
Engineer-to-Engineer Note EE-323

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Implementation of Dynamically Loaded Software Modules
Contributed by Kenneth Atwell and Joe B. Rev 1 – May 15, 2007

Copyright 2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ability to dynamically load portions of an application from an external source at runtime can greatly
increase an application’s ability to respond to changing and emerging requirements within otherwise static
software. This ability also allows third parties to dynamically add capability to a system without having to
re-flash deployed systems.

This EE-Note introduces a framework for dynamically loading code and data at runtime. It gives
consideration to file formats, run-time parsing and loading of dynamic content, run-time memory
allocation, pointer relocation, debugging, and reference-by-name tactics. A documented Application
Programming Interface (API) is introduced to support this framework. Example applications are provided
in the file associated with this EE-Note.

The intended audience for this EE-Note is C programmers with experience using the VisualDSP++®
development software. Readers should be familiar with Linker Description File (.ldf) fundamentals and
should be comfortable with C pointers, type casting, and preprocessor macros. No specific Blackfin®
processor architectural knowledge is required.

Background
Historically, a typical embedded application is represented by a single static image, created at link time
and stored (e.g., in EEPROM) on the embedded device. The entire application (all of its code, data, and
reserved memory for the stack and heap) is “known” at link time and is assigned memory statically by the
linker.

Increasingly, it has become desirable to allow an application to dynamically link with some portion of its
functionality. This may be to accommodate a non-static algorithm specification in an otherwise final
product, or perhaps to allow a third party to “plug in” to the application with add-on behavior during
runtime. Ideally, the memory locations used would not be hard-coded; rather, they would be assigned
dynamically by the calling application. If memory locations are determined at runtime, the caller must be
able to identify and make calls to these dynamically chosen locations.

Desktop operating systems like Windows® and UNIX® have permitted run-time linkage through the use
of dynamically linked libraries (DLLs) and shared object (SO) files. This EE-Note suggests a light-weight

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 2 of 14

framework that supports dynamically loaded modules, allowing applications to be built with less
operating system support than a full dynamic-linking model would require.

Approach and Involved Files
Fundamentally, there are two sides to any application that dynamically loads a portion of its context. The
main executable file (.dxe) represents the caller of the module. The .dxe is linked statically by the
VisualDSP++ linker, and its contents are known entirely at link time.

The module loaded at runtime, henceforth referred to as a dynamically loaded module (DLM), represents
the functionality being loaded dynamically (i.e., the “callee”). There are two requirements on a .dxe that
wishes to load and use a DLM:

 The .dxe must be able to parse the DLM. The software used to perform this function is defined as the
“DLM loader”.

 The .dxe and DLM must share an agreed-upon application programming interface (API).

The bulk of this document focuses on the first requirement. Thoughtful and robust API design, the second
requirement, is application-specific and is outside of the scope of this document.

In the suggested framework discussed in this document, a DLM is an executable file, but one without a C
run-time (CRT) header, heap, main() function, and so forth. These portions are not needed as the .dxe
provides the needed run-time infrastructure for the DLM. Although the DLM will be compiled and linked
much like a “standard” executable, a DLM cannot be run as a stand-alone entity.

A .dxe must be able to obtain a DLM (for example, via Ethernet at runtime) and then parse and load the
DLM in order to use it. A DLM can be in the same Executable and Linking Format (ELF) file format[1] as
a .dxe, which is similar to that used by many UNIX operating systems. However, this would require
embedding an ELF file reader within the .dxe. This is not insurmountable; in fact, many uClinux systems
(among others) do this. An ELF file reader may require several hundred lines of software and may need
access to a heap for the allocation of temporary data structures while parsing the ELF file. Although this
approach provides maximum flexibility and compatibility, it would be costly in terms of development
time, test time, and memory usage.

Instead, the suggested framework uses a very simple file format called a Binary Flat Format (BFLT)
file[2], commonly referred to as a “flat file”. BFLT files are quasi-standard, widely used, and have proven
to be robust in uClinux systems. They are straightforward to parse (dozens of lines of code) and use
memory quite efficiently, with only a small amount of overhead above and beyond the contents of the
DLM itself. Analog Devices has developed a BFLT file generator, elf2flt[3], which is included with the
VisualDSP++ tools suite, version 4.5 or later. By convention, BFLT files have a .bflt file extension.

The associated file contains VisualDSP++ examples that will be the basis of discussion throughout this
document. Each example builds on the previous example, so examining the examples in order is
recommended. Each example involves two projects collected into a VisualDSP++ group (.dpg) file:

 One project creates the DLM. elf2flt is executed as a post-link instruction in the project.

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 3 of 14

 The other project creates the “host” .dxe. For simplicity, and to focus the discussion of this document,
the BFLT-formatted DLM is simply inserted into the .dxe in external memory as a “known” name.
How an application actually acquires a DLM at run-time is highly application-specific (Ethernet,
USB, etc.) and is not germane to this EE-Note.

These examples contain a BFLT-format parser that is used to parse and load a DLM from memory.
Though the BFLT format itself and its data structures are derived from the uClinux environment, the
parser in these examples is a “clean room” implementation from Analog Devices that may be used
without concerns of license infringement. In order to maintain compatibility with the uClinux OS, three
(and only three) section names are supported: .text, .data, and .bss. The Linker Description File
(.ldf) that drives the linker during DLM creation must restrict its output to these three output sections
only, which is a bit of a departure for VisualDSP++ users. The .ldf files included in the examples can be
used as models for your own .ldf file.

A BFLT file begins with a small header, consisting largely of pointers into the remainder of the file. After
the header is the .text section, followed immediately by the .data section. Size information for the .bss
section is included in the header, but the .bss section itself is not present in the BFLT file. Since this
section consists entirely of zero-initialized data, it would be wasteful of space in this data block to be
actually present in the BFLT file.

A relocation table is present at the end of the BFLT file format. This critical data structure permits the
DLM parser/loader to load a DLM to any location in memory, as all absolute memory pointers in the
DLM are “fixed up” by the DLM loader to match the destination memory locations that are selected at
runtime. This software is quite small, as there are only the three “base” addresses that the DLM loader
needs to track (the locations that were selected for .text, .data, and .bss).

Modules with a Single Entry Point
At this time, unzip the contents of the associated file to a temporary directory and launch the
VisualDSP++ IDDE (version 4.5 or later). All of the examples target the ADSP-BF537 Blackfin
processor, so it is recommended that an ADSP-BF537 debug session be created (a simulator session will
suffice for all of the examples related to this EE-Note) if one does not already exist. Porting the examples
to other processors is straightforward because all examples use standard .ldf files and do not rely on
processor-specific features.

Choose File -> Open -> Project Group, and navigate to

 …\Example_1_-_Single_Entry_Point\Example_1.dpg.

The group file consists of two projects1:

 Example_1_-_DXE is the project for the .dxe that loads the DLM

 Example_1_-_DLM is the project for the DLM itself

Since the BFLT output of the DLM project is inserted into the .dxe file’s image, the DLM project has
been made a dependency of the DXE project.

1 All examples associated with this EE-note follow a similar layout.

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 4 of 14

Beginning with the DLM project, it simply implements a single function to calculate the mean of an array
of integers The .dxe loads the DLM, calls this function dynamically, and then prints (via printf()) the
results. If you examine the averages.c file, you will find nothing special. It is an ordinary C
implementation of a mean function.

Note the function’s declaration (prototype):

int mean (const int *pArray, const unsigned int dwSize);

This prototype will serve as the API to this function. It is important that the caller (in the .dxe) calls a
function matching this prototype exactly.

More interesting is the DLM.LDF file, which is the .ldf for this DLM project. Right-click on this file in the
Project window and choose Open File. As discussed above, only three output sections are created. Note
that since the mean function utilizes an integer divide function (provided by the run-time library), the
libdsp532.dlb library is referenced in the .ldf file.

Another item to note in the DLM .ldf file is the use of the DYNAMIC keyword in place of PROCESSOR. This
feature within the linker instructs the linker to issue a .dxe with outstanding relocations. It is this special
.dxe that will serve as input to the elf2flt tool.

Turn now to the DXE project, which gets to the heart of the BFLT framework. The bottom of the
LoadFlat.h file contains the small API to the BFLT parser library. This API is detailed in Appendix:
FLT API Reference. All functions begin with the “FLT_” prefix and have a return type of FLT_RESULT.
Always check the return code for error conditions upon return (a non-zero return code indicates an error).

This example, in main.c, performs the following actions:

1. The size of the BFLT file is determined with the FLT_GetSizes() API.

2. Memory of sufficient size is reserved to hold the three sections of the BFLT file. The .bss section is
zero-filled.

3. The new memory blocks are populated with the relocated contents of the BFLT file using the
FLT_RelocateFlat() API.

L This example is not configured to use cache. If the relocated contents are loaded to
memory areas that are cached, it is the application’s responsibility to maintain cache
coherency.

The application must also be able to access the relocated contents both as data and as
code. Placement of relocated contents in L1 memory is therefore illegal without the
use of DMA.

4. Using a pointer returned in Step 3, a call is made to the now-relocated module. Observe that the
pointer returned by FLT_RelocateFlat() is cast to the function pointer type that exactly matches the
prototype of the mean()function implemented in the loaded DLM.

If the project group is built and run, the following printf() output will be displayed in the VisualDSP++
Output window (Console view):

Call to loaded module returned 4.

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 5 of 14

If further experimentation is performed, two limitations in this example become evident:

 There is no mechanism to perform C-language debugging (stepping, source breakpoints, etc.) within
the DLM’s source code. The debugger has full visibility into the .dxe file’s symbol content, but
knows nothing of the DLM.

 The DLM can have only a single entry point (at the top of the .text section).

The remainder of this document addresses these two shortcomings.

Debugging Modules
As of the 4.5 release of VisualDSP++ tools, the debugger has the ability to debug only a single executable
at a time. The DLM, which is essentially its own executable, is unknown to the debugger. Programmers
cannot access the following features:

 The ability to set breakpoints in source code or perform source-level stepping, both into and within the
DLM

 Evaluation of local variables and global variables declared within the DLM (global labels from the
“hosting” DXE are available)

 Annotation of the Disassembly window with symbol names from the DLM

We can largely address these issues by re-linking the DLM as a .dxe with “known” locations and then
load the symbols for the DLM (now a .dxe). However, when the DLM’s relocated symbols are loaded
into the debugger, the host DXE file’s symbols are lost (as the debugger only has knowledge of one set of
symbols at a time). Thus, toggling between the DLM and the DXE file’s symbols is possible, but working
with both sets of symbols simultaneously is not.

L This section details the steps needed to add debugging support to this example. If skipping
manual entry of new lines of text is desired, the completed example can be found in the group file
…\Example_1_-_Single_Entry_Point_With_Debug_Support\Example_1_With_Debug_Support.dpg.

In order to create a “static .dxe” version of the DLM, the application programmer must know where the
DLM sections will ultimately be loaded to on the running system. This may be a run-time decision, so the
specific locations may not be known at the project’s build time. However, for debugging purposes, it may
be beneficial to load the DLM to known addresses to better facilitate the strategy discussed in this
document. As it turns out, the example used in the previous section of this document already has “known”
destinations, the three global arrays that hold the relocated .text, .data, and .bss sections.
Respectively, these arrays are named g_FlatFileDestinationText[],
g_FlatFileDestinationData[], and g_FlatFileDestinationBSS[]. In main.c, the code can be
implemented with a printf() after FLT_RelocateFlat():

printf (".text at 0x%x\n.data at 0x%x\n.bss at 0x%x\nend at 0x%x\n",
 g_FlatFileDestinationText,
 g_FlatFileDestinationData,
 g_FlatFileDestinationBSS,
 g_FlatFileDestinationBSS + dwSizeBSS);

However, the placement of these three arrays is likely to change between builds, as the code and data size
of the project contracts and expands minutely. This fluctuation can be reduced by declaring arrays with an
“absurd” alignment requirement, done using the compiler’s #pragma align with an argument of

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 6 of 14

0x10000. The array declarations are now placed on 216 boundaries, wasting upwards of 3 x 64 Kbytes of
memory, but likely keeping the location of these arrays fairly constant during incremental development:

#pragma align 0x10000
segment ("sdram0") unsigned char g_FlatFileDestinationText[16*1024];
#pragma align 0x10000
segment ("sdram0") unsigned char g_FlatFileDestinationData[16*1024];
#pragma align 0x10000
segment ("sdram0") unsigned char g_FlatFileDestinationBSS [16*1024];

When the application is run with these two changes, the VisualDSP++ Output window (Console view)
will output a message similar to:

.text at 0x20000

.data at 0x30000

.bss at 0x40000
end at 0x40004

Note the alignment at a 216 boundary for all three sections (the last four hexadecimal digits are zero).

A static .ldf for the DLM can now be crafted, which reflects these addresses. To prevent the need to
maintain two nearly identical .ldf files, we can use preprocessor macros to support both needs within a
single .ldf. The MEMORY section of the DLM.LDF file is “parameterized” with a new preprocessor
definition, DEBUG_LINK (new portions are shown in red)2:

#define DBG_TEXT_BEGIN 0x20000
#define DBG_TEXT_END 0x2FFFF
#define DBG_DATA_BEGIN 0x30000
#define DBG_DATA_END 0x3FFFF
#define DBG_BSS_BEGIN 0x40000
#define DBG_BSS_END 0x4FFFF

MEMORY
{
 // The sizes here are arbitrary and should be large enough to hold
 // the input sections they will contain. Specific START and END are
 // unimportant as these addresses will be "abstracted" away by elf2flt.

#ifndef DEBUG_LINK
 MEM_TEXT { START(0x00000000) END (0x07FFFFFF) TYPE(RAM) WIDTH(8) }
 MEM_DATA { START(0x08000000) END (0x0BFFFFFF) TYPE(RAM) WIDTH(8) }
 MEM_BSZ { START(0x0C000000) END (0x0FFFFFFF) TYPE(RAM) WIDTH(8) }
#else
 MEM_TEXT { START(DBG_TEXT_BEGIN) END (DBG_TEXT_END) TYPE(RAM) WIDTH(8) }
 MEM_DATA { START(DBG_DATA_BEGIN) END (DBG_DATA_END) TYPE(RAM) WIDTH(8) }
 MEM_BSZ { START(DBG_BSS_BEGIN) END (DBG_BSS_END) TYPE(RAM) WIDTH(8) }
#endif
}

2 This can be made smaller through the use of more command-line definitions, but it is presented this way for readability.

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 7 of 14

Since a static link will be performed, the DYNAMIC keyword must be made conditional:

#ifndef DEBUG_LINK
DYNAMIC p0
#else
PROCESSOR p0
#endif

When DEBUG_LINK is defined, a static .dxe with the desired addresses will be created. When it is not
defined, the DLM will be created (as has occurred up to this point in this exercise).

The final step to automate this process is to create a new post-build command to link the static .dxe
whenever the DLM project is built. Right-click Example_1_-_DLM in the Project window and choose
Project Options, then go to the Post-build folder. The elf2flt command line is present there. Add a
second command, an adaptation of the “normal” linker command line (new options are shown in red).

"C:\Program Files\Analog Devices\VisualDSP 4.5\ccblkfn.exe" .\Debug\averages.doj -T
.\DLM.ldf -L .\Debug -flags-link -od,.\Debug -o .\Debug\DEBUG_Example_1_-_DLM.dxe -
flags-link -MDDEBUG_LINK -proc ADSP-BF537

After making these changes, it is now time to demonstrate our new debug capability. Build and load the
.dxe project into the debugger. Open an Expressions window (View -> Debug Windows ->Expressions)
and enter two expressions:

 vals
 g_iTimesCalled

vals is a global variable (an array) that is visible in the main executable, and g_iTimesCalled is a global
variable in the DLM, which is not yet visible to the debugger. For now, this expression displays

ERROR: Unknown variable or symbol.

Now, use the File -> Load Symbols command to browse to DEBUG_Example_1_-_DLM.dxe and open this
file. The g_iTimesCalled expression now evaluates without an error and vals now returns an error,
evidence that the DLM’s debugging information has been loaded and the callee DXE’s removed.
Similarly, operations like source breakpoints and C-language stepping are now permitted, but in
averages.c only. Finally, the Disassembly and memory windows now contain symbols from the DLM
but not the .dxe file.

L Another perhaps unexpected side effect is that printf() and other debugger-based STDIO calls
will not work while the DLM’s symbols are loaded. This is because STDIO “works” through a
silent breakpoint that is lost when the DLM’s symbols are loaded. This breakpoint is subsequently
restored when the .dxe file’s symbols are reloaded.

The debugger can be “toggled” between the DLM and the .dxe file by loading the symbols of
DEBUG_Example_1_-_DLM.dxe and Example_1_-_DXE.dxe, respectively.

Modules with Multiple Entry Points
Now that a debuggable DLM with a single entry point can be created, implementing a DLM with multiple
entry points becomes of interest. Should multiple entry points be available to a caller, the caller must have
a means of selecting the entry point of interest. In Windows and UNIX systems, this is accomplished by

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 8 of 14

looking up the string name of the symbol (function) of interest. Lookup by name is also implemented
here.

At this time, close the previous project group and choose File -> Open -> Project Group and navigate
to …\Example_2_-_Multiple_Entry_Point\Example_2.dpg. Much of the detail of lookup-by-name is
shielded from the caller by the FLT API, with only a handful of new requirements on the application
developer.

First, the DLM must export a symbol table. A symbol table is a simple list of names (C strings) and the
entry point (function pointer) associated with that string. The symbol table must be located at a known
place in the application (in the case of the FLT API, the very top of the .text section). Refer to updated
DLM.LDF file for the new input section mappings to create a symbol table at the top of the .text output
section (with new directives shown in red):

.text
{
// The table of exported symbols. Each 8-byte entry in the table consists of
// a pointer to its name (string) and a pointer to its entry point (symbol)
INPUT_SECTIONS($OBJECTS(exported_symbols) $LIBRARIES(exported_symbols))

// Terminate the exported symbol table with a NULL entry.
. += 8;

// The strings pointed to in the exported_symbols section
INPUT_SECTIONS($OBJECTS(exported_symbols_str) $LIBRARIES(exported_symbols_str))

// The program (executable code) sections itself. Exported entry points
// are pointed to in the exported_symbols section

INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))

} >MEM_TEXT

Second, the individual functions that the DLM is to export must be identified with the
EXPORT_ENTRY_POINT macro, provided in the export.h header file. Here is averages.c, with new lines
of source shown in red (a new function, median(), has also been provided, but is not highlighted here):

#include "export.h"

/* Function prototypes */

int mean (const int *pArray, const unsigned int dwSize);
int median (const int *pArray, const unsigned int dwSize);

/* Exported entry points */

EXPORT_ENTRY_POINT(mean);
EXPORT_ENTRY_POINT(median);

Note that functions exported with EXPORT_ENTRY_POINT must be prototyped for the compiler, which
explains the ordering seen here.

With multiple entry points, the caller can no longer blindly use the top of the relocated .text section as a
function pointer as we have been doing thus far (this would result in a jump to the symbol table itself,
surely resulting in a crashed application due to execution of data as code). The caller must look up the

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 9 of 14

name of the entry point of interest with the FLT_LookupByName() API. In the DXE project, main.c has
been updated to use this API to access both the mean() function and the new function median():

// Lookup the "mean" entry point and then call it.

if (ret = FLT_LookupByName (pText, "mean", (void**) &pf))
 return (int) ret;
result = pf (vals, sizeof (vals) / sizeof (int));
printf ("Call to loaded module \"mean\" returned %d.\n", (int) result);

// Do the same with "median".

if (ret = FLT_LookupByName (pText, "median", (void**) &pf))
 return (int) ret;
result = pf (vals, sizeof (vals) / sizeof (int));
printf ("Call to loaded module \"median\" returned %d.\n", (int) result);

// Now try to lookup an entry that does not exist.

ret = FLT_LookupByName (pText, "blahblahblah", (void**) &pf);
printf ("Lookup in loaded module for \"blahblahblah\" returned %d.\n",
 (int) ret);

Build, load, and run the DXE project and verify that mean() and median() are called successfully,
returning 4 and 2, respectively. Also, the attempt to look up blahblahblah failed, and
FLT_ERROR_NAMENOTFOUND (102) was returned by FLT_LookupByName().

Conclusion
Applications are increasingly requiring the ability to dynamically load some portion of their content,
including executable code. There are several reasons for this, including third-party software integration,
adaptation to evolving standards, and enhancement of already-deployed systems. Flat files and the FLT
API discussed in this document provide a simple mechanism to load dynamic content to a running system.
The software needed to parse and load FLT files is simple and compact, making it a compelling solution
for embedded systems. Entry points into dynamically loaded content are indexed by name, allowing for
easy look-up. Function calls to dynamically loaded code are performed through C function pointer calls
and are only marginally less efficient than a “hard-linked”, static call. The VisualDSP++ 4.5 tools include
a FLT file creation tool.

This document introduced debugging techniques, allowing debugging of a module that was loaded
“outside” the debugger’s normal awareness.

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 10 of 14

Appendix: FLT API Reference

FLT_GetSizes
FLT_RESULT FLT_GetSizes (const FLT_FILE pFlat, unsigned long *pdwSizeText,

 unsigned long *pdwSizeData, unsigned long *pdwSizeBSS)

Arguments

Name In/Out Description

pFlat [in] A pointer to a memory buffer containing the complete image of a BFLT
file.

pdwSizeText [out] A pointer to receive the size of the .text section of the BFLT file.

pdwSizeData [out] A pointer to receive the size of the .data section of the BFLT file.

pdwSizeBSS [out] A pointer to receive the size of the .bss section of the BFLT file.

Return Value

FLT_ERROR_NOERROR (0) on success.

Non-zero on an error.

Discussion

Examines the header of the BFLT file pointed to by pFlat and returns the lengths of the .text, .data,
and .bss sections of the BFLT file.

Space for the contents of the .bss section is not contained in the BFLT file’s image. Should the value
returned in pdwSizeBSS be non-zero, the caller should take steps to allocate memory and zero-fill this
memory, even if the BFLT file will otherwise be relocated “in place” with the
FLT_RelocateFlatInPlace API.

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 11 of 14

FLT_LookupByName
FLT_RESULT FLT_LookupByName (const FLT_SECTION pText, const char *pName,

 void **ppSymbol)

Arguments

Name In/Out Description

pText [in] A pointer to the top of the .text section, where the exported symbol table
should be located.

pName [in] A pointer to a NULL-terminated string indicating the symbol to look up.

ppSymbol [out] A pointer to a void pointer in which the looked up symbol is returned. The
nature of this pointer is implementation-specific.

Return Value

FLT_ERROR_NOERROR (0) on success. *ppSymbols contains a pointer to the symbol found.

FLT_ERROR_NAMENOTFOUND on failure. pName was not found in the symbol table.

Other non-zero on some other error.

Discussion

Performs a search through the exported symbol table for the pName symbol. If found, a pointer to the
symbol’s location is written to *pSymbol and FLT_ERROR_NOERROR is returned. If not found,
FLT_ERROR_NAMENOTFOUND is returned.

pText is a pointer to the top of the .text section, where the exported symbol table is found.

Symbols are exported in a DLM through the use of the EXPORT_ENTRY_POINT macro. Furthermore, the
input section exported_symbols must be placed topmost into the .text output section in the DLM’s
.ldf file. The input section exported_symbols_str must also be mapped in the DLM’s .ldf file (at an
arbitrary location).

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 12 of 14

FLT_RelocateFlat
FLT_RESULT FLT_RelocateFlat (const FLT_FILE pInFlat, FLT_SECTION pText,

 FLT_SECTION pData, const FLT_SECTION pBSS,

 void **ppText)

Arguments

Name In/Out Description

pFlat [in] A pointer to a memory buffer containing the complete image of a BFLT
file

pInText [in/out] A pointer to the memory buffer to be populated with the relocated
contents of the .text section.

pInData [in/out] A pointer to the memory buffer to be populated with the relocated
contents of the .data section.

pInBSS [in] A pointer to the memory buffer containing the .bss section.

ppText [out] A pointer to a pointer that receives the address of the top of the .text
section of the BFLT file. For modules with a single entry point, this is a
pointer to that entry point. For modules with multiple entry points (and
thus a look-up table), this is a pointer to that look-up table for a
subsequent call to FLT_LookupByName.

Return Value

FLT_ERROR_NOERROR (0) on success.

Non-zero on an error.

Discussion

Copies and performs relocations on a BFLT file. pFlat must point to a complete BFLT file image. pText
and pData are pointers to memory buffers to be populated with the relocated contents of the .text and
.data sections respectively. pBSS is a pointer to zero-initialized memory for the .bss section; and
relocations are performed against this memory, but the buffer itself is unmodified by this function. It is
the caller’s responsibility to zero-init the buffer pointed to by pBSS.

Allocation of these three buffers is the caller’s responsibility. The required sizes of these three buffers can
be determined with the FLT_GetSizes API. If any of the buffers reside in cacheable area of memory, it is
the application’s responsibility to maintain cache coherency after a call to FLT_RelocateFlat.

As the contents pointed to by pFlat will be copied elsewhere before any operation is performed, it is safe
to place the contents pointed to by pFlat into non-volatile memory.

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 13 of 14

FLT_RelocateFlatInPlace
FLT_RESULT FLT_RelocateFlatInPlace (FLT_FILE pInFlat, const FLT_SECTION pBSS,

 void **ppText)

Arguments

Name In/Out Description

pFlat [in/out] A pointer to a memory buffer containing the complete image of a
BFLT file

pBSS [in] A pointer to the memory buffer where .bss (zero-fill) data will
reside. If pFlat points to a BFLT file that does not contain .bss
data, this parameter may be NULL.

ppText [out] A pointer to a pointer that receives the address of the top of the .text
section of the BFLT file. For modules with a single entry point, this is
a pointer to that entry point. For modules with multiple entry points,
this is a pointer to the symbol table for subsequent calls to
FLT_LookupByName.

Return Value

FLT_ERROR_NOERROR (0) on success.

Non-zero on an error.

Discussion

Performs relocations on a BFLT file “in place” on the memory buffer pointed to by pFlat. pFlat must
point to a complete BFLT file image. Note that space for .bss sections is not reserved in a BFLT file, so
any call to this function where the BFLT file has a non-zero sized .bss section must provide an
appropriately-sized buffer that is pointed to by pBSS.

 a

Implementation of Dynamically Loaded Software Modules (EE-323) Page 14 of 14

References
[1] The Executable and Linking Format (ELF), http://www.cs.ucdavis.edu/~haungs/paper/node10.html

[2] uClinux - BFLT Binary Flat Format, http://www.beyondlogic.org/uClinux/bflt.htm

[3] elf2flt usage, “elf2flt –help” on the command line

Document History

Revision Description

Rev 1 – May 15, 2007
by K. Atwell and Joe B.

Initial Revision.

http://www.cs.ucdavis.edu/~haungs/paper/node10.html
http://www.beyondlogic.org/uClinux/bflt.htm

	FLT_GetSizes
	Arguments
	Return Value
	Discussion

	 FLT_LookupByName
	Arguments
	Return Value
	Discussion

	 FLT_RelocateFlat
	Arguments
	Return Value
	Discussion

	 FLT_RelocateFlatInPlace
	Arguments
	Return Value
	Discussion

