
Engineer-to-Engineer Note EE-254 
 

a 
 

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors
 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® 
EBIU 
Contributed by Srinivas K. and Kunal Singh Rev 1 – November 12, 2004 

 

Copyright 2004, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of 
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property 
of their respective holders.  Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however 
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes. 
 

Introduction 
ADSP-21365 devices belong to the third 
generation of SHARC® processors. ADSP-
21365 processors offer a very high bandwidth 
(up to 1 Gbps) input data port for data 
acquisition, called Parallel Data Acquisition Port 
(PDAP).  

The PDAP supports the acquisition of data from 
an external device with different word lengths. 
The received data is packed automatically into 
32-bit words. The various word lengths formats 
supported by PDAP include, 2x16-bit (mode 01), 
4x8-bit (mode 00), 10-11-11-bit (mode 10), and 
20-bit (mode 11). In 20-bit mode, the received 
data bits are mapped to the highest 20 bits of the 
32-bit word. The lowest 12 bits of the 32-bit 
word are assumed to be zero. 

The ADSP-BF533 Blackfin® family of 
processors (including the ADSP-BF531 and 
ADSP-BF532 derivatives) features an External 
Bus Interface Unit (EBIU) which provides 
interface to the external memory devices. The 
EBIU supports interface for the synchronous and 
asynchronous memory banks. The data bus on 
the ADSP-BF533 EBIU is 16 bits wide. 

This EE-Note discusses a hardware interface 
scheme between the ADSP-21365 PDAP port 
and the EBIU interface on an ADSP-BF532 
processor. Since the EBIU is 16 bits wide, the 
interface uses the PDAP in 2x16-bit format. 
However, the 4x8-bit and 10-11-11-bit formats 

can also be implemented with minor 
modifications to the software.  

To implement a handshake protocol, the 
proposed interface uses programmable flags and 
interrupts available on the two devices.  

Since the PDAP is a unidirectional input-only 
port, the data can be transferred only from the 
ADSP-BF532 processor to the ADSP-21365 
PDAP (that is, not from the PDAP to the 
Blackfin processor).  

PDAP 
The PDAP interface on ADSP-21365 SHARC 
processors consists of 20 PDAP data pins, a 
clock signal (PDAP_CLK), and a data valid signal 
(PDAP_HOLD). A rising or falling edge of the 
clock can latch the data (on the data pins) into 
the PDAP receive buffers (a 6-deep FIFO). The 
active edge of the clock is defined by the status 
of the IDP_PDAP_CLKEDGE bit in the PDAP 
control register.  

The PDAP_HOLD signal is used to qualify a valid 
clock signal. The clock is considered to be valid 
if PDAP_HOLD is low in that particular clock 
cycle. Data on the PDAP port is acquired during 
every valid clock cycle. 

Figure 1 depicts the data transfer protocol on 
PDAP port, when the port has been configured 
for the activity on the falling edge of the 
PDAP_CLK. 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 2 of 16 

The data from the PDAP receive FIFO can be 
transferred to the internal memory of the 
processor using core-based transfers or DMA-
based transfers. DMA transfers are completely 
transparent to the core.  

The maximum CLK rate for the PDAP is 50 MHz. 
Hence, the maximum data bandwidth (1 Gbps) is 
achieved when the PDAP is configured for 20-bit 
transfers. However, since the EBIU on Blackfin 
processors is only 16 bits wide, the 20-bit mode 
cannot be used for the given interface. 

 
 
PDAP_CLK 
 
 
 
PDAP_HOLD 
 
 
PDAP_DATA 
 

 
Data will not be clocked on this clock cycle since the PDAP_HOLD 
signal is de-asserted 

 

Figure 1. PDAP Port Data Transfer Protocol 

As discussed before, the PDAP can be interfaced 
with the EBIU in mode 00, mode 01, or mode 10. 
The example software provided with this EE-
Note covers the interface in mode 01 only.  

Introduction to the Blackfin 
EBIU 
The External Bus Interface Unit (EBIU) on 
Blackfin processors provides interface to 
external memory devices. The EBIU services 
requests for external memory in core mode or in 
DMA mode. Based on the address of the 
requested accesses, the accesses are controlled 
by the SDRAM controller or by the 
Asynchronous Memory Controller. The EBIU is 
clocked by the system clock (SCLK).  

Introduction to Interrupt and 
Flags Signals 
The given interface uses THE Interrupt signals 
and the GPIO flags available on the two devices 
as the handshake control signals. 

The ADSP-21365 processor has three external 
asynchronous interrupts (IRQ0-2). The IRQx 
interrupts can be configured to be level-sensitive 
or edge-sensitive. The given interface uses the 
IRQ0 signal as an edge-sensitive interrupt. 

ADSP-21365 SHARC processors feature 16 
GPIO flags, which are available through the DAI 
pins. The flags can be configured as inputs to the 
processor or as outputs from the processor. The 
given interface uses the FLAG0 signal in output 
mode.  

ADSP-BF532 processors feature 16 
programmable flags (PF0-PF15.). Each PFx 
signal can be configured individually as an input 
or an output. When the PFx signal is configured 
as an input, it can be programmed to function as 
an asynchronous interrupt signal to the 
processor. The interrupt can be level-sensitive or 
edge-sensitive. 

The given interface uses the processor's PF4 and 
PF6 signals. The given example also uses the PF5 
signal as a user request to initiate a data transfer 
request. The functionality of PF5 has been added 
only for the purpose of testing. In the actual 
interface, only PF4 and PF6 are utilized. 

The PF4 signal on the ADSP-BF532 processor is 
defined as an output FLAG. PF4 is connected to 
IRQ0 of the ADSP-21365 processor. PF4 is used 
by the ADSP-BF532 processor to request the 
ADSP-21365 processor for the initiation of a 
data transfer. 

PF6 is configured as an edge-sensitive interrupt 
and is used as an acknowledge signal from the 
ADSP-21365 processor in response to a data 
transfer request.  

In the given example code, the PF5 signal is 
used as an edge-sensitive interrupt to initiate a 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 3 of 16 

data transfer sequence on the ADSP-BF532 
processor. In a real system, the data initiation 
request may come from a device in the system or 
from the ADSP-BF532 processor itself.  

PDAP to EBIU Interface 
Figure 2 depicts the hardware interface scheme 
between the SHARC PDAP and the Blackfin 
EBIU. 

The PDAP signals (data, clock, and hold) on 
ADSP-21365 processors are available through 
the SRU. In mode 00, Data[15..0] are mapped 
to DAI_PIN20..5. The clock and hold signals 
can be mapped to any of DAI pins 1..4. The 
given example uses DAI_PIN 01 and 03, 
respectively, for the clock and hold signals. 

 
 
 
 
 
 
 
 
 
 
 
      
     ADSP-21365           ADSP-BF532 
 

Figure 2. Hardware Interface for PDAP and Blackfin 

The ADSP-BF532 processor offers different 
memory banks (with individual memory select 
signals /AMSx), allowing multiple memory 
devices to be mapped to ADSP-BF532 
processors. The PDAP can be mapped to the 
ADSP-BF532 processor as one asynchronous 
memory device. The given example maps the 
PDAP port to the external asynchronous memory 
bank-0 of ADSP-BF532 processor. Therefore, 
/AMS0 is connected to PDAP_HOLD. Thus, /AMS0 
is used to validate the PDAP_CLK, which in turn is 
the SCLK of the ADSP-BF532.  

While implementing the above interface, ensure 
that the /AMSx signal is asserted for the duration 
of one SCLK cycle only for a single data transfer. 

This requirement arises from the fact that, if the 
/AMSx signal (mapped to PDAP_HOLD) is asserted 
for more than one clock cycle, the same data 
would be clocked into the PDAP FIFO, more than 
once. 

Data Transfer Protocol for the 
Interface 
In the above interface all data transfers are 
controlled by software running on the ADSP-
21365 and ADSP-BF532 processors.  

A data transfer operation from the Blackfin 
processor to the SHARC processor consists of 
two phases, which are completely implemented 
in software: 

 Command_Phase: The ADSP-BF532 
processor passes the various control 
parameters (e.g., number of data words, 
internal memory address for the ADSP-
21365 processor where the data has to be 
stored, and so on). In the given example 
code, the ADSP-21365 processor uses the 
above control words as DMA parameters for 
the PDAP DMA. The example software can 
be modified to include additional control 
variable (e.g., PDAP mode, DMA modifier, 
and so on).  

 Data_Phase: After receiving the control 
parameters from the ADSP-BF532 processor, 
the ADSP-21365 processor configures its 
PDAP port for the data transfers.  

Synchronization Between the 
ADSP-21365 Processors and the 
ADSP-BF532 Processors 
ADSP-BF532 Blackfin processor can initiate 
data transfers by requesting a transfer from the 
ADSP-21365 processor. The ADSP-BF532 
processor software achieves this by generating an 
interrupt signal (IRQ0) for the ADSP-21365 
processor through its PF4 pin. 

PDAP_CLK 

PDAP_DATA 

PDAP_HOLD 

 

IRQ0 

FLAG0 

 

SCLK 

DATA15..0 

AMS0 

 

PF4 

PF6 

PF5 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 4 of 16 

The ADSP-21365 processor will jump to the 
IRQ0 interrupt service routine. Inside the ISR, if 
a earlier data transfer operation (requested by the 
ADSP-BF532 processor) is not pending, the 
ADSP-21365 processor will configure  the 
PDAP port to receive control words from the 
ADSP-BF532 processor. After configuring the 
PDAP port, the ADSP-21365 processor would 
pass an acknowledgement to the ADSP-BF532 
processor by asserting FLAG0.  

A rising edge on FLAG0 causes the ADSP-BF532 
processor to interrupt its program execution and 
respond to the interrupt request on PF6 (which 
has been mapped to IVG12). Inside the ISR for 
IVG12, the ADSP-BF532 processor  will transfer 
the control words to the ADSP-21365 processor 
through its EBIU. 

Upon receiving the control words, the ADSP-
21365 processor processes the PDAP DMA 
"over" interrupt. Inside the interrupt service 
routine, the ADSP-21365 processor re-
configures the PDAP for data transfers. The 
DMA parameters are configured, based on the 
control words received. After the PDAP is 
configured the ADSP-21365 processor passes an 
acknowledgement to the ADSP-BF532 processor 
again (through FLAG0), instructing the ADSP-
BF532 processor to perform the data transfer 
operations. 

It is interesting to note that the same pins (FLAG0 
and PF6) are used as the acknowledgement signal 
to start the command_phase and data_phase. 
The ADSP-BF532 processor identifies the 
operation to be performed (whether to transfer 
data or control words), based on flag variables 
maintained by the software running on the 
ADSP-BF532 processor.  

Driver Software for ADSP-21365 
SHARC Processors 
The ADSP-21365 processor would receive a new 
data transfer request from the ADSP-BF532 
processor through the IRQ0 signal. If a new 
request is received while an old request is 

pending, the ASDP-21365 processor considers 
the new request to be invalid and does not 
respond to the new request. In a real-time 
system, a corrective action must be taken when 
an invalid request is identified.  

When a valid data request from an ADSP-BF532 
processor is encountered, the ADSP-21365 
processor initiates the command_phase. The 
command_phase involves passing control 
parameters (memory index and DMA count for 
the data transfers) from the ADSP-BF532 
processor to ADSP-21365 processor. The ADSP-
21365 processor would configure the PDAP 
DMAs to receive the control words from the 
ADSP-BF532 processor. In the given code 
example, only memory index and DMA count 
values are passed as control parameters. 
However, the given example can be extended to 
pass more parameters, such as DMA modifier, 
PDAP mode, and so on. 

After configuring the PDAP in DMA mode to 
receive control words, the ADSP-21365 
processor passes an acknowledgement to the 
ADSP-BF532 processor.  

The PDAP DMA "over" interrupt is generated 
upon completion of the command_phase. The 
ADSP-21365 processor reads these control 
parameters and re-configures the PDAP for the 
data_phase. Again, an acknowledgement is 
passed to the ADSP-BF532 processor to initiate 
the data_phase. The ADSP-BF532 processor 
responds to the acknowledgement by sending the 
actual data. 

Driver Software for ADSP-BF532 
Blackfin Processors 
As discussed, ADSP-BF532 processors can 
initiate a data transfer sequence by generating 
IRQ0 for ADSP-21365 processors. In the given 
example, you can initiate data transfers by 
interrupting the ADSP-BF532 processor through 
PF5, which has been configured as an edge-
triggered interrupt. In the given example code, 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 5 of 16 

you are asked to pass the control parameters 
(DMA parameters) through VisualDSP++ I/O 
(Output window's Console page). However, in a 
real-time system, the control parameters arise 
from the ADSP-BF532 processor. After 
receiving the control words from the console, the 
ADSP-BF532 processor requests the ADSP-
21365 processor to initiate a data transfer 
sequence by interrupting the ADSP-21365 
processor by PF4. The ADSP-BF532 processor 
sets the request_flag and command_flag 
before asserting PF0. If all of the previous data 
transfers have been completed, the ADSP-21365 
processor responds to the request with an 
acknowledge signal. 

When an acknowledgement is received, the 
ADSP-BF532 processor checks for the 
command_flag and request_flag.  

 If both these variables are set, a command 
phase is initiated which involves writing the 
control parameters through the EBIU. The 
command_flag is cleared after completing the 
command phase.  

 If request_flag is set and the 
command_flag is cleared, the ADSP-BF532 
processor initiates the data transfer phase 
which involves writing the actual data block 
to the PDAP through EBIU. 

 If request_flag is cleared, no action is 
taken. 

 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 6 of 16 

Appendix 

All example code is available through a ZIP file associated with this EE-Note. 

Blackfin Example Code 

/***********************************************/ 
/*         */ 
/* Code on ADSP-BF532 for "PDAP-BF Interface */ 
/*         */ 
/*         */ 
/*  - Initial Version    */ 
/*    7th August, 2004   */ 
/*         */ 
/*      kunal singh  */ 
/*      DSP Apps Engineer */ 
/*      Analog Devices */ 
/*         */ 
/***********************************************/ 
 
#include <stdio.h> 
#include <cdefBF532.h> 
#include <signal.h> 
#include <sys/exception.h> 
  
 
#define BUFFER_SIZE 256 
/*****************************************/ 
/*        */ 
/* Size of the Data Buffer   */ 
/*        */ 
/*  This is also the maximum limit on  */ 
/* the DMA count for a single transfer */ 
/*        */ 
/*****************************************/ 
 
volatile short *AsyncMem ; 
 
EX_INTERRUPT_HANDLER(request); 
EX_INTERRUPT_HANDLER(acknowledge); 
/*****************************************************/ 
/*          */ 
/* Interrupt Handlers      */ 
/*          */ 
/* request() : Edge sensitive interrupt on   */ 
/*    PF5, mapped to IVG11   */ 
/*          */ 
/*          */ 
/* acknowledge() : Edge sensitive interrupt  */ 
/*     on PF5, mapped to IVG12 */ 
/*               */ 
/*****************************************************/ 
 
void InitAsyncMemory(); 
void Init_Data(); 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 7 of 16 

void initialize_PF_intrpts(); 
void generate_interrupt(); 
void drive_data (); 
/*****************************/ 
/*      */ 
/* Function Declarations  */ 
/*      */ 
/*****************************/ 
 
unsigned int dataSrc[BUFFER_SIZE] ; 
/***********************************/ 
/*       */ 
/* Data Buffer for DMA transfers */ 
/*       */ 
/***********************************/ 
 
unsigned int command_flag; 
unsigned int request_flag; 
/***********************************/ 
/*       */ 
/* Flags to keep track of command */ 
/* and Data phase   */ 
/*       */ 
/***********************************/ 
 
unsigned int dma_count; 
unsigned int dma_index; 
/*****************************************/ 
/*        */ 
/* Variables to hold DMA parameters */ 
/*        */ 
/*****************************************/ 
 
unsigned int temp; 
/***********************************/ 
/*       */ 
/* Variable for Temporary Storage */ 
/*       */ 
/***********************************/ 
 
/***********************************/ 
/*       */ 
/*  Main Function    */ 
/*       */ 
/***********************************/ 
main () 
{ 
 InitAsyncMemory () ; 
 // Initialize the EBIU 
  
 Init_Data(); 
 // Intialize the Data Buffer 
 // with the data values to be transfered 
  
 initialize_PF_intrpts(); 
 // Configure the PF4 as o/p 
 // and PF,PF6 as positive edge triggered interrupts 
  



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 8 of 16 

 register_handler(ik_ivg11, request); 
 register_handler(ik_ivg12, acknowledge); 
 // Define interrupt handler for IVG11, IVG12 
 // IVG11: mapped to PF5 
 // IVG12: mapped to PF6 
  
 while (1) 
 { 
 } 
} 
 
/*****************************************/ 
/*        */ 
/* Initialize the EBIU Registers for  */ 
/* Aynchronous Memory Bank   */ 
/*        */ 
/* The Asyn Mem Signal are connected */ 
/* to the PDAP     */ 
/*        */ 
/*****************************************/ 
void InitAsyncMemory(void) 
{ 
 (*pEBIU_AMGCTL) = 0x3 ; 
 // Enable clock out for Async accesses 
 // Enable only Bank 0 
  
 (*pEBIU_AMBCTL0) = 0x00001110 ;  
 // Set up bank 0 parameters --  
 // Setup time = 1 cycle 
 // Write access = 1 cycle 
 // Hold = 0  
} 
 
void Init_Data() 
{ 
 int i; 
 
 for (i=0; i<BUFFER_SIZE; ++i) 
 { 
  dataSrc[i] = 0xcafebead + i;  
 } 
 // Initialize the Data Buffer 
} 
 
void initialize_PF_intrpts() 
{ 
 // configure PF4 as output 
 // configure PF5 and PF6 as inputs 
 // PF5 and PF6 are rising edge sensitive interrupts 
 // PF5 is mapped to intr_A/IVG11 and PF6 is mapped to intr_B/IVG12 
  
 temp = *pFIO_DIR; 
 temp &= 0xFF9F;  
 temp |= 0x0010;  
 *pFIO_DIR = temp; 
 // Define PF4 as output 
 // Define PF5, PF6 as inputs 
  



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 9 of 16 

 *pFIO_INEN = 0x0060; 
 // enable the i/p buffer for PF5, PF6 
  
 *pFIO_MASKA_D = 0x0020; 
 *pFIO_MASKB_D = 0x0060; 
 // enable the PF5 for the Interrupt A 
 // enable the PF6 for the Interrupt B 
  
 *pFIO_POLAR = 0; 
 // set the active-high/rising-edge polarity 
  
 *pFIO_EDGE = 0x0060; 
 *pFIO_BOTH = 0; 
 // edge sensitive interrupt for PF5, PF6 
 // latch interrupt only on a single edge 
  
 temp = *pSIC_IMASK; 
 temp |= 0x00180000; 
 *pSIC_IMASK = temp; 
 // enable the PF intr A and B 
  
 temp = *pSIC_IAR2; 
 temp &= 0xFFF00FFF; 
 temp |= 0x00054000; 
 *pSIC_IAR2 = temp; 
 // map the PF intr A to ivg11, and PF intr B to ivg12 
} 
 
EX_INTERRUPT_HANDLER(request) 
{ 
 printf("\n enter the address location in the ADSP-21365\n"); 
 scanf("%u",&dma_index); 
 
 printf("\n enter the number of transfers \n"); 
 scanf("%u",&dma_count); 
 
 request_flag = 1; 
 command_flag = 1; 
  
 generate_interrupt(); 
 // Generate Interupt Request for ADSP-21365 
 // By toggling the PF4 
} 
 
void generate_interrupt() 
{ 
 int wait; 
  
 *pFIO_FLAG_C = 0x0010; 
 // Clear the PF4 
  
 for (wait = 0; wait<40; wait++) 
 { 
 } 
  
 *pFIO_FLAG_S = 0x0010; 
 // Set the PF4 
 // Causes a low-high-low transition on PF4 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 10 of 16 

} 
 
EX_INTERRUPT_HANDLER(acknowledge) 
{ 
 if (request_flag == 1) 
 // Valid Acknowledge 
 { 
  if(command_flag == 1) 
  { 
   // send command word to the ADSP-21365 
  
   (*AsyncMem) = dma_index & 0xffff ; 
   (*AsyncMem) = (dma_index >> 16) & 0xffff ; 
   // send dma_index 
     
   (*AsyncMem) = dma_count & 0xffff ; 
   (*AsyncMem) = (dma_count >> 16) & 0xffff ; 
   // send dma_count 
 
   command_flag = 0; 
  } 
  else 
  { 
   drive_data (); 
   // send data to the ADSP-21365 
   request_flag = 0; 
  } 
 } 
 else 
 // Invalid Acknowlege Interrupt 
 { 
  printf("\n An error has occured while transmitting\n"); 
  request_flag = 0; 
  command_flag = 0; 
 } 
} 
 
void drive_data () 
{ 
 int i = 0 ; 
  
 // Point to the external async memory bank 
 
 AsyncMem = (volatile short *)0x20000000 ; 
  
 for (i = 0; i < dma_count; ++i) 
 { 
  (*AsyncMem) = dataSrc[i] & 0xffff ; 
  (*AsyncMem) = (dataSrc[i] >> 16) & 0xffff ; 
 } 
} 

Listing 1. Code Snippet for ADSP-BF532 Blackfin Processor 

SHARC Example Code 

/*****************************************************/ 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 11 of 16 

/*          */ 
/* Code on ADSP-21365 for "PDAP-BF Interface  */ 
/*          */ 
/*          */ 
/*  - Initial Version     */ 
/*    7th August, 2004    */ 
/*          */ 
/*      kunal singh    */ 
/*      DSP Apps Engineer  */ 
/*      Analog Devices  */ 
/*          */ 
/*****************************************************/ 
#include <Cdef21365.h> 
#include <def21365.h> 
#include <stdio.h> 
#include <signal.h> 
#include <sru2136x_new.h> 
 
/*****************************************************************/ 
/*            */ 
/* This Example code has been developed      */ 
/* for interfacing the PDAP port of the ADSP-21365   */ 
/* with ADSP-BF532 External Port      */ 
/*            */ 
/* The PDAP would operate in MODE00 (2x16bit)    */ 
/*            */ 
/* The External Connections required between the    */ 
/* ADSP-21365 and ADSP-BF532 are      */ 
/*            */ 
/* ADSP-21365        ADSP-BF532 */ 
/*            */ 
/* DAI_PIN05..20 (PDAP_DAT) <--  D0..D15   */ 
/* DAI_PIN01   (PDAP_CLK) <--  SCLK0    */ 
/* DAI_PIN03   (PDAP_HOLD) <--  AMS0   */ 
/* IRQ0      <--  PF4   */ 
/* FLAG0      -->  PF6  */ 
/*             */ 
/* PDAP would be configured to latch the     */ 
/* data at the negative edge of the PDAP_CLK    */ 
/* This is in accordance with the data/clk relationship  */ 
/* available on ADSP-BF532       */ 
/*             */ 
/* The data transfers from PDAP FIFO to the internal   */ 
/* memory would be done with DMAs      */ 
/* Simple (No Ping Pong) DMAs would be used    */ 
/*            */ 
/*****************************************************************/ 
 
void dai_low_isr(int i); 
void irq0_low_isr(int i); 
 
/*****************************************************/ 
/*          */ 
/* dai_low_isr(): The PDAP DMA over interrupt  */  
/*          */ 
/* irq0_low_isr(): ISR for the IRQ0    */ 
/*          */    
/*****************************************************/ 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 12 of 16 

 
void Enable_PDAP(void); 
/*****************************************/ 
/*        */ 
/*  Enable the PDAP to receive data at*/ 
/* Memory index <- dma_index   */ 
/* Count   <- dma_count  */ 
/*        */ 
/*****************************************/ 
 
volatile unsigned int  pdap_command[2]; 
/***********************************************/ 
/*          */ 
/* Control data would be stored in the   */ 
/* above memory buffer     */ 
/* The first element corresonds to the   */ 
/* memory address for the received data  */ 
/* The second element corresponds to the  */ 
/* count of DMA transfers    */ 
/*          */ 
/***********************************************/ 
 
volatile unsigned int command_flag; 
/*****************************************************/ 
/*          */ 
/* ADSP-BF532 would interrupt (IRQ0) the ADSP-21365 */ 
/*          */  
/* If command_flag == 0 =>     */ 
/*  a command word has to be received  */ 
/*          */  
/* Else         */ 
/*  The Interrupt would be ingnored   */ 
/*          */  
/*****************************************************/ 
 
volatile unsigned int dma_index; 
volatile unsigned int dma_count; 
/*****************************************/ 
/*        */ 
/*  DMA parameters for the PDAP channel */ 
/*        */ 
/* dma_index  : IDP_DMA_I0  */ 
/* dma_count : IDP_DMA_C0Count  */ 
/*        */ 
/*****************************************/ 
 
unsigned int temp;  
/***********************************/ 
/*       */ 
/* Variable for Temporary Storage */ 
/*       */ 
/***********************************/ 
 
/***********************************/ 
/*       */ 
/*  Main Function    */ 
/*       */ 
/***********************************/ 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 13 of 16 

 
void main() 
{ 
 command_flag == 0; 
 // Initially command_flag == 0; 
 
 interrupt(SIG_P12,dai_low_isr); 
 // Interrupt handler for PDAP DMA over interrupt  
 
 asm("#include <def21365.h>"); 
 asm("bit set mode2 IRQ0E;"); 
 // Define IRQ0 as edge sensitive 
 
 interrupt(SIG_IRQ0,irq0_low_isr); 
 // interrupt handler for IRQ0 
 
 asm("bit set FLAGS 0x2;"); 
 // configure the FLAG0 as o/p 
  
 asm("bit clr FLAGS 0x1;"); 
 // clear the FLAG0 
  
 // Disable the o/p drivers on the DAI pins 
 // To ensure that these are not driven by the DSP 
 SRU (LOW, PBEN01_I);  
 SRU (LOW, PBEN02_I);  
 SRU (LOW, PBEN03_I);  
 SRU (LOW, PBEN04_I);  
 SRU (LOW, PBEN05_I);  
 SRU (LOW, PBEN06_I);  
 SRU (LOW, PBEN07_I);  
 SRU (LOW, PBEN08_I);  
 SRU (LOW, PBEN09_I);  
 SRU (LOW, PBEN10_I);  
 SRU (LOW, PBEN11_I);  
 SRU (LOW, PBEN12_I);  
 SRU (LOW, PBEN13_I);  
 SRU (LOW, PBEN14_I);  
 SRU (LOW, PBEN15_I);  
 SRU (LOW, PBEN16_I);  
 SRU (LOW, PBEN17_I);  
 SRU (LOW, PBEN18_I);  
 SRU (LOW, PBEN19_I);  
 SRU (LOW, PBEN20_I);  
 
 SRU (DAI_PB01_O, IDP0_CLK_I);  
 SRU (DAI_PB03_O, IDP0_FS_I);  
 //  Configure the SRU for PDAP_CLK and PDAP_HOLD 
  
   while(1)  
   { 
   } 
} 
 
void irq0_low_isr(int i) 
{ 
 if(command_flag == 0) 
 // A valid Data Request (no previous transfers pending) 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 14 of 16 

 { 
  command_flag =1; 
   
  dma_index = (unsigned int) pdap_command; 
  dma_count = 0x2; 
   
  Enable_PDAP(); 
  
  asm("bit clr FLAGS 0x1;"); 
  asm("bit set FLAGS 0x1;"); 
  asm("bit clr FLAGS 0x1;"); 
  // Toggle the FLAG0 from low to high 
  // This would interrupt the ADSP-BF532 
 } 
 else 
 // Previous transfers are pending 
 { 
   
  printf("\n an error has occured\n"); 
  // corrective actions can be taken 
 } 
} 
 
void dai_low_isr(int i) 
{  
 int j; 
  
 temp = *pDAI_IRPTL_L; 
 // Read the DAI interrupt   
  
 if ( temp == IDP_DMA0_INT) 
 //  confirm the source of the interrupt 
 // before processing the ISR 
 {  
  if(command_flag == 1) 
  // A Command word has been received 
  { 
   command_flag = 0; 
    
   dma_index = pdap_command[0]; 
   dma_count = pdap_command[1]; 
    
   Enable_PDAP(); 
    
   asm("bit clr FLAGS 0x1;"); 
   asm("bit set FLAGS 0x1;"); 
   asm("bit clr FLAGS 0x1;"); 
   // Toggle the FLAG0 from low to high 
   // This would interrupt the ADSP-BF532 
   // Toggle the flag1 from low to high 
   // This would interrupt the ADSP-BF532 
  } 
  else 
  { 
   // Data has been received  
   // Any action can be taken here 
   // For example you can process this data 
   // However this example does not  



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 15 of 16 

   // include any data processing 
  } 
 } 
} 
 
void Enable_PDAP(void) 
{ 
 *pIDP_CTL0 = 0; 
 *pIDP_CTL1 = 0; 
// disable the CIDP globally  
 
 *pIDP_PP_CTL = 0; 
// clear the PDAP control register  
 
 *pIDP_PP_CTL |= IDP_PDAP_RESET; 
// reset the PDAP state machine  
 
 *pIDP_PP_CTL |= IDP_PDAP_PACKING0; 
// select the mode00 
 
// Enable the PDAP Mask bits for DAI_PIN05..20  
 *pIDP_PP_CTL |= IDP_P20_PDAPMASK| 
     IDP_P19_PDAPMASK|  
     IDP_P18_PDAPMASK| 
     IDP_P17_PDAPMASK| 
     IDP_P16_PDAPMASK| 
     IDP_P15_PDAPMASK| 
     IDP_P14_PDAPMASK| 
     IDP_P13_PDAPMASK| 
     IDP_P12_PDAPMASK| 
     IDP_P11_PDAPMASK| 
     IDP_P10_PDAPMASK| 
     IDP_P09_PDAPMASK| 
     IDP_P08_PDAPMASK| 
     IDP_P07_PDAPMASK| 
     IDP_P06_PDAPMASK| 
     IDP_P05_PDAPMASK; 
 
 *pIDP_PP_CTL |= IDP_PDAP_CLKEDGE; 
// define the active clock edge for the PDAP 
 
 *pIDP_PP_CTL |= IDP_PDAP_EN ; 
// enable the PDAP   
 
 *pIDP_DMA_M0  = 0x1; 
 *pIDP_DMA_C0 =  dma_count; 
 *pIDP_DMA_I0 =  dma_index; 
// configure PDAP DMA parameter registers   
 
 *pIDP_CTL1 |= IDP_EN0|IDP_DMA_EN0; 
 *pIDP_CTL0 |= IDP_DMA_EN|IDP_EN; 
// Enable the PDAP with DMAs 
 
}  

Listing 2. Code Snippet for ADSP-21365 SHARC Processor 



  a 

 

Interfacing ADSP-21365 SHARC® PDAP to ADSP-BF533 Blackfin® EBIU (EE-254) Page 16 of 16 

References 
[1] ADSP-21365 SHARC Processor PDAP Specifications 

[2] ADSP-BF533 Blackfin Processor Hardware Reference. Rev. 3.0, September 2004. Analog Devices Inc. 

Document History 

Revision Description 

Rev 1 – November 12, 2004  
by Srinivas K. 
and Kunal Singh 

Initial Release 

 


	Introduction
	PDAP
	Introduction to the Blackfin EBIU
	Introduction to Interrupt and Flags Signals
	PDAP to EBIU Interface
	Data Transfer Protocol for the Interface
	Synchronization Between the ADSP-21365 Processors and the AD
	Driver Software for ADSP-21365 SHARC Processors
	Driver Software for ADSP-BF532 Blackfin Processors
	Appendix
	All example code is available through a ZIP file associated 
	Blackfin Example Code
	SHARC Example Code

	References
	Document History

