
Engineer-to-Engineer Note EE-177

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

SHARC® SPI Slave Booting
Contributed by Matt Walsh and Brian Mitchell Rev 3 – January 19, 2007

Copyright 2002-2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are
property of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and
reliable, however no responsibility is assumed by Analog Devices regarding the technical accuracy and topicality of the content provided in all Analog Devices’
Engineer-to-Engineer Notes.

Introduction
Upon power-up, SHARC® processors can be
boot-loaded as an SPI slave device. Although the
hardware interface is simple, a complication
arises when using this boot scheme. The SPI
protocol does not provide an obvious way for the
booting SPI slave to “pause” the boot-stream
being transmitted by the SPI host device. This
causes a problem when SPI booting because
when performing “zero-initializations”, the
processor executes code rather than emptying the
SPIRX buffer of the slave processor.

To save space in the .LDR file, sections of
memory with a large number of contiguous zeros
are truncated: Instead of storing these zeros in
the .LDR file, the loader only includes the
destination address and the number of zeros
required. (Consecutive zeros often occur because
of unitialized data arrays or several (5)
consecutive NOP instructions, the opcode for
which is 0x000000000000.) Upon identifying
one of these zero-init sections, the kernel simply
runs a small loop to write zeros to each specified
address. If the core stays in this loop too long,
the SPI host device continues to transmit, then
the 2-deep SPI FIFO may overflow, and data
may be lost. This EE-Note describes three ways
to avert this potential problem.

This document applies to all SHARC processors
that support SPI slave boot: ADSP-2116x,
ADSP-2126x, ADSP-2136x, and ADSP-2137x.

The hardware and the software solutions
discussed throughout this EE-Note are for the
ADSP-21161 processor, however, the same
techniques can be used for ADSP-2116x, ADSP-
2126x, ADSP-2136x, and ADSP-2137x devices.
Example code for the ADSP-21161, ADSP-
21266, ADSP-21365, and ADSP-21369
processors are provided in the associated .ZIP
file.

Hardware Solution
There are two ways to pause the SPI host device
by implementing a hardware feedback scheme:
using a fifth pin as a FLAG signal, or using the
MISO pin. In both scenarios, the processor drives
a hand-shake signal back to the SPI host. This
signal should be connected to a flag or interrupt
pin on the SPI host. The SPI host would monitor
this flag or interrupt pin, and would pause
transmission when necessary. Similarly, the
feedback signal may also be interpreted by the
host as a “start transmission” signal. Regardless
of the protocol, implementing a solution in
hardware requires a small change to the loader
kernel, 161_SPI.asm, as well.

Described below is the former case, where the
feedback signal indicates that the SPI host should
“pause” transmission. In the loader kernel, the
small sections of code that perform the zero
initializations are simply modified to drive an
output flag pin low until it finishes executing the
zero-initialization loop. The boot kernel code

 a

SHARC® SPI Slave Booting (EE-177) Page 2 of 4

before and after modification can be seen in
Listing 1 and Listing 2.

DM_zero:
R0=R0-R0, I0=R3; //r0=0& I0=address
 //as held in R3.
LCNTR=R2, DO dm_zero.end UNTIL LCE;
dm_zero.end:
DM(I0,M6)=R0;
JUMP read_boot_info;

Listing 1. Standard zero-init code from SPI boot-
loader kernel - 161_SPI.asm

#include <def21161.h>
R0=R0-R0,I0=R3; //r0=0 & I0=address
 //as held in R3.
USTAT1=DM(IOFLAG);
BIT SET USTAT1 FLG4O; //make output
dm(IOFLAG)=USTAT1;
BIT CLR USTAT1 FLG4; //flag4 = low
dm(IOFLAG)=USTAT1;

LCNTR=R2, DO dm_zero.end UNTIL LCE;
dm_zero.end:
DM(I0,M6)=R0;
BIT SET USTAT1 FLG4; //flag4 = high
dm(IOFLAG)=USTAT1;
JUMP read_boot_info;

Listing 2. Zero-init code with hardware feedback
added using flag 4

This EE-Note includes a version of the kernel
modified in the manner described in this section
and a project to be used on an ADSP-21161 host
processor to boot a slave in this manner. Note
that when the host is “paused”, ensure that the
transmission stops only after an entire word has
been sent. In the case of ADSP-21161
processors, this causes the host to resend the last
two words before the pause occurred.

Alternatively, as shown in Figure 1, the slave
processor’s MISO pin may be connected to the
flag/interrupt pin of the SPI host. The processor’s
SPI port may then transmit all 1s or all 0s,
depending on the implemented protocol. The
SENDZ bit of the SPICTL register determines what
is sent when the processor's transmit buffer is not
refilled. If SENDZ is cleared, the SPI port will
continue to retransmit the last word written to the

SPITX buffer. If SENDZ is set, the MISO pin will
be driven low (sending zeros) until a new word is
written to the SPITX buffer.

Figure 1. Hardware feedback mechanism using the
processor's MISO pin

The modifications to the loader kernel would be
similar to those in Listing 2. The actual code
depends on the host and whether logic high or
logic low means “pause” or “resume”. In either
case, the code writes a data-word to the SPITX
register, rather than toggling a flag. This word
may be all ones, all zeros, or some other mix to
shape the waveform accordingly.

This second implementation (where the MISO pin
is used as a handshake signal and as a data-line)
requires software modifications on the SPI host
side. This software would need to be configured
to monitor the flag-in (handshake) pin in certain
circumstances (during booting), and then ignore
it in others (when receiving data over the MISO
pin).

Software Solution
Alternatively, the SPI host device may insert
pauses on its own, without any feedback from the
booting slave device. The .LDR file, which is
produced by the VisualDSP++® loader, is
divided into multiple “initialization sections”.
Each piece of contiguous, homogeneous data
from the executable is grouped together and
given a three-word descriptive header. The
header and following data comprise an
“initialization section”. The loader kernel uses

MISO

MOSI

SPICLK

SPIDS

FLAG_IN

MISO

MOSI
SPICLK

SPIDS

ADSP-21161 SPI-Host

 a

SHARC® SPI Slave Booting (EE-177) Page 3 of 4

the initialization header to correctly initialize the
subsequent data. The initialization header can
also be used by the SPI host to throttle the boot-
stream when necessary. The header is made of
three words: the word count, the destination
address, and a tag identifying the data-type.
Listing 3 shows the 27 different data-types.

0x00 FINAL_INIT
0x01 ZERO_DM16
0X02 ZERO_DM32
0x03 ZERO_DM40
0x04 INIT_DM16
0x05 INIT_DM32
0x06 INIT_DM40
0x07 ZERO_PM16
0x08 ZERO_PM32
0x09 ZERO_PM40
0x0A ZERO_PM48
0x0B INIT_PM16
0x0C INIT_PM32
0x0D INIT_PM40
0x0E INIT_PM48
0x0F ZERO_DM64
0x10 INIT_DM64
0x11 ZERO_PM64
0x12 INIT_PM64
0x13 INIT_PM8_EXT
0X14 INIT_PM16_EXT
0X15 INIT_PM32_EXT
0X16 INIT_PM48_EXT
0X17 ZERO_PM8_EXT
0X18 ZERO_PM16_EXT
0X19 ZERO_PM32_EXT
0X1A ZERO_PM48_EXT

Listing 3. Loader tag reference

Listing 4 shows a typical initialization header.

0x0000000e // tag
0x00000013 // count
0x00040100 // addr
<data0>
<data1>

Listing 4. Example initialization header

Interpreting this header, the kernel would
recognize that there are 19 (0x13) instructions
that are located at address 0x40100. (The tag of
0x0000000E signifies non-zero 48-bit PM
data).

One way to implement a software solution
requires the SPI host device to read this header.
Instead of streaming the entire .LDR image in one
shot, it sends it one initialization section at a
time. It would read the init-header and send the
appropriate number of words. The word count
included in each init-header can be used by the
SPI host to calculate how many words to “skip
ahead” in the .LDR file to find the next init-
header. When a header contains the tag for one
of the zero-initialization sections, the host should
pause after sending the header. Again, this is
because these sections of contiguous zeros are
going to be initialized in software by the loader
kernel. The length of the required pause depends
on the size of the initialization section (the
number of zeros to be initialized) and the SPI
baud rate. It takes one core cycle (10ns
minimum) to for each zero initialization. If the
SPI port runs at 10 MHz (100 ns), it would take
320 core cycles for a single 32-bit word to arrive
over the SPI port. A SPIRX buffer overflow
occurs when more than two SPI words are
received.

Summary
This EE-Note discusses potential problems that
may arise during SPI slave booting and provides
hardware and software solutions for it. The
example code is provided for the hardware
solution. The modified boot kernels for the
ADSP-21161, ADSP-21266, ADSP-21365, and
ADSP-21369 processors and the SPI host project
files are available in the associated .ZIP file.

 a

SHARC® SPI Slave Booting (EE-177) Page 4 of 4

References
[1] ADSP-21161 SHARC Processor Hardware Reference. Rev 4.0, February 2005. Analog Devices, Inc.

[2] ADSP-2126x SHARC Processor Peripherals Manual. Rev 3.0, December 2005. Analog Devices, Inc.

[3] ADSP-2136x SHARC Processor Hardware Reference for the ADSP-21362/3/4/5/6 Processors. Rev 1.0, October 2005.
Analog Devices, Inc.

[4] ADSP-21368 SHARC Processor Hardware Reference. Rev 1.0, September 2006. Analog Devices, Inc.

[5] VisualDSP++ 4.5 Loader and Utilities Manual, Revision 2.0, April 2006. Analog Devices, Inc.

Document History

Revision Description

Rev 3 – January 19, 2007
by Mallikarjun Reddy and
Jeyanthi Jegadeesan

Made the EE-Note generic for the ADSP-2116x, ADSP-2126x, ADSP-2136x, and
ADSP-2137x SHARC Processors.

Updated code for VisualDSP++ 4.5.

Rev 2 – February 27, 2003
by Brian Mitchell

Included code for both the kernel and the host.

Rev 1 – November 5, 2002
by Matt Walsh

Initial Release.

	Introduction
	Hardware Solution
	Software Solution
	Summary
	References
	Document History

