() or the system services API
adi_int_CECHook(), with no need to declare the interrupts in the VDK
Kernel tab. Interrupts registered outside VDK must not use the same IVG
level as any interrupt defined in the VDK Kernel tab.

VDK for Blackfin Processors

A-6 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

To ensure that VDK is fully initialized before an interrupt that uses
VDK signals is serviced, do not call register_handler() or
adi_int_CECHook() before the Run() function of the highest prior-
ity boot thread is reached (or before the VDK::Run() function if
VDK’s main() has been replaced).

Do not use adi_int_CECHook for the interrupt levels reserved by
VDK. Calling adi_int_CECHook on interrupt levels 3, 14, or 15 in
a VDK application returns an error if the application uses the Sys-
tem Services Debug Libraries. If the application uses the Release
System Services libraries, then the VDK interrupts may be over-
written, and the application may not work as intended.

Idle Thread
As specified in “Idle Thread” on page 3-18, the idle thread frees the
resources of threads that have been destroyed. After this, the VDK idle
thread loops indefinitely and does not make the processor enter low power
mode. The reason for this is that the core timer stops when the processor
idles, stopping the operation of the VDK timing services.

Blackfin Processor Memory
The default VDK linker description files for Blackfin processors
(VDK-BF531.ldf, VDK-BF532.ldf, etc.) place code, data, and the system
heap into default memory areas. These default assignments can be
changed by customizing the .ldf file used by a project. Refer to the
VisualDSP++ 5.0 Linker and Utilities Manual for details on how to do
this. An alternative mapping is included in the default .ldf files, which
uses part or all of the L1 SRAM as cache (assumes that external memory is
present). However, caching of code and data is not enabled by default. For
details on how to enable and configure caching, see the VisualDSP++ 5.0
C/C++ Compiler and Library Manual for Blackfin Processors.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-7

Processor-Specific Notes

Thread Stack
For efficiency in the Blackfin architecture, VDK needs to store the thread
context on the thread stack. For this reason, the thread stack is made 45
words larger than specified in the Kernel tab. The Stack Size field in the
VDK Status window displays the size of memory allocated for both stack
and context, so it differs from the thread stack size value entered in the
Kernel tab.

Interrupt Nesting
VDK fully supports nested interrupts:

• The skeleton Interrupt Service Routines, which are generated by
the VisualDSP++ 5.0 IDDE for user-defined interrupt handlers,
include instructions to enable the nesting of interrupts if required.

• The VDK ISR API is fully reentrant.

System Stack
There are two types of a VDK stack: thread and system. The thread stack
is allocated on a per-thread basis, and the stack’s memory resources are
allocated from the heap. Thread stack usage by interrupts on Blackfin pro-
cessors is described in the following section.

The system stack is used for most kernel operations, such as the initializa-
tion of VDK and thread scheduling. The following text describes when
VDK uses the system stack, and some considerations for determining the
system stack requirements for an application:

• At startup, the system stack is used from the system reset address to
the Run() function of the first boot thread. This includes the ini-
tialization of the C/C++ runtime environment, global variable

VDK for Blackfin Processors

A-8 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

constructors, the initialization of VDK, constructors for VDK C++
boot threads, the InitFunction() for C/assembly boot threads, and
the Init section for any boot IO objects.

• Once the first boot thread has started to execute, the system stack is
used only for short periods during VDK thread scheduling and for
any deferred procedure calls. VDK uses deferred procedure calls for
internal updates, such as timeouts, and for some user-configurable
deferred procedure calls, which include:

• The “activate” part of VDK device drivers

• Any system services deferred callbacks

• Interrupts can occur while VDK is using the system stack. There
should be enough space configured for the system stack to accom-
modate the stack requirements for any of the ISRs in the system (if
any interrupts can be nested, then the amount of the required sys-
tem stack also increases). This applies to C, C++, and assembly
interrupts.

Thread Stack Usage by Interrupts
Because all thread code executes in supervisor mode, there is no automatic
switching between user and system stack pointers. Therefore, all ISRs exe-
cute using the stack of the current thread, which is the thread that is
executing at the time the interrupt is serviced. This means each thread
stack must—in addition to the thread’s own requirements—reserve suffi-
cient space for the requirements of ISRs. This is also applicable to the Idle
thread’s stack and the size of the Idle thread’s stack can be configured
within the IDDE (see online Help for further information). When inter-
rupt nesting is enabled, the worst-case space requirement is the total of the
requirements of the individual ISRs. When nesting is disabled, the
requirement is only the largest of the individual ISR requirements, which
is one possible reason for disabling interrupt nesting.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-9

Processor-Specific Notes

Interrupt Latency
Every effort has been made to minimize the duration of the intervals in
which interrupts are disabled by VDK. Interrupts are disabled only where
necessary for synchronization with interrupt level and for the shortest fea-
sible number of instructions. The instruction sequences executed during
these interrupts-off periods are deterministic. It is, therefore, quite possi-
ble that the worst-case interrupts-off time will be set by critical regions in
user code. Ensure that such usage does not impact the interrupt latency of
the system to an unacceptable degree.

Within VDK itself, synchronization between thread level and kernel level
is achieved by selectively masking the kernel level interrupt, while leaving
the higher priority interrupts unmasked.

Multiprocessor Messaging
The dual-core ADSP-BF561 processor is the only processor in the Black-
fin family for which out-of-the-box multiprocessor messaging support is
provided. A device driver that uses the two Internal Memory DMA
(IMDMA0 and IMDMA1) channels for communication between the two cores is
included under the examples directories in the VisualDSP++ 5.0
installation.

Because the IMDMA channels only support L1 and L2 memory, care needs
to be exercised if external memory (SDRAM) is also in use. Memory pay-
loads placed in external memory cannot be written or read by the IMDMA
device driver and, therefore, cannot automatically be transferred by the
marshalling functions. However, since external memory is visible to both
cores at the same addresses, it is not normally necessary to copy the pay-
load contents between the cores. Provided that the application is carefully
designed, it should be possible to pass the payload address and size as an
unmarshalled payload type and to access the payload contents in place
from either core. This is also the more efficient solution.

VDK for Blackfin Processors

A-10 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Also because IMDMA channels only support L1 and L2 memory, the
routing threads’ stacks must be allocated from a heap that is in L1 or L2
memory (as in VDK’s default configuration). In Lwip projects, the system
heap is in SDRAM by default, so if multi-processor messaging is required,
users must configure an extra heap in L1 or L2 and modify the VDK Ker-
nel tab so the routing threads’ stacks are allocated from the heap in
internal memory.

Note that there is no cache-coherency between the two cores of the
ADSP-BF561 processor. Therefore, if caching is enabled, then any mem-
ory regions that are accessed from both cores (this applies both to L2
memory and to external SDRAM) must be defined as uncached in the
CPLB tables. See the “Caching and Memory Protection” section in the
VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin Proces-
sors for more information about CPLBs.

Additionally, the thread stacks for Routing Threads must not be placed in
external memory. This is because the buffer structures used for the trans-
mission and reception of message packets are stored on the stack—these
must be located in either L1 or L2 memory.

Stack Overflow
Stack overflow is a particularly common problem in multi-threaded appli-
cations where thread stacks sizes are fixed at build time. Space restrictions
normally mean that the thread stack sizes are squeezed to the minimum
necessary, which can cause stack overflows when circumstances (such as
timing) change.

From VisualDSP++ 5.0 update 9 onwards, the Blackfin compiler provides
facilities to detect stack overflows (the -stack-detect switch is used to
enable stack overflow detection). The compiler facilities rely on a global
structure being updated at all points to get information about the stack
being used. In a multi-threaded application, this means having to con-
text-switch the structure every time the current thread changes.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-11

Processor-Specific Notes

Not to make the context switching slower if you do not require stack over-
flow detection, VDK provides a specific version of its context switch that
must be used if stack overflow detection is enabled.

To select the correct VDK context switch for your application, your proj-
ect’s LDF must be updated to include the following code (or equivalent
for your particular LDF).

#ifdef _ADI_SOV_DETECTION

TMK-BF532_sov.dlb,

#else

TMK-BF532.dlb,

#endif

You can find this code in the default VDK LDF in your VisualDSP++ 5.0
update 9 (or later) installation folder. If you do not apply this change to
the LDF while enabling stack overflow detection, your application will
result in a KernelPanic.

In case of a stack overflow being detected, the compiler calls the
adi_stack_overflowed function, which, in VDK case, calls KernelPanic
with panic code kStackCheckFailure.

For more information about the Blackfin compiler stack overflow detec-
tion, see the C/C++ Compiler Manual for SHARC Processors.

VDK for SHARC Processors
This section provides information relevant to the use of VDK on
ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L,
ADSP-21160, ADSP-21161, ADSP-21261, ADSP-21262, ADSP-21266,
ADSP-21267, ADSP-21362, ADSP-21363, ADSP-21364, ADSP-21365,
ADSP-21366, ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371,
ADSP-21375, ADSP-21462, ADSP-21465, ADSP-21467, ADSP-21469,
ADSP-21472, ADSP-21475, ADSP-21478, ADSP-21479, ADSP-21481,

VDK for SHARC Processors

A-12 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ADSP-21482, ADSP-21483, ADSP-21485, ADSP-21486, ADSP-21487,
ADSP-21488, and ADSP-21489 processors.

Thread, Kernel and Interrupt Execution Levels
VDK runs most user and VDK API code at the normal (non-interrupt)
execution level but also reserves one of the low-priority interrupt levels for
internal VDK operations. In the following text, these are referred to as
“thread level” and “kernel level”, respectively. The remaining interrupt
levels are collectively referred to as “interrupt level.”

All thread functions execute at thread level, including Run() and
ErrorHandler(). Conversely, all Interrupt Service Routines execute at
higher-priority execution levels according to the interrupt source that
invoked them. The implementation function for device drivers (their sin-
gle entry point) may be called by the kernel at either thread level or at
kernel level, depending on the purpose of the call.

Device driver “activate” (kIO_Activate) functionality is the only user code
which executes at kernel level (all other device driver code executes at
thread level). Entry to kernel level is, in this case, initiated by an ISR call-
ing VDK_ISR_ACTIVATE_DEVICE_() or C_ISR_ActivateDevice() and is,
therefore, asynchronous with respect to thread level (except within a criti-
cal region). For this reason, care must be taken to synchronize access to
shared data between thread level and kernel level, as well as between
thread level and interrupt level (and also between kernel level and inter-
rupt level). Critical regions may be used for both of these purposes.

VDK Interrupts and Run-Time Library Interrupt
Dispatchers

VDK does not support the run-time library interrupt dispatchers
documented in the C/C++ Compiler Manual for SHARC Processors.
Instead, VDK hooks calls for the appropriate interrupt service routines

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-13

Processor-Specific Notes

directly in the corresponding location in the interrupt vector table. This
means that:

• For interrupt service routines written in C and C++, VDK uses
interrupt templates which use the pragmas interrupt_complete
and interrupt_complete_nesting to ensure that registers used are
saved and restored as required.

• Interrupt service routines written in assembly must save and restore
registers that they use directly or indirectly. You cannot rely on the
run-time library interrupt dispatchers to do this.

Declaring all interrupts via the VDK Kernel tab ensures that a call to
appropriate interrupt service routines is placed in the corresponding
interrupt vector address in the interrupt vector table.

Interrupt Latency
Every effort has been made to minimize the duration of the intervals
where interrupts are disabled by VDK. Interrupts are disabled only where
necessary for synchronization with interrupt level, and then for the short-
est feasible number of instructions. The instruction sequences executed
during these interrupts-off periods are deterministic. It is, therefore, quite
possible that the worst-case interrupts-off time will be set by critical
regions in user code. Ensure that such usage does not impact the interrupt
latency of the system to an unacceptable degree.

Within VDK itself, synchronization between thread level and kernel level
is achieved by selectively masking the kernel level interrupt, while leaving
the higher priority interrupts unmasked.

VDK for SHARC Processors

A-14 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Interrupt Nesting
VDK fully supports nested interrupts:

• The skeleton Interrupt Service Routines, which are generated by
the VisualDSP++ 5.0 IDDE for user-defined interrupt handlers,
include instructions to enable the nesting of interrupts if required.

• The ISR API is re-entrant between different interrupt levels.

Interrupts on ADSP-2106x Processors
The following interrupts are reserved for use by VDK on the
ADSP-21060, ADSP-21061, ADSP-21062 and ADSP-21065L
processors.

• TMZHI – the timer interrupt. The core timer (Timer0 on
ADSP-21065L processors) generates the interrupts for system ticks
and provides all VDK timing services. Disabling this timer stops
sleeping, round-robin scheduling, pending with timeout, periodic
semaphores, and meaningful VDK history logging. The interrupt
dedicated for the timer can be changed or set to none on the Kernel
tab.

• SFT2I and SFT3I – the kernel interrupts. These two interrupts are
reserved by VDK and cannot be used in any other manner.

Note that the low priority interrupt for the timer (TMZLI) is available for
use, either as a software interrupt, or to support a second timer where one
is present in the hardware (as with ADSP-21065L processors). By default,
VDK assigns Timer1 to the low-priority timer interrupt (IRPTL/IMASK
bit 23), so using it only requires an interrupt handler to be defined for
TMZLI and for Timer1 to be initialized.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-15

Processor-Specific Notes

Interrupts on ADSP-2116x, ADSP-2126x,
ADSP-213xx, and ADSP-214xx Processors

The following interrupts are reserved for use by VDK on the
ADSP-21160, ADSP-21161, ADSP-21261, ADSP-21262, ADSP-21266,
ADSP-21267, ADSP-21362, ADSP-21363, ADSP-21364, ADSP-21365,
ADSP-21366, ADSP-21367, ADSP-21368, ADSP-21369, ADSP-21371,
ADSP-21375, ADSP-21462, ADSP-21465, ADSP-21467, ADSP-21469,
ADSP-21472, ADSP-21475, ADSP-21478, ADSP-21479, ADSP-21481,
ADSP-21482, ADSP-21483, ADSP-21485, ADSP-21486, ADSP-21487,
ADSP-21488, and ADSP-21489 processors.

• TMZHI – the timer interrupt. The core timer generates the interrupts
for system ticks and provides all VDK timing services. Disabling
this timer stops sleeping, round-robin scheduling, pending with
timeout, periodic semaphores, and meaningful VDK history log-
ging. The interrupt dedicated for the timer can be changed or set to
none on the Kernel tab.

• SFT2I and SFT3I – the kernel interrupts. These two interrupts are
reserved by VDK and cannot be used in any other manner.

The ClearInterruptMaskBitsEx() and SetInterruptMaskBitsEx() APIs
must be used to manipulate the mask component of the LIRPTL register.

The status stack is automatically pushed on entry to an ISR and popped
on exit from an ISR for the following interrupts: IRQx, VIRPT and Timer.
For all other interrupts this must be performed manually in the ISR
(push sts;/pop sts;). Instructions are included in the skeleton code gen-
erated when an ISR is added to a VDK project. For further details, see the
relevant hardware manual or programming reference for the processor that
you are using.

Note that VDK does not change the value of MMASK; although, the
C/C++ runtime startup code does modify it from the default reset
value (see the VisualDSP++ 5.0 C/C++ Compiler Manual for

VDK for SHARC Processors

A-16 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SHARC Processors for details). A push of the status stack will clear
the bits in the MODE1 register that have been set in MMASK by the
startup code (assuming that MMASK has not been changed by appli-
cation code). This will have the effect of disabling SIMD mode.
This is significant as VDK uses SIMD mode to accelerate the con-
text switching code. If SIMD mode is not disabled by pushing the
status stack when required, then unexpected behavior can occur.

Timer
Where only one timer is provided by the hardware, the timer is reserved
by VDK by default for its internal timekeeping functions and may not be
used in any other manner.

Where more than one timer is provided, one timer is reserved by VDK by
default for its internal timekeeping functions and may not be used in any
other manner. Any other timers may be used by user code.

The interrupt dedicated for the timer can be changed or set to none on the
Kernel tab. If the interrupt selected for the VDK timing services is not
TMZHI or TMZLI, VDK does not set up or use the core timer.

This timer generates the interrupts for system ticks and provides all VDK
timing services. Disabling the timer stops sleeping, round-robin schedul-
ing, pending with timeout, periodic semaphores, and meaningful VDK
history logging.

Idle Thread
As specified in “Idle Thread” on page 3-18, the idle thread frees the
resources of threads that have been destroyed. After this, the VDK idle
thread loops indefinitely and does not make the processor enter low power
mode.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-17

Processor-Specific Notes

Memory
By default, the VDK .ldf files place most user and VDK code in the pro-
gram section, mapped to PM memory. Certain VDK code is likely to be
time-critical or likely to be used from interrupt level. VDK places this
code in the seg_int_code section, which should be placed in internal
memory. Global and static data is placed in the data1 section, mapped to
DM memory. Certain VDK data also must be located in internal memory.
This data is placed in the internal_memory_data section; this input sec-
tion must be mapped to an internal memory output section. A separate
memory region in DM memory is used for the system heap.

A system stack also exists in DM memory. This stack is used by VDK itself
for kernel-level processing. This means that whenever a device driver’s
“activate” code is invoked, the system stack is in use. Therefore, ensure
that the stack size is sufficient for the requirements of user-supplied acti-
vate code. For more information, see “System Stack” on page A-20.

These default arrangements can be customized by editing the project’s
.ldf file. Refer to the VisualDSP++ 5.0 Linker and Utilities Manual for
information on segmenting your code. Refer to the VisualDSP++ 5.0
C/C++ Compiler Manual for SHARC Processors for information about
defining additional heaps.

The external memory port on SHARC processors supports only
32-bit access. On SHARC processors, apart from the ADSP-2106x,
the VDK context-switch code uses double-word operations in
order to minimize the number of cycles required to save and restore
the register set. The code requires the context storage region to be

VDK for SHARC Processors

A-18 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

in 64-bit capable memory. By default, the system heap is used to
store the context of a thread, but this is user-configurable (see
online Help for details).

If you wish to place the system heap in external memory, then it is
essential that none of the threads’ context areas are allocated from
the system heap, but rather a separate heap located within internal
memory. For details on declaring additional heaps refer to the
VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC Processors.

Register Usage
SHARC processors provide a set of alternate (or background) registers for
both the computation units and the DAGs. VDK does not save and restore
these alternate registers during context switches but instead employs them
to accelerate entry to and exit from the scheduler interrupt by providing it
with a dedicated C run-time environment.

This means that the alternate registers listed in Table A-1 contain fixed
values and must not be changed by user code.

Since these registers are used at interrupt level (which may be entered at
any time), it is not sufficient to save these registers and restore them after
use, except within a critical region.

Table A-1. SHARC Processor Alternate Registers

Register Value

M5’, M13’ 0

M6’, M14’ 1

M7’, M15’ -1

B6’, B7’ System Stack base

L6’, L7’ System Stack length

L2’—L5’, L10’—L15’ 0

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-19

Processor-Specific Notes

The following alternate registers are not used by VDK and are available
for use by user code:

I0’, M0’, B0’, L0’,
I1’, M1’, B1’, L1’,
I8’, M8’, B8’, L8’,
I9’, M9’, B9’, L9’,

Note that these registers do not form part of the thread context and,
hence, are not context-switched between threads. Therefore, their most
appropriate use is in implementing fast I/O interrupt handlers for devices
where DMA is not available.

The remaining alternate registers:

R0’—R15’

I2’—I7’, I10’—I15’,
M2’—M4’, M10’—B12’,
B2’—B5’, B10’—B15’

are used by the scheduler ISR and, hence, may change at any time (unless
inside a critical region). If these registers are to be used in a user-defined
ISR, then their contents must be saved and restored before returning from
the interrupt, as for the primary registers.

Note that the background multiplier result register, MRB, is not considered
to be an alternate register in the above discussion, and that both MRB and
MRF are context-switched between threads.

40-bit Register Usage
The ALU registers of the SHARC processors are 40 bits in width in order
to support the 40-bit extended precision floating-point mode. However,
the C/C++ run-time environment does not support this mode and,
instead, runs with 32-bit rounding enabled (bit RND32=1 in the MODE1 reg-
ister). The eight additional Least Significant Bits (LSBs) of the mantissa

VDK for SHARC Processors

A-20 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

are, therefore, not used in C/C++ applications. 40-bit computations can
only be performed in assembly code. The RND32 bit should be explicitly
cleared and set around the computation code.

VDK preserves the 40-bit form of the data registers during a context
switch (but only when the RND32 bit is cleared to indicate that 40-bit arith-
metic is enabled). Additionally, the VDK Timer ISR protects against
overwriting the 40-bit data registers by running in the alternate register
set.

For user ISRs created with VisualDSP++ 5.0 update 7 (or later), the VDK
C and C++ ISR templates select the new compiler pragma
save_restore_40_bits if the macro VDK_SAVE_RESTORE_40_BITS is
defined. Defining VDK_SAVE_RESTORE_40_BITS in a VDK assembly ISR
before the inclusion of the VDK.h file also ensures that the 40 bits of the
registers are saved and restored by the VDK ISR macros. Using these mac-
ros incurs in both performance and space penalties.

There is an alternative for the VisualDSP++ 5.0 update 7 (or later) users
who do not want to have the penalty and have ISRs written in assembly.
User ISRs calling the VDK ISR APIs can clear the eight additional LSBs
of the F0, F1, F4, F8, and F12 registers. If the VDK ISR APIs are called,
then to protect these registers from being overwritten, switch into the
alternate register set for the duration of the ISR. This does not incur in
any performance or space penalties. This is the only mechanism available
to the VisualDSP++ 5.0 update 6 (or earlier) users.

If an ISR uses the alternate registers (see “Register Usage” on
page A-18), the register contents must be saved on entry to the ISR
and restored before returning.

System Stack
There are two types of a VDK stack: thread and system. The thread stack
is allocated on a per-thread basis, and the stack’s memory resources are
allocated from the heap. Thread stack usage by interrupts on SHARC pro-

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-21

Processor-Specific Notes

cessors is described in “Interrupts on ADSP-2106x Processors” on
page A-14 and “Interrupts on ADSP-2116x, ADSP-2126x, ADSP-213xx,
and ADSP-214xx Processors” on page A-15.

The system stack is used for most kernel operations, such as the initializa-
tion of VDK and thread scheduling.

• At startup, the system stack is used from the system reset address to
the Run() function of the first boot thread. This includes the ini-
tialization of the C/C++ runtime environment, global variable
constructors, the initialization of VDK, constructors for VDK C++
boot threads, the InitFunction() for C/assembly boot threads, and
the Init section for any boot IO objects.

• Once the first boot thread has started to execute, the system stack is
used only for short periods during VDK thread scheduling and for
any deferred procedure calls. VDK uses deferred procedure calls for
internal updates, such as timeouts, and for some user-configurable
deferred procedure calls, which include any “activate” part of VDK
device drivers.

• Interrupts can occur while VDK is using the system stack. There
should be enough space configured for the system stack to accom-
modate the stack requirements for any of the ISRs in the system (if
any interrupts can be nested, then the amount of the required sys-
tem stack also increases). This applies to C, C++, and assembly
interrupts.

Multiprocessor Messaging
The ADSP-21060, ADSP-21062, ADSP-21160, and ADSP-21161 pro-
cessors are the only processors in the SHARC processor family for which
out-of-the-box multiprocessor messaging support is provided (these being
the SHARC processor variants that include link port hardware). Device
drivers that use the link port hardware for communication between pro-

VDK for SHARC Processors

A-22 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

cessors are included under the examples directories in the
VisualDSP++ 5.0 installation.

In the example projects, device driver instances (boot I/O objects) are pro-
vided for at least two link ports. The selection of which devices to use for
message routing can be configured by the user according to the routing
topology that best fits their hardware, but the presence of two links per
node allows (at least) construction of a ring topology containing any num-
ber of nodes. Note that it is possible to use link ports bi-directionally, so
as to carry both incoming and outgoing messages over the same port.
Where two ports are available, however, the unidirectional mode may be
slightly more efficient as the link hardware never needs to switch
direction.

Support for the cluster bus address space is provided via a standard mar-
shalling type (ClusterBusMarshaller), which automatically translates
local payload addresses into multiprocessor space addresses prior to trans-
mission in a message, and translates incoming payload addresses to local
addresses whenever the portion of the multiprocessor space corresponds to
the local processor. In an appropriately designed application, this can
allow payloads to be passed by reference, rather than by copying, even
between processors. However, the overall efficiency of such an approach
(that is, accessing payload contents in-place across the cluster bus rather
than copying to local memory) is an issue for the application designer to
consider. It is also necessary to ensure that payload memory blocks are
freed only by the processor that originally allocated them.

VDK ISR Macros
The ADSP-2136x processors introduced a five-stage pipeline that, in turn,
introduced difference in behavior from previous SHARC processors as
documented in EE-342: Loop Resource Manipulation for SHARC Processors.
The EE note is available on the Analog Devices Web site.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-23

Processor-Specific Notes

Because of this, on the ADSP-2136x processors, the VDK ISR macros
have been modified not to push and pop any entries of the PC stack that
exist before calling the macro. This means that VDK uses an extra level in
the PC stack for each interrupt that uses the VDK ISR macros.

The issues regarding pushing and popping of the PC stack within
an arithmetic loop are not applicable to later SHARC processors,
such as the ADSP-2137x and ADSP-2146x.

Stack Overflow
Stack overflow is a particularly common problem in multi-threaded appli-
cations where thread stacks sizes are fixed at build time. Space restrictions
normally mean that the thread stack sizes are squeezed to the minimum
necessary, which can cause stack overflows when circumstances (such as
timing) change.

From VisualDSP++ 5.0 update 9 onwards, the SHARC compiler provides
a facility to detect stack overflows (enabled by default). The compiler uses
its own implementation of the CB7 ISR to call adi_stack_overflowed.
In the VDK case, adi_stack_overflowed then calls KernelPanic with
panic code kStackCheckFailure. If your application has its own imple-
mentation of the CB7 ISR, the interrupt is still latched and, if the
interrupt has been enabled, your own interrupt service routine is run.

For more information about the SHARC compiler stack overflow detec-
tion, see the C/C++ Compiler Manual for SHARC Processors.

VDK for TigerSHARC Processors
This section provides information relevant to the use of VDK on the
ADSP-TS101, ADSP-TS201, ADSP-TS202, and ADSP-TS203 proces-
sors. VDK supports the ADSP-TS20x processors of silicon revision 1.0
and higher.

VDK for TigerSHARC Processors

A-24 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Thread, Kernel, and Interrupt Execution Levels
VDK runs most user and VDK API code at the normal (non-interrupt)
execution level but also reserves one of the low-priority interrupt levels for
internal VDK operations. In the following text, these are referred to as
“thread level” and “kernel level,” respectively. The remaining interrupt
levels are collectively referred to as “interrupt level.”

All thread functions execute at thread level, including Run() and
ErrorHandler(). Conversely, all Interrupt Service Routines (ISRs) execute
at higher priority execution levels, according to the interrupt source that
invoked them. The implementation function for device drivers (their sin-
gle entry point) may be called by the kernel at either thread level or at
kernel level, depending on the purpose of the call.

Device driver “activate” (kIO_Activate) functionality is the only user code
which executes at kernel level (all other device driver code executes at
thread level). Entry to kernel level is, in this case, initiated by an ISR call-
ing VDK_ISR_ACTIVATE_DEVICE_() or C_ISR_ActivateDevice() and is,
therefore, asynchronous with respect to thread level (except within a criti-
cal region). For this reason, care must be taken to synchronize access to
shared data between thread level and kernel level, as well as between
thread level and interrupt level (and also between kernel level and inter-
rupt level). Critical regions may be used for both of these purposes.

Exceptions
VDK reserves user exception 0 (TRAP 0) for internal use.

The IDDE automatically adds a source file ExceptionHan-
dler-<Processor_Name>.asm to all VDK projects for TigerSHARC
processors. The source file contains template code for a user exception
handler and defines an entry point for any service or error exceptions you
wish to trap. When an exception occurs, VDK intercepts the exception. If
it is not the VDK exception, then this user exception handler executes.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-25

Processor-Specific Notes

User exception 31 (TRAP 31) is reserved for Monitor-based debuggers. In
such debug environments, monitor code on the TigerSHARC processor
communicates with the host on which the debugger is running. Control
passes from the application running on the TigerSHARC to the monitor
code by means of a TRAP 31 instruction (which the host or the monitor
code has previously inserted into specific points in the application). The
VDK exception handler checks for the exception having been generated by
a TRAP 31 instruction. If so, control transfers to the monitor code.

If you are developing a monitor-based debugger, then upon loading the
user application and monitor code onto the processor, but before starting
the application running, you should write the address of the monitor’s
main entry point into the IVSW register. If you are not developing or using
a monitor-based debugger, simply ensure that your application does not
use TRAP 31.

Interrupts
The following interrupts are reserved by default for VDK on Tiger-
SHARC processors.

• Timer1HP – the timer interrupt. The Timer1 generates the inter-
rupts for system ticks and provides all VDK timing services.
Disabling this timer stops sleeping, round-robin scheduling, pend-
ing with timeout, periodic semaphores, and meaningful VDK
history logging. The interrupt dedicated for the timer can be
changed or set to none on the Kernel tab.

• Timer0LP (ADSP-TS101) or Kernel (ADSP-TS20x) – the kernel
interrupt. This interrupt is reserved for use by VDK and may not
be used in any other manner.

The corresponding priority levels for each timer, Timer1LP and Timer0HP,
are also reserved if the timer is being used by VDK.

VDK for TigerSHARC Processors

A-26 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Timer
On ADSP-TS101 processors, both Timer0 and Timer1 are reserved by
VDK for its internal functions and may not be used in any other manner.

On ADSP-TS20x processors, Timer1 is reserved by VDK for its internal
functions.

Idle Thread
As specified in “Idle Thread” on page 3-18, the idle thread frees the
resources of threads that have been destroyed. After this, the VDK idle
thread makes the processor enter low power mode with the idle instruc-
tion. The processor then remains in the low power mode until an
interrupt occurs.

Memory
By default, the VDK .ldf files place most user and VDK code into a sin-
gle section named program. There is certain VDK code that is time-critical
or likely to be used from interrupt level. VDK places this code in a section
VDK_ISR_code; the code should be placed in internal memory. By default,
the VDK .ldf files place global and static data into specific named sec-
tions. Other named sections are available for explicit access to specific
memory blocks.

VDK defines a primary heap (system_heap0) and a secondary heap
(system_heap1) in two different memory blocks. VDK thread stacks are
allocated from heap space, and the use of two heaps allows VDK to allo-
cate the thread J and K stacks in different memory blocks.

“System” J and K stacks are also defined in two different memory blocks.
This stack pair is used by VDK itself for kernel level processing. This
means that when device-driver “activate” code is invoked, it is these sys-
tem stacks which are in use. Therefore, you need to ensure that the size of

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-27

Processor-Specific Notes

these stacks is sufficient for the requirements of the user supplied activate
code.

For further information regarding the use of two stacks on TigerSHARC
processors, refer to the Compiler chapter of Compiler and Library Manual
for TigerSHARC Processors.

These default arrangements can be customized by editing the project’s
LDF file. Refer to the VisualDSP++ 5.0 Linker and Utilities Manual for
information on segmenting your code. Refer to the VisualDSP++ 5.0
C/C++ Compiler and Library Manual for TigerSHARC Processors for infor-
mation about defining additional heaps. The VisualDSP++ installation
also contains a VDK example of how to define multiple heaps.

System Stack
There are two types of a VDK stack: thread and system. The thread stack
is allocated on a per-thread basis, and the stack’s memory resources are
allocated from the heap.

The system stack is used for most kernel operations, such as the initializa-
tion of VDK and thread scheduling. The following text describes when
VDK uses the system stack, and some considerations for determining the
system stack requirements for an application:

• At startup, the system stack is used from the system reset address to
the Run() function of the first boot thread. This includes the ini-
tialization of the C/C++ runtime environment, global variable
constructors, the initialization of VDK, constructors for VDK C++
boot threads, the InitFunction() for C/assembly boot threads, and
the Init section for any boot IO objects.

• Once the first boot thread has started to execute, the system stack is
used only for short periods during VDK thread scheduling and for
any deferred procedure calls. VDK uses deferred procedure calls for

VDK for TigerSHARC Processors

A-28 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

internal updates, such as timeouts, and for some user-configurable
deferred procedure calls, which include the “activate” part of VDK
device drivers.

• Interrupts can occur while VDK is using the system stack. There
should be enough space configured for the system stack to accom-
modate the stack requirements for any of the ISRs in the system (if
any interrupts can be nested, then the amount of the required sys-
tem stack also increases). This applies to C, C++, and assembly
interrupts.

Interrupt Nesting
VDK fully supports nested interrupts:

• The skeleton Interrupt Service Routines, which are generated by
the VisualDSP++ 5.0 IDDE for user-defined interrupt handlers,
include instructions to enable the nesting of interrupts if required.

• The ISR API is re-entrant between different interrupt levels.

Interrupt Latency
Every effort has been made to minimize the duration of the intervals
where interrupts are disabled by VDK. Interrupts are disabled only when
necessary for synchronization with interrupt level, and then for the short-
est feasible number of instructions. The instruction sequences executed
during these interrupts-off periods are deterministic. It is, therefore, quite
possible that the worst-case interrupts-off time will be set by critical
regions in user code. Ensure that such usage does not impact the interrupt
latency of the system to an unacceptable degree.

Within VDK itself, synchronization between thread level and kernel level
is achieved by selectively masking the kernel level interrupt, while leaving
the higher priority interrupts unmasked.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide A-29

Processor-Specific Notes

Multiprocessor Messaging
Out-of-the-box multiprocessor messaging support is provided for the
ADSP-TS101, ADSP-TS201, ADSP-TS202, and ADSP-TS203 proces-
sors. Device drivers that use the link port hardware for communication
between Processors are included under the examples directories in the
VisualDSP++ 5.0 installation.

In the example projects, device driver instances (boot I/O objects) are pro-
vided for all four link ports. The selection of which devices to use for
message routing can be configured by the user according to the routing
topology that best fits their hardware, but by default the projects are con-
figured for the ADSP-TS101 and ADSP-TS201 EZ-KIT Lite boards, as
follows.

• ADSP-TS101 EZ-KIT Lite board:
Link port 2 carries messages out of CoreA (outgoing) and into
CoreB (incoming). Link port 3 carries messages out of CoreB (out-
going) and into CoreA (incoming).

• ADSP-TS201 EZ-KIT Lite board:
Link port 2 carries messages both out of and into both cores (out-
going and incoming).

These arrangements reflect the hardwired port interconnections on the
EZ-KIT boards and hence do not require the use of external link port
patch cables.

Note that it is possible to use ADSP-TS101 link ports bi-directionally, so
as to carry both incoming and outgoing messages over the same port
(as on ADSP-TS201 processors). Where two ports are available, however,
the unidirectional mode may be slightly more efficient as the link hard-
ware never needs to switch direction. This is not an issue on the
ADSP-TS201 processor as the transmit and receive sides of each link port
are independent.

VDK for TigerSHARC Processors

A-30 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

Support for the cluster bus address space is provided via a standard mar-
shalling type (ClusterBusMarshaller), which automatically translates
local payload addresses into multiprocessor space addresses prior to trans-
mission in a message, and translates incoming payload addresses to local
addresses whenever the portion of the multiprocessor space corresponds to
the local processor. In an appropriately designed application, this feature
can allow payloads to be passed by reference, rather than by copying, even
between processors. However, the overall efficiency of such an approach
(accessing payload contents in-place across the cluster bus rather than
copying to local memory) is an issue for the application designer to con-
sider. It will also be necessary to ensure that payload memory blocks are
freed only by the processor that originally allocated them.

VisualDSP++ 5.0 Kernel (VDK) User’s Guide I-1

I INDEX

A
abstract base thread class, 3-7
abstracted hardware implementation, 3-63
AcquireMutex() API, 3-28, 5-26, 5-43, 5-205
ADSP-21xxx processors, See SHARC

processors
ADSP-TSxxx processors, See TigerSHARC

processors
allocate memory with malloc/new, 3-6, 3-8
AllocateThreadSlot() API, 3-82, 5-28, 5-83
AllocateThreadSlotEx() API, 3-82, 5-30
ALU (alternate) registers, SHARC processors,

A-18, A-19
APIs

See also APIs, assembly macros by name
documented format, 5-25
error codes/values, 5-11
function parameters, 5-3
header file (vdk.h), 2-2, 2-7, 4-5, 4-35, 4-47,

4-50, 4-59, 4-61, 5-2
listed by service, 5-5
naming conventions, 5-3
processed by linker, 5-2
validity levels, 5-19

applications, See VDK applications

application status APIs
list of, 5-7
GetAllDeviceFlags(), 5-85
GetAllMemoryPools(), 5-87
GetAllMessages(), 5-89
GetAllSemaphores(), 5-91
GetAllThreads(), 5-93
GetCurrentHistoryEventNum(), 5-99
GetDevFlagPendingThreads(), 5-100
GetEventPendingThreads(), 5-104
GetHistoryBufferSize(), 5-108
GetHistoryEvent(), 5-109
GetMessageStatusInfo(), 5-123
GetNumTimesRun(), 5-127
GetPoolDetails(), 5-129
GetSemaphoreDetails(), 5-132
GetSemaphorePendingThreads(), 5-134
GetSharcThreadCycleData(), 5-138
GetThreadBlockingID(), 5-140
GetThreadCycleData(), 5-142
GetThreadStack2Details(), 5-149
GetThreadStackDetails(), 5-147
GetThreadTemplateName(), 5-156
GetThreadTickData(), 5-158

assembly macros
See also assembly macros, APIs by name
list of, 5-11

assembly threads, 3-8
association of data with threads, 3-82

Index

I-2 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

B
Bitfield data type, 4-3
Blackfin processors

exceptions, A-3
execution levels, A-2
interrupt latency, A-9
interrupt nesting, A-7
ISR APIs, A-3
memory usage, A-6
multiprocessor messaging, A-9
reserved interrupts, A-4
supervisor/uses modes, A-2
thread stacks, A-7, A-8
timer, A-5

blocked on semaphore threads, 3-19, 3-22
block memory APIs, See memory management

APIs
boot threads, 3-6, 3-37
breakpoints

non-thread-aware, 2-5
thread-specific, 2-5

C
calls to library functions, 5-2
C/C++ heaps, 3-45
C_ISR_ActivateDevice() assembly macro,

5-242, A-12, A-24
C_ISR_ClearEventBit() assembly macro,

5-244
C_ISR_PostSemaphore() assembly macro,

5-246
C_ISR_SetEventBit() assembly macro, 5-248
ClearEventBit() API, 3-49, 3-53, 5-32, 5-214
ClearInterruptMaskBits() API, 3-57, 5-34
ClearInterruptMaskBitsEx() API, 5-35
ClearThreadError() API, 5-37
CloseDevice() API, 3-66, 3-72, 3-73, 5-38
cluster bus address, 3-43
communication manager, 3-63

component attributes, 3-88
configuration of

VDK based applications, 3-47
VDK projects, 2-1

constructors, C++ threads, 3-5, 3-6, 3-7, 3-8
context switches, 3-23, 3-25, 3-53, 3-54, 3-62
cooperative

multithreading, 3-14
scheduling, 3-14

CPLB tables, A-10
CreateDeviceFlag() API, 5-40
CreateMessage() API, 5-41, 5-76, 5-117,

5-119, 5-198, 5-220
CreateMutex() API, 5-27, 5-43, 5-64, 5-206
CreatePool() API, 3-80, 5-45
CreatePoolEx() API, 3-80, 5-47
CreateSemaphore() API, 5-49
CreateThread() API, 3-5, 3-8, 3-9, 5-51
CreateThreadEx2() API, 3-3, 3-5, 3-9, 3-10,

5-55
CreateThreadEx() API, 3-3, 3-5, 3-9, 5-53
critical regions, 3-12, 3-56, 3-57, 3-59, 3-64,

3-72, 3-80
C threads, 3-8
C++ threads, 3-7
custom

history logs, See history
marshalling functions, 3-44

customer support, xxii

D
data transfers, 3-43
data types

See also data types by name
summary of, 4-1

debugging VDK applications, 2-2, 2-5
DestroyDeviceFlag() API, 5-58
DestroyMessageAndFreePayload() API, 5-61
DestroyMessage() API, 5-59
DestroyMutex() API, 5-63

VisualDSP++ 5.0 Kernel (VDK) User’s Guide I-3

Index

DestroyPool() API, 5-65
DestroySemaphore() API, 5-67
DestroyThread() API, 3-4, 3-6, 3-18, 5-31,

5-69
destructor function of threads, 3-6
DeviceDescriptor data type, 4-4, 5-38, 5-71,

5-177, 5-197, 5-229, 5-231
device driver APIs

list of, 5-9
CloseDevice(), 5-38
DeviceIOCtl(), 5-71
OpenDevice(), 5-177
SyncRead(), 5-229
SyncWrite(), 5-231

device drivers
definition and use, 1-10, 3-63, 3-66, 3-79
dispatch function, 3-62, 3-63, 3-68, 3-78
execution, 3-63
for messaging, 3-46
init functions, 3-63, 3-71, 3-76
interacting with ISRs, 3-63
interacting with threads, 3-66, 3-72
parameterization, 3-76
variables, 3-79
Blackfin processors, A-2
SHARC processors, A-12, A-17, A-22
TigerSHARC processors, A-24, A-29

device flag APIs
list of, 5-9
CreateDeviceFlag(), 5-40
DestroyDeviceFlag(), 5-58
PendDeviceFlag(), 5-179
PostDeviceFlag(), 5-197

DeviceFlagID data type, 4-5, 5-40, 5-58, 5-85,
5-100, 5-179, 5-197

device flags
definition and use, 3-55, 3-76
pending on, 3-76
posting, 3-55, 3-78

DeviceInfoBlock data type, 4-6

DeviceIOCtl() API, 3-66, 3-74, 5-71
disabled

interrupts, 1-8, 3-56
scheduling, 1-8, 3-15

dispatch function, 3-69, 3-78
See also PostDeviceFlag() API

DispatchID data type, 4-7
DispatchThreadError() API, 3-5, 5-73
DispatchUnion data type, 4-8
DispatchUnion parameter of dispatch

function, 3-69
domains, interrupt and thread, 3-22
DSP_Family data type, 4-10
DSP_Product data type, 4-11
dynamic threads, creating, 3-5

E
enumeration

error functions, 3-5
priorities of threads, 3-4

error
codes and values, 3-11, 5-11
functions, threads, 3-5
handling, definition and use, 3-11
management functions of threads, 5-8

ErrorFunction() function, 3-11
ErrorHandler() function, A-12, A-24
event and event bit APIs

list of, 5-9
ClearEventBit(), 5-32
GetEventBitValue(), 5-102
GetEventData(), 5-103
GetEventValue(), 5-106
LoadEvent(), 5-167
PendEvent(), 5-181
SetEventBit(), 5-214

EventBitID data type, 4-17, 5-32, 5-102,
5-214, 5-238, 5-241, 5-244, 5-248

Index

I-4 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

event bits
See also events
definition and use, 3-48
from interrupt domain, 3-54
from thread domain, 3-53
global variables, 3-49

EventData data type, 4-19, 5-103, 5-167
EventID data type, 4-18, 5-103, 5-104, 5-106,

5-167, 5-181
events

See also event bits
definition and use, 3-48
calculation, 3-49, 3-51, 3-54
data structure, 3-49
loading new event data, 3-55

EVT_EVX hardware interrupt, A-4
EVT_IVG hardware interrupt, A-4
EVT_IVTMR hardware interrupt, A-4
exceptions

Blackfin processors, A-3, A-4
TigerSHARC processors, A-24

execution levels
Blackfin processors, A-2
SHARC processors, A-12
TigerSHARC processors, A-24

execution modes, Blackfin processors, A-1, A-4
.EXTERN assembly directive, 3-11

F
file attributes, See VDK file attributes
ForwardMessage() API, 3-37, 5-75
FreeBlock() API, 3-81, 5-78
FreeDestroyedThreads() API, 5-80
FreeMessagePayload () API, 5-81
FreeMessagePayload() API, 5-41
FreeThreadSlot() API, 3-82, 5-83

G
GetAllDeviceFlags() API, 5-85

GetAllMemoryPools() API, 5-87
GetAllMessages() API, 5-89
GetAllSemaphores() API, 5-91
GetAllThreads() API, 5-93
GetBlockSize() API, 5-95
GetClockFrequency() API, 5-96
GetContextRecodeSize() API, 5-97
GetContextRecordSize() API, 3-10
GetCurrentHistoryEventNum() API, 5-99
GetDevFlagPendingThreads() API, 5-100
GetEventBitValue() API, 5-102
GetEventData() API, 3-55, 5-103
GetEventPendingThreads() API, 5-104
GetEventValue() API, 5-106
GetHeapIndex() API, 5-107
GetHistoryBufferSize() API, 5-108
GetHistoryEvent() API, 3-83, 5-109
GetInterruptMask() API, 3-57, 5-111
GetInterruptMaskEx() API, 5-113
GetLastThreadError() API, 3-11, 5-115
GetLastThreadErrorValue() API, 3-11, 5-116
GetMessageDetails() API, 5-117, 5-123
GetMessagePayload() API, 3-35, 5-41, 5-118,

5-119, 5-123
GetMessageReceiveInfo() API, 3-35, 5-75,

5-121
GetMessageStatusInfo() API, 5-123
GetNumAllocatedBlocks() API, 3-81, 5-125
GetNumFreeBlocks() API, 3-81, 5-126
GetNumTimesRun() API, 5-127
GetPoolDetails() API, 5-129
GetPriority() API, 5-131
GetSemaphoreDetails() API, 5-132
GetSemaphorePendingThreads() API, 5-134
GetSemaphoreValue() API, 5-136
GetSharcThreadCycleData() API, 5-138,

5-142
GetThreadBlockingID() API, 5-140
GetThreadCycleData() API, 5-138, 5-142
GetThreadHandle() API, 3-8, 5-144

VisualDSP++ 5.0 Kernel (VDK) User’s Guide I-5

Index

GetThreadID() API, 3-3, 5-145
GetThreadSlotValue() API, 3-83, 5-146
GetThreadStack2Details() API, 5-149
GetThreadStack2Usage() API, 5-153
GetThreadStackDetails() API, 5-147
GetThreadStackUsage() API, 5-151, 5-165
GetThreadStatus() API, 5-140, 5-155
GetThreadTemplateName() API, 5-156
GetThreadTickData() API, 5-158
GetTickPeriod() API, 5-160
GetUptime() API, 5-161
GetVersion() API, 5-162
.GLOBAL assembly directive, 3-11
global variables, 3-11, 3-59, 3-64, 4-59, 5-3

H
header files

for C/assembly threads, 3-8
vdk.h, 2-2, 2-7, 4-5, 4-35, 4-47, 4-50, 4-59,

4-61, 5-2
HeapID data type, 3-82, 4-20, 5-107
heaps, See memory heaps
history

buffers, 2-3, 3-83, 5-170
logging functions, 3-83, 3-85, 5-99, 5-108,

5-109, 5-170, 5-239
window, 2-3

HistoryEnum data type, 4-21, 4-26, 5-170,
5-239

HistoryEvent data type, 3-84

I
idle threads, 1-7, 2-4, 2-5, 3-18
IMASKStruct data type, 4-28, 5-34, 5-35,

5-111, 5-113, 5-216, 5-218
Import list (Kernel tab), 3-37

init functions
C/assembly, 3-5, 3-6, 3-7, 3-8
C++ constructor, 3-5, 3-6, 3-7, 3-8

Initialize() function, 3-2
InstallMessageControlSemaphore() API, 3-42,

5-163
instrumented build, 2-3
InstrumentStack() API, 5-151, 5-153, 5-165
internal memory DMA (IMDMA), A-9
interrupt dispatchers

run-time library, A-12
interrupt execution levels

Blackfin processors, A-2
SHARC processors, A-12, A-13
TigerSHARC processors, A-24

interrupt handling APIs
list of, 5-5
PopCriticalRegion(), 5-190
PopNestedCriticalRegions(), 5-192
PushCriticalRegion(), 5-203

interrupt latency
critical regions effect, 3-57
Blackfin processors, A-9
SHARC processors, A-13
TigerSHARC processors, A-28

interrupt mask APIs
list of, 5-5
ClearInterruptMaskBits(), 5-34
ClearInterruptMaskBitsEx(), 5-35
GetInterruptMask(), 5-111
GetInterruptMaskEx(), 5-113
SetInterruptMaskBits(), 5-216
SetInterruptMaskBitsEx(), 5-218

interrupt nesting
Blackfin processors, A-7
SHARC processors, A-14
TigerSHARC processors, A-28

Index

I-6 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

interrupts
See also ISRs, interrupt nesting, reserved

interrupts, interrupt latency
architecture of, 3-57
disabling, 1-8, 3-15, 3-56
domain, 3-64
latching, 3-25
on Blackfin processors, A-3
on SHARC processors, A-14
on TigerSHARC processors, A-25

I/O
interface, 3-62
templates, 3-62

IOCtl_t struct, 3-74
IOID data type, 4-29, 5-177, 5-237, 5-242
IOTemplateID data type, 4-30
ISRs

See also interrupts
activating device drivers, 3-75
definition and use, 3-56
disabling (masking), 3-56
enabling (unmasking), 3-56
interaction with thread domain, 3-59

K
kernel execution level, A-2, A-12, A-24
KernelPanic, 5-237

definition and use, 2-5
in thread error handling, 3-5, 3-12
in VDK libraries, 5-237, 5-240, 5-242,

5-245, 5-247, 5-249

L
library

list of APIs, 5-5
documentation format, 5-25
header file (vdk.h), 5-2
linking APIs, 5-2
thread-safe, 2-2

linker description files, 2-2
linker description files (.ldf), 2-2, 5-2, A-6,

A-17, A-26
LoadEvent() API, 3-55, 5-167
LocateAndFreeBlock() API, 3-81, 5-169
LogHistoryEvent() API, 3-83, 5-170
lowest priority interrupts, 3-58, 3-60, 3-62,

3-75

M
main() function, 3-2
MakePeriodic() API, 5-171
malloc, allocating memory, 3-80
MallocBlock() API, 3-81, 5-173
MarshallingCode data type, 4-31
MarshallingEntry data type, 4-33
marshalling table, 3-43
memory allocations, 3-80
memory blocks

See also memory heaps, memory pools
alignment constraints, 3-46, 3-81
freeing with free/delete, 3-6

memory heaps
See also HeapID data type
allocated for threads, 3-3
creating new, 3-82
fragmentation, 3-80
indexing, 3-44, 4-33, 4-45
in external memory (SHARC processors),

A-18
marshalling, 4-33, 4-45
multiple, 3-81, 4-20

VisualDSP++ 5.0 Kernel (VDK) User’s Guide I-7

Index

memory management APIs
list of, 5-6
CreatePool(), 5-45
CreatePoolEx(), 5-47
DestroyPool(), 5-65
FreeBlock(), 5-78
GetBlockSize(), 5-95
GetNumAllocatedBlocks(), 5-125
GetNumFreeBlocks(), 5-126
LocateAndFreeBlock(), 5-169
MallocBlock(), 5-173

memory pools
See also memory heaps, memory blocks
definition and use, 3-80

message
loopback, 3-45
payload, 3-37

message APIs
list of, 5-10
CreateMessage(), 5-41
DestroyMessage(), 5-59
DestroyMessageAndFreePayload(), 5-61
ForwardMessage(), 5-75
FreeMessagePayload(), 5-81
GetMessageDetails(), 5-117
GetMessagePayload(), 5-119
GetMessageReceiveInfo(), 5-121
InstallMessageControlSemaphore(), 5-163
MessageAvailable(), 5-175
PendMessage(), 5-184
PostMessage(), 5-198
SetMessagePayload(), 5-220

MessageAvailable() API, 3-33, 5-175, 5-184
MessageDetails data type, 4-34, 5-123
MessageID data type, 4-35, 5-41, 5-59, 5-61,

5-76, 5-81, 5-89, 5-117, 5-119, 5-121,
5-123, 5-184, 5-198, 5-220

messages
definition and use, 3-32
interacting with threads, 3-34
multiprocessor support, A-29
ownership, 3-33
pending on, 3-34
posting from scheduled regions, 3-35
posting from unscheduled regions, 3-36
priorities of, 3-32

message transfer (messaging)
See also multiprocessor messaging
on Blackfin (ADSP-BF561) processors, A-9
on TigerSHARC processors, A-29
with device drivers, 3-46

MsgChannel data type, 4-36, 4-38, 5-76,
5-118, 5-121, 5-199

MsgFormat data type, 4-38
multiprocessor messaging

definition and use, 3-37
Blackfin (ADSP-BF561) processors, A-9
SHARC processors, A-21
TigerSHARC processors, A-29

mutex APIs
list of, 5-10
AcquireMutex(), 5-26
CreateMutex(), 5-43
DestroyMutex(), 5-63
ReleaseMutex(), 5-205

mutexes
definition and use, 3-26
aquiring process, 3-28
releasing process, 3-28

MutexID data type, 5-26, 5-43, 5-63, 5-205

N
namespace (VDK), 3-8, 5-4
nested protected regions, 3-15
nodes in multiprocessor systems, 3-37, 3-47
non-maskable interrupts (NMIs), A-5
non-thread-aware breakpoints, 2-5

Index

I-8 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

notation conventions of API library, 5-3

O
open/close functions, threads, 3-72
OpenClose_t struct, 3-72
OpenDevice() API, 3-66, 3-72, 3-73, 5-38,

5-71, 5-177, 5-197, 5-229, 5-231

P
PanicCode data type, 4-41
parallel scheduling domains, 3-64
parameterization of device drivers, 3-76
parameters, passing to APIs, 5-3
PayloadDetails data type, 4-44, 5-118, 5-123
payload marshalling, 3-32, 3-43
PendDeviceFlag() API, 3-56, 3-68, 3-77, 3-78,

5-179
PendEvent() API, 3-52, 5-181
pending

on a message, 3-34
on device flags, 3-76
on semaphores, 3-21

PendMessage() API, 3-35, 5-60, 5-62, 5-77,
5-82, 5-118, 5-122, 5-175, 5-184, 5-200,
5-221

PendSemaphore() API, 3-22, 5-187
periodic semaphores, 3-20, 3-25
PFMarshaller data type, 4-45
PoolID data type, 4-47, 5-45, 5-47, 5-48, 5-65,

5-78, 5-87, 5-95, 5-125, 5-126, 5-129,
5-173

pool marshalling, 3-45, 4-33
PopCriticalRegion() API, 3-57, 5-190, 5-203
PopNestedCriticalRegions() API, 5-192
PopNestedUnscheduledRegions() API, 3-16,

5-194
PopUnscheduledRegion() API, 3-15, 3-49,

5-195, 5-204

PostDeviceFlag() API, 3-56, 3-68, 3-76, 3-78,
5-179, 5-197

posting a message, 3-35
PostMessage() API, 3-36, 3-37, 5-75, 5-198
PostSemaphore() API, 3-23, 3-26, 5-201
preemption, 1-7
preemptive scheduling, 3-14
priorities of threads, 1-6, 3-4
Priority data type, 4-48, 5-131, 5-222
protected regions, 1-7, 3-11, 3-12, 3-74, 3-79
PushCriticalRegion() API, 3-57, 3-77, 5-190,

5-203
PushUnscheduledRegion() API, 3-15, 5-195,

5-204

Q
queue

of ready threads, See ready queue
of waiting threads, 3-5

R
rapid application development (RAD), 1-2
ReadWrite_t struct, 3-73
ready queue, 1-6, 3-12, 3-14, 3-22, 3-26, 3-48,

3-55
reentrancy, 3-11
ReleaseMutex() API, 3-29, 5-26, 5-205
RemovePeriodic() API, 5-207
ReplaceHistorySubroutine() API, 3-83, 5-209
reschedule ISRs, 3-58, 3-62
reserved interrupts

lowest priority (reschedule), 3-58, 3-62
timer, 3-58, 3-61
on Blackfin processors, A-4
on SHARC processors, A-14, A-15
on TigerSHARC processors, A-25

ResetPriority() API, 3-4, 5-211
ring configuration of nodes, 3-47
round-robin scheduling, 3-14

VisualDSP++ 5.0 Kernel (VDK) User’s Guide I-9

Index

routing
table, 3-38
threads (RThreads), 3-38, 5-18, A-10
topology, 3-47

RoutingDirection data type, 4-49
Run() function, 3-2
Run() function, C++ threads, 3-4
RunFunction() function, C/assembly threads,

3-4
run-time library interrupt dispatchers, A-12

S
scheduled regions

posting a message, 3-36
posting a semaphore, 3-23, 3-25
releasing a mutex, 3-30
reschedule ISR, 3-62
state of an event bit, 3-49, 3-53, 3-54

scheduler
definition and use, 1-5, 3-12
disabling, 3-15
enabling, 3-26
entering from API calls, 3-16
entering from interrupts, 3-16, 3-54
managing periodic threads, 3-25
methods/modes, 3-14

scheduler management APIs
list of, 5-8
PopNestedUnscheduledRegions(), 5-194
PopUnscheduledRegion(), 5-195
PushUnscheduledRegion(), 5-204

semaphore APIs
list of, 5-9
CreateSemaphore(), 5-49
DestroySemaphore(), 5-67
GetSemaphoreValue(), 5-136
InstallMessageControlSemaphore(), 5-163
MakePeriodic(), 5-171
PendSemaphore(), 5-187
PostSemaphore(), 5-201
RemovePeriodic(), 5-207

SemaphoreID data type, 4-50, 5-50, 5-67,
5-91, 5-132, 5-133, 5-134, 5-136, 5-163,
5-171, 5-188, 5-201, 5-207, 5-240, 5-246

semaphores
definition and use, 3-19
periodic, 3-20
posting from interrupt domains, 3-25
posting from thread domains, 3-23

SetClockFrequency() API, 5-96, 5-213
SetEventBit() API, 3-49, 3-53, 5-32, 5-214
SetInterruptMaskBits() API, 3-57, 5-216
SetInterruptMaskBitsEx() API, 5-218
SetMessagePayload() API, 3-35, 5-220
SetPriority() API, 3-4, 5-222
SetThreadError() API, 5-224
SetThreadSlotValue() API, 3-82, 5-225
SetTickPeriod() API, 5-226

Index

I-10 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

SHARC processors
ADSP-2106x processor ISRs, A-14
ADSP-2116x processor ISRs, A-15
ADSP-2126x processor ISRs, A-15
ADSP-2136x processor ISRs, A-15
ALU (40-bit) registers, A-18, A-19
execution levels, A-12
interrupt latency, A-13
interrupt nesting, A-14
memory usage, A-17
multiprocessor messaging, A-21
reserved interrupts, A-14, A-15
system stack, A-17
timer, A-16

signals
device flags, See device flags
events, See events and event bits
mutexes, See mutexes
semaphores, See semaphores

Sleep() API, 5-227
stack

on SHARC processors, A-17
size, of threads, 3-3

stack overflow, A-10, A-23
synchronization of threads, 3-19, 3-48
SyncRead() API, 3-39, 3-44, 3-66, 3-73, 5-229
SyncWrite() API, 3-39, 3-44, 3-66, 3-73,

5-231
SystemError APIs, 3-5
SystemError data type, 4-51, 5-73, 5-115,

5-224
system heaps, See memory heaps

system information APIs
list of, 5-6
GetClockFrequency(), 5-96
GetContextRecodeSize(), 5-97
GetHeapIndex(), 5-107
GetThreadHandle(), 5-144
GetThreadID(), 5-145
GetThreadStack2Usage(), 5-153
GetThreadStatus(), 5-155
GetTickPeriod(), 5-160
GetUptime(), 5-161
GetVersion(), 5-162
InstrumentStack(), 5-165
LogHistoryEvent(), 5-170
ReplaceHistorySubroutine(), 5-209
SetClockFrequency(), 5-213
SetTickPeriod(), 5-226

T
TCBBitfield data type, 3-10, 4-57
thread

create functions, 3-5, 5-7, 5-51, 5-53, 5-55
destructor functions, 3-6, 5-7, 5-69, 5-80
entry points, 3-4
execution levels, A-2, A-12, A-24
inter-communication, 3-32
local storage, 3-82
parameterization, 3-8
stack (on Blackfin processors), A-7
templates, 3-7

thread APIs
See also thread error management APIs
CreateThread(), 5-51
CreateThreadEx(), 5-53
CreateThreadEx2(), 5-55
DestroyThread(), 5-69
FreeDestroyedThreads(), 5-80
GetThreadStackUsage(), 5-151

ThreadCreationBlock data type, 3-10, 4-58,
5-53, 5-56

VisualDSP++ 5.0 Kernel (VDK) User’s Guide I-11

Index

ThreadCreationBlock data types, 3-9
thread domain

calling dispatch function, 3-69
communicating with, 3-59
parallel scheduling, 3-64
posting semaphores, 3-22
software scheduling, 1-10

thread error management APIs
list of, 5-8
ClearThreadError(), 5-37
DispatchThreadError(), 5-73
GetLastThreadError(), 5-115
GetLastThreadErrorValue(), 5-116
SetThreadError(), 5-224

ThreadID data type
definition and use, 3-3, 4-61
in history logging, 5-239
in message APIs, 5-75, 5-121, 5-198
in thread APIs, 5-69, 5-93, 5-101, 5-105,

5-127, 5-131, 5-135, 5-138, 5-140,
5-145, 5-147, 5-149, 5-151, 5-153,
5-156, 5-158, 5-211, 5-222

thread interacting
with device flags, 3-56
with events, 3-51
with hardware, 1-9
with semaphores, 3-20

thread local storage APIs
list of, 5-8
AllocateThreadSlot(), 5-28
AllocateThreadSlotEx(), 5-30
FreeThreadSlot(), 5-83
GetThreadSlotValue(), 5-146
SetThreadSlotValue(), 5-225

thread parameters
priority, 3-4
stack size, 3-3

thread pending
on device flags, 3-55
on events, 3-48, 3-52
on messages, 3-33

thread posting
a message, 3-32, 3-36
a semaphore, 3-22

thread priority management APIs
list of, 5-8
GetPriority(), 5-131
ResetPriority(), 5-211
SetPriority(), 5-222

threads
definition and use, 3-2, 3-3
acquiring a mutex, 3-26, 3-28
allocated dynamically, 3-6
blocked, 1-7, 3-55
C/assembly implemented, 3-8
C++ implementated, 3-7
control over device parameters, 3-74
creating a message, 3-32
error functions, 3-5, 3-22
lowest priority (idle), 2-4
open/close device drivers, 3-72
parameters, 3-3, 3-4
reading to and writing from, 3-73
releasing a mutex, 3-28
routing threads (RThreads), 3-38, 5-18,

A-10
Run() functions, 3-4
setting/clearing event bits, 3-53
state and status data, 2-4
user-defined stack, 3-10

thread-safe libraries, 2-2
thread scheduling APIs

list of, 5-8
Sleep(), 5-227
Yield(), 5-233

thread-specific breakpoints, 2-5
ThreadStatus data type, 4-62, 5-155

Index

I-12 VisualDSP++ 5.0 Kernel (VDK) User’s Guide

ThreadType data type, 4-63, 5-54, 5-55
tick period, 5-160
Ticks data type, 4-64, 5-49, 5-158, 5-161,

5-171, 5-179, 5-181, 5-184, 5-187,
5-227, 5-229, 5-231

TigerSHARC processors
exceptions, A-24
execution levels, A-24
interrupt latency, A-28
interrupt nesting, A-28
memory, A-26
multiprocessor messaging, A-29
reserved processors, A-25

timeout, 3-19, 3-22, 4-45
timer ISR, 3-58, 3-61

Blackfin processor, A-5
SHARC processors, A-16
TigerSHARC processors, A-26

time slicing (round-robin) sheduling, 3-14

U
unscheduled regions

definition and use, 3-12
acquiring a mutex, 3-28
disabling/enabling ISRs, 3-57, 3-80
disabling scheduler, 3-15
open/close device drivers, 3-72
posting a message, 3-36
releasing a mutex, 3-31
state of an event bit, 3-51, 3-54

UserHistoryLog() API, 3-83, 3-85
user mode (VDK execution mode), A-1, A-2

V
validity levels of VDK APIs, 5-19
VDK

Communication Manager, 3-63
file attributes, 3-86
history logging, 2-3, 3-83
memory pools, 3-45
namespace, 3-8, 5-4
State History window, 2-3
Status window, 2-4
target load graph, 2-4
vector table, 3-58

VDK applications
code reuse, 1-3
debugging
hardware abstraction, 1-4
partitioning, 1-4
rapid application development (RAD), 1-2
routing topology, 3-47

VDK file attributes, 3-86
vdk.h header file, 2-2, 2-7, 4-5, 4-35, 4-50,

4-59, 4-61, 5-2
VDK_ISR_ACTIVATE_DEVICE_()

assembly macro, 3-67, 3-75, 5-237, A-2,
A-12, A-24

VDK_ISRAddHistoryEvent() API, 3-83
VDK_ISR_CLEAR_EVENTBIT_() assembly

macro, 3-54, 5-238
VDK_ISR_LOG_HISTORY_EVENT_()

assembly macro, 4-21, 5-239
VDK_ISR_POST_SEMAPHORE_()

assembly macro, 3-25, 3-26, 3-60, 5-240
VDK_ISR_SET_EVENTBIT_() assembly

macro, 3-54, 5-241

VisualDSP++ 5.0 Kernel (VDK) User’s Guide I-13

Index

VDK library
list of functions, 5-5
API calls validity levels, 5-19
assembly macros, 5-234
error codes/values, 5-12
header file (vdk.h), 5-2
linking library functions, 5-2
naming conventions, 5-3
reference format, 5-25

VDK projects, 2-2
VersionStruct data type, 4-65, 5-162

VisualDSP++
multiple heap API extensions, 3-45
State History window, 2-3
Target Load graph, 2-4
Thread History window, 3-18

volatile variables, 3-79

W
working with library headers, 5-2

Y
Yield() API, 3-14, 5-233

	VDK (Kernel) User’s Guide
	Contents

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD
	EngineerZone
	Social Networking Web Sites

	Notation Conventions

	1 Introduction to VDK
	Rapid Application Development
	Debugged Control Structures
	Code Reuse
	Hardware Abstraction
	Partitioning an Application
	Scheduling
	Priorities
	Preemption

	Protected Regions
	Disabling Scheduling
	Disabling Interrupts

	Thread and Hardware Interaction
	Thread Domain With Software Scheduling
	Interrupt Domain With Hardware Scheduling
	Device Drivers

	2 Configuration and Debugging of VDK Projects
	Configuring VDK Projects
	Linker Description File
	Thread-Safe Libraries
	Header Files for the VDK API

	Debugging VDK Projects
	Instrumented Build Information
	VDK State History Window
	Target Load Graph Window
	VDK Status Window
	General Debugging Tips
	KernelPanic

	3 Using VDK
	Threads
	Thread Types
	Thread Parameters
	Stack Size
	Priority

	Required Thread Functionality
	Run Function
	Error Function
	Create Function
	InitFunction/Constructor
	Destructor

	Writing Threads in Different Languages
	C++ Threads
	C and Assembly Threads

	Thread Parameterization
	CreateThreadEx2()
	User-Defined Thread Stacks
	Global Variables
	Error Handling Facilities

	Scheduling
	Ready Queue
	Scheduling Methodologies
	Cooperative Scheduling
	Round-Robin Scheduling
	Preemptive Scheduling

	Disabling Scheduling
	Entering the Scheduler From API Calls
	Entering the Scheduler From Interrupts
	Idle Thread

	Signals
	Semaphores
	Behavior of Semaphores
	Thread’s Interaction With Semaphores
	Pending on a Semaphore
	Posting a Semaphore
	Periodic Semaphores

	Mutexes
	Behavior of Mutexes
	Thread Interaction With Mutexes
	Acquiring a Mutex
	Releasing a Mutex

	Messages
	Behavior of Messages
	Thread’s Interaction With Messages
	Pending on a Message
	Posting a Message

	Multiprocessor Messaging
	Routing Threads (RThreads)
	Data Transfer (Payload Marshalling)
	Device Drivers for Messaging
	Routing Topology

	Events and Event Bits
	Behavior of Events
	Global State of Event Bits
	Event Calculation
	Effect of Unscheduled Regions on Event Calculation

	Thread’s Interaction With Events
	Pending on an Event
	Setting or Clearing of Event Bits
	Loading New Event Data into an Event

	Device Flags
	Behavior of Device Flags
	Thread’s Interaction With Device Flags

	Interrupt Service Routines
	Enabling and Disabling Interrupts
	Interrupt Architecture
	Assembly Interrupts
	C/C++ Interrupts
	Vector Table
	Global Data
	Communication With Thread Domain

	Timer ISR
	Reschedule ISR

	I/O Interface
	I/O Templates
	Device Drivers
	Execution
	Parallel Scheduling Domains
	Using Device Drivers
	Dispatch Function
	Device Driver Parameterization

	Device Flags
	Pending on a Device Flag
	Posting a Device Flag

	General Notes
	Variables
	Critical/Unscheduled Regions

	Memory Pools
	Memory Pool Functionality

	Multiple Heaps
	Thread Local Storage
	Custom VDK History Logging
	Replacing History Logging Mechanism
	UserHistoryLog()

	VDK File Attributes

	4 VDK Data Types
	Data Type Summary
	Data Type Descriptions
	Bitfield
	DeviceDescriptor
	DeviceFlagID
	DeviceInfoBlock
	DispatchID
	DispatchUnion
	DSP_Family
	DSP_Product
	EventBitID
	EventID
	EventData
	HeapID
	HistoryEnum
	HistoryEvent
	IMASKStruct
	IOID
	IOTemplateID
	MarshallingCode
	MarshallingEntry
	MessageDetails
	MessageID
	MsgChannel
	MsgWireFormat
	MutexID
	PanicCode
	PayloadDetails
	PFMarshaller
	PoolID
	Priority
	RoutingDirection
	SemaphoreID
	SystemError
	TCBBitfield
	ThreadCreationBlock
	ThreadID
	ThreadStatus
	ThreadType
	Ticks
	VersionStruct

	5 VDK API Reference
	Calling Library Functions
	Linking Library Functions
	Working With VDK Library Header
	Passing Function Parameters
	Library Naming Conventions
	API Summary
	VDK Error Codes and Error Values
	VDK API Validity
	AcquireMutex()
	AllocateThreadSlot()
	AllocateThreadSlotEx()
	ClearEventBit()
	ClearInterruptMaskBits()
	ClearInterruptMaskBitsEx()
	ClearThreadError()
	CloseDevice()
	CreateDeviceFlag()
	CreateMessage()
	CreateMutex()
	CreatePool()
	CreatePoolEx()
	CreateSemaphore()
	CreateThread()
	CreateThreadEx()
	CreateThreadEx2()
	DestroyDeviceFlag()
	DestroyMessage()
	DestroyMessageAndFreePayload()
	DestroyMutex()
	DestroyPool()
	DestroySemaphore()
	DestroyThread()
	DeviceIOCtl()
	DispatchThreadError()
	ForwardMessage()
	FreeBlock()
	FreeDestroyedThreads()
	FreeMessagePayload()
	FreeThreadSlot()
	GetAllDeviceFlags()
	GetAllMemoryPools()
	GetAllMessages()
	GetAllSemaphores()
	GetAllThreads()
	GetBlockSize()
	GetClockFrequency()
	GetContextRecordSize()
	GetCurrentHistoryEventNum()
	GetDevFlagPendingThreads()
	GetEventBitValue()
	GetEventData()
	GetEventPendingThreads()
	GetEventValue()
	GetHeapIndex()
	GetHistoryBufferSize()
	GetHistoryEvent()
	GetInterruptMask()
	GetInterruptMaskEx()
	GetLastThreadError()
	GetLastThreadErrorValue()
	GetMessageDetails()
	GetMessagePayload()
	GetMessageReceiveInfo()
	GetMessageStatusInfo()
	GetNumAllocatedBlocks()
	GetNumFreeBlocks()
	GetNumTimesRun()
	GetPoolDetails()
	GetPriority()
	GetSemaphoreDetails()
	GetSemaphorePendingThreads()
	GetSemaphoreValue()
	GetSharcThreadCycleData()
	GetThreadBlockingID()
	GetThreadCycleData()
	GetThreadHandle()
	GetThreadID()
	GetThreadSlotValue()
	GetThreadStackDetails()
	GetThreadStack2Details()
	GetThreadStackUsage()
	GetThreadStack2Usage()
	GetThreadStatus()
	GetThreadTemplateName()
	GetThreadTickData()
	GetTickPeriod()
	GetUptime()
	GetVersion()
	InstallMessageControlSemaphore()
	InstrumentStack()
	LoadEvent()
	LocateAndFreeBlock()
	LogHistoryEvent()
	MakePeriodic()
	MallocBlock()
	MessageAvailable()
	OpenDevice()
	PendDeviceFlag()
	PendEvent()
	PendMessage()
	PendSemaphore()
	PopCriticalRegion()
	PopNestedCriticalRegions()
	PopNestedUnscheduledRegions()
	PopUnscheduledRegion()
	PostDeviceFlag()
	PostMessage()
	PostSemaphore()
	PushCriticalRegion()
	PushUnscheduledRegion()
	ReleaseMutex()
	RemovePeriodic()
	ReplaceHistorySubroutine()
	ResetPriority()
	SetClockFrequency()
	SetEventBit()
	SetInterruptMaskBits()
	SetInterruptMaskBitsEx()
	SetMessagePayload()
	SetPriority()
	SetThreadError()
	SetThreadSlotValue()
	SetTickPeriod()
	Sleep()
	SyncRead()
	SyncWrite()
	Yield()
	VDK_ISR_ACTIVATE_DEVICE_()
	VDK_ISR_CLEAR_EVENTBIT_()
	VDK_ISR_LOG_HISTORY_()
	VDK_ISR_POST_SEMAPHORE_()
	VDK_ISR_SET_EVENTBIT_()
	C_ISR_ActivateDevice()
	C_ISR_ClearEventBit()
	C_ISR_PostSemaphore()
	C_ISR_SetEventBit()

	A Processor-Specific Notes
	VDK for Blackfin Processors
	User and Supervisor Modes
	Thread, Kernel, and Interrupt Execution Levels
	Exceptions
	ISR API Assembly Macros
	Interrupts
	Timer
	Idle Thread
	Blackfin Processor Memory
	Thread Stack
	Interrupt Nesting
	System Stack
	Thread Stack Usage by Interrupts
	Interrupt Latency
	Multiprocessor Messaging
	Stack Overflow

	VDK for SHARC Processors
	Thread, Kernel and Interrupt Execution Levels
	VDK Interrupts and Run-Time Library Interrupt Dispatchers
	Interrupt Latency
	Interrupt Nesting
	Interrupts on ADSP-2106x Processors
	Interrupts on ADSP-2116x, ADSP-2126x, ADSP-213xx, and ADSP-214xx Processors
	Timer
	Idle Thread
	Memory
	Register Usage
	40-bit Register Usage
	System Stack
	Multiprocessor Messaging
	VDK ISR Macros
	Stack Overflow

	VDK for TigerSHARC Processors
	Thread, Kernel, and Interrupt Execution Levels
	Exceptions
	Interrupts
	Timer
	Idle Thread
	Memory
	System Stack
	Interrupt Nesting
	Interrupt Latency
	Multiprocessor Messaging

	I Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

