
W5.0
Product Release Bulletin

 Revision 3.0, August 2007

Part Number
82-000420-06

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©2007 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by
implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices icon bar and logo, Blackfin, SHARC, TigerSHARC,
and VisualDSP++, EZ-KIT Lite, and EZ-Extender are registered trade-
marks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
PREFACE

Purpose of This Document .. xi

Intended Audience .. xi

Contents .. xii

Technical or Customer Support ... xiii

Supported Processors .. xiv

Product Information .. xiv

MyAnalog.com ... xiv

Processor Product Information ... xv

Related Documents ... xv

Online Technical Documentation ... xvi

Accessing Documentation From VisualDSP++ xvii

Accessing Documentation From Windows xvii

Accessing Documentation From the Web xviii

Printed Manuals ... xviii

Hardware Tools Manuals .. xviii

Processor Manuals .. xix

Data Sheets .. xix

Notation Conventions .. xix
VisualDSP++ 5.0 Product Release Bulletin iii

CONTENTS
INTRODUCTION

Product Release Description .. 1-2

VisualDSP++ 5.0 System Requirements ... 1-3

Windows Vista Users .. 1-3

Installation Warning Messages .. 1-4

Platform and Processor Support .. 1-4

VISUALDSP++ 5.0 NEW FEATURES AND
ENHANCEMENTS

Licensing and Registration .. 2-2

Support of MAC Address for Use as Host ID 2-2

License Borrowing from the License Server 2-2

Support for Remote Desktop ... 2-2

Modified License Strings ... 2-3

VisualDSP++ IDDE ... 2-4

New Blackfin Processor Support in VisualDSP++ 5.0 2-4

New Project Types .. 2-5

Support for MISRA-C ... 2-5

Call Stack Window Enhancements .. 2-5

Binary File Support for Filling and Dumping 2-5

Core File Support ... 2-6

Stand-Alone Flash Programmer ... 2-6

Custom Board Support ... 2-7

Silicon Anomaly Support .. 2-7

Emulator Troubleshooting Support .. 2-8
iv VisualDSP++ 5.0 Product Release Bulletin

CONTENTS
Help Categories ... 2-8

Assembler ... 2-9

New Processor Support .. 2-9

Assembler Feature and Predefined Macros 2-9

-D__VISUALDSPVERSION__ Predefined Macro 2-10

New Command-Line Switches ... 2-10

New Directive ... 2-11

Compiler and Run-Time Library for Blackfin Processors 2-12

New Processor Support .. 2-13

MISRA-C ... 2-13

New Compiler Switches ... 2-13

New Pragmas .. 2-15

#pragma generate_exceptions_tables 2-15

#pragma inline .. 2-15

#pragma misra_func(arg) .. 2-15

#pragma pgo_ignore ... 2-16

New Section Identifiers .. 2-16

New Predefined Macros ... 2-16

Additional Path Support .. 2-17

New Built-in Functions ... 2-17

Fractional Values in C .. 2-18

Compiler and Run-Time Library for SHARC Processors 2-18

MISRA-C ... 2-19

New Compiler Switches ... 2-19
VisualDSP++ 5.0 Product Release Bulletin v

CONTENTS
New Pragmas .. 2-21

#pragma inline ... 2-21

#pragma generate_exceptions_tables 2-21

#pragma misra_func(arg) .. 2-21

#pragma pgo_ignore ... 2-21

New Section Identifiers ... 2-22

New Predefined Macros ... 2-22

Compiler and Library for TigerSHARC Processors 2-23

New Compiler Switches .. 2-23

New Pragmas .. 2-24

New Predefined Macros ... 2-24

Linker and Utilities ... 2-25

Updated List of LDF Keywords ... 2-25

Built-In Macro .. 2-25

New Utility: elfpatch ... 2-26

New Switch .. 2-26

Loader and Splitter for Blackfin Processors 2-27

Support for New Processors ... 2-27

Support for Multiple Initialization Input Blocks 2-28

Automatic Inclusion of ROM Sections in Boot Streams 2-28

Support for Callback and Indirect Blocks 2-28

Support for Save and Quickboot Blocks 2-29

-pFlag Parameter Interface Management 2-29

Splitter for SHARC Processors .. 2-30
vi VisualDSP++ 5.0 Product Release Bulletin

CONTENTS
nXXX Bit Macros with Zero Values for ADSP-BF54x Processors .. 2-31

VDK .. 2-31

Device Drivers and System Services ... 2-32

File System Service .. 2-32

EPPI ... 2-33

Pixel Compositor ... 2-33

Touch Screen ... 2-33

USB .. 2-34

Rotary Wheel .. 2-34

Keypad .. 2-35

VISUALDSP++ 5.0 MAJOR CHANGES

Licensing Changes .. 3-2

Floating License Server Tools Upgrade 3-2

Change to Licensing Validation Codes 3-2

Default Silicon Revision Changes .. 3-3

Assembler/Linker Changes .. 3-4

L1_scratch Sections Inputs use NO_INIT Qualifier 3-4

Common Compiler Changes ... 3-5

Increased Code Motion for asm Constructs 3-5

FORCE_CONTIGUITY Changes ... 3-6

Cycle Count Macro ... 3-6

-workaround all Change .. 3-7

Declaration of Compiler Built-in Functions 3-7

Compiler and Library for Blackfin Processors 3-9
VisualDSP++ 5.0 Product Release Bulletin vii

CONTENTS
Compiler May Modify Local Parameters 3-9

Saturation and Optimization ... 3-10

#pragma retain_name .. 3-10

Output Section Placement Control .. 3-11

IPA Information Stored in Object Files 3-12

Additional .pgi Files Created During Some PGO Builds 3-12

Applications Using C++ Exceptions Require Recompilation ... 3-13

-no-annotate Switch Extended ... 3-13

Radix-2 FFT Prototypes and Functions Modified 3-14

Interrupt and Exception Handlers ... 3-16

Compiler and Library for SHARC Processors 3-16

#pragma retain_name .. 3-16

Output Section Placement Control .. 3-17

Additional .pgi Files Created During Some PGO Builds 3-18

Applications Using C++ Exceptions Require Recompilation ... 3-18

-no-annotate Switch Extended ... 3-19

Loader Changes .. 3-20

Changes to Existing VDK Projects .. 3-21

Device Drivers and System Services ... 3-23

Interrupt Manager .. 3-23

DMA Manager/Interrupt Manager .. 3-23

DMA Manager ... 3-25

Semaphore Service .. 3-26

USB Drivers ... 3-26
viii VisualDSP++ 5.0 Product Release Bulletin

CONTENTS
VISUALDSP++ 5.0 OBSOLETE OR REMOVED FEATURES

Discontinued Processor Support .. 4-2

VisualDSP++ IDDE .. 4-2

Compilers and Libraries .. 4-2

Removed Compiler Switches .. 4-3

SAVE_REGS Macro .. 4-6

VDK .. 4-7

Definition Header Macros ... 4-7

Blackfin Def Header Change: DMA32 4-7

SHARC Def Header Change: FAR ... 4-8

USB Drivers ... 4-9
VisualDSP++ 5.0 Product Release Bulletin ix

CONTENTS
x VisualDSP++ 5.0 Product Release Bulletin

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for

digital signal processing (DSP) applications.

Purpose of This Document
This document briefly describes the new features and enhancements pro-
vided by VisualDSP++®, release 5.0, which supports the following Analog
Devices, Inc. processor families:

• SHARC® (ADSP-21xxx) processors

• TigerSHARC® (ADSP-TSxxx) processors

• Blackfin® (ADSP-BFxxx) processors

It also describes the differences (obsolete features and functions) between
VisualDSP++ 5.0 and previous VisualDSP++ releases.

For details, refer to the VisualDSP++ 5.0 manuals listed in “Related Doc-
uments” and online Help.

Intended Audience
This publication is primarily intended for programmers who are upgrad-
ing from the previous releases of VisualDSP++ development software and
who want an overview of the changes in VisualDSP++ 5.0.
VisualDSP++ 5.0 Product Release Bulletin xi

Contents
Contents
This Product Release Bulletin consists of:

• Chapter 1, “Introduction”
Describes VisualDSP++ 5.0 and its benefits, provides the minimal
system requirements for running the product, and lists supported
processors.

• Chapter 2, “VisualDSP++ 5.0 New Features and Enhancements”
Describes what is new in the VisualDSP++ 5.0 IDDE, assembler,
compiler, linker, loader, and documentation. Also describes the
new features in projects and the VisualDSP++ Kernel (VDK).

• Chapter 3, “VisualDSP++ 5.0 Major Changes”
Describes major changes in VisualDSP++ 5.0 projects compared to
VisualDSP++ 4.5 projects.

• Chapter 4, “VisualDSP++ 5.0 Obsolete or Removed Features”
Describes removed/obsolete features in VisualDSP++ 5.0 (com-
pared to the previous VisualDSP++ software release) as they pertain
to the code generation tool chain: commands, switches, operators,
directives, pragmas, keywords, macros, and library functions.
xii VisualDSP++ 5.0 Product Release Bulletin

Preface
Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA
VisualDSP++ 5.0 Product Release Bulletin xiii

http://www.analog.com/processors/technicalSupport
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Supported Processors
Supported Processors
VisualDSP++ 5.0 is for Blackfin (ADSP-BFxxx), SHARC (ADSP-21xxx),
and TigerSHARC (ADSP-TSxxx) processors. For the complete list of sup-
ported processors, see “Platform and Processor Support” on page 1-4.

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products: analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. You can
also choose to receive weekly E-mail notifications containing updates to
the Web pages that meet your interests. MyAnalog.com provides access to
books, application notes, data sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
E-mail address.
xiv VisualDSP++ 5.0 Product Release Bulletin

http://www.analog.com
http://www.myanalog.com

Preface
Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

Related Documents
For information on product related development software, see these
publications:

• VisualDSP++ 5.0 Getting Started Guide

• VisualDSP++ 5.0 User’s Guide

• VisualDSP++ 5.0 Assembler and Preprocessor Manual

• VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin
Processors

• VisualDSP++ 5.0 C/C++ Compiler and Library Manual for
TigerSHARC Processors

• VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC Processors

• VisualDSP++ 5.0 Run-Time Library Manual for SHARC Processors
VisualDSP++ 5.0 Product Release Bulletin xv

http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Product Information
• VisualDSP++ 5.0 Linker and Utilities Manual

• VisualDSP++ 5.0 Loader and Utilities Manual

• VisualDSP++ 5.0 Kernel (VDK) User’s Guide

• VisualDSP++ 5.0 Device Drivers and System Services Manual for
Blackfin Processors

• VisualDSP++ 5.0 Licensing Guide

• VisualDSP++ 5.0 Installation Quick Reference Card

For hardware information, refer to your processors’s hardware reference,
programming reference, or data sheet. All documentation is available
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/technicalSupport/technicalLibrary/

Online Technical Documentation
Online documentation includes the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet network license manager software
documentation. You can easily search across the entire VisualDSP++ doc-
umentation set for any topic of interest using the Search function of
VisualDSP++ Help system. For easy printing, supplementary .pdf files of
most manuals are also provided.

Each documentation file type is described as follows:
xvi VisualDSP++ 5.0 Product Release Bulletin

http://www.analog.com/processors/technicalSupport/technicalLibrary/

Preface
Access the online documentation from the VisualDSP++ environment,
Windows® Explorer, or the Analog Devices Web site.

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.chm) are located in the Help folder of VisualDSP++
environment. The .pdf files are located in the Docs folder of your
VisualDSP++ installation CD-ROM. The Docs folder also contains the
Dinkum Abridged C++ library and the FLEXnet network license manager
software documentation.

File Description

.chm Help system files and manuals in Help format

.htm
or

.html

Dinkum Abridged C++ library and FLEXnet network license manager software
documentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .pdf files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).
VisualDSP++ 5.0 Product Release Bulletin xvii

Product Information
Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .chm files.

• Open your VisualDSP++ installation CD-ROM and double-click
any file that is part of the VisualDSP++ documentation set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++ 5.0, and
VisualDSP++ Documentation.

Accessing Documentation From the Web

Download manuals at the following Web site:

http://www.analog.com/processors/technicalSupport/technicalLibrary/

Select a processor family and book title. Download archive (.zip) files,
one for each manual. Use any archive management software, such as
WinZip, to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and in-circuit emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.
xviii VisualDSP++ 5.0 Product Release Bulletin

http://www.analog.com/processors/technicalSupport/technicalLibrary/

Preface
Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.
VisualDSP++ 5.0 Product Release Bulletin xix

Notation Conventions
Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for the
devices users. In the online version of this book, the word Warning
appears instead of this symbol.
xx VisualDSP++ 5.0 Product Release Bulletin

1 INTRODUCTION

This chapter describes the product, VisualDSP++, and the requirements

for running its latest revision, 5.0. It also lists the supported processors
and some of the benefits provided by this release.

The information is organized as follows.

• “Product Release Description” on page 1-2

• “VisualDSP++ 5.0 System Requirements” on page 1-3

• “Platform and Processor Support” on page 1-4
VisualDSP++ 5.0 Product Release Bulletin 1-1

Product Release Description
Product Release Description
VisualDSP++ is the Analog Devices project management and development
environment for digital signal processing (DSP) applications.
VisualDSP++ 5.0 integrates a graphical user interface and code generation
and debugging tools, enabling programmers to move easily between edit-
ing, building, debugging, and deployment of final products.

The VisualDSP++ 5.0 CD-ROM supplies the code generation tool chain
comprised of the processor-specific software necessary for completing a
DSP-based project: simulator, assembler, C/C++ compiler and libraries,
linker, loader, splitter, and utilities. Analog Devices also provides the
VisualDSP++ Kernel (VDK).

The product CD-ROM also includes an evaluation suite of the EZ-KIT
Lite software, which provides an easy method for initial evaluation of a
target processor system and allows application prototyping.

The successor to VisualDSP++ 4.0 and VisualDSP++ 4.5,
VisualDSP++ 5.0 incorporates a number of new features and
enhancements, as described in Chapter 2, “VisualDSP++ 5.0 New Fea-
tures and Enhancements”.
1-2 VisualDSP++ 5.0 Product Release Bulletin

Introduction
VisualDSP++ 5.0 System Requirements
To install and run VisualDSP++ 5.0, your computer must provide the
following software, configuration, and system resources.

• Intel Pentium 32-bit processor (or x86 compatible),
1 GHz or faster

• Windows® 2000 SP4, Windows XP® Professional SP2
(or greater), Windows Vista™ Business edition, Windows Vista
Enterprise edition, or Windows Vista Ultimate edition

Windows NT®, Windows 98, and Windows ME are not
supported.

64-bit host processors (x64) and 64-bit Windows editions
are not supported.

• At least 2 GB of available hard drive space (approximately 500 MB
of additional space is required temporarily when installing from the
Web)

• At least 512 MB of RAM

• CD-ROM drive

• Internet Explorer 6.0 or later

• One open USB port for EZ-KIT Lite and USB-ICE connections

• One open PCI slot for HP-PCI ICE connections

Windows Vista Users
While every effort has been made to maintain a consistent user experience
under all supported versions of Microsoft Windows, certain changes to the
security model in Windows Vista may impact select operations in the
VisualDSP++ 5.0 Product Release Bulletin 1-3

Platform and Processor Support
VisualDSP++ tools. Windows Vista Compatibility in VisualDSP++ 5.0
Development Tools (EE-330) describes these changes and suggests
workarounds where applicable.

This document is available from VisualDSP++ Help and from the Analog
Devices Web site at:
http://www.analog.com/ee-notes

Installation Warning Messages

When installing VisualDSP++ 5.0 onto a Windows Vista machine,
warning message such as the following may be encountered.

While trying to open the downloaded installer:
The publisher could not be verified.

Are you sure you want to run this software?

-- or --

While the various drivers are being installed toward the end of the
installation process:

Windows can't verify the publisher of this driver software

These warnings are to be expected and can be ignored safely.

Platform and Processor Support
The following list of Analog Devices, Inc. processors is supported in
VisualDSP++ 5.0.

SHARC (ADSP-21xxx) Processors
The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC processors.
1-4 VisualDSP++ 5.0 Product Release Bulletin

http://www.analog.com/ee-notes

Introduction
Blackfin Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin processors.

TigerSHARC (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and fixed-point
(8-, 16-, and 32-bit) processors. VisualDSP++ currently supports the fol-
lowing TigerSHARC processors.

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062

ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261

ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21362

ADSP-21363 ADSP-21364 ADSP-21365 ADSP-21366

ADSP-21367 ADSP-21368 ADSP-21369 ADSP-21371

ADSP-21375

ADSP-BF522 ADSP-BF525

ADSP-BF527 ADSP-BF531

ADSP-BF532 ADSP-BF533

ADSP-BF534 ADSP-BF535

ADSP-BF536 ADSP-BF537

ADSP-BF538 ADSP-BF539

ADSP-BF542 ADSP-BF544

ADSP-BF548 ADSP-BF549

ADSP-BF561

ADSP-TS101 ADSP-TS201 ADSP-TS202 ADSP-TS203
VisualDSP++ 5.0 Product Release Bulletin 1-5

Platform and Processor Support
1-6 VisualDSP++ 5.0 Product Release Bulletin

2 VISUALDSP++ 5.0 NEW
FEATURES AND
ENHANCEMENTS

VisualDSP++ 5.0 has new features and enhancements designed to increase

productivity and shorten application development cycles. This chapter
describes the features and enhancements introduced in VisualDSP++ 5.0.

The information is presented as follows.

• “Licensing and Registration” on page 2-2

• “VisualDSP++ IDDE” on page 2-4

• “Assembler” on page 2-9

• “Compiler and Run-Time Library for Blackfin Processors” on
page 2-12

• “Compiler and Run-Time Library for SHARC Processors” on
page 2-18

• “Compiler and Library for TigerSHARC Processors” on page 2-23

• “Linker and Utilities” on page 2-25

• “Loader and Splitter for Blackfin Processors” on page 2-27

• “Splitter for SHARC Processors” on page 2-30

• “nXXX Bit Macros with Zero Values for ADSP-BF54x Processors”
on page 2-31

• “VDK” on page 2-31

• “Device Drivers and System Services” on page 2-32
VisualDSP++ 5.0 Product Release Bulletin 2-1

Licensing and Registration
Licensing and Registration
VisualDSP++ 5.0 provides the following enhancements; further details of
which can be found in the new VisualDSP++ 5.0 Licensing Guide.

Support of MAC Address for Use as Host ID
The MAC address is a unique number associated with the computer's
network card.

From VisualDSP++ 5.0 onwards, if you do not have a hard drive on your
machine (or when installing to a system that does not have a C:\ drive),
the MAC address is used by default as the host ID.

License Borrowing from the License Server
VisualDSP++ 5.0 now provides the ability to “borrow” floating licenses
from the server machine for a predetermined length of time. This is partic-
ularly useful if you use a laptop and want to develop an application when
traveling, or when you are at home.

This feature requires that the license server is running the latest
release of the license server software.

Refer to “Licensing Changes” on page 3-2 for information on obtaining
this software.

Support for Remote Desktop
Users can now access VisualDSP++ through Remote Desktop (a Microsoft
application that allows them to access one computer remotely from
another computer) using both node-locked and floating licenses. Provided
that the users can connect to their office’s network remotely (using VPN,
2-2 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
or a similar application), Remote Desktop allows them to use Visu-
alDSP++ on their computers at work when logging in remotely from
home.

This feature is available only with license files created by
VisualDSP++ 5.0 or greater.

Use of license files in VisualDSP++ 5.0 created with earlier releases do not
support Remote Desktop. To upgrade an older license file to the
version 5.0 format, contact Analog Devices registration support team at:

processor.tools.registration@analog.com

Modified License Strings
These changes have lead to a modification to the format of VisualDSP++
license strings, and therefore validation codes. This means that when you
register your serial number and host ID, two validation codes will be
e-mailed to you. One is valid for VisualDSP++ 4.5 and earlier versions;
the other is valid for VisualDSP++ 5.0 and later versions.

Ensure that you install the appropriate validation code for the
version of VisualDSP++ you are using.

Refer to the “Changes in VisualDSP++ 5.0” section in the
VisualDSP++ 5.0 Licensing Guide for details.
VisualDSP++ 5.0 Product Release Bulletin 2-3

processor.tools.registration@analog.com
processor.tools.registration@analog.com
processor.tools.registration@analog.com

VisualDSP++ IDDE
VisualDSP++ IDDE
The VisualDSP++ 5.0 integrated development and debugging
environment (IDDE) introduces:

• “New Blackfin Processor Support in VisualDSP++ 5.0” on
page 2-4

• “New Project Types” on page 2-5

• “Support for MISRA-C” on page 2-5

• “Call Stack Window Enhancements” on page 2-5

• “Binary File Support for Filling and Dumping” on page 2-5

• “Core File Support” on page 2-6

• “Stand-Alone Flash Programmer” on page 2-6

• “Custom Board Support” on page 2-7

• “Silicon Anomaly Support” on page 2-7

• “Emulator Troubleshooting Support” on page 2-8

• “Help Categories” on page 2-8

For more information about the VisualDSP++ IDDE, refer to the
VisualDSP++ 5.0 User’s Guide and online Help.

New Blackfin Processor Support in VisualDSP++ 5.0
The following new Blackfin processors are supported in VisualDSP++ 5.0.

ADSP-BF522 ADSP-BF525 ADSP-BF527

ADSP-BF542 ADSP-BF544 ADSP-BF548

ADSP-BF549
2-4 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
Refer to the processors’ data sheets and hardware reference manuals for
information on system configuration, peripherals, registers, and operating
modes.

New Project Types
The Project Wizard has been changed to simplify the process of creating a
new project. Available options depend on the selected processor family
and processor.

Support for MISRA-C
VisualDSP++ 5.0 adds support for the MISRA-C Programming Guide-
lines for Safety-Critical Systems. You can enable and configure this facility
for Blackfin and SHARC projects through the new Compile: MISRA-C
page of the Project Options dialog box. See “MISRA-C” on page 2-13 for
details.

Call Stack Window Enhancements
When debugging an application that contains no debug information and
no symbol information, addresses and offsets display in the Call Stack
window.

Refer to “Call Stack Window” in VisualDSP++ online Help for details.

Binary File Support for Filling and Dumping
You can dump memory to (and fill memory from) a binary file. You can
also append data to an existing file when dumping memory.
VisualDSP++ 5.0 Product Release Bulletin 2-5

VisualDSP++ IDDE
Core File Support
You can dump the entire state (registers and memory content) of a
stopped application to a core file. Later, the core file can be loaded by the
VisualDSP++ IDDE to restore the saved state so the application can be
examined offline.

Use this capability to:

• Save the state of a misbehaving application for later analysis or
sharing with a colleague. A snapshot of an application can be taken
and loaded onto a different system.

• Understand all the effects of a program sequence, interrupt han-
dler, and so on. For example, you can generate a core file, step over
a subroutine, and then generate a second core file. Both core files
can be converted to text file format, and an external diff utility
can be used to show all the effects of the subroutine.

Use the elfdump utility to dump the contents of a core file into a
text format, allowing you to more easily view the contents. Refer to
the VisualDSP++ 5.0 Linker and Utilities Manual for information
about elfdump.

Stand-Alone Flash Programmer
This new utility provides flash programming support between the devel-
opment/prototype stage and early pre-production runs. The Stand-Alone
Flash Programmer enables the development engineer to script or automate
this process with a license-free tool, allowing the manufacturing techni-
cian to repeatedly program any number of boards prior to major
production.
2-6 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
Custom Board Support
Custom board support enables a user to specify register reset values on
his/her custom board, view the content of any register on this custom
board (not just Analog Devices processor memory-mapped registers
[MMRs]), and display his/her custom register windows via the Visu-
alDSP++ IDDE’s Register menu. (You can configure menu items that
open the customized register windows.) For details, refer to online Help.

Silicon Anomaly Support
From online Help, use the hyperlink to access the Analog Devices Web
site to stay current on processor anomalies.

To view processor anomalies from Help, search for and open the “Silicon
Anomaly Tools Support” topic. Simply click any of the listed processors,
which are hyperlinks that access the Analog Devices Web site. The Web
site is updated regularly so you can stay current on known processor
anomalies.

A stylesheet improves the readability of silicon anomaly support files,
which reside in the …\System\ArchDef subdirectory of your VisualDSP++
installation directory.

The silicon anomaly support files have been expanded with additional
information on what the tools do to work around the anomalies. Also, the
compiler workaround descriptions have more detailed information, and
the support files now include assembler, .ldf file, and run-time library
workaround information.
VisualDSP++ 5.0 Product Release Bulletin 2-7

VisualDSP++ IDDE
Emulator Troubleshooting Support
New documentation is included to help you troubleshoot emulator prob-
lems. Topics include JTAG scans for ICE Test, target passes ICE Test but
fails to connect with VisualDSP++, memory verification errors, common
causes of JTAG connection failures, and common causes of EZ-KIT Lite
connection failures. Refer to online Help.

Help Categories
VisualDSP++ Help can be filtered by specifying a preference or by launch-
ing Help via the Windows Start menu. Either way, you select a Help
category.

VisualDSP++ provides three processor-specific Help categories, one for
each processor family. Each Help category (for example, Blackfin proces-
sor family Help) displays information pertinent to that specific family of
processors. By selecting a Help category, in effect, you remove informa-
tion about other families of processors from Help; this improves your
ability to quickly locate information in Help, especially when running a
“search” or looking up an entry in the Help Index.
2-8 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
Assembler
New features include:

• “New Processor Support” on page 2-9

• “Assembler Feature and Predefined Macros” on page 2-9

• “New Command-Line Switches” on page 2-10

• “New Directive” on page 2-11

Refer to “Assembler/Linker Changes” on page 3-4 for information about a
change to the .ALIGN directive.

For detailed information on the assembler and preprocessor features, refer
to the VisualDSP++ 5.0 Assembler and Preprocessor Manual and online
Help.

New Processor Support
The assembler and preprocessor add support for several new Blackfin pro-
cessors; the new processors are listed in “New Blackfin Processor Support
in VisualDSP++ 5.0” on page 2-4.

Assembler Feature and Predefined Macros
Table 2-1 describes the new assembler feature macros.

Table 2-1. Assembler Feature Macros for Blackfin Processors

Blackfin Processor Description

-D__ADSPBF522__=1 Present when running easmblkfn -proc ADSP-BF522
with an ADSP-BF522 processor

-D__ADSPBF525__=1 Present when running easmblkfn -proc ADSP-BF525
with an ADSP-BF525 processor
VisualDSP++ 5.0 Product Release Bulletin 2-9

Assembler
-D__VISUALDSPVERSION__ Predefined Macro

The -D__VISUALDSPVERSION__ predefined macro provides VisualDSP++
product version information. The macro allows a pre-processing check to
be placed within code. It can be used to differentiate between Visu-
alDSP++ releases and updates. This macro applies to all Analog Devices
processors.

This predefined macro is available for use with the assembler driv-
ers and the preprocessor program.

New Command-Line Switches
Table 2-2 describes the new assembler command-line switches.

-D__ADSPBF527__=1 Present when running easmblkfn -proc ADSP-BF57
with an ADSP-BF527 processor

-D__ADSPBF542__=1 Present when running easmblkfn -proc ADSP-BF542
with an ADSP-BF542 processor

-D__ADSPBF544__=1 Present when running easmblkfn -proc ADSP-BF544
with an ADSP-BF544 processor

-D__ADSPBF548__=1 Present when running easmblkfn -proc ADSP-BF548
with an ADSP-BF548 processor

-D__ADSPBF549__=1 Present when running easmblkfn -proc ADSP-BF549
with an ADSP-BF549 processor

Table 2-2. New Assembler Command-Line Switches

Switch Name Description

-anomaly-detect id1[,id2...] Issues a warning or an error for an anomaly id

-anomaly-warn
[id1[,id2]|all|none]

Checks assembly instructions against hardware anoma-
lies. NOTE: Blackfin processors ONLY

Table 2-1. Assembler Feature Macros for Blackfin Processors (Cont’d)

Blackfin Processor Description
2-10 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
New Directive
Table 2-3 describes the new assembler directive.

-anomaly-workaround
id1[,id2...]

Implements a workaround for an anomaly id

-expand-symbolic-links Enables support for Cygwin-style paths

-expand-windows-shortcuts Enables support for Windows shortcuts

-no-anomaly-detect
id1[,id2...]

Do not issue a warning or an error for an anomaly ID

-no-anomaly-workaround
id1[,id2...]

Do not implement a workaround for an anomaly ID

-no-expand-symbolic-links Disables support for Cygwin-style paths

-no-expand-windows-shortcuts Disables support for Windows shortcuts

-no-temp-data-file Suppresses writing temporary data to a memory (disk).
Note: Blackfin processors only.

-no-source-dependency Suppresses output of the source filename in the depen-
dency output produced when -M or -MM has been speci-
fied

Table 2-3. New Assembler Directive

Directive Description

.RETAIN_NAME Stops the linker from eliminating a symbol

Table 2-2. New Assembler Command-Line Switches (Cont’d)

Switch Name Description
VisualDSP++ 5.0 Product Release Bulletin 2-11

Compiler and Run-Time Library for Blackfin Processors
Compiler and Run-Time Library for
Blackfin Processors

This section lists and briefly describes the most notable new features and
enhancements of the C/C++ compiler and library for Blackfin processors.

The most notable new features and enhancements of the C/C++ compiler
and library for Blackfin processors are:

• “New Processor Support” on page 2-13

• “MISRA-C” on page 2-13

• “New Compiler Switches” on page 2-13

• “New Pragmas” on page 2-15

• “New Section Identifiers” on page 2-16

• “New Predefined Macros” on page 2-16

• “Additional Path Support” on page 2-17

• “New Built-in Functions” on page 2-17

• “Fractional Values in C” on page 2-18

For detailed information on these features, refer to the VisualDSP++ 5.0
C/C++ Compiler and Library Manual for Blackfin Processors and online
Help.
2-12 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
New Processor Support
The new Blackfin processors supported in the VisualDSP++ 5.0 release are
listed on page 2-4.

MISRA-C
The compiler supports checking for MISRA-C:2004 Guidelines for the use
of the C language in critical systems.

To allow the compiler to verify MISRA-C conformance completely, it is
sometimes necessary to generate a number of output files with the .misra
suffix. The output files are used by the prelinker when validating MISRA-
C conformance across multiple source files. Refer to the VisualDSP ++ 5.0
Blackfin Compiler and Library Manual for more information on
MISRA-C feature.

New Compiler Switches
New compiler switches supported in the VisualDSP++ 5.0 release are:

Switch Description

-annotate Enables assembly annotations

-expand-symbolic-links Provides support for Cygwin path extensions within com-
mand line switches and #include pre-processor directives

-expand-windows-shortcuts Provides support for Windows shortcuts within command-
line switches and #include pre-processor directives

-list-workarounds Lists all supported workarounds for the targeted silicon
revision

-no-auto-attrs Directs the compiler not to emit automatic attributes
based on the files it compiles

-no-annotate-loop-instr Disables the production of additional loop annotation
information by the compiler (default mode)
VisualDSP++ 5.0 Product Release Bulletin 2-13

Compiler and Run-Time Library for Blackfin Processors
-no-assume-vols-are-mmrs Directs the compiler not to apply workarounds for
MMR-related silicon errata to arbitrary volatile-quali-
fied memory accesses

-progress-rep-opt Issues a diagnostic message each time the compiler starts a
new optimization pass on the current function. Equivalent
to -Wwarn=cc1473. Replaces previous switches
-progress-rep-gen-opt and -progress-rep-mc-opt

-no-progress-rep-timeout Prevents the compiler from issuing a diagnostic during
excessively long compilations

-no-sat-associative Saturating addition is not associative

-no-std-templates Disables the lookup of names used in templates

-no-workaround workaround_id Disables specific hardware anomaly workarounds within
the compiler

-overlay-clobbers regs Specifies the registers assumed to be clobbered by an over-
lay manager

-sat-associative Saturating addition is associative

-std-templates (C++ mode): Enables the lookup of names used in tem-
plates

-misra Enables checking for MISRA-C:2004 Guidelines, some
rules relaxed

-misra-linkdir Specifies directory in which .misra files are to be gener-
ated for checking rules across modules

-misra-no-cross-module Enables checking for MISRA-C:2004 Guidelines. Prevents
generation of .misra files

-misra-no-runtime Enables checking for MISRA-C:2004 Guidelines. Inhibits
generation of additional code to check rules requiring
run-time checking

-misra-strict Enables checking for MISRA-C:2004 Guidelines

-misra-suppress-advisory Enables checking for MISRA-C:2004 Guidelines, but
inhibits checking for advisory rules

-misra-testing Enables checking for MISRA-C:2004 Guidelines, but
inhibits checking for rules 20.4, 20.7, 20.8, 20.9, 20.10,
20.11, and 20.12 advisory

Switch Description
2-14 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
New Pragmas
VisualDSP++ 5.0 introduces the following new pragmas.

#pragma generate_exceptions_tables

This pragma may be applied to a C function definition. It instructs the
compiler to generate tables which enable C++ exceptions to be thrown
through executions of this function. An alternative to using #pragma
generate_exceptions_tables is to compile C files with the -eh (enable
exception handling) switch which, for C files, is equivalent to using the
pragma before every function definition.

#pragma inline

This pragma instructs the compiler to inline the function if it is consid-
ered desirable. The pragma is equivalent to specifying the inline
keyword, but may be applied when the inline keyword is not allowed
(such as when compiling in MISRA-C mode).

#pragma misra_func(arg)

This pragma is placed before a function prototype. It is used to support
MISRA rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12. The arg
indicates the type of function with respect to the MISRA Rule. Functions
following Rule 20.4 would take arg heap, 20.7 arg jmp, 20.8 arg handler,
20.9 arg io, 20.10 arg string_conv, 20.11 arg system and 20.12 arg time.

-Wmis_suppress
rule_number[,rule_number...]

Suppresses checks for listed rule_numbers

-Wmis_warn
rule_number[,rule_number...]

Produces warnings for listed rule_numbers

Switch Description
VisualDSP++ 5.0 Product Release Bulletin 2-15

Compiler and Run-Time Library for Blackfin Processors
#pragma pgo_ignore

This pragma tells the compiler that no profile should be generated for this
function, when using Profile-Guided Optimization. This is useful when
the function is concerned with error checking or diagnostics.

New Section Identifiers
The compiler supports these new section identifiers:

New Predefined Macros
New predefined macros are:

Section Identifier Description

strings Controls the placement of string literals

autoinit Controls placement of data used to initialize aggregate autos

alldata Controls placement of data, constdata, bsz, strings and autoinit all
at once

Macro Function

_MISRA_RULES Defines _MISRA_RULES as 1 when compiling in MISRA-C mode.

__VISUALDSPVERSION__ The preprocessor defines this macro to be an eight-digit hexadeci-
mal representation of the VisualDSP++ release, in the form
0xMMmmuurr, where:
– MM is the major release number
– mm is the minor release number
– uu is the update number
– rr is “00”, and reserved for future use
For example, VisualDSP++5.0 Update 1 would be 0x05000100.
2-16 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
Additional Path Support
The compiler driver and compiler provide support for extensions to stan-
dard Windows path names. Windows shortcuts and Cygwin paths are
both supported. The extensions are controlled independently by compiler
switches. Both features are disabled by default. Four new compiler
switches have been added for this feature:

• -expand-symbolic-links
Instructs the compiler to recognize Cygwin path extensions within
command line switches and #include pre-processor directives.

• -no-expand-symbolic-links
Disables compiler support for Cygwin path extensions.

• -expand-windows-shortcuts
Instructs the compiler to recognize Windows shortcuts within
command line switches and #include pre-processor directives.

• -no-expand-windows-shortcuts
Disables compiler support for Windows shortcuts.

New Built-in Functions
The following are new built-in compiler functions for the Blackfin
compiler.

For more information, see “Saturation and Optimization” on page 3-10.

Built-in Function Description

cmac_fr16_s40 Complex multiply accumulate using internal 40-bit operations

cmsu_fr16_s40 Complex multiply subtract using internal 40-bit operations

multr_fr1x32x32 Same as mult_fr1x32x32 but with additional rounding precision
VisualDSP++ 5.0 Product Release Bulletin 2-17

Compiler and Run-Time Library for SHARC Processors
Fractional Values in C
The compiler supports the use of the suffixes “r16” and “r32” to indicate
literal values that should be interpreted as fractional values, and converted
to the hexadecimal bit-pattern that represents that value in a signed
fixed-point representation. For example,

#include <fract.h>
fract16 x = 0.5r16; // x is set to 0x4000

fract32 y = 0.5r32; // y is set to 0x40000000

These suffixes are a syntactic convenience; the literal values are still
signed-integer types, and are subject to the usual integer arithmetic and
type conversion and promotions.

Compiler and Run-Time Library for
SHARC Processors

This section lists and briefly describes the most notable new features and
enhancements of the C/C++ compiler and library for SHARC processors.

For SHARC processors, the most notable new compiler features and
enhancements are in the following areas:

• “MISRA-C” on page 2-19

• “New Compiler Switches” on page 2-19

• “New Pragmas” on page 2-21

• “New Section Identifiers” on page 2-22

• “New Predefined Macros” on page 2-22
2-18 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
For more information about these features, refer to the VisualDSP++ 5.0
C/C++ Compiler Manual for SHARC Processors, VisualDSP++ 5.0
Run-Time Library Manual for SHARC Processors, and online Help.

MISRA-C
The compiler supports checking for MISRA-C:2004 Guidelines for the use
of the C language in critical systems.

To allow the compiler to verify MISRA-C conformance completely, it is
sometimes necessary to generate a number of output files with the .misra
suffix. The output files are used by the prelinker when validating MISRA-
C conformance across multiple source files. Refer to the VisualDSP ++ 5.0
SHARC Compiler Manual for more information on MISRA-C feature

New Compiler Switches
New compiler switches supported in the VisualDSP++ 5.0 release are:

Switch Description

-annotate Enables assembly annotations

-list-workarounds Lists all supported workarounds for the targeted silicon
revision

-misra Enables checking for MISRA-C:2004 Guidelines, some
rules relaxed

-misra-linkdir Specifies directory in which .misra files are to be gener-
ated for checking rules across modules

-misra-no-cross-module Enables checking for MISRA-C:2004 Guidelines. Prevents
generation of .misra files

-misra-no-runtime Enables checking for MISRA-C:2004 Guidelines. Inhibits
generation of additional code to check rules requiring
run-time checking

-misra-strict Enables checking for MISRA-C:2004 Guidelines
VisualDSP++ 5.0 Product Release Bulletin 2-19

Compiler and Run-Time Library for SHARC Processors
-misra-suppress-advisory Enables checking for MISRA-C:2004 Guidelines, but
inhibits checking for advisory rules

-misra-testing Enables checking for MISRA-C:2004 Guidelines, but
inhibits checking for rules 20.4, 20.7, 20.8, 20.9, 20.10,
20.11, and 20.12 advisory

-Wmis_suppress
rule_number[,rule_number...]

Suppresses checks for listed rule_numbers

-Wmis_warn
rule_number[,rule_number...]

Produces warnings for listed rule_numbers

-no-workaround workaround_id Disables specific hardware anomaly workarounds within
the compiler

-no-progress-rep-timeout Prevents the compiler from issuing a diagnostic during
excessively long compilations

-no-sat-associative Saturating addition is not associative

-overlay Disables the propagation of register information between
functions and forces the compiler to assume that all func-
tions clobber all scratch registers

-overlay-clobbers regs Specifies the registers assumed to be clobbered by an over-
lay manager

-progress-rep-opt Issues a diagnostic message each time the compiler starts a
new optimization pass on the current function. Equivalent
to -Wwarn=cc1473. Replaces previous switches
-progress-rep-gen-opt and -progress-rep-mc-opt

-progress-rep-timeout Issues a diagnostic message if the compiler exceeds a time
limit during compilation

-progress-rep-timeout-secs Specifies how many seconds must elapse during a compila-
tion before the compiler issues a diagnostic on the length
of compilation

-sat-associative Saturating addition is associative

-no-std-templates Disables the lookup of names used in templates

-std-templates Enables the lookup of names used in templates

Switch Description
2-20 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
New Pragmas
VisualDSP++ 5.0 introduces the following new pragmas.

#pragma inline

This pragma instructs the compiler to inline the function if it is consid-
ered desirable. The pragma is equivalent to specifying the inline
keyword, but may be applied when the inline keyword is not allowed
(such as when compiling in MISRA-C mode).

#pragma generate_exceptions_tables

This pragma may be applied to a C function definition. It instructs the
compiler to generate tables which enable C++ exceptions to be thrown
through executions of this function. An alternative to using #pragma
generate_exceptions_tables is to compile C files with the -eh (enable
exception handling) switch which, for C files, is equivalent to using the
pragma before every function definition.

#pragma misra_func(arg)

This pragma is placed before a function prototype. The pragma is used to
support MISRA rules 20.4, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12.
The arg indicates the type of function with respect to the MISRA Rule.
Functions following Rule 20.4 would take arg heap, 20.7 arg jmp, 20.8 arg
handler, 20.9 arg io, 20.10 arg string_conv, 20.11 arg system and 20.12
arg time.

#pragma pgo_ignore

This pragma tells the compiler that no profile should be generated for this
function, when using Profile-Guided Optimization. This is useful when
the function is concerned with error checking or diagnostics.
VisualDSP++ 5.0 Product Release Bulletin 2-21

Compiler and Run-Time Library for SHARC Processors
New Section Identifiers
The compiler supports these new section identifiers:

New Predefined Macros
New predefined macros are:

Section Identifier Description

pm_data Controls placement of initialized data declared with the _pm keyword

pm_constdata Controls placement of constant data declared with the _pm keyword

strings Controls placement of string literals

autoinit Controls placement of data used to initialize aggregate autos

Macro Function

_MISRA_RULES Defines _MISRA_RULES as 1 when compiling in MISRA-C mode.

__VISUALDSPVERSION__ The preprocessor defines this macro to be an eight-digit hexadeci-
mal representation of the VisualDSP++ release, in the form
0xMMmmuurr, where:
– MM is the major release number
– mm is the minor release number
– uu is the update number
– rr is “00”, and reserved for future use
For example, VisualDSP++5.0 Update 1 would be 0x05000100.
2-22 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
Compiler and Library for TigerSHARC
Processors

New Compiler Switches
New TigerSHARC compiler switches supported in VisualDSP++ 5.0
release are:

Table 2-4. New TigerSHARC Command-Line Switches

Switch Description

-annotate Enables assembly annotations

-full-dependency-inclusion (C++ mode): Ensures re-inclusion of implicitly
included files when generating dependency informa-
tion

-list-workarounds Lists silicon errata workarounds supported by the
compiler

-no-progress-rep-timeout Prevents the compiler from issuing a diagnostic dur-
ing excessively long compilations

-no-workaround workaround_id Disables a compiler workaround for a silicon errata

-progress-rep-timeout Issues a diagnostic message if the compiler exceeds a
time limit during compilation

-progress-rep-timeout-secs Specifies how many seconds must elapse during a
compilation before the compiler issues a diagnostic
on the length of compilation

-no-std-templates (C++ mode): Disables the lookup of names used in
templates

-std-templates (C++ mode): Enables the lookup of names used in
templates
VisualDSP++ 5.0 Product Release Bulletin 2-23

Compiler and Library for TigerSHARC Processors
New Pragmas
#pragma pgo_ignore
This pragma directs the compiler to generate no profile for the function
when using Profile-Guided Optimization. The pragma is useful when the
function is concerned with error checking or diagnostics.

New Predefined Macros
New predefined macro is:

Macro Function

__VISUALDSPVERSION__ The preprocessor defines this macro to be an eight-digit hexadeci-
mal representation of the VisualDSP++ release, in the form
0xMMmmuurr, where:
– MM is the major release number
– mm is the minor release number
– uu is the update number
– rr is “00”, and reserved for future use
For example, VisualDSP++5.0 Update 1 would be 0x05000100.
2-24 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
Linker and Utilities
The VisualDSP++ 5.0 linker, Linker Description Files, and utility pro-
grams are upgraded to operate more efficiently on Blackfin, TigerSHARC,
and SHARC processors.

Linker map file generation is improved to report correct sizes for regions
allocated by the RESERVE() command and meminit.

For the linker, LDF, and utilities, the most notable new features and
enhancements are:

• “Updated List of LDF Keywords” on page 2-25

• “Built-In Macro” on page 2-25

• “New Utility: elfpatch” on page 2-26

• “New Switch” on page 2-26

For more information, refer to the VisualDSP++ 5.0 Linker and Utilities
Manual.

Updated List of LDF Keywords
The following new .ldf file keyword applies to all supported processors:

COMMON_MEMORY

Built-In Macro
The preprocessor provides the following built-in predefined macro:

__VISUALDSPVERSION__
VisualDSP++ 5.0 Product Release Bulletin 2-25

Linker and Utilities
The macro defines this to be an eight-digit hexadecimal representation of
the VisualDSP++ , in the form 0xMMmmuurr, where:

• – MM is the major release number

• – mm is the minor release number

• – uu is the update number

• – rr is “00”, and reserved for future use

For example, VisualDSP++5.0 Update 1 would be 0x05000100.

New Utility: elfpatch
The executable and linking format (ELF) file patch (elfpatch) utility
allows the bits of an ELF section to be extracted or replaced from a speci-
fied file.

New Switch
The following new linker command-line switch is now available:

Table 2-5. New Linker Command-Line Switch

Switch Description

-reserve-null Directs the linker to reserve the first 4 addressable units (words) in
memory
2-26 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
Loader and Splitter for Blackfin
Processors

The loader utility (elfloader.exe) has been enhanced and modified to
support new features and new Blackfin processors. The loader utility’s
modifications and enhancements are summarized in the following
sections.

• “Support for New Processors” on page 2-27

• “Support for Multiple Initialization Input Blocks” on page 2-28

• “Automatic Inclusion of ROM Sections in Boot Streams” on
page 2-28

• “Support for Callback and Indirect Blocks” on page 2-28

• “Support for Save and Quickboot Blocks” on page 2-29

• “-pFlag Parameter Interface Management” on page 2-29

Support for New Processors
The loader and splitter utilities add support for ADSP-BF52x/BF54x
Blackfin processors; the new processors are listed in “New Blackfin Pro-
cessor Support in VisualDSP++ 5.0” on page 2-4.

The loader utility generates a boot stream in a new boot stream format
(for these new processors), including the new format for block headers and
flags. The ADSP-BF52x and ADSP-BF54x processor boot sequences, boot
streams, block headers, and flags are documented in “Loader/Splitter for
ADSP-BF52x/BF54x Blackfin Processors” chapter of the VisualDSP++
5.0 Loader and Utilities Manual.
VisualDSP++ 5.0 Product Release Bulletin 2-27

Loader and Splitter for Blackfin Processors
Support for Multiple Initialization Input Blocks
For ADSP-BF52x/BF54x processors, the loader utility removes the con-
straints of limiting initialization (init) blocks to a singular instance of an
executable file at the start of a loader boot stream. VisualDSP++ 5.0 users
are able to execute multiple in-application init block calls at any time
during the boot process.

The loader utility supports placement of multiple initialization calls in a
boot stream via the -initcall command-line switch. The -initcall syn-
tax also enables control over multiple init block placements and
invocations, including re-entrant blocks. For more information about
-initcall, refer to the VisualDSP++ 5.0 Loader and Utilities Manual and
online Help.

Automatic Inclusion of ROM Sections in Boot
Streams

For ADSP-BF52x/BF54x processors, the newly introduced -readall
command-line switch allows the loader utility to integrate fixed-position
ROM data sections within a loader boot stream. The switch calls the split-
ter utility as a transparent sub-process to the loader utility. In a resulting
loader file available in Intel hex-32 format, the splitter data is merged with
the loader stream. For more information on -readall, refer to the Visu-
alDSP++ 5.0 Loader and Utilities Manual and online Help.

Support for Callback and Indirect Blocks
For ADSP-BF52x/BF54x processors, the loader utility now is able to
invoke a block that has been loaded indirectly into internal memory by
init code. This is done via the -callback switch, which marks the block
with the CALLBACK flag.
2-28 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
The -callback switch is used in conjunction with the INDIRECT flag,
which makes indirect boot blocks using the TWI boot mode to validate
the block’s CRC32 value encoded in the block’s header. Indirect blocks
are placed into internal memory first and then placed by MDMAs into
destination memory, rather then by direct DMAs. For more information
on -callback, refer to the VisualDSP++ 5.0 Loader and Utilities Manual
and online Help.

Support for Save and Quickboot Blocks
For ADSP-BF52x/BF54x processors running on low-power cycles, the
loader utility now is able to mark internal memory blocks (marked with
the SAVE flags) within the LDF-defined sections for saving. This is done
using the -save command-line switch. This supports interrupt-based,
run-time archiving of code and data during low-power or hibernation
power cycles.

The -quickboot loader command-line switch marks blocks within the
LDF-defined section name with the QUICKBOOT flag. The switch is used to
mark blocks to skip on warm-boot cycles.

For more information on -save and -quickboot, refer to the VisualDSP++
5.0 Loader and Utilities Manual and online Help.

-pFlag Parameter Interface Management
For ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539
processors, the loader utility uses a previously revised mechanism for the
-pFlag parameter handling. The allowed -pFlag value now is managed
dynamically and varies with the processor, silicon revision, boot mode,
and DMA width. All valid -pFlag parameter combinations are docu-
mented in Tables 3-11 through 3-13 of the VisualDSP++ 5.0 Loader and
Utilities Manual. The loader utility generates warnings for invalid
combinations.
VisualDSP++ 5.0 Product Release Bulletin 2-29

Splitter for SHARC Processors
The new parameter handling mechanism was introduced in the
VisualDSP++ 4.5 November 2006 update. Any older Blackfin projects
using -pFlag should be verified to ensure the correct setting is being used.
The setting should also be verified whenever the processor, silicon revi-
sion, boot mode, or DMA width is changed in VisualDSP++. For more
information, refer to the VisualDSP++ 5.0 Loader and Utilities Manual
and online Help.

Splitter for SHARC Processors
The SHARC splitter utility (elfspl21k.exe) of the VisualDSP++ 5.0
release was extended to support ADSP-2126x and ADSP-2137x proces-
sors’ physical external memory image generation, in addition to the logical
external memory image generation introduced in the previous Visu-
alDSP++ release. The logical external memory images are post-processed
in the order that the physical external memory images are obtained.

• ADSP-21261/21262/21266/21267,
ADSP-21362/21363/21364/21365/21366 processors obtain
identical external memory architectures, and the splitter produces
identical memory images for their external memory spaces.

• ADSP-21367/21368/21369 and ADSP-21371/21375 processors
obtain identical external memory architectures and the splitter
produces identical memory images for their external memory
spaces.
2-30 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
nXXX Bit Macros with Zero Values for
ADSP-BF54x Processors

ADSP-BF54x def headers contain an additional macro set. For each single
bit grouping within a register, there is a corresponding “n” version of the
macro set to zero. For example,

/* Bit masks for SPIx_CTL */

#define SPE 0x4000 /* SPI Enable */

#define nSPE 0x0

These were added to provide a means for making the programmer’s
intention more clear. With the n* version, you can list each bit in the
assignment. For example,

*pSPI_CTL = nSPE|nWOM|MSTR|nCPOL|CPHA|nLSBF|

SIZE|nEMISO|nPSSE|nGM|nSZ|RDBR_DMA;

They are not intended as negation macros. (A code developer can negate a
macro for dynamic clearing of individual bits using the &= ~MACRO syntax.)

VDK
The following new VDK features and enhancements have been added to
VisualDSP++ 5.0:

• A new VDK signal type, mutex, for mutual thread exclusion

• A new mechanism for replacing the VDK history logging with a
custom subroutine

• New file attributes that relate to the content of the particular VDK
file; for example, semaphores. The file attribute provides greater
flexibility in the mapping of VDK code. For more information
VisualDSP++ 5.0 Product Release Bulletin 2-31

Device Drivers and System Services
about file attributes, see “File Attributes” in the C/C++ documenta-
tion for your processor. For more information on VDK file
attributes, see “VDK File Attributes” in the VDK documentation
and online Help.

• New APIs for obtaining the information provided by the VDK Sta-
tus Window. For a complete list of the APIs, see “Application Status
Information Functions” in the VDK documentation and online
Help.

See the VisualDSP++ 5.0 Kernel (VDK) User’s Guide and online Help for
details.

Device Drivers and System Services
VisualDSP++ 5.0 includes the following device drivers and system services
new features and enhancements for Blackfin processors.

File System Service
The File System Service (FSS) provides a portable and extensible means of
accessing mass storage media from the Blackfin processor. Support for the
ADSP-BF548 EZ-KIT Lite development board is provided with
VisualDSP++ 5.0 for FAT file systems on the ATA and the Secure Digital
Host interfaces for access to the attached hard disk drive and supplied SD
card.

Once the FSS is initialized and registered with the extensible standard C
interface provided with the VisualDSP++ 5.0 I/O library, calls to fopen(),
fread(), and so on are routed automatically to the FSS to provide
seamless access to files on the various mass storage media.
2-32 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
The FSS has been designed such that device drivers for additional
file systems and physical interfaces can be added to an application very
simply, provided they are written to comply with the published
guidelines.

EPPI
The EPPI device driver supports direct connection of EPPI to LCD
panels, parallel A/D and D/A converters, video encoders and decoders,
CMOS sensors, and other general-purpose peripherals. The ADV7183
video decoder, ADV717x video encoder, and the LQ043T1DG01 LCD
drivers leverages the EPPI driver to perform its video-related tasks.
Example EPPI configuration tables for various operating modes are
provided in the EPPI driver document. The EPPI device driver has been
tested on the ADSP-BF548 EZ-KIT Lite development board.

Pixel Compositor
The pixel compositor driver provides a complete, easy, and flawless con-
trol over the pixel compositor. The driver contains built-in look-up tables
to support all 22 mainstream (and up to 7 special case) color space
conversion and data overlay combinations. The pixel compositor driver
has been tested on the ADSP-BF548 EZ-KIT Lite development board.

Touch Screen
The AD7877 driver provides an effective and easy way to control the
Analog Devices AD7877 touch screen controller. The driver can be
configured to monitor the AD7877 interrupt signals (PENIRQ, DAV, ALERT)
and take appropriate actions and post callbacks, which highly reduce
application code overhead. The AD7877 driver has been tested on the
ADSP-BF548 EZ-KIT Lite development board.
VisualDSP++ 5.0 Product Release Bulletin 2-33

Device Drivers and System Services
USB
The USB driver stack encompasses a set of USB class drivers, peripheral
drivers, and a USB core library. The ADSP-BF548 USB OTG controller
driver and PLX NET2272 controller driver support USB device mode, in
which the Blackfin processor becomes a peripheral; this capability permits
a host PC to have visibility over the contents of the hard disk drive on a
ADSP-BF548 EZ-KIT Lite development board. Device mode loopback
and device mode mass storage examples are included.

The USB driver stack has been tested on the ADSP-BF548 EZ-KIT Lite
development board and on the ADSP-BF533 EZ-KIT Lite development
board with a Blackfin USB-LAN EZ-Extender® attached.

Rotary Wheel
The rotary wheel driver allows the application to control the rotary
counter interface of the ADSP-BF548 Blackfin processor. The device
driver supports the following features of the counter module:

• Operation mode, including QUAD_ENC, BIN_ENC, UD_CNT, DIR_CNT,
and DIR_TMR

• Inputs de-bounce filtering

• Zero marker operation, including push-button,
ZM-zeroes-counter, ZM-error, and Zero-once mode

• Boundary comparison modes, including BND_COMP, BND_ZERO,
BND_CAPT, and BND_AEXT

• Counter events (interrupts)

The device driver has been tested on the ADSP-BF548 EZ-KIT Lite
development board.
2-34 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 New Features and Enhancements
Keypad
The keypad driver allows the application to control the keypad interface
(KPAD) of the ADSP-BF548 Blackfin processor. The driver supports
press-release mode and has no hardware dependencies. This driver has
been tested on the ADSP-BF548 EZ-KIT Lite development board.
VisualDSP++ 5.0 Product Release Bulletin 2-35

Device Drivers and System Services
2-36 VisualDSP++ 5.0 Product Release Bulletin

3 VISUALDSP++ 5.0 MAJOR
CHANGES

This chapter summarizes major changes in VisualDSP++ 5.0 compared

with the VisualDSP++ 4.5 release.

The chapter details:

• “Licensing Changes” on page 3-2

• “Default Silicon Revision Changes” on page 3-3

• “Assembler/Linker Changes” on page 3-4

• “L1_scratch Sections Inputs use NO_INIT Qualifier” on page 3-4

• “Common Compiler Changes” on page 3-5

• “Compiler and Library for Blackfin Processors” on page 3-9

• “Compiler and Library for SHARC Processors” on page 3-16

• “Loader Changes” on page 3-20

• “Changes to Existing VDK Projects” on page 3-21

• “Device Drivers and System Services” on page 3-23

Please note that new features and enhancements are listed in Chapter 2,
and all obsolete and removed features are listed in Chapter 4. All
newly-supported processors are listed in “New Blackfin Processor Support
in VisualDSP++ 5.0” on page 2-4.
VisualDSP++ 5.0 Product Release Bulletin 3-1

Licensing Changes
Licensing Changes
The following sections describe changes to the floating license server tools
and validation codes.

Floating License Server Tools Upgrade
The floating license server tools for VisualDSP++ 5.0 have been upgraded
to version 2.00.7. This upgrade enables support for license borrowing as
well as MAC address authentication on the server.

If your site uses floating licenses and you upgrade to VisualDSP++ 5.0,
upgrade your floating license server tools to version 2.00.7. This server
upgrade is compatible with all VisualDSP++ versions greater than and
including 4.0.

The latest license server tools can be found at:
http://www.analog.com/processors/technicalSupport/toolsUpgrades.html

Change to Licensing Validation Codes
In VisualDSP++ 5.0, support has been added to use FLEXnet license
borrowing, to allow use of a MAC address as host ID, and to permit
node-locked licenses to work with Remote Desktop (refer to “Licensing
and Registration” on page 2-2 for further information).

These changes have lead to a modification to the format of VisualDSP++
license strings, and therefore validation codes. This means that when you
register your serial number and host ID, two validation codes will be
e-mailed to you. One is valid for VisualDSP++ 4.5 and earlier versions;
the other is valid for VisualDSP++ 5.0 and later versions.

The license.dat files created by earlier versions of VisualDSP++ will be
accepted by VisualDSP++ 5.0, but will not permit the use of the new
features. If you copy an existing license.dat file from an earlier version of
3-2 VisualDSP++ 5.0 Product Release Bulletin

http://www.analog.com/processors/technicalSupport/toolsUpgrades.html

VisualDSP++ 5.0 Major Changes
VisualDSP++ during installation of VisualDSP++ 5.0 and later wish to use
any of the new features, you must move your license.dat file out of the
way, re-install your serial numbers, re-register them and re-validate them.
For more information see the new VisualDSP++ 5.0 Licensing Guide.

Default Silicon Revision Changes
The default silicon revisions for some processors have been changed to
reflect the availability of new processor revisions. The default silicon
revision for all processors is now the latest revision.

To identify the default silicon revision for a given processor, refer to the
silicon anomalies section of the ADSP-xxxxx-compiler.xml file found in the
System/ArchDef subdirectory of the VisualDSP++ installation, where
xxxxx is the processor you are using (for example, BF533). The default is
specified by the command-line-default attribute of the silicon-revisions
element.

For example:
<silicon-revisions command-line-default="0.5">

The default silicon revision changes only have an effect when Revision in
the Project Options dialog box is set to Automatic and no hardware is
connected, or no silicon revision is specified on the command line.
VisualDSP++ 5.0 Product Release Bulletin 3-3

Assembler/Linker Changes
Assembler/Linker Changes
In VisualDSP++ 5.0, there are the following changes in the assembler and
linker operation.

• The description of the .ALIGN directive is changed as follows:

“The linker stops allocating padding for symbols aligned by 16 or
more.”

• In previous releases, the assembler would attempt to determine
whether a floating-point literal value should be interpreted as an
IEEE floating-point constant or a fractional constant based on
context. This was ambiguous and led to incorrect data. In Visu-
alDSP++5.0, the “r” suffix is required for fractional constants to
remove ambiguity.

• Fractional (fract) constants are specially marked floating-point
constants to be represented in fixed-point format. A fract constant
uses the floating-point representation with a trailing “r”, where r
stands for fract. Now, an error message (ea5002) will be reported
when a fractional value without a trailing “r” is detected.

L1_scratch Sections Inputs use NO_INIT
Qualifier

The Blackfin .ldf files generated by the Project Wizard have been modi-
fied to make MEM_L1_SCRATCH (L1 scratch memory output section) NO_INIT
qualified. This is because the Boot ROM and Memory Initializer use L1
Scratchpad as stack and working space during booting, and therefore can-
not safely map initialized data to this memory area. Ensure that you do
not have initialized data mapped to section “L1_scratch”. If your applica-
tion maps uninitialized data to input section “L1_scratch”, ensure that
the section is marked as NO_INIT, or the linker will raise warning li2131.
3-4 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
For example, in C you might require to change:

#pragma section("L1_scratch")
char alt_heap[32];

to:

#pragma section("L1_scratch", NO_INIT)
char alt_heap[32];

In assembly, the change would be from:

.section L1_scratch;

.byte _alt_heap[32];

to:

.section/NO_INIT L1_scratch;

.byte _alt_heap[32];

Common Compiler Changes
The following sections summarize changes common to the Blackfin,
SHARC, and TigerSHARC compilers.

Increased Code Motion for asm Constructs
The asm constructs describe their behavior with inputs, outputs and regis-
ter/memory clobber declarations. By default, it is assumed that these
declarations are the only effects of the asm construct and as such, the com-
piler is free to move or remove asm constructs where analysis shows they
are redundant, or do not interfere with the rest of the function.
VisualDSP++ 5.0 Product Release Bulletin 3-5

Common Compiler Changes
The VisualDSP++ 5.0 compiler is better able to detect these opportuni-
ties, and therefore will move or remove more asm constructs than
previously. If an asm construct has additional side-effects not indicated by
its inputs and outputs, the asm construct must be declared as volatile to
prevent the compiler making unwarranted assumptions.

FORCE_CONTIGUITY Changes
C++ exceptions and global C++ constructors and destructors rely for their
operation on tables assembled in memory during the linking process.
These tables are generated by the compiler on a per-module basis and
mapped into contiguous memory by the linker. If the tables are not con-
tiguous, undefined behavior can occur at runtime. As of this release, the
.ldf files ensure contiguity by using the FORCE_CONTIGUITY linker direc-
tive. This change can cause some differences in how the linker maps other
code and data.

Cycle Count Macro
With previous releases of VisualDSP++ the parameterized macros that are
defined in the header files cycle_count.h and cycles.h had expanded into
multiple statements. This implementation led to some unexpected side-effects
when, for example, the instructions generated by the following statements
would not result in the code that was intended:

if (condition)
STOP_CYCLE_COUNT(cnt2, cnt2);

Because the macro expands into multiple statements, only the first state-
ment of the expanded macro will be executed conditionally. The
remaining statements will always be executed and will therefore lead to
incorrect cycle counts being generated.
3-6 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
To address this issue, the macros are now implemented using a statement
block. With the previous cycle count macros being a sequence of instruc-
tions it was valid to use the macros without a trailing semi-colon. To assist
with porting existing code, the compile-time macro
__USE_CYCLE_MACRO_REL45__ can be defined to enable legacy support and
avoid any modifications to the existing use of the cycle count macros.

-workaround all Change
Under previous releases, the -workaround switch accepted the parameter
‘all”; it enabled all workarounds, which was not a clearly-defined set. As
of this release, the “-workaround all” option is equivalent to “-si-revi-
sion any”, in that it enables any workarounds that apply to any revision of
the specified target processor.

Declaration of Compiler Built-in Functions
All compiler built-in functions are now defined in a new header file,
builtins.h, which is included by the platform header file. This means
that the platform header file for VisualDSP++ 5.0 will declare more names
than for VisualDSP++ 4.5. Long names for built-in functions are always
declared, with a prefix of “__builtin_”. The double-underscore prefix is
reserved by the C standard for use by the compiler, so these names should
never conflict with user code. Short names are defined for many built-in
functions, and may be disabled altogether by the -no-builtins switch or
on a case-by-case basis using preprocessor defines of the form
__DISABLE_NAME, the precise details of which may be found in builtins.h.

If you get an error with a function definition in builtins.h, it is almost
certainly because you have a function or a preprocessor define which has
the same name as a built-in. Please check, and either remove your own
definition or disable the compiler’s definition as described above.

Built-in functions now defined in ccblkfn.h:
VisualDSP++ 5.0 Product Release Bulletin 3-7

Common Compiler Changes
abs_fr1x32 abs_fr2x16 abs_i1x32 add_as_fr2x16

add_fr1x16 add_fr1x32 add_fr2x16 add_i4x8

add_i4x8_r add_sa_fr2x16 add_u2x16 addclip_hi

addclip_hir addclip_lo addclip_lor adi_core_b_enable

adi_core_id align16 align24 align8

aligned avg_i2x8_hi avg_i2x8_hir avg_i2x8_hit

avg_i2x8_hitr avg_i2x8_lo avg_i2x8_lor avg_i2x8_lot

avg_i2x8_lotr avg_i4x8 avg_i4x8_r avg_i4x8_t

avg_i4x8_tr bytepack cmplx_add cmplx_mac

cmplx_mac_s40 cmplx_msu cmplx_msu_s40 cmplx_mul

cmplx_mul_s40 cmplx_sub compose_i64 dealloca

diff_hl_fr2x16 diff_lh_fr2x16 emuclk expected_false

expected_true extract_hi extract_lo flush

flushinv flushinvmodup flushmodup funcsize

halt heap_address_from_
index

iflush iflushmodup

lmax lmin loadbytes lvitmax2x16

max max_fr1x16 max_fr1x32 max_fr2x16

min min_fr1x16 min_fr1x32 min_fr2x16

mult_fr1x16 mult_fr1x32 mult_fr1x32x32 mult_fr1x32x32NS

mult_fr2x16 multr_fr1x16 multr_fr1x32x32 multr_fr2x16

multu_fr1x16 multu_fr2x16 negate_fr1x32 negate_fr2x16

norm_fr1x16 norm_fr1x32 ones prefetch

prefetchmodup round_fr1x32 sat_fr1x32 shl_fr1x16

shl_fr1x32 shl_fr1x32_clip shl_fr2x16 shl_fr2x16_clip

shl_i1x16 shl_i1x32 shl_i2x16 shll_i1x16

shll_i1x32 shll_i2x16 shr_fr1x16 shr_fr1x32
3-8 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
Built-in functions now defined in the various SHARC platform headers
(for example, 21060.h):

Compiler and Library for Blackfin
Processors

The following are changes in Blackfin compiler and library features.

Compiler May Modify Local Parameters
The Blackfin ABI requires all calling functions to reserve stack space for
the first twelve bytes (R0-R2) of parameter space for a callee, even when
the callee does not require that much space. In VisualDSP++ 5.0, the
compiler makes increased use of this stack space to store temporary values,
if it does not find that the space is needed for other purposes (such as stor-
ing the register-based parameter itself). Therefore, all assembly functions
that call compiled functions must follow the correct procedure; with Visu-
alDSP++ 5.0, the compiler is making more efficient use of stack space, but
there is a corresponding risk that functions that violate the ABI may find
live values are corrupted in the process.

shr_fr1x32_clip shr_fr2x16 shr_fr2x16_clip shr_i1x16

shrl_fr2x16 shrl_fr2x16_clip sub_fr1x16 sub_fr1x32

sub_fr2x16 sub_i4x8 sub_i4x8_r sub_u2x16

sum_fr2x16 testset testset_05000248 untestset

aligned alloca conv_FtoR conv_LRtoR conv_RtoF

conv_RtoLR dealloca emuclk expected_false expected_true

logbf mantf pm_aligned sysreg_bit_xor timer_off

timer_on timer_set
VisualDSP++ 5.0 Product Release Bulletin 3-9

Compiler and Library for Blackfin Processors
Saturation and Optimization
The compiler now applies saturation consistently. Previously, the com-
piler would:

• Apply saturation at 32 bits when optimizing.

• Apply saturation at 40 bits when not optimizing.

• Apply these saturation limits to all accumulator-based operations,
whether generated internally for performance reasons, or generated
for an explicit built-in function.

The compiler now applies saturation in the following manner:

• For accumulator-based operations generated by built-in function,
apply saturation at the boundary specified by the function regard-
less of whether optimization is enabled. New variants of the
built-in functions allow specification of 40-bit saturation, while the
existing built-in functions specify 32-bit saturation.

• For accumulator operations generated internally (for performance
reasons), always apply saturation at the 40-bit boundary.

These rules allow the compiler to generate the fastest-performing code
while reducing unintended saturation. As with earlier releases, automatic
generation of saturating code can be disabled using the -no-saturation
command-line switch.

#pragma retain_name
This pragma prevents the compiler or linker from eliminating the follow-
ing symbol (code or data), even if there are no references to the symbol.

The pragma was supported in VisualDSP++ 4.0 to prevent elimination of
symbols by the compiler, for cases where the only references came from
outside the C/C++ sources, but did not prevent linker elimination.
3-10 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
The pragma was deprecated in VisualDSP++ 4.5 as redundant, as the
compiler detected references from libraries or assembly-only objects, but
linker elimination would still eliminate the symbol if there were no such
references.

Output Section Placement Control
The compiler’s support for placing code and data into specific output sec-
tions has been extended and modified for consistency. These changes
affect:

• -section id=name switch

• #pragma section

• #pragma default_section

The compiler’s section() keyword continues to operate as before.

The changes are as follows:

• New section identifiers are supported, for different types of com-
piler-generated output, for strings, aggregate initializers and
constant data.

• The -section switch and section/default_section pragmas now
support the same set of identifiers.

• Where section identifiers refer to groups of other section identifiers
(for example, alldata), a flat model is now used: using a group sec-
tion identifier is equivalent to specifying the section for each
identifier in the group in turn. This clarifies the model where both
a group identifier and an individual identifier within the group
have distinct sections specified. However, it means that there are
some changes to the groupings. For example, alldata no longer
includes switch.
VisualDSP++ 5.0 Product Release Bulletin 3-11

Compiler and Library for Blackfin Processors
• If not all declarations of a symbol are in the scope of the same
default_section pragma, the scope at definition takes precedence.

• The default_section pragma is now only valid at global scope
(outside function definitions).

IPA Information Stored in Object Files
When a C/C++ file is compiled to object form with the -ipa switch, the
compiler now stores gathered information about the source’s functions
within an .ipa section of the object file, instead of into an .opa temporary
file, as used in previous releases. This allows means a source file can be
compiled with -ipa and then included into a library (.dlb) file, and still
contribute to the overall interprocedural analysis at link-time, even
though the file’s source is inaccessible. Library objects files do not them-
selves benefit from this change, as the lack of source means they cannot be
recompiled in the context of the full analysis, but source files for the appli-
cation being linked can gain benefit from the previously-opaque object
file.

Because the object files now contain IPA information (when built with
-ipa), they will be larger. This additional size is due to the IPA meta-data
and, like debug information, does not indicate an increase in the code or
data that will be linked into the final executable for the target.

Additional .pgi Files Created During Some PGO
Builds

When building an application which uses both multiple source files and
multiple execution profiles (.pgo files, used in Profile-Guided Optimiza-
tion), the compiler will generate .pgi files which record the execution
profiles used during the build. This is to ensure that, if recompilation is
necessary (for example due to C++ template instantiation or as a result of
Interprocedural Analysis), a consistent set of execution profiles will be
used in each compilation.
3-12 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
If the compiler detects an inconsistency (caused by changing any of the
execution profiles during the course of the build), the compiler will issue
an error.

The .pgi files are not created when the build only requires a single source
file, or a single execution profile.

Applications Using C++ Exceptions Require
Recompilation

The C++ exception support in the compiler and runtime libraries has been
modified, to be more efficient and more robust. The revised model uses
compiler-generated tables to direct the stack-unwinding mechanism.
Applications using the C++ try/throw/catch statements must be rebuilt in
the following way:

• C++ source files merely need recompilation (with the -eh switch).
The compiler will generate the necessary tables.

• C functions that may have exceptions thrown through them (that
is, C++ function x() calls C function y() which calls C++ z(), and
z() throws an exception caught by x()) must be recompiled so that
the compiler can generate tables for the functions in question. This
can be done using the -eh switch (to generate tables for all func-
tions in the file) or using the generate_exceptions_tables pragma
(to generate tables for specific functions).

• Assembly functions that may have exceptions thrown through
them need exceptions tables crafting manually.

-no-annotate Switch Extended
In addition to disabling compiler-generated annotations, the -no-anno-
tate switch disables insertion of compiler-generated comments (such as
line numbering or stall-identification comments) into assembly files.
VisualDSP++ 5.0 Product Release Bulletin 3-13

Compiler and Library for Blackfin Processors
For example, while the normal assembly output might contain a mixture
of line-number comments and instructions:

// line “x.c”:2
R0 = 17;
// line 3
FP = [SP++];

when the -no-annotate switch is used, the assembly file will just contain
instructions, like this:

R0 = 17;
FP = [SP++];

Radix-2 FFT Prototypes and Functions Modified
The prototypes for the radix-2 Fast Fourier Transform (FFT) functions
cfft_fr16, ifft_fr16 and rfft_fr16, as defined in filter.h, have been
modified to facilitate enhanced implementations of these functions. Exist-
ing code that makes use of any of these functions will require to be either
modified to use the new implementations or built with the compile-time
macro __USE_FFT_REL45__ defined to enable legacy support.

Previous VisualDSP++ releases of these FFT functions always used static
scaling to avoid results overflowing at each FFT stage. The new imple-
mentation has been enhanced to allow selection of either static scaling,
dynamic scaling or no scaling. The new implementation no longer
requires the temporary array temp, and the block_exponent argument is
passed by reference rather than value.

The prototype for cfft_fr16 has been changed from:

void cfft_fr16(const complex_fract16 input[],
complex_fract16 temp[],
complex_fract16 output[],
const complex_fract16 twiddle_table[],
int twiddle_stride,
int fft_size,
3-14 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
int block_exponent,
int scale_method);

to:

void cfft_fr16(const complex_fract16 input[],
complex_fract16 output[],
const complex_fract16 twiddle_table[],
int twiddle_stride,
int fft_size,
int *block_exponent,
int scale_method);

The changes made to the ifft_fr16 and rfft_fr16 prototypes and func-
tions are identical to the cftt_fr16 changes. The necessary modifications
required to use the new revisions are:

• Delete passing the temp array parameter from all calls to cftt_fr16,
ifft_fr16 and rfft_fr16.

• Modify the block_exponent parameter to be a pointer to an integer
in all calls. The new functions return the scaling steps performed
using this parameter.

• Ensure that the scale method parameter scale_method is correct.
Setting scale_method to 1 selects static scaling for minimal behav-
ior changes.

Additionally, you may consider attempting to remove allocations of the
array temp if it is unused as a consequence of no longer being passed to
cfft_fr16, ifft_fr16 and rfft_fr16. Also you may choose to use the
alternate scaling methods now supported. To select dynamic scaling,
which is good for maintaining precision of results, set scale_method to 2.
For no scaling, the most optimal implementation for well conditioned
inputs that are known will not overflow, set scale_method to 3.
VisualDSP++ 5.0 Product Release Bulletin 3-15

Compiler and Library for SHARC Processors
To avoid modifying existing code that utilizes the cfft_fr16, ifft_fr16
and rfft_fr16 functions the compile-time macro __USE_FFT_REL45__ can
be defined. Note that any existing compiled code that call the FFT rou-
tines will use the legacy implementations.

Interrupt and Exception Handlers
Interrupt Service Routines (ISR) and hardware exception handlers imple-
mented in C using #pragma interrupt and #pragma exception incur less
overhead than before. Under previous releases, a fixed-size context was
saved and restored regardless of the requirements of the routine. In Visu-
alDSP++5.0, only those registers modified by the ISR routine are saved
and restored. See also “SAVE_REGS Macro” on page 4-6.

Compiler and Library for SHARC
Processors

The following are changes in SHARC compiler and library features.

#pragma retain_name
This pragma prevents the compiler or linker from eliminating the follow-
ing symbol (code or data), even if there are no references to the symbol.

The pragma was supported in VisualDSP++ 4.0 to prevent elimination of
symbols by the compiler, for cases where the only references came from
outside the C/C++ sources, but did not prevent linker elimination.

The pragma was deprecated in VisualDSP++ 4.5 as redundant, as the
compiler detected references from libraries or assembly-only objects, but
linker elimination would still eliminate the symbol if there were no such
references.
3-16 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
Output Section Placement Control
The compiler’s support for placing code and data into specific output sec-
tions has been extended and modified for consistency. These changes
affect:

• -section id=name switch

• #pragma section

• #pragma default_section

The compiler’s section() keyword continues to operate as before.

The changes are as follows:

• New section identifiers are supported, for different types of com-
piler-generated output, for strings, aggregate initializers and
constant data and PM data.

• The -section switch and section/default_section pragmas now
support the same set of identifiers.

• Where section identifiers refer to groups of other section identifiers
(for example, alldata), a flat model is now used: using a group sec-
tion identifier is equivalent to specifying the section for each
identifier in the group in turn. This clarifies the model where both
a group identifier and an individual identifier within the group
have distinct sections specified. However, it means that there are
some changes to the groupings. For example, alldata no longer
includes switch.

• If not all declarations of a symbol are in the scope of the same
default_section pragma, the scope at definition takes precedence.

• The default_section pragma is now only valid at global scope
(outside function definitions).
VisualDSP++ 5.0 Product Release Bulletin 3-17

Compiler and Library for SHARC Processors
Additional .pgi Files Created During Some PGO
Builds

When building an application which uses both multiple source files and
multiple execution profiles (.pgo files, used in Profile-Guided Optimiza-
tion), the compiler will generate .pgi files which record the execution
profiles used during the build. This is to ensure that, if recompilation is
necessary (for example due to C++ template instantiation or as a result of
Interprocedural Analysis), a consistent set of execution profiles will be
used in each compilation.

If the compiler detects an inconsistency (caused by changing any of the
execution profiles during the course of the build), the compiler issues an
error.

The .pgi files are not created when the build only requires a single source
file, or a single execution profile.

Applications Using C++ Exceptions Require
Recompilation

The C++ exception support in the compiler and run-time libraries has
been modified, to be more efficient and more robust. The revised model
uses compiler-generated tables to direct the stack-unwinding mechanism.
Applications using the C++ try/throw/catch statements must be rebuilt in
the following way:

• C++ source files merely need recompilation (with the -eh switch).
The compiler will generate the necessary tables.

• C functions that may have exceptions thrown through them (that
is, C++ function x() calls C function y() which calls C++ z(), and
z() throws an exception caught by x()) must be recompiled so that
the compiler can generate tables for the functions in question. This
3-18 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
can be done using the -eh switch (to generate tables for all func-
tions in the file) or using the generate_exceptions_tables pragma
(to generate tables for specific functions).

• Assembly functions that may have exceptions thrown through
them need exceptions tables crafting manually.

-no-annotate Switch Extended
In addition to disabling compiler-generated annotations, the -no-anno-
tate switch disables insertion of line-numbering comments into assembly
files. For example, while the normal assembly output might contain a mix-
ture of line-number comments and instructions:

// line “x.c”:2
r0 = 17;
// line 3
i12=dm(m7,i6);

when the -no-annotate switch is used, the assembly file will just contain
instructions, like this:

r0 = 17;
i12=dm(m7,i6);
VisualDSP++ 5.0 Product Release Bulletin 3-19

Loader Changes
Loader Changes
The new ADSP-BF52x and ADSP-BF54x Blackfin processors use a loader
file format incompatible with that of the ADSP-BF53x and ADSP-BF561
Blackfin processors. The new .ldr file format consists of a 16-byte block
header for each boot block, extending the flag field from 16 bits to 32 bits,
and adding a new 32-bit field for argument passing.

The loader utility supports both formats, depending on the processor
specified. Ensure a correct target processor name appears on the command
line used to generate a loader file, preventing a boot process from failing.
Existing ADSP-BFBF533 and ADSP-BF561 projects can be migrated to
the new processors by rebuilding the sources with the desired targets.

For more information, see the VisualDSP++ 5.0 Loader and Utilities Man-
ual and online Help.
3-20 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
Changes to Existing VDK Projects
When porting existing VDK projects from VisualDSP++ 4.5 to
VisualDSP++ 5.0, the following changes need to be taken into account.

• The VDK Status Window has been redesigned to display informa-
tion on projects built without debugging information. As a result,
the VDK Status window no longer shows kernel information for
executables built with VisualDSP++ 4.0 or earlier.

• In VisualDSP++ 5.0, the VDK_Public.h and VDK_Internals.h
include files no longer include stdlib.h. If your VDK application
code uses definitions from stdlib.h but does not explicitly include
the file, build errors will be encountered. To rectify the situation,
add an include of stdlib.h in a source that uses definitions from
stdlib.h (add #include <stdlib.h>).

• In VisualDSP++ 5.0, the VDK_Public.h and VDK_Internals.h
include files no longer include ccblkfn.h. If your VDK application
code uses definitions from ccblkfn.h and does not explicitly
include it build errors will be encountered. To rectify the situation,
add an include of ccblkfn.h in a source that uses definitions from
ccblkfn.h (add #include <ccblkfn.h>).

• VDK now reserves the SFT2I and SFT3I interrupts for the resched-
ule interrupt because of difficulties found with the reschedule
interrupt in SHARC processors. These interrupts cannot be used in
any other manner. This change was introduced in the
VisualDSP++ 4.5 June 2007 update.

• The run-time libraries use the standard namespace. Commensurate
changes are required in source code for VDK projects. This change
was documented in VisualDSP++ 4.5, but has not been available
for new VDK projects until VisualDSP++ 5.0. Projects created
with VisualDSP++ 4.5 should build as expected because the
-ignore-std option is passed to the compiler.
VisualDSP++ 5.0 Product Release Bulletin 3-21

Changes to Existing VDK Projects
• VDK now flags an additional value used as a timeout in the Pend-
Semaphore(), PendMessage(), PendEvent(), and PendDeviceFlag()
APIs as being invalid. Passing the value (0|kNoTimeoutError) as the
timeout now results in a kInvalidTimeout error. In previous ver-
sions of VDK, the value was accepted silently; however, specifying
that no error should be dispatched in the event of a timeout (also
that the pend call should never timeout) was not useful. It also was
ambiguous as to the expected result. The issuing of an error in this
case now draws attention to this fact. This change was introduced
in the VisualDSP++ 4.5 November 2006 update.

• For Blackfin processors, VDK’s exception handler now passes
exception 0x23 (data access CPLB protection violation) to the
cplb_mgr() function, instead of passing the exception to
UserExceptionHandler.

For porting projects created with versions older than VisualDSP++ 4.5
refer to the VisualDSP++ 5.0 Kernel (VDK) User’s Guide.
3-22 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
Device Drivers and System Services
This section describes the major changes in the device drivers and system
services between VisualDSP++ 4.5 and VisualDSP++ 5.0 releases.

Interrupt Manager
Enumeration values for the ADI_INT_PERIPHERAL_ID enumeration are
changed slightly within VisualDSP++ 5.0. No changes are required within
applications using the system services libary; however all applications and
libraries should be recompiled to insure the proper enumeration values are
used.

DMA Manager/Interrupt Manager
In VisualDSP++ 4.5, a single interrupt handler was used to service all
DMA data transfer interrupts. When that handler was executed, the han-
dler checked each open DMA channel to see if it was asserting and if so,
processed the interrupt. Aside from inefficiencies with this approach, a sit-
uation could exist where a DMA interrupt was pending, but no channel
appeared to be asserting. This caused the processor to appear hung (con-
stantly looking for an interrupt to be serviced).

To illustrate this problem, take the case of two DMA channels, one oper-
ating at a higher interrupt priority than the other. Assume the lower
priority DMA channel triggers and the lone DMA interrupt handler
begins to execute, but before we exit the interrupt handler, the higher pri-
ority channel triggers. Within the interrupt handler, because it loops
through all the channels, the handler would service both the higher and
lower DMA channels then exit the handler. However, the higher priority
interrupt is still latched so the interrupt handler would be immediately
executed again. The handler would loop through all the channels and,
VisualDSP++ 5.0 Product Release Bulletin 3-23

Device Drivers and System Services
because the higher priority channel has already been serviced, the handler
wouldn’t find any channels asserting so it would exit. Because the inter-
rupt is still latched, the processor remains in an infinite loop.

In VisualDSP++ 5.0, this was changed in such a manner that a different
handler is installed for each DMA channel. The basic functionality of each
handler is the same as in VisualDSP++ 4.5 except it only looks at the one
channel to which the handler is assigned; it does not loop through each
channel. This not only corrects the infinite loop issue but also addresses
the inefficiency in processing interrupts.

While functionally the same, with VisualDSP++ 5.0 the system now uses
more interrupt handlers than were used in the past. As a result the user
may need to supply additional memory to the adi_int_Init() function to
accommodate the additional interrupt handlers. From a simplistic per-
spective, in VisualDSP++ 4.5, a system using two DMA channels would
need to supply enough memory to the adi_int_Init() function for one
interrupt handler but in VisualDSP++ 5.0, memory needs to be supplied
for two interrupt handlers. However, this is worst case and assumes that
both DMA channels are mapped to the same IVG level and at least one
other interrupt handler also used that IVG level. If the two DMA channels
are mapped to different IVG levels and they are the only interrupt han-
dlers on those IVG levels, then no additional memory would be required
when moving from VisualDSP++ 4.5 to VisualDSP++ 5.0. The actual
amount of memory required depends on the number of DMA channels
that are used, how they are mapped to IVG levels, and what other inter-
rupts are mapped to the same IVG levels.

To recognize when additional memory to the adi_int_Init() function is
required, look for the following return codes from the system services
library and device drivers:

ADI_INT_RESULT_NO_MEMORY (0x50004)

ADI_DMA_RESULT_CANT_HOOK_INTERRUPT (0x30011)
ADI_PWR_RESULT_CANT_HOOK_SUPPLEMENTAL_INTERRUPT
ADI_DEV_RESULT_CANT_HOOK_INTERRUPT (0x40000011)
3-24 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
If any of these error codes are returned to the application from within the
system services or device drivers, then additional memory should be sup-
plied to the adi_int_Init() function.

DMA Manager
In VisualDSP++ 4.5, the memory copy functions adi_dma_MemoryCopy()
and adi_dma_MemoryCopy2D() did not use the memory DMA interrupt to
detect when memory DMA transfers completed, but rather a polling
mechanism was used. Within VisualDSP++ 5.0, these functions now rely
on the DMA interrupt of the destination DMA channel being asserted
and serviced in order for the transfer to be recognized as complete. In
asynchronous mode, this behavioral change is unlikely to be noticed, how-
ever in synchronous mode, where these functions do not return control
until the transfer has completed, care must be taken to insure the destina-
tion channel’s DMA interrupt can be serviced.

If the memory DMA interrupt is not serviced, then these DMA memory
copy functions do not return back to the application, so the processor
appears to be hung. By default, the memory DMA interrupt is fairly low
priority, so if these functions are called synchronously from an interrupt
priority level that is higher than the memory DMA interrupt priority
level, then the memory DMA interrupt will never be serviced and the pro-
cessor appears hung.

To help mitigate this issue, logic has been added into the debug version of
the DMA manager such that when these functions are called synchro-
nously, the interrupt priority level that the processor is currently running
at is checked and compared to the memory DMA interrupt priority. If the
memory DMA priority is equal to or lower than the currently executing
priority level, an error code (ADI_DMA_RESULT_INCOMPATIBLE_IVG_LEVEL) is
returned to the application. Note that this check is not performed in the
release version of the system services library. If you use these functions, be
sure to check the return value.
VisualDSP++ 5.0 Product Release Bulletin 3-25

Device Drivers and System Services
If this error code is returned:

• Ensure you do indeed wish to do a synchronous memory DMA
transfer in the background of an interrupt level process. Often the
simple memcpy() function of the C Run-Time Library will be more
efficient than DMA.

• Or adjust your IVG mappings (via the adi_int_SICSetIVG() func-
tion) such that the memory DMA IVG is a higher priority (lower
IVG number) than the IVG level from which the function is called.

Included with VisualDSP++ 5.0 are new functions that allow the memory
DMA transfers to be queued to the service. These functions are all pre-
fixed with adi_dma_MemoryQueueXXX().

Semaphore Service
Necessarily, a semaphore service is now provided within the system ser-
vices library. It is used primarily in support of the file system service.
However, Analog Devices strongly discourages the service being used for
anything outside the internal workings of the file system service.

USB Drivers
VisualDSP++ 5.0 contains a completely new implementation of the USB
device drivers. These new drivers support the existing PLX-NET2272
device and the integrated USB controller for ADSP-BF54x processors.

These new drivers are consistent with the library naming conventions and
locations as described in Chapter 1 of the VisualDSP++ 5.0 Device Drivers
and System Services Manual for Blackfin Processors.
3-26 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Major Changes
For example:

• libusb5xx.dlb - contains all core USB functionality, class drivers,
etc.

• libdrv54x.dlb - contains the USB controller driver for
ADSP-BF54x processors

• The <install_path>\Blackfin\include\drivers\usb
subdirectories contain all USB include files

• The <install_path>\Blackfin\lib\src\drivers\usb
subdirectories contain all USB source files

See “USB Drivers” on page 4-9 for information about migrating
applications to these new USB drivers.
VisualDSP++ 5.0 Product Release Bulletin 3-27

Device Drivers and System Services
3-28 VisualDSP++ 5.0 Product Release Bulletin

4 VISUALDSP++ 5.0 OBSOLETE
OR REMOVED FEATURES

This chapter describes the features that have been deprecated or removed

in VisualDSP++ 5.0. Read this chapter if you are upgrading from the
previous software release.

Existing project files (.dpj) can be imported into the new release.
However, once the project file is imported, you are not able to bring the
project back into VisualDSP++ 4.5. Similarly, new projects created with
VisualDSP++ 5.0 cannot be used by earlier versions of the tools.

This chapter contains lists of obsolete or removed features:

• “Discontinued Processor Support” on page 4-2

• “VisualDSP++ IDDE” on page 4-2

• “Compilers and Libraries” on page 4-2

• “VDK” on page 4-7

• “Definition Header Macros” on page 4-7

You may want to consult the cover letter that accompanies the product
installation CD for last-minute information concerning this release.

You may also want to visit the Software Tools Upgrades Web site to check
if an update is available for your VisualDSP++ 5.0 installation:
http://www.analog.com/processors/technicalSupport/toolsUpgrades.html

Installing an update ensures that your software contains the latest proces-
sor support, example code, and bug fixes.
VisualDSP++ 5.0 Product Release Bulletin 4-1

http://www.analog.com/processors/technicalSupport/toolsUpgrades.html
http://www.analog.com/processors/technicalSupport/toolsUpgrades.html
http://www.analog.com/processors/technicalSupport/toolsUpgrades.html

Discontinued Processor Support
Discontinued Processor Support
VisualDSP++ 5.0 does not provide support for ADSP-218x and
ADSP-219x processors. Therefore, refer to VisualDSP++ 3.5 documenta-
tion and the online Help if you need information on how to develop and
run projects on ADSP-21xx processors. VisualDSP++ 3.5 continues to be
available for ADSP-218x and ADSP-219x developers.

Please note that VisualDSP++ 5.0 does not provide support for
ADSP-BF566 processors.

VisualDSP++ IDDE
• VisualDSP++ 5.0 does not support the Apex-ICE emulator.

• Saving Register Contents. Earlier versions of VisualDSP++
included a Save Registers command under the Registers menu in
the IDDE. As of VisualDSP++ 5.0, this capability is accomplished
via the core file support; refer to “Core File Support” on page 2-6
for details. Users who want the previous capability can run a script;
refer to the “Saving Register Contents” topic in VisualDSP++ Help
for an example VBScript that performs this task via the Visu-
alDSP++ automation API.

Compilers and Libraries
This section contains information about all removed or deprecated
features within the compilers and libraries.

Refer to Chapter 3, “VisualDSP++ 5.0 Major Changes” for more
information about the changes to the C/C++ compilers and run-time
libraries.
4-2 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Obsolete or Removed Features
Removed Compiler Switches
The following compiler command-line switches have been removed from
the VisualDSP++ 5.0 release.

Although the -jump<constdata|data|code> compiler switches are depre-
cated, similar effects can be obtained using the -section compiler flag.
For instance, the effect of the -jump-data flag can be achieved using the
-section SWITCH=data1.

Table 4-1. Obsolete Blackfin Compiler Switches

Switch Description

-jcs2l+ Deprecated, Same as -jcs2l.

-jump<constdata|data|code> Removed.
Used to determine which section the compiler uses to store
jump-tables. Use -section instead.

-no-demangle Removed.
Used to stop the compiler driver piping errors through the
stand-alone demangler.

-pedantic Removed.
Used to warn about non-ANSI constructs.

-pedantic-errors Removed.
Used to produce error diagnostic for non-ANSI constructs.

-progress-rep-gen-opt Removed.
Replaced by-progress-rep-opt

-progress-rep-mc-opt Removed.
Replaced by-progress-rep-opt.

-sat32 Removed.
Used to saturate all accumulations at 32 bits.

-sat40 Removed.
Used to saturate all accumulations at 40 bits.
VisualDSP++ 5.0 Product Release Bulletin 4-3

Compilers and Libraries
The -no-demangle switch has been removed as the behavior it was
intended to suppress – filtering compiler errors through a “demangler” to
give more readable C++ symbol names – was removed in an earlier release.

The -pedantic and -pedantic-errors switches have been deprecated as
the meaning was ambiguous. The compiler would fault non-ANSI C com-
mon extensions and some Analog Devices’ specific extensions, but not all.
Removing the options was judged the best solution in resolving the
ambiguity.

The -sat32 and -sat40 switches have been removed. Now the compiler
cmac_fr16 and cmsu_fr16 builtins always saturate at 32 bits (as per the
-sat32 switch). This is the same default behavior as previous versions of
the compiler. For more information, see “Saturation and Optimization”
on page 3-10.

Table 4-2. Obsolete SHARC Compiler Switches

Switch Description

-default-linkage-
{asm|C|C++}

Deprecated.
Sets the default linkage type (C, C++, asm)

-no-demangle Removed.
Used to stop the compiler driver piping errors through the
stand-alone demangler.

-pedantic Removed.
Used to warn about non-ANSI constructs.

-pedantic-errors Removed.
Used to produce error diagnostic for non-ANSI constructs.

-switch-pm Removed
Specified that the switch tables should be placed in the pm memory.
4-4 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Obsolete or Removed Features
The -no-demangle switch has been removed as the behavior it was
intended to suppress – filtering compiler errors through a “demangler” to
give more readable C++ symbol names – was removed in an earlier release.

The -pedantic and -pedantic-errors switches have been deprecated as
the meaning was ambiguous. The compiler would fault non-ANSI C com-
mon extensions and some Analog Devices’ specific extensions, but not all.
Removing the options was judged the best solution in resolving the
ambiguity.

Although the -switch-pm compiler flag is deprecated, similar effects can
be obtained using the -section SWITCH=seg_pmco compiler flag.

-bss Removed
Specified that the global data should be placed into a BSS-style sec-
tion (called “bsz”), rather than into a normal global data section.

-no-bss Removed
Specified that the zero-initialized and non-zero-initialized data
should be kept in the same data section, rather than separating
zero-initialized data into a different BSS-style section

Table 4-3. Obsolete TigerSHARC Compiler Switches

Switch Description

-no-demangle Removed.
Used to stop the compiler driver piping errors through the
stand-alone demangler.

-pedantic Removed.
Used to warn about non-ANSI constructs.

-pedantic-errors Removed.
Used to produce error diagnostic for non-ANSI constructs.

Table 4-2. Obsolete SHARC Compiler Switches (Cont’d)

Switch Description
VisualDSP++ 5.0 Product Release Bulletin 4-5

Compilers and Libraries
The -no-demangle switch has been removed as the behavior it was
intended to suppress – filtering compiler errors through a “demangler” to
give more readable C++ symbol names – was removed in an earlier release.

The -pedantic and -pedantic-errors switches have been deprecated as
the meaning was ambiguous. The compiler would fault non-ANSI C com-
mon extensions and some Analog Devices’ specific extensions, but not all.
Removing the options was judged the best solution in resolving the
ambiguity.

SAVE_REGS Macro
In previous releases of VisualDSP++, the Blackfin compiler provided sup-
port for “trap” operations, wherein an application could request a service
from some operating system by invoking a software exception: the applica-
tion would indicate the required service by specific register values, and the
exception handler would perform the service and return results by way of
modifying registers before restoring the application context. VisualDSP++
supported this process by saving a fixed context during all interrupts and
exceptions, and by providing a SAVE_REGS() macro that gave access to the
saved context.

This mechanism is intended for applications that must transition from
User Mode to Supervisor Mode to request services, which has not been
supported in recent releases of VisualDSP++ (VisualDSP++ only supports
Supervisor Mode). Therefore, the context-saving and its corresponding
SAVE_REGS() macro have been discontinued.

As a result, interrupt handlers and hardware exception handlers in Visu-
alDSP++5.0 are far more efficient. See also “Interrupt and Exception
Handlers” on page 3-16.
4-6 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Obsolete or Removed Features
VDK
VDK no longer supports 0.x silicon revision of the ADSP-TS20x proces-
sors. In order to use VDK on these TigerSHARC processors, use silicon
revision 1.0 or higher.

See “Changes to Existing VDK Projects” on page 3-21 for information on
the kernel changes.

Definition Header Macros
This section describes changes to definition header macros.

Blackfin Def Header Change: DMA32
The macro definition for the DMA32 bit in PPI registers was erroneously
provided in the following single-core Blackfin processor headers in
<install_dir>\Blackfin\include:

• defBF532.h

• defBF534.h

• defBF539.h

• defBF52x_base.h

The complete list of processors affected by these headers is:

• ADSP-BF531 / ADSP-BF532 / ADSP-BF533 / ADSP-BF538

• ADSP-BF534 / ADSP-BF536 / ADSP-BF537

• ADSP-BF539

• ADSP-BF522 / ADSP-BF525 / ADSP-BF527
VisualDSP++ 5.0 Product Release Bulletin 4-7

Definition Header Macros
Do not use the DMA32 macro when building for these targets. The ability to
pack DMA onto a 32-bit bus is an ADSP-BF561 feature, and it was an
error to have DMA32 in any of the single-core headers in past VisualDSP++
releases.

If used in assembly code that previously assembled, the build will now
result in an assembler warning, as follows:

[Warning ea1092] "<filename>":line Symbol 'DMA32' is undefined.

If used in C code that was previously compiled, the build will now result
in the following error:

"<filename>", line x: cc0020: error: identifier "DMA32" is

undefined.

In the past, this was a “do nothing” situation, but today any legacy
ADSP-BF531/ADSPBF532/ADSP-BF533 code that had the DMA32 macro
included in its initialization code for the PPI_CONTROL register will now
enable the alternate timing functionality (ALT_TIMING bit) built into new
silicon. This will result in PPI timing changes in your application when
using new silicon.

SHARC Def Header Change: FAR
The definition of bit 20 in the SDCTL register has been changed from “FAR”
to “FARF” to avoid redefining FAR in the zlib library source.

This is a non-backwards compatible change.

The affected header files include:

• 213xx/include/def21369.h

• 213xx/include/def21369.h

• 213xx/include/def21375.h

Replace any usage of FAR with FARF in your applications.
4-8 VisualDSP++ 5.0 Product Release Bulletin

VisualDSP++ 5.0 Obsolete or Removed Features
USB Drivers
VisualDSP++ 5.0 contains a completely new implementation of the USB
device drivers; refer to “USB Drivers” on page 3-26. All existing example
projects have been updated to use these new drivers.

If you are migrating applications to these new USB drivers, review the
existing Blackfin examples and refer to
USB_Application_Porting_Guide.pdf located in
<install_path>\Blackfin\docs\drivers\usb.
VisualDSP++ 5.0 Product Release Bulletin 4-9

USB Drivers
4-10 VisualDSP++ 5.0 Product Release Bulletin

	Contents
	Preface
	Purpose of This Document
	Intended Audience
	Contents
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Introduction
	Product Release Description
	VisualDSP++ 5.0 System Requirements
	Windows Vista Users
	Installation Warning Messages

	Platform and Processor Support

	2 VisualDSP++ 5.0 New Features and Enhancements
	Licensing and Registration
	Support of MAC Address for Use as Host ID
	License Borrowing from the License Server
	Support for Remote Desktop
	Modified License Strings

	VisualDSP++ IDDE
	New Blackfin Processor Support in VisualDSP++ 5.0
	New Project Types
	Support for MISRA-C
	Call Stack Window Enhancements
	Binary File Support for Filling and Dumping
	Core File Support
	Stand-Alone Flash Programmer
	Custom Board Support
	Silicon Anomaly Support
	Emulator Troubleshooting Support
	Help Categories

	Assembler
	New Processor Support
	Assembler Feature and Predefined Macros
	Table 2-1. Assembler Feature Macros for Blackfin Processors
	-D__VISUALDSPVERSION__ Predefined Macro

	New Command-Line Switches
	Table 2-2. New Assembler Command-Line Switches

	New Directive
	Table 2-3. New Assembler Directive

	Compiler and Run-Time Library for Blackfin Processors
	New Processor Support
	MISRA-C
	New Compiler Switches
	New Pragmas
	#pragma generate_exceptions_tables
	#pragma inline
	#pragma misra_func(arg)
	#pragma pgo_ignore

	New Section Identifiers
	New Predefined Macros
	Additional Path Support
	New Built-in Functions
	Fractional Values in C

	Compiler and Run-Time Library for SHARC Processors
	MISRA-C
	New Compiler Switches
	New Pragmas
	#pragma inline
	#pragma generate_exceptions_tables
	#pragma misra_func(arg)
	#pragma pgo_ignore

	New Section Identifiers
	New Predefined Macros

	Compiler and Library for TigerSHARC Processors
	New Compiler Switches
	Table 2-4. New TigerSHARC Command-Line Switches

	New Pragmas
	New Predefined Macros

	Linker and Utilities
	Updated List of LDF Keywords
	Built-In Macro
	New Utility: elfpatch
	New Switch
	Table 2-5. New Linker Command-Line Switch

	Loader and Splitter for Blackfin Processors
	Support for New Processors
	Support for Multiple Initialization Input Blocks
	Automatic Inclusion of ROM Sections in Boot Streams
	Support for Callback and Indirect Blocks
	Support for Save and Quickboot Blocks
	-pFlag Parameter Interface Management

	Splitter for SHARC Processors
	nXXX Bit Macros with Zero Values for ADSP-BF54x Processors
	VDK
	Device Drivers and System Services
	File System Service
	EPPI
	Pixel Compositor
	Touch Screen
	USB
	Rotary Wheel
	Keypad

	3 VisualDSP++ 5.0 Major Changes
	Licensing Changes
	Floating License Server Tools Upgrade
	Change to Licensing Validation Codes

	Default Silicon Revision Changes
	Assembler/Linker Changes
	L1_scratch Sections Inputs use NO_INIT Qualifier
	Common Compiler Changes
	Increased Code Motion for asm Constructs
	FORCE_CONTIGUITY Changes
	Cycle Count Macro
	-workaround all Change
	Declaration of Compiler Built-in Functions

	Compiler and Library for Blackfin Processors
	Compiler May Modify Local Parameters
	Saturation and Optimization
	#pragma retain_name
	Output Section Placement Control
	IPA Information Stored in Object Files
	Additional .pgi Files Created During Some PGO Builds
	Applications Using C++ Exceptions Require Recompilation
	-no-annotate Switch Extended
	Radix-2 FFT Prototypes and Functions Modified
	Interrupt and Exception Handlers

	Compiler and Library for SHARC Processors
	#pragma retain_name
	Output Section Placement Control
	Additional .pgi Files Created During Some PGO Builds
	Applications Using C++ Exceptions Require Recompilation
	-no-annotate Switch Extended

	Loader Changes
	Changes to Existing VDK Projects
	Device Drivers and System Services
	Interrupt Manager
	DMA Manager/Interrupt Manager
	DMA Manager
	Semaphore Service
	USB Drivers

	4 VisualDSP++ 5.0 Obsolete or Removed Features
	Discontinued Processor Support
	VisualDSP++ IDDE
	Compilers and Libraries
	Removed Compiler Switches
	Table 4-1. Obsolete Blackfin Compiler Switches
	Table 4-2. Obsolete SHARC Compiler Switches
	Table 4-3. Obsolete TigerSHARC Compiler Switches

	SAVE_REGS Macro

	VDK
	Definition Header Macros
	Blackfin Def Header Change: DMA32
	SHARC Def Header Change: FAR

	USB Drivers

