
Engineer-to-Engineer Note EE-345

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Boot Kernel Customization and Firmware Upgradeability on SHARC®
Processors
Contributed by Mitesh Moonat Rev 1 – October 5, 2009

Copyright 2000-2009, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
SHARC® processors are hardwired to read 256 instructions from either a non-volatile memory (master
boot) or a host (slave boot) after reset. This set of 256 instructions is called the boot kernel. The boot
kernel reads the rest of the boot stream and initializes the internal and external memory with the main
application. Default boot kernels for all boot modes are provided with the VisualDSP++® development
tools. Most of the time, the default boot kernel can be used as is to boot an application. Sometimes, a little
modification of the boot kernel may be needed to add PLL (Phase Locked Loop) or external memory
controller (AMI, SDRAM/DDR2DRAM) initialization code. Moreover, some scenarios may require boot
kennel modifications to achieve results different from the normal booting procedure.

This EE-Note discusses some of these scenarios and explains how the default boot kernels can be
modified to satisfy the application requirements in such cases. The document further discusses how the
firmware on SHARC-based boards can be upgraded dynamically using in-circuit flash programming. To
illustrate the two concepts (boot kernel modification and firmware upgradeability), a typical application is
provided as an example. This application first upgrades the firmware via RS-232 communication with a
graphical user interface (GUI) running on the PC and then uses a customized boot kernel to load the
upgraded application. To better illustrate the approaches discussed, example code for the ADSP-21262,
ADSP-21364, ADSP-21369, ADSP-21375, and ADSP-21469 EZ-KIT Lite® evaluation systems are
provided with this application note in the associated .ZIP file.

SHARC Boot Modes
The supported boot modes for the ADSP-2126x, ADSP-2136x, ADSP-2137x, and ADSP-2146x SHARC
processors are:

1. SPI slave boot

2. SPI master boot

3. Parallel port (ADSP-2126x and ADSP-21366/5/4/3/2 processors only)

4. External port boot (ADSP-21369/8/7, ADSP-2137x, and ADSP-2146x processors only)

5. Link port boot (ADSP-2146x processors only)

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 2 of 14

The boot kernels for the above-mentioned boot modes share similar structure. The majority of differences
in the boot kernels are due to the different peripherals used to read the boot stream. For details on the
structure of SHARC boot kernels, refer to Tips and Tricks on SHARC EPROM and Host Boot Loader (EE-
56)[1].The boot kernel modifications are mostly required for boot modes in which the SHARC processor is
master (boot modes 2 and 3). This application note focuses mainly on boot modes 2 and 3 where the DSP
boots from a parallel or serial EEPROM/flash. Figure 1 shows how the .ldr file Blink.ldr situated on
the flash, which consists of following three sections:

1. Boot Kernel: The first 1536 bytes of the .ldr file corresponding to the 256 instructions of the boot
kernel.

2. Application excluding IVT: The content following the boot kernel that contains the information
regarding initialization of the internal (16-bit, 32-bit, 48-bit, 64-bit) and external memory content
corresponding to the application being booted. This, however, does not include the interrupt vector
table.

3. Final Init Block: This section contains the 256 instructions corresponding to the interrupt vector table
of the application being booted. These instructions are initialized by a special self-modifying
subroutine in the boot kernel.

Figure 1. SHARC booting via parallel/serial flash

Note that Figure 1 assumes the length of all the sectors of the flash is same and equal to 0x10000 bytes.
It could be different for different a flash devices.

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 3 of 14

Boot Kernel Customization
This section discusses two cases where the modification required in the boot kernel is different from
adding PLL and external memory interface initialization code.

CASE 1: Selective Booting of One Application from Multiple Applications

Figure 2 shows a simple case where two applications “Blink1” and “Blink2” reside in the flash: one in
sector 0, and the other in sector 1. The default boot kernel will load the application from sector 0 (Blink1).
The requirement is to modify the boot kernel in a way that based on a condition (for example, the
assertion of a flag input); it should load one of the two applications selectively. The customized boot
kernel should be loaded after reset. Thus, it should be a part of the .ldr file corresponding to the
application in sector 0 (Blink1). The .ldr file corresponding to the application in sector 1 (Blink2) can
have the default boot kernel.

Figure 2. Booting one of multiple applications from the flash

Note that Figure 2 assumes the length of all the sectors of the flash is same and equal to 0x10000 bytes. It
may be different for a different flash device.

This case can further be extended to have more than two applications. Consider the following two factors
while making modifications in the boot kernel:

 The length of the customized boot kernel should not exceed 256 instructions.

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 4 of 14

 The interrupt vector location corresponding to the peripheral being used must have the RTI instruction
intact. After the boot kernel is loaded, the execution branches to the interrupt vector location
corresponding to the peripheral being used (SPI/external port/parallel port). This location should have
an RTI instruction to return to the reset vector location and start executing the kernel. Moreover, some
boot kernels also use this RTI instruction for further reads (interrupt based) from the flash.

Approach 1: Modifying the Read Address in the USER_INIT Section
The first 256 instructions are loaded, starting from the physical address 0x000000 of the parallel/serial
flash. Thus, the external address settings for the parallel port, external port, and SPI master boot modes at
reset are:

 EIPP = 0x000000

 EIEP = 0x4000000

 Read address sent to the SPI flash with the read command = 0x000000

The EIPP register increments by four after one 32-bit word (four bytes) is read and the EIEP0 register
increments by one after one 32-bit word (four bytes) are read. The SPI flash device increments its read
address internally by one after one byte is read. Thus, after the 256 instructions are loaded:

 EIPP = 0x000600

 EIEP register = 0x4000180

 Address of the next byte to be received from SPI flash = 0x000600

In the default boot kernels, these addresses are not modified. To change the location where the boot kernel
fetches the application, modify the EIPP and EIEP registers for parallel/external port boot or send a new
read command to the SPI flash for SPI master boot. This modification has to be added in the USER_INIT
section of the boot kernel before it starts reading the rest of the boot stream from the flash.

Listing 1 shows the code required to reinitialize the EIPP register for the parallel port boot to load
“Blink2” when FLAG0 = 1. The new EIPP register value = Sector 1 start address (0x10000) + 8-bit offset
to skip the default boot kernel (0x600) = 0x10600.

If not FLAG0_IN jump (pc,3);
ustat1=0x10600;
dm (EIPP)=ustat1;

Listing 1. Boot kernel modification for parallel port booting

Listing 2 shows the code required to reinitialize the EIPP register for the parallel port boot to load
“Blink2”when FLAG0 = 1. The new EIEP0 register value= 32-bit logical address for sector 1(0x404000) +
32-bit offset to skip the default boot kernel (0x180) =0x404180.

If not FLAG0_IN jump (pc,3);
ustat1=0x404180;
dm (EIEP0)=ustat1;

Listing 2. Boot kernel modification for external port booting

Listing 3 shows the code required to change the read address for SPI master boot. Unlike parallel port and
external port boot, it cannot be performed by changing the value of a register. Instead, it requires sending

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 5 of 14

a read command to the SPI flash with the new address. Similar to the parallel port boot, the new address
for this case would be = Sector 1 start address (0x10000) + 8-bit offset for the boot kernel (0x600) =
0x10600.

 if NOT FLAG0_IN jump skip;

 r0=0x80; //Flush the DMA FIFO
 dm(SPIDMAC)=r0;

 r0=TXFLSH|RXFLSH; //FLUSH the SPI buffers
 dm(SPICTL)=r0;

 r0=0x64; //Change SPI Baud (if required)
 dm(SPIBAUD)=r0;

 //Set up a receive DMA to a dummy location to send a read command to the FLASH
 r0=0xb8000;
 dm(IISPI)=r0;
 r0=1;
 dm(IMSPI)=r0;
 r0=1;
 dm(CSPI)=r0;

 r0=0xFF01; //Keep the Chip Select high
 dm(SPIFLG)=r0;

 r0=SPIEN|SPIMS|WL32|SENDZ|CLKPL|CPHASE|TIMOD2;
 dm(SPICTL)=r0;

 r0=0x10000; //Sector 1 Offset
 r1=0x03000600; //Read command with 1536 bytes (boot kernel) offset
 r0=r0 OR r1; //Combining the read command with the sector 1 start address
 i0=r0;
 bitrev(i0,0); //Bit reversing the word as SPI FLASH expects MSB first
 r0=i0;
 dm(TXSPI)=r0; //Putting the command and address in the transmit buffer

 r0=0xFE01; //Now asserting the chip select (high to low transition)
 dm(SPIFLG)=r0;

 r0=0x00000007; //Initiating a read DMA to send the word in TXSPI over MOSI
 dm(SPIDMAC)=r0;

 ustat1=dm(SPIDMAC); //Waiting for the DMA to finish
 bit tst ustat1 SPIDMAS; // Check SPI DMA Status bit
 IF TF jump (pc,-2); // SPIDMAS = 1 when DMA in progress

 Skip:
 //Default kernel code………

Listing 3. Boot kernel modification for SPI master boot

Testing the EZ-KIT Lite Example Code
Example code is provided for parallel/external boot and SPI master boot for ADSP-21262, ADSP-21364,
ADSP-21369, ADSP-21375, and ADSP-21469 EZ-KIT Lite evaluation systems. The following steps

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 6 of 14

show how to test the modified boot kernels for CASE 1 on the ADSP-21369 EZ-KIT Lite board. Code for
other EZ-KIT Lite systems can be tested similarly.

1. Build the modified kernel 369_prom project to generate the 369_prom.dxe file.

2. Build the project “Blink1” to generate Blink1.ldr for external port boot in ASCII format with loader
options, as shown in Figure 3. Ensure that it uses the modified kernel 369_prom.dxe.

3. Build the project “Blink2” to generate Blink2.ldr for external port boot in ASCII format with loader
options, as shown in Figure 4. This project may use default boot kernel as its boot kernel will not be
used.

Figure 3. Loader options for “Blink1”

Figure 4. Loader options for "Blink2"

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 7 of 14

4. Load Blink1.ldr into sector 0 and load Blink2.ldr into sector 1 of the parallel flash using the
VisualDSP++ Flash Programmer utility. Figure 5 and Figure 6 show the Flash Programmer options for
loading Blink1.ldr and Blink2.ldr, respectively.

Figure 5. Loading "Blink1" in sector 0

Figure 6. Loading "Blink2" in sector 1

5. Close the VisualDSP++ session, remove the emulator, and press the RESET switch (or power-cycle the
EZ-KIT Lite board). Ensure that the BOOT_CFGx pins are set to use the external port boot mode. After
reset, the customized boot kernel loads and checks the status of the FLAG0 pin (connected to SW8). If
the switch was pressed (FLAG0 = 1), the kernel loads application “Blink2”; otherwise, if FLAG0 = 0, it
loads the application “Blink1”.

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 8 of 14

Approach 2: Using Multiprocessor Booting Feature
Some SHARC parts (especially older models) such as ADSP-2106x, ADSP-2116x, and ADSP-21368
processors can support multiple SHARC devices sharing the same external bus. For these processors, the
VisualDSP++ loader supports a booting scheme whereby a cluster of up to six processors can be booted
from a single EPROM/flash device. The generated hexadecimal file contains the boot loader and the boot
images for the processors. Furthermore, an included table contains the EPROM/flash offset address of the
executables. After reset, the identical boot loader will be loaded into all the SHARC processors of the
cluster. The original boot loader first determines the ID of the processor on which it is running. From the
offset table, it obtains the address where the corresponding data is stored in the EPROM/flash. Finally, the
boot loader boots the application as in a single-processor scheme.

This approach takes advantage of this feature and use the Multiprocessor input file(s) box (on the
Load : Multiprocessor tab) to group multiple executables in an EPROM/flash. Now something else
(rather than the processor ID) determines the application to be loaded. So the original boot loader has to
be modified slightly.

First, create a new project (let’s call it multi_loader) to rebuild the boot loader. Then, copy the original
source file (060_prom.asm or 065L_prom.asm) and the corresponding Linker Description File
(060_ldr.ldf or 065L_ldr.ldf) from <install_path>\21k\ldr into your project directory. Use the “060”
files for all ADSP-2106x processors except ADSP-21065L processors. The original 060_ldr.ldf file
selects the ADSP-21062 processor. Feel free to change the type.

Search in the original source file for the instructions that determines the processor’s ID.

R0=DM(SYSTAT);
R0=FEXT R0 BY 8:3;

Listing 4. Instruction identifying processor ID

As shown in Listing 4, the two code lines determine the ID stored in R0. The content of R0 determines the
executable to be booted. Now, these two instructions will be replaced by any others. For example, R0
might be controlled by a jumper connected to the flag pins. Two issues must be taken into account:

 R0 must have a value between 1 and 6

 The maximal length of the boot loader must not exceed 256 instructions

Listing 5 is an example of the modifications required for the ADSP-21061 EZ-KIT Lite board. Normally,
this loader will boot program #1, but if the FLAG1 button is pushed during reset, program #2 will be loaded
instead.

R0=1;
IF NOT FLAG1_IN R0=R0+1;

Listing 5. Boot kernel modification for ADSP-21061 EZ-KIT Lite

Since you may modify R0 any way you like, many scenarios become possible. Instead of simply checking
the flag pins, you can set up the SPORT or a Link Port to receive the number of the application to be
booted. Additionally, this technique can also be used to load the same executable into more (or all)
SHARC processors in a cluster. Of course, you can do that using the original boot loader, but then you
have to store the same application multiple times in the EPROM/flash. Just use the instruction “R0=1;” or

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 9 of 14

“R0=0;” when the Multiprocessor input file(s) box is not used. Furthermore, you can load
program #1 into processors ID2, ID4, and ID6 and load program #2 into processors ID1, ID3, and ID5.
You might even combine the ID with a jumper value.

ADSP-21161N Example Code
The example code provided for this approach can be tested on an ADSP-21161N EZ-KIT Lite evaluation
system. “Blink 1” toggles FLAGS4-6, and “Blink2” toggles FLAGS7-9 on the board. The PROM boot
kernel is modified to boot the application, based on the FLAG2 switch on the board. During reset, if the
FLAG2 switch is pressed, blink example 1 is booted; otherwise, example 2 is booted.

Perform the following procedure to test this approach:

1. Test the applications. Build the modified PROM boot kernel project file, 161_prom, included with
this EE-Note. Individually test both blink LED examples on the ADSP-21161N EZ-KIT Lite board.

2. Create the loader file. Create the combined loader file for both applications with the loader options,
as shown in Figure 7. Program the loader file in to the flash using the VisualDSP++ Flash Programmer
utility.

3. Boot the applications. After programming the flash, close the VisualDSP++ debug session and press
the RESET button on the EZ-KIT Lite board. By default, blink example 2 is booted; when the FLAG2
button is pressed during reset, blink example 1 is booted. Note that the boot configuration on the
ADSP-21161N EZ-KIT Lite board must be configured for EPROM boot.

Figure 7 Loader options for using the multiprocessor boot feature

CASE 2: Using a Boot Kernel for a Second-Stage Loader

Some applications may require more initialization other than initializing PLL and external memory
interface. It may be initialization of the signal routing unit (SRU) or any other user-defined routines. Most
have to be done only at the start of the application. Moreover, in some cases, the processor might be
required to communicate with a host enquiring whether a firmware upgrade is available. If so, it has to

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 10 of 14

receive the new firmware, burn the upgraded application into the flash, and then boot the processor with
the upgraded application.

The cases above require that code is executed by the processor before it loads the actual application. It
may not always be possible to include this code in the USER_INIT section of the boot kernel for the
following two reasons:

 The modified boot kernel’s size cannot exceed 256 instructions.

 The default boot kernel sits in the interrupt vector table. Thus, the code cannot use the interrupts.

An alternative way could be to boot a small application first with the help of the default boot kernel. This
small application should perform the user-defined initialization tasks and then jump to a section of the
code that overwrites this small application with the actual application. This section of the code can be
called a second-stage loader. It can be obtained by few modifications to the default boot kernel. Unlike
the default boot kernel, it can be placed in any memory location.

This following section discuss the important factors that need to be addressed when modifying the boot
kernel this way.

Interrupt Vector Table
The interrupt vector table of the application using the modified boot kernel should still have an RTI
instruction at the corresponding interrupt vector location (parallel port/external port/SPI). This can be
done for easily for assembly code. For C code, you can modify the corresponding <processor
family>_hdr.asm file (e.g., 26x_hdr.asm, 36x_hdr.asm, 46x_hdr.asm). Listing 6 shows the RTI
instruction added at the external port (EP0) interrupt vector location.

Default “36x.hdr” code……
___lib_P9I: rti;nop;nop;nop; // Peripheral interrupt 9
Default “36x.hdr” code…..

Listing 6 .Modifying “36x_hdr.asm”

“final_init” Section
The final_init section uses labels such as “reset” and “final_init_loop”. Since the modified boot
kernel will not be placed in the IVT, these labels will not hold the same address as in the case of default
boot kernel. Thus, to ensure that these addresses still remain the same, modifications are required in the
instructions that use these labels. Listing 7 shows the definition of these labels at the start of the default
boot kernel (369_prom.asm) and the instructions using them in the final_init section. Listing 8 shows
the start of the modified 369_prom.asm file and the modified instructions in the final_init section. The
_lib_RSTI label is defined in 36x_hdr.asm and is equal to 0x90005. The reset label is defined as
“0x90003” which is the same as in the default boot kernel.

.SECTION/PM seg_ldr;
 nop;nop;nop;
reset:
 nop;
final_init_loop:
 nop;

 call USER_INIT;

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 11 of 14

 LIRPTL = 0;
 IMASK = 0;
 IRPTL = 0;
 BIT SET MODE1 IRPTEN;
 ……
 ……
 DO final_init_loop UNTIL EQ;
 PCSTK=reset;

 ustat1 = dm(DMAC0);
 bit set ustat1 DEN;
 dm(DMAC0) = ustat1;

 JUMP reset (DB);
 IDLE;
 LIRPTL=0;

Listing 7. Default “369_prom" boot kernel

.global _load_application_parallel;

.extern _app_offset_parallel;
#define reset 0x90003
.extern ___lib_RSTI;

.SECTION/PM seg_ldr;

_load_application_parallel:

 call USER_INIT;
 LIRPTL = 0;
 IMASK = 0;
 IRPTL = 0;
 BIT SET MODE1 IRPTEN;
 ……
 ……
 DO ___lib_RSTI UNTIL EQ;
 PCSTK=reset;

 ustat1 = dm(DMAC0);
 bit set ustat1 DEN;
 dm(DMAC0) = ustat1;

 JUMP reset (DB);
 IDLE;
 LIRPTL=0;

Listing 8. Modified “369_prom" boot kernel

Peripheral Initialization
The default boot kernels need not initialize the corresponding peripheral as it is already initialized at reset.
For example, in case of external port boot for the ADSP-21369 processor, the AMICTLx and EPCTL
registers are initialized to 0xF4 and 0x5C1, respectively, after reset. However, for the modified boot
kernel, the peripheral will have to be explicitly initialized. It can be done in the USER_INIT section.
Listing 9 shows the initialization code in the modified 369_prom.asm file.

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 12 of 14

USER_INIT:
 ustat1 = 0xF4;
 dm(EPCTL)=ustat1;
 ustat1=0x5C1;
 dm(AMICTL1)=ustat1;
 r0=dm(_app_offset_parallel);
 r0=lshift r0 by -2;
 r1=0x4000180;
 r0=r0 or r1;
 dm(EIEP0)=r0;

Listing 9. Modified “369_prom" boot kernel

Memory Usage Restrictions
Ensure that the memory range (256 instructions) being used by the modified boot kernel subroutine is
reserved and not used by the application being loaded. This is because the modified boot kernel no longer
resides in the IVT. Thus, it may be overwritten at any time (even before the final_init section starts
executing).

Unlike the default booting, the registers are not brought back to their reset state when loading an
application using the modified boot kernel. If required, the application being loaded later might
have to explicitly reset some registers which were modified by the previous application.

Testing the EZ-KIT Lite Example Code
Example code is provided for ADSP-21262, ADSP-21364, ADSP-21369, ADSP-21375, and ADSP-21469
EZ-KIT Lite systems to show how an application can jump to the modified boot kernel code to overwrite
itself with a new application. Listing 10 shows the 369_SSL application using the modified boot kernels.
To test this, first burn the .ldr file corresponding to any blink code at a particular flash offset and
initialize app_offset_parallel or app_offset_serial accordingly. Then, uncomment #define
PARALLEL to load the application from parallel flash or #define SERIAL to load the application from
serial flash.

#define PARALLEL
//#define SERIAL

int app_offset_parallel = 0x10000;
int app_offset_serial=0;//x10000;
extern load_application_parallel();
extern load_application_serial();

int main()
{
 #ifdef PARALLEL
 asm("jump _load_application_parallel;");
 #endif
 #ifdef SERIAL
 asm("jump _load_application_serial;");
 #endif
 return 0;
}

Listing 10. “369_SSL” using the modified boot kernels

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 13 of 14

Firmware Upgrade
For modern systems, upgrading the existing firmware with new firmware corrects and enhances the
supported features and functionalities. Flash devices placed in a socket in a system can be removed easily,
upgraded, and replaced. But this approach cannot be used for systems with soldered flash devices. Also, it
has to be done manually and thus may not be used for dynamic upgrade. In such cases, in-circuit flash
programming is a technique by which flash devices can be programmed with means of software running
on the processor itself. For details on in-circuit flash programming for SHARC processors, refer to [2], [3],

[4].

Testing the EZ-KIT Lite Example Code

To illustrate the concept of a firmware upgrade, example code is provided for ADSP-21262, ADSP-
21364, ADSP-21369, ADSP-21375, and ADSP-21469 EZ-KIT Lite evaluation systems. The example
code communicates with a graphical user interface running on a PC via RS-232 to receive the .ldr file of
the firmware to be loaded. Figure 8 shows a snapshot of the GUI. The SPORT is used to emulate UART
protocol for processors that do not have an on-chip UART (ADSP-21364 and ADSP-21262 processors).

Figure 8. GUI for firmware upgrade

Before opening the Firmware_Upgrade.exe executable, ensure that the .dll files (MFC42D.DLL,
MFCO42D.DLL, and MSVCRTD.DLL) provided in the associated .ZIP file are copied to the path
<install_path>\WINDOWS\system32. To test the example code on any of the EZ-KIT Lite evaluation
systems, perform the following steps:

1. Connect the RS-232 port of the EZ-KIT Lite board to COM1/COM2 port of the PC. For ADSP-21262
or ADSP-21364 EZ-KIT Lite systems, use an external RS-232 transceiver chip (the one provided with
ADSP-21369, ADSP-21375, and ADSP-21469 EZ-KIT Lite systems can also be used). Connect
DAI_PB02 to UART TX (from the processor), and DAI_PB04 to UART RX (to the processor).

2. Load the example code xxx_SSL_GUI (where xxx = 21262/21364/21369/21375/21469) and run. This
code blinks a particular LED (mentioned in the respective code) on the EZ-KIT Lite board five times
and then waits until a particular push button (mentioned in the respective code) on the EZ-KIT Lite
board is pressed.

Boot Kernel Customization and Firmware Upgradeability on SHARC® Processors (EE-345) Page 14 of 14

3. Open the GUI, select the COM port, select the .ldr file to be sent, and click Upgrade.

4. Press the corresponding push button (based on the flag pin used in the code) on the EZ-KIT Lite
board.

5. The firmware upgrade procedure starts and performs the following steps:

1. The processor signals the PC that it is ready to communicate.

2. The PC sends four bytes corresponding to the 32-bit integer indicating the length of the .ldr file.
The processor sends acknowledgement byte “0x03” for each byte received.

3. The PC sends four bytes corresponding to the 32-bit flash offset where the .ldr file needs to be
burnt. The processor sends acknowledgement byte “0x04” for each byte received.

4. The PC sends the first byte of the .ldr file.

5. The processor receives the byte sent by the PC, writes it into the flash, and sends the
acknowledgement byte “0x02” to the PC.

6. Steps (d) and (e) are repeated until all bytes of the .ldr file are sent and programmed into the
flash. The flash now contains the upgraded boot image.

6. The processor loads the upgraded firmware with the help of modified boot kernel with the approach
mentioned in CASE 2.

In the protocol mentioned here, the processor first receives one byte from the PC, programs it into the
flash, then receives the next byte, and so on. To speed up the communication further, use DMA transfers
to bring in the next block of data in parallel, while the core is programming the current block of data into
the flash. A CRC error check can also be added to ensure data integrity while receiving data from the PC.

References
[1] Tips and Tricks on SHARC EPROM and Host Boot Loader (EE-56). Rev 3, March, 2007, Analog Devices Inc.

[2] In-Circuit Flash Programming on SHARC Processors (EE-223). Rev 2, February, 2007, Analog Devices Inc.

[3] In-Circuit Programming of an SPI Flash with SHARC Processors (EE-231). Rev 2, August, 2007, Analog Devices Inc.

[4] In-Circuit Flash Programming on ADSP-2106x SHARC Processors (EE-280). Rev 2, March 2007, Analog Devices Inc.

Document History

Revision Description

Rev 1 – October 5, 2009
by Mitesh Moonat

Initial release.

Note: contents and code examples from EE-108, “Managing Multiple Applications
in a Single EPROM for SHARC Processors”, have been merged into this EE-Note.
Therefore, EE-108 has been made obsolete.

	Introduction
	SHARC Boot Modes
	Boot Kernel Customization
	CASE 1: Selective Booting of One Application from Multiple A
	Approach 1: Modifying the Read Address in the USER_INIT Sect
	Testing the EZ-KIT Lite Example Code

	Approach 2: Using Multiprocessor Booting Feature
	ADSP-21161N Example Code

	CASE 2: Using a Boot Kernel for a Second-Stage Loader
	Interrupt Vector Table
	“final_init” Section
	Peripheral Initialization
	Memory Usage Restrictions
	Testing the EZ-KIT Lite Example Code

	Firmware Upgrade
	Testing the EZ-KIT Lite Example Code

	References
	Document History

