VIS UDSP:s 5.0

Linker and Utilities Manual
(including the ADSP-BFxxx, ADSP-21xxx, ADSP-TSxxx)

Revision 3.5, January 2011

Part Number
82-000420-03

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

ANALOG
DEVICES

Copyright Information

© 2011 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC,
and Visual DSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE
Purpose of This Manualccoooiiiiiiiiiiiiiiecce Xix
Intended AUdiencec.uevevieieiiiiiiiiiiee e xix
Manual CONENTS .evivveeeiiiiiiiiiieeeeeeeeiiteee e e e e e e e e e e e e e e eeeeeeeees XX
What's New in This Manualcccccoeviviiiiiiiiiiiiiiiiieeeeeee e xxi
Technical or Customer SUPPOIT .oocuvvviviiiiiiiiiiiiiiiie e xxii
Supported Processorscoccuviiriiieriiieiniieenieceeieee e Xx111
Product Informationccoovvveieiiiiiiieeiiiee e xxiii
Analog Devices Web Siteccccooiiiiiiiniiiiiiiiiiiiiiiecc, xxiii
Visual DSP++ Online Documentationccccvvvveeeeeeeenennnnne. xxiv
Technical Library CDoooiiiiiiiiiiiiiiiiiiccec e XXiv
EngineerZonecccoceeiiiiiiiiiiiiiiiiiiiiic XXV
Social Networking Web Sitescccccovviiiiiiiiiniiiiniiiiiiiceiee XXV
Notation CONVENTIONS eeeieeeeeeeeieieeeeeeeee e XXVi
INTRODUCTION
Software Development Flow ..o, 1-2
Compiling and Assemblingccoceiiniiiiniiiiiiiiiieeees 1-3
Inputs — C/C++ and Assembly Sourcescccceeeevviiiiiinniiicnns 1-3

Visual DSP++ 5.0 Linker and Utilites Manual

11

Contents

Input Section Directives in Assembly Codeccccoveeirniniiiinnn 1-4
Input Section Directives in C/C++ Source Filescccccccevneen. 1-5
LInKINg woeoiieiiiii e 1-7
Linker and Assembler Preprocessorccceevviiiiniiiiiniieennneenn. 1-8
Loading and Splittingccccevviiiiiiiiiiiiiiiiicenieeceeee e 1-10
LINKER
Linker Operationcoovviiiiiiiiiiiiieiiiciiee e 2-3
Directing Linker Operationcccccceeiviiiiiiiiiiiiiiiniiiiniees 2-4
Linking Process Rulescoccveiiiiiiniiiiniiiiiiiiiicecceeee 2-5
Linker Description File Overviewccoccceeeviiiiiniiiiniiecnnneenn. 2-6
Linking Environment for Windowsccccceeviiiiiiiiiiniiiniiennnn. 2-7
Project Buildsoooviiiiiiiiiiiii 2-7
Expert Linker ...occoooiiiiiiiiiiiiiiice 2-9
Linker Warning and Error Messagesccccccevvvieniiiiiiniienneennne. 2-10
Link Target Descriptioncoocvieriiiiiiiiiiiiiiceniecenieeeseee e 2-11
Representing Memory Architecturecooccveiiviiiiniieenniecennnn 2-11
Specifying the Memory Mapcccccoeviiiiiiiiiiiiiiiiiciicc, 2-12
Memory Usage and Default Memory Segments 2-12
Default Memory Segments for SHARC Processors 2-14
Other Memory Segmentsc.ccceeveeviieniienieenienneennne. 2-18
Default Memory Segments for TigerSHARC Processors 2-19
Other Memory Segmentscoocvvieviiieniieennieeenieeee 2-21
Default Memory Segments for Blackfin Processors 2-21
Other Memory Segmentsccoccvveeviiieniinieniieenieeene 2-24

iv Visual DSP++ 5.0 Linker and Utilites Manual

Contents

Blackfin Special “Table” Input Sectionsccccevuveenureennnn. 2-24
Input Sections in Blackfin Default LDFs for User Code/Data 2-26
Memory Characteristics OVerviewccocceeevvueeeniuveenineenns 2-27
SHARC Memory Characteristicsccceevueieniueeeniuneene 2-27
TigerSHARC Memory Characteristicsccceevcvveennnee. 2-30
Blackfin Memory Characteristicsccccevveeenveeenuneenne 2-32
Linker MEMORY{} Command in an LDFccccccevrnnnnn... 2-32
Entry Addressoooocuvieiiiiiiiiiiinicceieceeceee e 2-34
Wildcard Characterscoovviiiiiiiiiiiieiiiiiicciic e 2-35
Placing Code on the Targetccccceiiiiiiiiiiiiiiiiiii, 2-36
Specifying Two Buffers in Different Memory Segments 2-41
Linking with Attributes — Overviewcccccevvveiiniiicenineenns 2-42
Profile-Guided Optimization SUPPOrtccccevveveernieiinieeennee. 2-43
Passing Arguments for Simulation or Emulation 2-44
Linker Command-Line Referenceccoccveviiiiiniiiiniiceniicennnen. 2-44
Linker Command-Line Syntaxcccocceerviiiiniiiiniiieniieenn 2-45
Command-Line Object Filescccoooiiniiiiniiiiiiiiininene. 2-46
Command-Line File Namescccccoooviiiniiiiniiciniiceniieene 2-47
Object File Types ..cccoiviiiiiiiiiiiiiiiiiiicicc, 2-49
Linker Command-Line Switchesccccceenniiiiiinniiiinnnnnn.. 2-49
Linker Switch Summary and Descriptionscccocveevunenne 2-51
@fIenameccceeeveiiiiiiiiiiiiiiiiiiiic 2-53
=Dprocessorcccciiiiiiiiiiiii 2-53
L PAtD i 2-54

Visual DSP++ 5.0 Linker and Utilites Manual

Contents

LY SR PRRROP 2-54
MM e e 2-54
-Map filenamecccccovveiiniiiiiiiiiiiiii 2-55
-MDmacro[=def]ccccocoiviiiiiiiniiiiiiiiii, 2-55
SMUDRACTO oo 2-56
S e 2-56
ST filenameccoooeuviiiiiiniiiiiiiiiiiiiiic 2-56
Werror [umber]coooieeeeeeiiiiiiieeiiieeee e 2-57
SWWArD [UmMBEr] .oovveeeiiiiieeiiiieee e 2-57
N number[,number]oeeiieiiiiiiiieeee e, 2-57
OO OO PP UPPPPPPPPPNt 2-57
ek 5ectionINameccccueiiiiiiiiiiiii e 2-57
€S SECHLOMINAMNE ...cccovviiiiiiiiiiiiiieie e 2-58
LS 116 OSSOSO P PO PO PP PP PP P PPPPPPPPPPPPPRPPRt 2-58
SV e 2-58
-flags-meminit -opt1[,-opt2...] .iovoiiiiiiiiiiiiiiiie 2-58
-flags-pp-optl[,-0pt2...] wevoiiiiiiiiiic e 2-58
ShLElP] e 2-59
AL drectory .c..ooveiiiniiiiiiiii 2-59
1P e 2-59
TFES2L e 2-60
FJES2H i 2-60
-keep symbolNameccccccoovviiiviiiiiiiiiniiiiiiiiciec, 2-60
SINLEITUIIIIT ettt 2-61

vi Visual DSP++ 5.0 Linker and Utilites Manual

Contents

-nomemcheck ..oooiiiiiiiii 2-61

=0 fIUenamecccociiiiiiiiiiiiiiii 2-61
2O dIFECTOTY ..oooiiiiiiiiii e 2-61
SPP eeeeeeeee et e e 2-62
“PLOC PFOCESSOT ...t 2-62
—reserve-null ..o 2-62

S ettt 2-62
“SAVE-TEITIPS .evveenurreeruireerureeesireeesneeesaneeenaneeesneeesnneesnneeens 2-63
=SI-FEVISION VEFSION weevevieeiiiiiiiieeee e e ettt 2-63
TSP ettt e et e e et e e e e 2-64
U PSR P PP PPPPPON 2-64
O S PP UPPPPPPPPP 2-64
SVLEIDOSE] oot 2-64
23 o) NSRRI 2-64
SWATTLOTICE eeuuvvveteeeeeeeesaainttteeeeeeeessaaitbttteeeeeeesaaanbbeaeeeeeeeens 2-64
SXEEE ottt 2-65

LINKER DESCRIPTION FILE

LDF File OVEIVIEW iieeieiiiiiiiiiiieeeeeeeiiiiteee e e e e e eee e e e e e e 3-3
Blackfin-Generated LDFsccooooiiiiiiiiiiiiiiiiieeiiiiceeeieeen 3-3
Default LDFS .ooiiiiiiiiiiiiiececee et 3-4
Example 1 — Basic LDF for Blackfin Processorscccccueeenneee. 3-7
Memory Usage in Blackfin Processorsccocceeeviiieniunecnne. 3-9
Example 2 — Basic LDF for TigerSHARC Processors 3-10
Example 3 — Basic LDF for SHARC Processorsc.c.ec...... 3-11

Visual DSP++ 5.0 Linker and Utilites Manual vil

Contents

Common Notes on Basic LDF Examplescccoocoiiiiniiiiis 3-13
LDF File StrucCture ...cccvveviiieeeeeiiiiiiiieeeeeeeeeeiiieeeee e e e e e e 3-18
Command SCOPING ..veeruiiiiiiiiiiiiieiiie e 3-19
LDF EXPIessionsceeeueeeeuuuuuueiuremuiiiiiiiiiieeeieeeeeeseeeeeeeeeeeee. 3-20
LDF Keywords, Commands, and Operatorscccceeevvreennncens 3-21
LDF Keywordsccoviiiiniiiiniiieniieeeieeeiec e 3-22
Miscellaneous LDF Keywordsccccouveiimiiiiiiiniiiiiiniiieeens 3-23
LDF Operatorsccooovvuiiiiiiiiiiiiiiiiiiiiiiiieee e 3-23
ABSOLUTE() Operatorccoecueeeiemiuiieeenniiieeeneiiieeeens 3-23
ADDR() OPeratorcccovcuieeiimmiiieeiniiieeeeeieeeeeeieeeeens 3-24
DEFINED() Operatorccceeeeieeiiiiiiiiiiiieeiiiiee e 3-26
MEMORY_END() Operatorcoccceeeeemniiieeeniinieeeennnne. 3-26
MEMORY_SIZEOF() Operatorcccceeeuveernieeenueeeniieens 3-27
MEMORY_START() Operatorcccccceevcuuiieeiniiniieennnnn. 3-27
SIZEOF() OPeratorccoovcuveiieiniiiieiiniiiee e 3-28
Location Counter ()eeeeeueeemeeeeeiiiiiiiiiiiiiiiiiiiiiiieiiieneees 3-29

LDF MacCros oeeeeeeeieieieeeeeeeee e 3-29
Built-In LDF Macroscccoovuvveeeiniiiiiiiiiiiieeeeiiieeeeieenn 3-30
User-Declared Macrosceeeeeiiiniiiiiiiiiieeeeiiiiiiiiieeeeeeennn 3-32

LDF Macros and Command-Line Interaction 3-32
Built-in Preprocessor Macroscoccueeevveeinieeeniieeeniieenieenns 3-33
__VISUALDSPVERSION_ _ oot 3-33
__VERSIONNUM__ oottt 3-35
__VERSION__ i 3-35

viii Visual DSP++ 5.0 Linker and Utilites Manual

Contents

__SILICON_REVISION__ oottt 3-36
L MEMINIT ot 3-36
LDF Commandsceeeiiiiiieieiiiiiieeeiiiiee e eieeee e 3-36
ALIGN() ettt e e 3-37
ARCHITECTURE() coovviiieeiiiiiee et 3-38
COMMON_MEMORY{} oo 3-38
ELIMINATE() toeeiiiieeeiiiee et 3-39
ELIMINATE_SECTIONS() eooovvieeeiiiiiee e 3-40
ENTRY() cooiieiieeieiieee et 3-40
INCLUDE(Q) ttttteiiiiiieeeeiiieee et 3-40
INPUT_SECTION_ALIGN() evvvveeeiiiieeeeeiiieeeeeiieee e 3-40
KEEP() weeieeeiiieee e 3-42
KEEP_SECTTIONS() euutteuiuiuiiiiiniiiiiiiiiianinieieenenenenenenenenenes 3-42
LINK_AGAINST() weeeeeeiriiieeeiiieee e e eiree e e 3-42
IMAP() ettt 3-43
MEMORY{} oo 3-44
Segment Declarationsccccceviieiiiiiiniiiiniiiciieceieeee 3-45
SEGMENT_NAMIE .evveeerurrrreerrirreeeeninreeeeainreeeesirneeeesnnneeens 3-45
START (address_number)oovvivviiiiiiiiiiiiiiiieeiiieeeeienn, 3-45
TYPE(Q) ceooiiiee ettt 3-46
LENGTH(length_number)/END(address_number) 3-47
WIDTH (width_number)cccooovueeiiiiiiieiiiiiieeeeiiiieeeee, 3-47
MPMEMORY{} it 3-47
OVERLAY_GROUP{} i 3-48

VisualDSP++ 5.0 Linker and Utilites Manual ix

Contents

PACKING() teeeeeeiiiiiiieeeee et 3-48
Packing in SHARC Processorsccccovcueeeroueeenieeennnecennn 3-50
Overlay Packing Formats in SHARC Processors 3-51
External Execution Packing in SHARC Processors 3-52
PLITH} eeeeeieiee et e e e e e 3-53
PROCESSOR{} e 3-54
RESERVE() ciiiiiiieeee e 3-56
Linker Error Resolutionsccccceevvviiiiiiiiieeeeenniiiinen, 3-57
Example ..ooooiiiiiiiiiii 3-58
RESERVE_EXPAND() tieeieiiiiiiiiiieeieeeeeeiieeeeee e 3-58
RESOLVE(+eveeeeeeoeeee oo 3-59
Potential Problem with Symbol Definition 3-59
SEARCH_DIR() eiitiiiiieieeeiiiiiiiieeeeeeee e 3-60
SECTIONS{} oo 3-61
INPUT_SECTIONS() teeveeeeeeiiiiiiiiiiieeeee e 3-64
Using an Optional Filter Expressionccccocciiniiinne 3-65
INPUT_SECTIONS_PIN/_PIN_EXCLUSIVE Commands 3-67
EXPIESSION .etiieeeniiiiieeeaitieeeeeeiteeee e ettt eeeeiaeeeeeeiraeeeeeeanneee 3-69
FILL(hex number) ...coouuoviiiiieiiiiieee e 3-69
PLIT{plit_commands}ccccovurirmiiiiniiiiniiiciiiieeneeeee 3-69
OVERLAY_INPUT/{overlay_commands}ccccccervunennee. 3-70
FORCE_CONTIGUITY/NOFORCE_CONTIGUITY 3-72
SHARED_MEMORY{} .oooooiiieiieeeeeeeeee e 3-72

X Visual DSP++ 5.0 Linker and Utilites Manual

Contents

EXPERT LINKER
Expert Linker OVerviewcccocveeriiiiniiieniiiciiiiceniec e 4-2
Launching the Create LDF Wizardccoccviiiiiiiiiiiiniiiiiiiciieens 4-3
Step 1: Specifying Project Informationcccccocveviiiniiininnn. 4-5
Step 2: Specifying System Informationccccceevvveiniiiienincenns 4-6
Step 3: Completing the LDF Wizardccccoooviiiiiiiniiiininens 4-8
Expert Linker Window Overviewccccceeiviiiiiiiiiniiiiniicenieen, 4-9
Input Sections Paneccccoeeiiiiiiiiiiiiiiii 4-10
Input Sections Menu ...cccccueviieriiiieeiiiiiiieiiiieeeeieeee e 4-10
Mapping an Input Section to an Output Section 4-12
Viewing Icons and Colorscccceeiiiiiiiiiiiiniiiiniiiciieceieene 4-13
SOrting ODBJEeCtS ..vvieriiieriiieiiiieeiiee et 4-15
Memory Map Panecccceeiiiiiiiiiiiniiiiiiiiiic e 4-16
ConteXt MENU ..oiiiiiiiiiiiiiiiiiee e 4-19
Tree View Memory Map Representationcccceeevvuvieeennnne. 4-21
Graphical View Memory Map Representationccccceeenee. 4-22
Specifying Pre- and Post-Link Memory Map View 4-26
Zooming In and Out on the Memory Mapcccoceevvviiennncne 4-28
Adding a Memory Segmentcccceveuviiiiiiieiiiiiiniiiie e, 4-29
Inserting a Gap Into a Memory Segmentccooviiiiiiinnnn. 4-31
Working With Overlaysccccocveiiiiiiiniiiiiiiciiceccee 4-32
Viewing Section CONTENTSccocuvieviiiiiiiiiiiiiiieniice e 4-33
Viewing Symbolscoooiiiiiiiiiiiiiiiiiii e 4-36
Profiling Object Sectionscecevuieeriieiiniiieniieeriicceiecee 4-37

Visual DSP++ 5.0 Linker and Utilites Manual

X1

Contents

Adding Shared Memory Segments and Linking Object Files ... 4-42

Managing Object Propertiesccocveeeviieniiiiiiiieciniieenieccnieeens 4-47
Managing General Global Propertiesccccovcvvieniiienniecnnnn 4-48
Managing Processor Propertiesccccoevuviiviiiiiniiieiiiiennnen. 4-49
Managing PLIT Properties for Overlaysccccceevcuiiiniieennne. 4-50
Managing Elimination Propertiescccccevniiiiniieenniecnnnnn. 4-51
Managing Symbols Propertiesccccceeviiiiiiniiiiniiiiiiiennn, 4-53
Managing Memory Segment Propertiesccccccvviieiiiiiinnns 4-57
Managing Output Section Propertiescccccoevviiuiiininneennnn. 4-58
Managing Packing Propertiescccccocverviiriiiiniiieniiinicennens 4-61
Managing Alignment and Fill Propertiesccccoocveenineennnee. 4-63
Managing Overlay Propertiescccecuveervieiiniieeeniieeenniecenn 4-65
Managing Stack and Heap in Processor Memory 4-67
Managing Shared Memory Propertiesccocveervveernneeennn 4-70

MEMORY OVERLAYS AND ADVANCED LDF
COMMANDS

OVEIVIEW etiiiiiiiiiiiiiiiiiiiietetete ettt ettt ettt e e et e e e e e e eeees 5-2
Memory Management Using Overlaysccocceevviiiiniiiinnieiinnnens 5-4
Introduction to Memory Overlayscccoovviiiiiiiiiiiiinniiecens 5-5
Overlay Managersc.ccceevvuieeriiiieiiieeiniieenieee e 5-7
Breakpoints on Overlaysccocoeiiiiiiiniiiiniiiiiiciecce, 5-7
Memory Overlay SUpportcocccveeeiiniiiiiiiiiiciecce 5-8
Example — Managing Two Overlaysccccccovviiieniiiennicnnnn 5-13
Linker-Generated Constantsc.ccceceeevuieriiiinieniieeiieenneenn 5-15

xii Visual DSP++ 5.0 Linker and Utilites Manual

Contents

Overlay Word Sizesccovvuiiiiiniiiiiiiiiiiiiciiiecceceeeen 5-16
Storing Overlay IDooooiiiiiiiiiiiiicccec e 5-20
Overlay Manager Function Summarycccooceeeniiienincennnen. 5-20
Reducing Overlay Manager Overheadccocoeeviiininninn 5-21
Using PLIT{} and Overlay Managercccccocoviiiiniiiinncenne. 5-25
Inter-Overlay Callsoooiiiiiiiiiiiiiiccece 5-27
Inter-Processor Callsccoociiiiiiiiiiii 5-28
Advanced LDF Commandscccoocuviiviiiiiiiiiiniiiiiiiceieceieeeae 5-29
OVERLAY_GROUP{} ..coiiiiiiiiiiiiiiiiiiciccccc 5-29
Ungrouped Overlay Executionccccooviiiiiiiiiniiiinnn. 5-31
Grouped Overlay Executioncccoccveeviiiiniiiiiniiicnnineenne. 5-33
PLIT{} oo 5-34
PLIT SYntaxccoooveoiiiiiiiiiiiiiiiiiiiiiieeeeeieiiiieecee e 5-35
Command Evaluation and Setupccooovveeviiiiniiienieennn. 5-36
Overlay PLIT Requirements and PLIT Examples 5-36

PLIT — SUummarycccccvvieiiiiiiiiiiiiiiieeeeeeeiiiee e 5-38
Linking Multiprocessor Systemsccccoevuveeviiveeninecniiecenieeenen 5-39
Selecting Code and Data for Placementccocceeevivieniieennnee. 5-40
Using LDF Macros for Placementccccceeeviiiiniiiininnnns 5-40
Mapping by Section Nameccoccvviiviiiiiniiiiiiiiiiniieceeeeae, 5-42
Mapping Using Attributesccoecveemiieeiiieiiniiiieniieeneeeene 5-43
Mapping Using Archivescccoeviiiniiiiiiiiiiiiiiiiicnices 5-44
MPMEMORY{} oottt 5-45
SHARED_MEMORY{} .o 5-47

Visual DSP++ 5.0 Linker and Utilites Manual xiii

Contents

COMMON_MEMORY{} oo 5-53
ARCHIVER
INErOAUCTION tiiiiieeeeeiiiiiiiieee e e e e e e e e eeeeees 6-2
Archiver Guide ...ooooiiiiiiiiiiiii 6-3
Creating a Libraryccoccoiiiiiii 6-3
Making Archived Functions Usableccoooeiiniiiiniiiinnin. 6-4
Writing Archive Routines: Creating Entry Points 6-4
Accessing Archived Functions From Your Code 6-5
Specifying Object Filesccccoviiiiiiiiiiniiiiiiiiiciecee, 6-6
Tagging an Archive With Version Informationc........... 6-7
Basic Version Informationcccooooiiiiiiiiieiiinniiiiiiieeennn. 6-7
User-Defined Version Informationccccceeeevviiivnnnnnnnn.. 6-8
Printing Version Informationccccceciiniiiiniiiiiiinnnenn 6-9
Removing Version Information From an Archive 6-10
Checking Version Numberccccccooviiiiiiiiiiniiicniieenne. 6-10
Archiver Symbol Name Encryptioncccocviiniiiiniiiicnnnnen. 6-10
Archiver Command-Line Referenceccccovvuviiiiiniiiiiiiniiieeeenn, 6-14
elfar Command Syntaxccocceeviiiiiiiiiiiiiiic e 6-14
Archiver Parameters and Switchescooooiiiiiiiiiiii, 6-15
Command-Line CONStraintsoeeeuvvvereeeeeeernniiiiiiieeeeeeeeeannnns 6-17
MEMORY INITIALIZER
Memory Initializer OVEIrvIewcccocvviriiiiiniiiiiniiieiiec e 7-2
Basic Operation of Memory Initializercccceciiiiiiiiiniinnnane 7-3

X1V Visual DSP++ 5.0 Linker and Utilites Manual

Contents

Input and Output Files ..ccoooviiiiiiiiiiiiiiiiiiiicc 7-3
Initialization Stream Structureccccvveeeeeeeiiiiiiiiiiieeeeeeeeieieeee. 7-5
Run-Time Library Routine Basic Operationccccoeuveeriieennncenns 7-6
Using Memory Initializerccccccoiiiiiiiiiiiiiiiis 7-7

Preparing the Linker Description File (.1df) ..o 7-7

Preparing the Source Filescoooviiiiiiiiiniiiiiiiiceces 7-9

Invoking Memory Initializercccccooiiiiiiiiiiiiiiniiie, 7-10

Invoking meminit from the VisualDSP++ IDDE 7-10
Invoking meminit from the Command Lineccoceee.. 7-11
Invoking meminit from the Linker’s Command Line 7-12
Invoking meminit from the Compiler’s Command Line 7-12
Invoking meminit with Callback Executables 7-12
Memory Initializer Command-Line Switchescccoooeeriieennnee. 7-14

-Beginlnit [nitsymbolccccceoveiiiniiiiniiiiiiiiiiiiceee, 7-15

ShLElP] e 7-16

-IgnoreSection Sectionnameccccoooviiiiiiiiiiiii. 7-16

I TREECOAC.AXE ... 7-16

InputFile.dXe ...cooviiiiiiiiiiiiiiiiii 7-17

SINOAULO i 7-17

SINOELASE it 7-17

-0 Qutputfile.dxeccccovvviiiiiiiiiniiiiiiiiiiiiiiiii e, 7-18

-Section Sectionnameccccccceveiiiiiiiiiiiiiiiiiiiiii 7-18

TV ettt e et e et eeteetteeetaeeetaeaea e et e et aeaaaaaraaaaaanaaeann 7-18

Visual DSP++ 5.0 Linker and Utilites Manual XV

Contents

FILE FORMATS
SoUTCe FIles woviiiiiiiiiiiiiiiie e A-2
C/C++ Source Files .ocooiuiiiiiiiiiiiiiiiiiiiiieiec e A-2
Assembly Source Files (.asm)cooocvviiiniiiiiiiniiiiiii A-3
Assembly Initialization Data Files (.dat)coeevvviiiiiiiniiiiiannnnne. A-3
Header Files ((h) coovveeiiiiieceeee e A-4
Linker Description Files (.Idf) .ooocveiriiiiiiiiiiiee A-4
Linker Command-Line Files (.tXt)oovviiiieeeeieeiiiiiiiiiieeeennnn. A-5
Build Files .ooooiiiiiiiiiiiee e A-5
Assembler Object Files (.doj) ...ccoovviiiiiiiiiiiiii A-5
Library Files (.dlb) ...cooiiiiiiiiiiiiiiii e A-6
Linker Output Files (.dxe, .sm, and .ovl)ccocoveiriiiiiniiinnncn. A-6
Memory Map Files (.xml) ...oooooiiiiiiniis A-6
Loader Output Files in Intel Hex-32 Format (.1dr)c......... A-6
Splitter Output Files in ASCII Format (.Idr)cccooeeiiiiiniiin. A-8
Debugger Filescccooiiiiiiiiiiiiiiii A-9
Format Referencesceeeeeiiiiiiiiiiiieieieeeiiiiieeee e A-10
UTILITIES
elfdump — ELF File Dumpercccoociiiiiiiiiiiiiiniicnieceieceeeee B-1
Disassembling a Library Membercccccccooiiiiiiiin. B-3
Dumping Overlay Library Filesccccoocoiiiiiiiiniiiniinees B-4
elfpatch oo B-5
Extracting a Section in an ELF File ... B-5

XVi Visual DSP++ 5.0 Linker and Utilites Manual

Contents

Replacing Raw Contents of a Section in an ELF File B-6
PHOKET oo B-6
LDF PROGRAMMING EXAMPLES FOR BLACKFIN
PROCESSORS

Linking for a Single-Processor Systemcccceeeviiiiniiciniicnnnnen. C-2
Linking Large Uninitialized or Zero-initialized Variables C-4

LDF PROGRAMMING EXAMPLES FOR SHARC
PROCESSORS

Linking a Single-Processor SHARC Systemccocoveeriiiiiniicennnen. D-2
Linking Large Uninitialized Variablesc.ccccocccoiiiniiinniinninn. D-4
Linking for MP and Shared Memorycccocvviviiiiniiiiiniicennen. D-6

Reflective Semaphorescoocveeriiiiiiiiiiiniiieniiiciieceece D-12

LDF PROGRAMMING EXAMPLES FOR TIGERSHARC
PROCESSORS

Linking a Single-Processor Systemcocceevviiiiniiiiiniiieniieenieeens E-2
Linking Large Uninitialized or Zero-Initialized Variables E-4
Linking an ADSP-TS101 MP Shared Memory System E-6

Visual DSP++ 5.0 Linker and Utilites Manual xvii

Contents

xXviil Visual DSP++ 5.0 Linker and Utilites Manual

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
Analog Devices embedded processors.

Purpose of This Manual

The VisualDSP++ 5.0 Linker and Utilities Manual contains information
about the linker and utility programs for Blackfin® (ADSP-BFxxx),
TigerSHARC® (ADSP-TSxxx), and SHARC® (ADSP-21xxx) processors.
These processors set a new standard of performance for digital signal pro-
cessors, combining multiple computation units for floating-point and
fixed-point processing as well as wide word width. The manual describes
the linking process in the VisualDSP++ Windows application
environment.

This manual provides information on the linking process and describes
the syntax for the linker’s command language—a scripting language that
the linker reads from the linker description file (.1df). The manual leads
you through using the linker, archiver, and utilities to produce DSP
programs and provides reference information on the file utility software.

Intended Audience

The primary audience for this manual is programmers familiar with
Analog Devices processors. This manual assumes that the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set.

Visual DSP++ 5.0 Linker and Utilities Manual XX

Manual Contents

Programmers who are unfamiliar with Analog Devices processors can use
this manual, but should supplement it with other texts (such as the appro-
priate Hardware Reference and Programming Reference manuals) that
describe your target architecture.

Manual Contents

The manual contains:

Chapter 1, “Introduction”, provides an overview of the linker and
utility programs.

Chapter 2, “Linker”, describes how to combine object files into
reusable library files to link routines referenced by other object

files.

Chapter 3, “Linker Description File”, describes how to write an
.1df file to define the target.

Chapter 4, “Expert Linker”, describes the Expert Linker, which is
an interactive graphical tool for setting up and mapping processor
memory.

Chapter 5, “Memory Overlays and Advanced LDF Commands”,
describes how overlays and advanced LDF commands are used for
memory management and complex linking.

Chapter 6, “Archiver”, describes the elfar archiver utility used to
combine object files into library files, which serve as reusable
resources for code development.

Chapter 7, “Memory Initializer”, describes the Memory Initializer
utility that is used to generate a single initialization stream and save
it in a section in the output executable file.

XX

VisualDSP++ 5.0 Linker and Utilities Manual

Preface

* Appendix A, “File Formats”, lists and describes the file formats that
the development tools use as inputs or produce as outputs.

e Appendix B, “Utilities”, describes the utility programs that provide
legacy and file conversion support.

e Appendix C, “LDF Programming Examples for TigerSHARC Pro-
cessors”, provides code examples of .1df files for TigerSHARC
processors

e Appendix D, “LDF Programming Examples for SHARC Proces-
sors”, provides code examples of .1df files used with SHARC

processors.

e Appendix E, “LDF Programming Examples for Blackfin Proces-
sors”, provides code examples of .1df files used with Blackfin
processors.

What's New in This Manual

The VisualDSP++ 5.0 Linker and Utilities Manual documents linker
support for all currently available Analog Devices’ SHARC, TigerSHARC
and Blackfin processors. This edition includes modifications due to new
processors and fixes to reported problems.

Refer to VisualDSP++ 5.0 Product Release Bulletin for information on all
new and updated VisualDSP++® 5.0 features and other release
information.

Visual DSP++ 5.0 Linker and Utilities Manual xxi

Technical or Customer Support

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following
ways:

* Visit the Embedded Processing and DSP products Web site at

http://www.analog.com/processors/technical_support

* E-mail tools questions to
processor.tools.support@analog.com

* E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

* Phone questions to 1-800-ANALOGD

* Contact your Analog Devices, Inc. local sales office or authorized
distributor

* Send questions by mail to:
Analog Devices, Inc.
One Technology Way
P.0. Box 9106
Norwood, MA 02062-9106
USA

xXxii Visual DSP++ 5.0 Linker and Utilities Manual

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface

Supported Processors

This manual supports the following Analog Devices, Inc. processors.
* Blackfin® (ADSP-BFxxx)
* SHARC® (ADSP-21xxx)
¢ TigerSHARC® (ADSP-TSxxx)

The majority of the information in this manual applies to all processors.
Information applicable to a particular target processor, or to a particular
processor family, is provided in the appendices.

Product Information

Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.conm is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-

Visual DSP++ 5.0 Linker and Utilities Manual xx1il

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions

Product Information

mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals. MyAna-
log.com provides access to books, application notes, data sheets, code
examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation

Online documentation comprises the Visual DSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools documentation. You
can search easily across the entire Visual DSP++ documentation set for any
topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

File Description

.chm Help system files and manuals in Microsoft help format

.htmor Dinkum Abridged C++ library and FLEXnet license tools software

Shtml documentation. Viewing and printing the . htm1 files requires a browser, such as

Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

Technical Library CD

The technical library CD contains seminar materials, product highlights,
a selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following

XX1V Visual DSP++ 5.0 Linker and Utilities Manual

http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

Preface

processor families: Blackfin, SHARC, TigerSHARC, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the

latest manual revisions and associated documentation errata.

EngineerZone

EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Social Networking Web Sites

You can now follow Analog Devices processor development on Twitter
and LinkedIn. To access:

e Twitter: http://twitter.com/ADIsharc and
http://twitter.com/blackfin

* LinkedIn: Network with the LinkedIn group, Analog Devices
SHARC or Analog Devices Blackfin: http://www.1inkedin.com

Visual DSP++ 5.0 Linker and Utilities Manual XXV

http://ez.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/
http://twitter.com/ADIsharc
http://twitter.com/blackfin
http://www.linkedin.com

Notation Conventions

Notation Conventions

Text conventions used in this manual are identified and described as

follows.

Example

Description

Close command
(File menu)

Titles in bold style reference sections indicate the location of an item
within the VisualDSP++ environment’s menu system (for example, the
Close command appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sep-
arated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

®

Note: For correct operation, ...

A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

O

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

XXVi1

Visual DSP++ 5.0 Linker and Utilities Manual

1 INTRODUCTION

This chapter provides an overview of VisualDSP++ development tools and
their use in the [DSP] project development process.

The code examples in this manual have been compiled using
Visual DSP++ 5.0. The examples compiled with other versions of
Visual DSP++ may result in build errors or different output
although the highlighted algorithms stand and should continue to
stand in future releases of VisualDSP++.

This chapter includes:
* “Software Development Flow” on page 1-2
* “Compiling and Assembling” on page 1-3
e “Linking” on page 1-7
e “Loading and Splitting” on page 1-10

Visual DSP++ 5.0 Linker and Utilities Manual 1-1

Software Development Flow

Software Development Flow

The majority of this manual describes linking, a critical stage in the
program development process for embedded applications.

The linker tool (1inker) consumes object and library files to produce exe-
cutable files, which can be loaded onto a simulator or target processor.
The linker also produces map files and other output that contain informa-
tion used by the debugger. Debug information is embedded in the
executable file.

After running the linker, you test the output with a simulator or emulator.
Refer to the VisualDSP++ User’s Guide and online Help for information
about debugging.

Finally, you process the debugged executable file(s) through the loader or
splitter to create output for use on the actual processor. The output file
may reside on another processor (host) or may be burned into a PROM.

The VisualDSP++ 5.0 Loader and Utilities Manual describes loader/split-

ter functionality for the target processors.
The processor software development flow can be split into three phases:

1. Compiling and assembling — Input source files C (.c), C++ (.cpp),
and assembly (.asm) yield object files (. doj).

2. Linking — Under the direction of the linker description file (.1df),
a linker command line, and Visual DSP++ Project Options dialog
box settings, the linker utility consumes object files (.doj) and
library files (.d1b) to yield an executable (.dxe) file. If specified,
shared memory (.sm) and overlay (.ov1) files are also produced.

3. Loading or splitting — The executable (.dxe) file, as well as shared
memory (.sm) and overlay (.ov1) files, are processed to yield
output file(s). For TigerfSHARC and Blackfin processors, these are
boot-loadable (.1dr) files or non-bootable PROM image files,

which execute from the processor’s external memory.

1-2

VisualDSP++ 5.0 Linker and Utilities Manual

Infroduction

Compiling and Assembling

The process starts with source files written in C, C++, or assembly. The
compiler (or a code developer who writes assembly code) organizes each
distinct sequence of instructions or data into named sections, which
become the main components acted upon by the linker.

Inputs - C/C++ and Assembly Sources

The first step toward producing an executable file is to compile or assem-
ble C, C++, or assembly source files into object files. The VisualDSP++
development software assigns a .doj extension to object files (Figure 1-1).

Source Files (.c, .cpp, .asm) Obiject Files (.doj)

| Compiler and Assemb>

Figure 1-1. Compiling and Assembling

Object files produced by the compiler (via the assembler) and by the
assembler itself consist of input sections. Each input section contains

a particular type of compiled/assembled source code. For example, an
input section may consist of program opcodes or data, such as variables
of various widths.

Some input sections may contain information to enable source-level
debugging and other VisualDSP++ features. The linker maps each input
section (via a corresponding output section in the executable) to a memory
segment, a contiguous range of memory addresses on the target system.

Each input section in the .1df file requires a unique name, as specified in
the source code. Depending on whether the source is C, C++, or assembly,
different conventions are used to name an input section (see “Linker
Description File”).

Visual DSP++ 5.0 Linker and Utilities Manual 1-3

Compiling and Assembling

Input Section Directives in Assembly Code

A .SECTION directive defines a section in assembly source. This directive
must precede its code or data.

SHARC Code Example:

.SECTION/DM asmdata; // Declares section asmdata
VAR inputl[37; // Declares data buffer in asmdata
.SECTION/PM asmcode; // Declares section asmcode
RO = 0x1234; // Three lines of code in asmcode
Rl = 0x4567;
R3 = Rl + R2;

In the above example, the /dm asmdata input section contains the array
input, and the /pm asmcode input section contains the three line of code.

Blackfin Code Example:

.SECTION Library_Code_Space; /* Section Directive */

.GLOBAL _abs;

_abs:
RO = ABS RO; /* Take absolute value of input */
RTS;

_abs.end;

In the above example, the assembler places the global symbol/label _abs
and the code after the label into the input section Library_Code_Space,
as it processes this file into object code.

In the example, the linker knows what code is associated with the label
_abs because it is delimited with the label _abs.end. For some linker fea-
tures, especially unused section elimination (see
“‘ELIMINATE_SECTIONS()” on page 3-40), the linker must be able to
determine the end of code or data associated with a label. In assembly
code, the end of a function data block can be marked with a label with the

1-4

VisualDSP++ 5.0 Linker and Utilities Manual

Infroduction

same name as the label at the start of the name with .end appended to it.
It is also possible to prepend a “.” in which case the label will not appear
in the symbol table which can make debugging easier.

Listing 1-1 shows uses of .end labels in assembly code.

Listing 1-1. Using Labels in Assembly Code

start_label:

// code
start_label.end // marks end of code section
new_label:
// code
new_label.END: // end label can be in upper case
one_entry: // function one_entry includes the code
// in second_entry
second_entry: // more code
.one_entry.end:
.second_entry.end: // prepended "." omits end label

// from the symbol table

Input Section Directives in C/C++ Source Files

Typically, C/C++ code does not specify an input section name, so the
compiler uses a default name. By default, the input section names are
program (for code) and datal (for data). Additional input section names
are defined in .1df files. (For more information on memory mapping,
see “Specifying the Memory Map” on page 2-12.)

In C/C++ source files, you can use the optional section("name")
C language extension to define sections.

Example 1:

Visual DSP++ 5.0 Linker and Utilities Manual 1-5

Compiling and Assembling

While processing the following code, the compiler stores the temp variable
in the ext_data input section of the .doj file and stores the code gener-
ated from funcl in an input section named extern.

section ("ext_data") int temp; /* Section directive */
section ("extern") void funcl(void) { int x = 1; }

Example 2:

The section ("name") extension is optional and applies only to the decla-
ration to which it is applied. Note that the new function (func2) does not
have section ("extern") and will be placed in the default input section
program. For more information on LDF sections, refer to “Specifying the
Memory Map” on page 2-12.

section ("ext_data") int temp;
section ("extern") void funcl(void) { int x =1; }
int func2(void) { return 13; } /* New */

For information on compiler default section names, refer to the
VisualDSP++ 5.0 C/C++ Compiler and Library Manual for the appropriate
target processor and “Placing Code on the Target” on page 2-36.

@ Identify the difference between input section names, output sec-

tion names, and memory segment names because these types of
names appear in the .1df file. Usually, default names are used.
However, in some situations you may want to use non-default
names. One such situation is when various functions or variables
(in the same source file) are to be placed into different memory
segments.

1-6

VisualDSP++ 5.0 Linker and Utilities Manual

Infroduction

Linking

After you have (compiled and) assembled source files into object files, use
the linker to combine the object files into an executable file. By default,

the development software gives executable files a . dxe extension
(Figure 1-2).

Library Files
(.dlb)
Obiject Files
(.doj) Executables
(-dxe, .sm, .ovl)
I
:| Linker
Linker Description Project Options
File (LDF) Dialog Box Settings

Figure 1-2. Linking Diagram

Linking enables your code to run efficiently in the target environment.
Linking is described in detail in Chapter 3, “Linker”.

When developing a new project, use the Project Wizard (Blackfin)
or Expert Linker (SHARC and TigerSHARC) to generate the proj-
ect’s . 1df file. For more information, see Chapter 4, “Expert
Linker” or search online help for “Project Wizard”.

Visual DSP++ 5.0 Linker and Utilities Manual 1-7

Linking

Linker and Assembler Preprocessor

The linker and assembler preprocessor program (pp.exe) evaluates and
processes preprocessor commands in source files. With these commands,
you direct the preprocessor to define macros and symbolic constants,
include header files, test for errors, and control conditional assembly and
compilation.

The pp preprocessor is run by the assembler or linker from the operating
system’s command line or from within the VisualDSP++ environment.
These tools accept and pass this command information to the preproces-
sor. The preprocessor can also operate from the command line using its
own command-line switches.

“.” Character Identifier

The assembler/linker preprocessor treats the “.” character as part of an
identifier.
The preprocessor matches the assembler which uses “.” as part of assem-

bler directives and as a valid character in labels. This behavior creates a
possible problem for users that have written preprocessor macros that rely
on identifiers to break when encountering the “.” character, usually seen
when processing register names. For example,

fidefine Loadd(reg, val) \

reg.| val; \

reg.h = val;

The above example would not work in Visual DSP++ 5.0 because Visu-
alDSP++ 5.0 does not provide any replacement since reg is not parsed as a
separate identifier. The macro must be rewritten using the ## operator,
such as:

jfdefine Loadd(reg, val) \

1-8

VisualDSP++ 5.0 Linker and Utilities Manual

Infroduction

reg #HF .1

val; \
reg #HE .h = val;

The preprocessor supports ANSI C standard preprocessing with
extensions but differs from the ANSI C standard preprocessor in

several ways. For information on the pp preprocessor, see the
VisualDSP++ 5.0 Assembler and Preprocessor Manual.

@ The compiler has it own preprocessor that permits the use of

preprocessor commands within C/C++ source. The compiler
preprocessor automatically runs before the compiler. For more
information, see the VisualDSP++ 5.0 C/C++ Compiler and Library
Manual for the appropriate target architecture.

Visual DSP++ 5.0 Linker and Utilities Manual 1-9

Loading and Splitting

Loading and Splitting

After debugging the . dxe file, you process it through a loader or splitter to
create output files used by the actual processor. The file(s) may reside on
another processor (host) or may be burned into a PROM.

For more information, refer to the VisualDSP++ 5.0 Loader and Utilities
Manual which provides detailed descriptions of the processes and options
used to generate boot-loadable loader (.1dr) files for the appropriate
target processor. This manual also describes the splitting utility, which
creates the non-boot loadable files that execute from the processor’s exter-
nal memory.

In general:

SHARC ADSP-2106x/ADSP-21160 processors use the loader
(e1floader.exe) to yield a boot-loadable image (.1dr file), which
resides in memory external to the processor (PROM or host proces-
sor). Use the splitter utility (e1fsp121k) to generate non-bootable
PROM image files, which execute from the processor’s external

memory (often used with the ADSP-21065L processors).
SHARC ADSP-2116x/2126x/2136x/2137x/2147x/2148x proces-

sors use the loader (e1floader.exe) to yield a boot-loadable image
(.1dr file), which transported to (and run from) processor memory.
To make a loadable file, the loader processes data from a boot-ker-
nel file (.dxe) and one or more other executable files (.dxe).

TigerSHARC processors use the loader (e1floader.exe) to yield a
boot-loadable image (.1dr file), which is transported to (and run
from) processor memory. To make a loadable file, the loader pro-
cesses data from a boot-kernel file (.dxe) and one or more other
executable files (.dxe).

Visual DSP++ 5.0 Linker and Utilities Manual

Infroduction

* TigerSHARC and SHARC processors use the splitter utility
(e1fspl2lk.exe) to generate non-bootable PROM image files,
which execute from the processor’s external memory.

* Blackfin processors use the loader (e1floader.exe) to yield a
boot-loadable image (. 1dr file), which resides in memory external
to the processor (PROM or host processor. To make a loadable file,
the loader processes data from a boot-kernel file (.dxe) and one or
more other executable files (.dxe).

Figure 1-3 shows a simple application of the loader. In this example, the
loader’s input is a single executable (.dxe) file. The loader can accommo-
date up to two .dxe files as input plus one boot kernel file (.dxe).

Executables

(.dxe, .sm, .ovl) Debugger
(Simulator, ICE, or EZ-KIT Lite)

Loader

Boot Image
(.Idr)

Boot Kernel
(.dxe)

Figure 1-3. Using the Loader to Create an Output File

For example, when a TigerSHARC processor is reset, the boot kernel
p g p
portion of the image is transferred to the processor’s core. Then, the

Visual DSP++ 5.0 Linker and Utilities Manual 1-11

Loading and Splitting

instruction and data portion of the image are loaded into the processor’s
internal RAM (as shown in Figure 1-4) by the boot kernel.

EPROM
Processor
1
Boot Kernel —>
Internal
Memor
) y
—>
Instructions
and
Data

Figure 1-4. Booting from a Bootloadable ((LDR) File

Visual DSP++ includes boot kernel files (.dxe), which are used automati-
cally when you run the loader. You can also customize boot kernel source

files (included with Visual DSP++) by modifying and rebuilding them.

Figure 1-5 shows how multiple input files—in this case, two executable
(.dxe) files, a shared memory (.sm) file, and overlay (.ov1) files—are
consumed by the loader to create a single image file (. 1dr). This example
illustrates the generation of a loader file for a multiprocessor architecture.

1-12 Visual DSP++ 5.0 Linker and Utilities Manual

Infroduction

The .smand .ov1 files should reside in the same directory that
contains the input .dxe file(s) or in the current working directory.
If your system does not use shared memory or overlays, .sm and
.ov1 files are not required.

Loader

y

Figure 1-5. Input Files for a Multiprocessor System

This example has two executable files that share memory. Overlays are also
included. The resulting output is a compilation of all the inputs.

Visual DSP++ 5.0 Linker and Utilities Manual 1-13

Loading and Splitting

1-14 Visual DSP++ 5.0 Linker and Utilities Manual

2 LINKER

Linking assigns code and data to processor memory. For a simple single
processor architecture, a single .dxe file is generated. A single invocation
of the linker may create multiple executable (. dxe) files for multiprocessor
(MP) or multi-core (MC) architectures. Linking can also produce a shared
memory (.sm) file for an MP or MC system. A large executable file can be
split into a smaller executable file and overlay (.ov1) files, which contain
code that is called in (swapped into internal processor memory) as needed.

The linker performs this task.

You can run the linker from a command line or from the Visual DSP++
Integrated Development and Debugging Environment (IDDE).

You can load linker output into the VisualDSP++ debugger for simula-
tion, testing, and profiling.

This chapter includes:
* “Linker Operation” on page 2-3
* “Linking Environment for Windows” on page 2-7
e “Linker Warning and Error Messages” on page 2-10
e “Link Target Description” on page 2-11

e “Linker Command-Line Reference” on page 2-44

Visual DSP++ 5.0 Linker and Utilities Manual 2-2

Linker Operation

Linker Operation

Figure 2-1 illustrates a basic linking operation. The figure shows several
object (. doj) files being linked into a single executable (.dxe) file. The
linker description file (.1df) directs the linking process.

R

Linker

Figure 2-1. Linking Object Files to Produce an Executable File

@ When developing a new project, use the Project Wizard (Blackfin)

or Expert Linker (SHARC and TigerSHARC) to generate the proj-
ect’s LDF. For more information, see Chapter 4, “Expert Linker”
or search online help for “Project Wizard”.

In a multiprocessor system, a . dxe file for each processor is generated. For
example, for a dual-processor system, you must generate two .dxe files.
The processors in a multiprocessor architecture may share memory. When
directed by statements in the .1df file, the linker produce a shared mem-
ory (.sm) executable file whose code is used by multiple processors.

Overlay files, another linker output, support applications that require
more program instructions and data than the processor’s internal memory
can accommodate. Refer to “Memory Management Using Overlays” on
page 5-4 for more information.

2-3 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

Similar to object files, executable files are partitioned into ouzpur sections
with unique names. Output sections are defined by the Executable and
Linking Format (ELF) file standard to which Visual DSP++ conforms.

The executable’s input section names and output section names
occupy different namespaces. Because the namespaces are indepen-
dent, the same section names may be used. The linker uses input
section names as labels to locate corresponding input sections
within object files.

The executable file(s) (.dxe) and auxiliary files (.sm and .ov1) are not
loaded into the processor or burned onto an EPROM. These files are used
to debug the application.

Directing Linker Operation

Linker operations are directed by these options and commands:

* Linker command-line switches (options). Refer to “Linker Com-
mand-Line Reference” on page 2-44.

* InanIDDE environment: Options on the Link page of the Project
Options dialog box. See “Project Builds” on page 2-7.

* LDF commands. Refer to “LDF Commands” on page 3-36 for a
detailed description.

Linker options control how the linker processes object files and library
files. These options specify various criteria such as search directories, map
file output, and dead code elimination.

LDF commands in a linker description file (.1df) define the target
memory map and the placement of program sections within processor
memory. The text of these commands provides the information needed to
link your code.

Visual DSP++ 5.0 Linker and Utilities Manual 2-4

Linker Operation

The Visual DSP++ Project window displays the .1df file as a source
file, though the file provides linker command input.

Using directives in the .1df file, the linker:

Reads input sections in the object files and maps them to output
sections in the executable file. More than one input section may be
placed in an output section.

Maps each output section in the executable to a memory segment,
a contiguous range of memory addresses on the target processor.
More than one output section may be placed in a single memory
segment.

Linking Process Rules

The linking process observes these rules:

Each source file produces one object file.

Source files may specify one or more input sections as destinations

for compiled/assembled object(s).

The compiler and assembler produce object code with labels (input
section names) that can be used to direct one or more portions of
object code to particular input sections.

As directed by the .1df file, the linker maps each input section
in the object code to an output section.

As directed by the .1df file, the linker maps each output section
to a memory segment.

Each input section may contain multiple code items, but a code
item may appear in one input section only.

More than one input section may be placed in an output section.

2-5

Visual DSP++ 5.0 Linker and Utilities Manual

Linker

* Each memory segment must have a specified width.

* Contiguous addresses on different-width hardware must reside in
different memory segments.

* More than one output section may map to a memory segment if
the output sections fit completely within the memory segment.

Linker Description File Overview

Whether you are linking C/C++ functions or assembly routines, the mech-
anism is the same. After converting the source files into object files, the
linker uses directives in an .1df file to combine the objects into an
executable (.dxe) file, which may be loaded into a simulator for testing.

Executable file structure conforms to the Executable and Linkable
Format (ELF) standard.

Each project must include one . 1df file that specifies the linking process
by defining the target memory and mapping the code and data into that
memory. You can write your own . 1df file, or you can modify an existing
file; modification is often the easier alternative when there are few changes
in your system’s hardware or software. VisualDSP++ provides an . 1df file
that supports the default mapping of each processor type.

@ When developing a new project, use the Project Wizard (Blackfin)

or Expert Linker (SHARC and TigerSHARC) to generate the proj-
ect’s LDF. For more information, see Chapter 4, “Expert Linker”
or search online help for “Project Wizard”.

Similar to an object (.doj) file, an executable (.dxe) file consists of
different segments, called ousput sections. Input section names are
independent of output section names. Because they exist in different
namespaces, input section names can be the same as output section names.

Refer to Chapter 3, “Linker Description File” for further information.

Visual DSP++ 5.0 Linker and Utilities Manual 2-6

Linking Environment for Windows

Linking Environment for Windows

The linking environment refers to Windows command-prompt windows
and the VisualDSP++ IDDE. At a minimum, run development tools (such
as the linker) via a command line and view output in standard output.

Visual DSP++ provides an environment that simplifies the processor pro-
gram build process. From Visual DSP++, you specify build options from
the Project Options dialog box and modify files, including the linker
description file (. 1df). The Project Options dialog box’s Type option
allows you to choose whether to build a library (. d1b) file, an executable
(.dxe) file, or an image file (. 1dr or others). Error and warning messages
appear in the Output window.

Project Builds

The linker runs from an operating system command line, issued from the
Visual DSP++ IDDE or a command prompt window. The Visual DSP++
IDDE provides an intuitive interface for processor programming. When
you open VisualDSP++, a work area contains everything needed to build,
manage, and debug a DSP project. You can easily create or edit an . 1df
file, which maps code or data to specific memory segments on the target.

For information about the Visual DSP++ environment, refer to the
VisualDSP++ User’s Guide or online Help. Online Help provides
powerful search capabilities. To obtain information on a code item,
parameter, or error, select text in an Visual DSP++ IDDE editor
window or Output window and press the keyboard’s F1 key.

Within Visual DSP++, specify tool settings for project builds. Use the
Project menu to open the Project Options dialog box. The dialog box
pages allow you to select the target processor, type, and name of the exe-
cutable file, as well as Visual DSP++ tools available for use with the
selected processor.

2-7

Visual DSP++ 5.0 Linker and Utilities Manual

Linker

When using the VisualDSP++ IDDE, use the Link page from the Project
Options dialog box to select and/or set linker functional options.

Project Options for NewProject

[Processor (2)
[Profile-guided Optimization
[Warning

[Assemble

=-f) Lnk
&

@ LDF Preprocessing
[Elimination
@ Processor
= E Load
@ Options
[Kernel
[splitter

[Pre-build

= ﬂﬁ Project
[General s
= E Compile s
@ General [] Generate object trace [JWam once on undefined symbal
@ Language Settings [Strip debug symbols [5trip all symbols
[MIsRAC [Rurtime initialization
[Preprocessor
[Processor (1)

Additional Output

[[] Generate symbol map
[Generate xref

[save temporary files

Search directories:

Optimizations

0O Individually map functions and
data items

Additional options:

Figure 2-2. Project Options — Link: General Page

There are four sub-pages you can access—General, LDF Preprocessing,
Elimination, and Processor. Figure 2-2 shows a sample Project:Link:Gen-
eral sub-page. Most dialog box options have a corresponding compiler
command-line switch as described in “Linker Command-Line Switches”

on page 2-49.

Use the Additional options field on each sub-page to enter appropriate
file names, switches, and parameters that do not have corresponding

controls on the dialog box but are available as compiler switches.

Due to different processor architectures, different Link page options are
available. Use context-sensitive online Help in Visual DSP++ to obtain
information on dialog box controls (linker options). To do so, click on the

Visual DSP++ 5.0 Linker and Utilities Manual

2-8

Linking Environment for Windows

“?” button and then click on the field, box, or button for which you need
information.

Expert Linker

The Visual DSP++ IDDE provides an interactive tool, Expert Linker,
to map code or data to specific memory segments. When developing
a new project, use the Expert Linker to generate the LDF.

Windows-hosted Expert Linker graphically displays the .1df information
(object files, LDF macros, libraries, and a target memory description).
With Expert Linker, use drag-and-drop operations to arrange the object
files in a graphical memory mapping representation. When you are satis-
fied with the memory layout, generate the executable (. dxe) file.

Figure 2-3 shows the Expert Linker window, which comprises two panes:
Input Sections and Memory Map (output sections). Refer to Chapter 4,
“Expert Linker” for detailed information.

Ihput Sections: M emary Map:
" Seqment!S ection I Start Address I End Address |;|
int11 -ah mem INT_INT14 Ox1cD Dl o
Wint12 E mem INT_INT1S Oxle0 Du1ft
Wit 3 mem_itab 0x200 0241
i1 4 mem_code (242 D7t
Min15 | mem_dataZ (%E000 Owaeft
Wirit4 memm_heap Oxaf00 Db i
VirtS mem_stack (6800 Dbt
PintG mem,_datal (c000 D
IYint7 &l

90 wing 0

Figure 2-3. Expert Linker Window

2-9 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

Linker Warning and Error Messages

Linker messages are written to the Visual DSP++ Output window or to
standard output (when the linker is run from a command line). Messages
describe problems the linker encountered while processing the . 1df file.
Warnings indicate processing errors that do not prevent the linker from
producing a valid output file, such as unused symbols in your code.
Errors are issued when the linker encounters situations that prevent the
production of a valid output file.

Typically, these messages include the name of the . 1df file, the line num-
ber containing the message, a six-character code, and a brief description of
the condition. For example,

lTinker -proc ADSP-unknown a.doj
[Error 1i1010] The processor ‘ADSP-unknown’ is
unknown or unsupported.

Interpreting Linker Messages

You can access descriptions of linker messages by selecting the
six-character code (for example, 111010) and pressing the F1 key.

Within Visual DSP++, the Output window’s Build page displays project
build status and error messages. In most cases, double-clicking a message
displays the line in the source file causing the problem.

Some build errors, such as a reference to an undefined symbol, do not
correlate directly to source files. These errors often stem from omissions in
the .1df file.

For example, if an input section from the object file is not placed by the
.1df file, a cross-reference error occurs at every object that refers to labels
in the missing section. Fix this problem by reviewing the .1df file and
specifying all sections that need placement. For more information, refer to

online Help.

Visual DSP++ 5.0 Linker and Utilities Manual 2-10

Link Target Description

Link Target Description

Before defining the system’s memory and program placement with linker
commands, analyze the target system to ensure you can describe the target
in terms the linker can process. Then, produce an .1df file for your project
to specify these system attributes:

* Physical memory map
e Program placement within the system’s memory map

If the project does not include an . 1df file, the linker uses a default
.1df file for the processor that matches the -proc <processor>
switch on the linker’s command line (or the Processor selection
specified on the Project page of the Project Options dialog box in
the Visual DSP++ IDDE).

Be sure to understand the processor’s memory architecture, which is
described in the appropriate processor’s Hardware Reference and in its data
sheet.

This section contains:
* “Representing Memory Architecture” on page 2-11
* “Specifying the Memory Map” on page 2-12
* “Placing Code on the Target” on page 2-36
e “Profile-Guided Optimization Support” on page 2-43

e “Passing Arguments for Simulation or Emulation” on page 2-44

Representing Memory Architecture

The .1df file’s MEMORY { } command is used to represent the memory archi-
tecture of your processor system. The linker uses this information to place
the executable file into the system’s memory.

2-11 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

Perform the following tasks to write a MEMORY { } command:

* Memory Usage — List the ways your program uses memory in your
system. Typical uses for memory segments include interrupt tables,
initialization data, program code, data, heap space, and stack space.

Refer to “Specifying the Memory Map” on page 2-12.

* Memory Characteristics — List the types of memory in your pro-
cessor system and the address ranges and word width associated
with each memory type. Memory type is defined as RAM or ROM.

e MEMORY{} Command — Construct a MEMORY { } command to
combine the information from the previous two lists and to declare
your system’s memory segments.

For complete information, refer to “MEMORY{}” on page 3-44.

Specifying the Memory Map

An embedded program must conform to the constraints imposed by the

processor’s data path (bus) widths and addressing capabilities. The follow-
ing information describes an . 1df file for a hypothetical project. This file
specifies several memory segments that support the SECTIONS{} command,

as shown in “SECTIONS{}” on page 3-61.
The following topics are important when allocating memory:
e “Memory Usage and Default Memory Segments” on page 2-12

e “Memory Characteristics Overview” on page 2-27

e “Linker MEMORY{} Command in an LDF” on page 2-32

Memory Usage and Default Memory Segments

Input section names are generated automatically by the compiler or are
specified in the assembly source code. The .1df file defines memory seg-

Visual DSP++ 5.0 Linker and Utilities Manual 2-12

Link Target Description

ment names and output section names. The default .1df file handles all
compiler-generated input sections (refer to the “Input Section” column in
Table 2-1, Table 2-2, and Table 2-3). The produced . dxe file has a corre-
sponding output section for each input section. Although programmers
typically do not use output section labels, the labels are used by down-
stream tools.

Use the ELF file dumper utility (e1fdump) to dump contents of an output
section (for example, datal) of an executable file. See “elfdump — ELF File
Dumper” on page B-1 for information about this utility.

The following sections show how input sections, output sections, and
memory segments correspond in the default .1df files for the appropriate
target processor.

Refer to your processor’s default . 1df file and to the processor’s
Hardware Reference for details. Also see “Wildcard Characters” on
page 2-35.

Typical uses for memory segments include interrupt tables, initialization
data, program code, data, heap space, and stack space. For detailed
processor-specific information, refer to:

e “Default Memory Segments for SHARC Processors”
e “Default Memory Segments for TigerSHARC Processors”
e “Default Memory Segments for Blackfin Processors”

e “Blackfin Special “Table” Input Sections”

2-13 Visual DSP++ 5.0 Linker and Utilities Manual

Default Memory Segments for SHARC Processors

Table 2-1 shows section mapping in the default .1df file for an
ADSP-21161 processor (as a simplified example for SHARC processors)

Table 2-1. Section Mapping in the Default SHARC LDF File

Linker

Input Section Output Section Memory Segment
seg_pmco seg_pmco seg_pmco
seg_dmda seg_dmda seg_dmda
seg_pmda seg_pmda seg_pmda
seg_rth seg_rth seg_rth
seg_init seg_init seg_init

seg_init_code

seg_init_code

seg_init_code

seg_argv seg_argv seg_argv
seg_ctdm dxe_ctdm mem_ctdm

seg_ctdml

seg_vthl seg_vthl seg_dmda

seg_sram seg_sram seg_sram

.bss .bss seg_dmda

.gdt seg_dmda seg_dmda

.gdtl

.frt seg_dmda seg_dmda

.cht seg_dmda seg_dmda

.edt seg_dmda seg_dmda

.rtti seg_dmda seg_dmda

VDK Only:

seg_stack stackseg seg_stack
For ADSP-213xx/ADSP-214xx Processors Only:

seg_stak stackseg seg_stak

seg_ext_code

seg_ext_code

seg_ext_code

Visual DSP++ 5.0 Linker and Utilities Manual

2-14

Link Target Description

Table 2-1. Section Mapping in the Default SHARC LDF File (Contd)

Input Section Output Section Memory Segment
seg_heap heap seg_heap
seg_ext_data seg_ext_data seg_ext_dmda
seg_sdram seg_sdram_data seg_ext_dmda
seg_flash seg_flash seg_flash

For ADSP-214xx Processors Only:

seg_ext_code seg_ext_code seg_ext_swco

seg_swco seg_swco seg_int_code

For more information on stack and heap allocation, see “Memory Usage”
in the VisualDSP++ C/C++ Compiler Manual for SHARC Processors.
Several input sections and memory segments are used in the default . 1df
files for ADSP-210xx/211xx/212xx/213xx/214xx processors, which must
be present in the user’s . 1df file. These sections are described in detail
below.

.bss

This section contains global zero-initialized data. The linker places the
contents of this data section in seg_dmda.

JItti
This section is used by the C++ run-time type identification support,
when enabled.

seg_rth
This section contains the interrupt vector table. By default, this is located
in the start-up file (for example, 060_hdr.doj).

seg_init

This section contains location and size information about the stack and
heap; also contains compressed data created by the memory initialization
tool. (See “-meminit” on page 2-61 for more information.)

2-15 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

seg_int_code

Code that modifies interrupt latch registers must not be executed from
external memory. To minimize the impact of this restriction, the library
functions that modify the latch registers are located in the seq_init_code
section, which should be located in internal memory.

seg_pmco
This section is the default location for program code.

seg_pmda
This section is the default location for global program data that is quali-
fied with the “pm” keyword. For example,

int pm xyz[1007]; // Located in seg_pmda

seg_argv
This section contains the command-line arguments that are used as part of

profile-guided optimization (PGO).

seg_ctdm

This section contains the addresses of constructors called before the start

of a C++ program (such as constructors for global and static objects). This
section must be terminated with the symbol “___ctor_NULL_marker” (the
default . 1df files ensure this). It is required if compiling with C++ code.

seg_dmda
This section is the default location for global data and for data that is
qualified with the “dm” keyword. For example,

int abc[100]; // Located in seg_dmda
int dm def[100]; // Located in seg_dmda

In the default (non-VDK) LDFs for the ADSP-21020/2106x/2116x and
ADSP-2126x processors, the run-time stack and heap are also allocated
from this section.

Visual DSP++ 5.0 Linker and Utilities Manual 2-16

Link Target Description

seg_stack (VDK only)
The run-time stack is located in this section. Local variables, function
parameters, and so on are stored here.

seg_stak (not VDK)

In the LDFs for ADSP-2136x/2137x and ADSP-2147x/2148x processors,
this section is the area where the run-time stack is located. Local variables,
function parameters, and so on are stored here.

In the LDFs for ADSP-21020, ADSP-2106x, ADSP-2116x, and
ADSP-2126x processors, the run-time stack is located in seg_dmda.

seg_vtbl

This section contains C++ virtual function tables. The default .1df files
place the virtual function tables into the default data memory area, but
this can be re-mapped as required. You can also direct the compiler to use
a different section for C+ virtual function tables with the -section com-
piler switch.

seg_sram
This section is SDRAM memory.

seg_heap

In the default LDFs for ADSP-2136x/2137x/2147x/2148x processors,
this section is the area from which memory allocation functions and oper-
ators (new, malloc(), and so on) allocate memory.

In the default LDFs for ADSP-21020, ADSP-2106x, ADSP-2116x, and
ADSP-2126x processors, the memory allocation functions and operators
allocate memory from seg_dmda.

In the VDK LDFs, this section is the area from which memory allocation
functions and operators allocate memory.

seg_flash
In the LDFs for ADSP-213xx/ADSP-214xx processors, this section is flash
memory.

2-17 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

seg_ext_swco

In the LDFs for ADSP-214xx processors, this section is the external mem-
ory for sections that contain short-word instructions (using the variable
instruction set).

seg_ext_nwco

In the LDFs for ADSP-214xx processors, this section is the external mem-
ory for sections that contain normal-word instructions (using the legacy
instruction set).

seg_ext_dmda
In the LDFs for ADSP-214xx processors, this section is external memory
used for global data qualified with the “dn” keyword.

seg_ext_pmda
In the LDFs for ADSP-214xx processors, this section is the external mem-
ory for global program data that is qualified with the “pn” keyword.

Other Memory Segments

The compiler and libraries also use other data sections that are linked into
one of the above memory segments. These data sections include:

seg_ctdml

The symbol “___ctor_NULL_marker” (located in the C++ run-time library)
marks the end of the list of global and static constructors and is placed in
this data section. The linker ensures that the contents of this data section
are the last items in seg_ctdml.

.gdt, .gdtl, .frt, .cht, and .edt

These data sections are used to hold data used during the handling of
exceptions. The linker places the contents of these data sections in
seg_dmda. See “Blackfin Special “Table” Input Sections” on page 2-24.

Visual DSP++ 5.0 Linker and Utilities Manual 2-18

Link Target Description

Default Memory Segments for TigerSHARC Processors

Table 2-2 shows section mapping in the default .1df file for a
ADSP-TS101 processor (as a simplified example for TigerSHARC

processors).

Table 2-2. Section Mapping in the Default TigerSHARC LDF File

Input Section Output Section Memory Segment
program code MOCode
datal datal M1Data
data? data? M2Data
mem_argv mem_argv M1Data
bsz bsz M1Data
bsz_init bsz_init M1Data
ctor datal M1Data
ctor0 datal M1Data
ctorl datal M1Data
ctor? datal M1Data
ctor3 datal M1Data
ctor4d datal M1Data
.gdt,.gdt] datal M1Data
frt datal M1Data
.cht datal M1lData
.edt datal M1Data
.rtti datal M1Data
vtbl vtbl M2DataA

Several input sections and memory segments are used in the default LDFs
for ADSP-TSxxx processors must be present in user’s own LDFs. These
sections are described in detail below.

2-19 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

For more information on stack and heap allocation, see “Allocation of
memory for stacks and heaps in LDFs” in the C/C++ Compiler and Library
Manual for TigerSHARC Processors.

bsz

This section is a BSS-style section for global zero-initialized data.

bsz_init
This section contains run-time initialization data. (See “-meminit” on
page 2-61 for more information.)

ctor

This section contains the addresses of constructors that are called before
the start of a C++ program (such as constructors for global and static
objects). This section must be terminated with the symbol
“___ctor_NULL_marker” (the default LDFs ensure this). It is required if
compiling with C++ code.

When all ctor sections are merged, they form a table containing a list of
all constructors for all global C++ objects. The table is used only at startup
and can be placed in ROM. When linking, it is important that all ctor
sections are merged in sequence (no other sections in between) and the
run-time library or the VDK run-time library is placed with the first ctor
section. Note that the default LDF’s “___ctor_NULL_marker” symbol is
placed in a section named “ctor1” which must be the last of the ctor sec-
tions to be used as input. The final letter in this name is a lowercase “L”.

datal
This section is the default location for global program data.

data2
This section is the default location for global program data specified with
the pm memory qualifier.

mem_argv
This section contains the command-line arguments that are used as part of

profile-guided optimization (PGO).

Visual DSP++ 5.0 Linker and Utilities Manual 2-20

Link Target Description

program
This section is the default location for program code.

vtbl

This section contains C++ virtual function tables. The default LDFs place
the virtual function tables into the default data memory area but this can

be re-mapped as required. You can also direct the compiler to use a differ-
ent section for C+ virtual function tables, by using the -section compiler
switch.

Other Memory Segments

The compiler and libraries also use other data sections that are linked into
one of the above memory segments. These data sections include:

ctorl
This section contains the terminator for the ctor table section. It must be
mapped immediately after the ctor sections.

.gdt, .gdtl, .frt, .cht, .edt, and .rtti

These data sections are used to hold data used during the handling of
exceptions. The linker places the contents of these data sections in
seg_dmda. See “Blackfin Special “Table” Input Sections” on page 2-24.

Default Memory Segments for Blackfin Processors

The default . 1df files in Blackfin/1df show the mapping of input sec-
tions to output sections and memory segments. There are several input
sections present in the default .1df file and their uses are detailed below.

See “Linker Description File” in Chapter 3, Linker Description File for
more information on .1df files and help on customization. Before cus-
tomizing a default . 1df file, consider using the Expert Linker available
from the VisualDSP++ IDDE. Generation and configuration of a custom
.1df file is available when creating a new project (or via the Project
Options dialog box in Visual DSP++.

2-21 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

program
This section is the default location for program code.

datal
This section is the default location for global program data.

cplb_code

This section stores the run-time library’s cacheability protection lookaside
buffer (CPLB) management routines. It is usually mapped into L1
Instruction SRAM. In particular, if CPLB replacement is possible, this
section must be mapped to memory that is guaranteed to always be avail-
able; this means that it must be addressed by a locked CPLB.

constdata
This section is used for global data that is declared as constant and for lit-
eral constants such as strings and array initializers.

cplb_data

This section stores CPLB configuration tables. In particular, the
cplbtabx.doj files (where x indicates the target) mapped by .1df files are
placed into this section.

L1_DATA_A

This section is used to allow data to be mapped explicitly into L1 Data A
SRAM using the SECTION directive. By default, the compiler does not gen-
erate data here. This section is analogous to L1_code.

L1 _DATA B
This section is similar to L1_DATA_A, except that it is used to map data into

L1 Data B SRAM.

voldata
This section is used for data that may change due to external influences

(such as DMA), and should not be placed into cached data areas.

ctor
This section contains addresses of C++ constructor functions which are to

Visual DSP++ 5.0 Linker and Utilities Manual 2-22

Link Target Description

be called before main() to construct static objects. The mapping of ctor
must be followed directly by the mapping of ctor.

bsz

This section is used to map global zero-initialized data. This section does
not actually contain data; it is zero-filled upon loading via the Visu-
alDSP++ IDDE, via a command line, or when processed by the loader.

bsz_init

This section contains run-time initialization data. (See “-meminit” on
page 2-61.) It is expected that this section is mapped into read-only
memory. When a . dxe file has been processed by the Memory Initializer
utility and the program starts running, other data sections (such as datal
and constdata) are initialized by data copied from this section.

stack
This section is the area where the run-time stack is located. Local vari-
ables, function parameters, and so on are stored here.

heap
This section is the area where the heap is located. Dynamically allocated
data is placed here.

noncache_code

This section is mapped to areas of memory that cannot be cache and take
program code. This section is used when you have a function that turns on
the cache to ensure that the function itself does not reside in cache (as exe-
cuting code from a cache memory address causes a hardware exception).

sdram0

In most .1df files and LDF configurations, this section allows code or
data to be mapped explicitly into external memory by using the SECTION
directive. This can be used to place large, infrequently used data or func-
tions into external memory to free up valuable internal memory.

2-23 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

sdram0_bank{1|2|3}
This section is used to map code and data into separate SDRAM banks
which are defined when SDRAM is partitioned in the default . 1df files.

sdram_bcz

This section is the same as section bsz, except it is placed in SDRAM
when SDRAM is enabled.

sdram_shared
This section is used to map code and data into the part of memory shared
between core A and core B on multicore systems.

vtbl

This section contains C++ virtual function tables. The default .1df files
place the virtual function tables into the default data memory area but this
can be re-mapped as required. You can also direct the compiler to use a
different section for C+ virtual function tables by using the -section
compiler switch.

Other Memory Segments

The compiler and libraries also use other data sections that are linked into
one of the above memory segments. These data sections include:

ctorl
This section contains the terminator for the ctor table section. It must be
mapped immediately after the ctor section.

.gdt, .gdtl, .frt, .cht, .edt, and .rtti
These data sections are used to hold data used during the handling of
exceptions. See “Blackfin Special “Table” Input Sections”.

Blackfin Special “Table” Input Sections

The following “table” data sections are used to hold data used during the
handling of exceptions. Generally, the linker maps these sections into
read-only memory.

Visual DSP++ 5.0 Linker and Utilities Manual 2-24

Link Target Description

.gdt

The . gdt section (global dispatch table) is used by the C++ exception
library to determine which area of code to which a particular address
belongs. This section must be contiguous in memory.

.gdtl
The .gdt1 section contains the terminator for the .gdt table section. It
must be mapped immediately after the . gdt section.

.edt
The .edt section (exception dispatch table) is used by the C++ exception
library to map from try blocks to catch blocks.

.cht

The .cht section (catch handler types table) is used to map to the RTTI
type information. The C++ exception library uses it to determine the types
that correspond to catch entries for a try block.

frt

The . frt section (function range table) is used by the C++ exception
library during exception processing to unwind the stack of active
functions.

primio_atomic_lock
The primio_atomic_lock section is used by the control variable that is
used to ensure atomic file I/O. It must be in shared memory and not

cached.

mc_data
The mc_data section is used to hold the core-specific storage on multi-core
systems.

rtti
The .rtti section is used by the C++ run-time type identification sup-
port, when enabled.

2-25 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

cplb

The cp1b section is in . 1df files for legacy reasons.

Input Sections in Blackfin Default LDFs for User Code/Data

These sections are not normally used by the Blackfin compiler and
libraries.

L1_data

This section is used to allow global data to be mapped explicitly into L1
data SRAM using the section pragma or directive. This input section
maps data to both banks A and B where present on the target.

L1 data_a
This section is not normally used by the compiler and libraries.

L1 _data_ b
This section is similar to L1_data_a, except that it is used to map data into
L1 data B SRAM where it is present on the target chip.

L1_code
This section is used to allow code to be mapped explicitly into L1 code
SRAM using the section pragma or directive.

L1 _bcz
This section is used to map global zero initialized data into L1 data SRAM
using the section pragma or directive.

L2 bcz
This section is used to map global zero-initialized data to L2 for parts
which have L2 memory using the section pragma or directive.

L2 sram
This section can be used to map code and data into L2 for non-multicore

parts that have L2 SRAM.

Visual DSP++ 5.0 Linker and Utilities Manual 2-26

Link Target Description

12_sram
This section can be used on a multicore system to map code and data into
L2 for parts which have L2 memory.

L2 sram_a
This section is used to map code and data into the part of L2 memory
reserved for core A on a multicore system.

L2 _sram_b
This section is used to map code and data into the part of L2 memory
reserved for code B on a multicore system.

12_shared
This section is used to map code and data into the part of L2 memory
shared between core A and core B.

Memory Characteristics Overview

This section provides an overview of basic memory information (including
addresses and ranges) for sample target architectures.

Some portions of the processor memory are reserved. Refer to the
y
processor’s Hardware Reference for more information.

SHARC Memory Characteristics

As an example of the SHARC memory architecture, the ADSP-21161
processor contains a large, dual-ported internal memory for single-cycle,
simultaneous, independent accesses by the core processor and I/O proces-
sor. The dual-ported memory (in combination with three separate on-chip
buses) allow two data transfers from the core and one transfer from the
I/O processor in a single cycle. Using the I/O bus, the I/O processor pro-
vides data transfers between internal memory and the processor’s
communication ports (link ports, serial ports, and external port) without
hindering the processor core’s access to memory. The processor provides
access to external memory through the processor’s external port.

2-27 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

The processor contains one megabit of on-chip SRAM, organized as two
blocks of 0.5 Mbits. Each block can be configured for different combina-
tions of code and data storage. All of the memory can be accessed as 16-,
32-, 48-, or 64-bit words. The memory can be configured in each block
as 2 maximum of 16 Kwords of 32-bit data, 8 Kwords of 64-bit data,

32 Kwords of 16-bit data, 10.67 Kwords of 48-bit instructions (or 40-bit
data), or combinations of different word sizes up to 0.5 Mbits. This gives
a total for the complete internal memory: a maximum of 32 Kwords of
32-bit data, 16 Kwords of 64-bit data, 64 Kwords of 16-bit data, and

21 Kwords of 48-bit instructions (or 40-bit data).

The processor features a 16-bit floating-point storage format that effec-
tively doubles the amount of data that may be stored on-chip. A single
instruction converts the format from 32-bit floating-point to 16-bit
floating-point.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data using the DM bus,
(typically, Block 1) for transfers, and the other block (typically, Block 0)
stores instructions and data using the PM bus. Using the DM bus and PM
bus with one dedicated to each memory block assures single-cycle execu-
tion with two data transfers. In this case, the instruction must be available
in the cache.

Internal Memory

ADSP-21161 processors have 2 Mbits of internal memory space; 1 Mbits
are addressable. The 1 Mbits of memory is divided into two 0.5-Mbit

blocks: Block 0 and Block 1. The additional 1 Mbits of the memory space
is reserved on the ADSP-21161 processor. Table 2-3 shows the maximum

Visual DSP++ 5.0 Linker and Utilities Manual 2-28

Link Target Description

number of data or instruction words that can fit in each 0.5-Mbit internal
memory block.

Table 2-3. Words Per 0.5-MBit Internal Memory Block

Word Type Bits Per Word |Maximum Number of Words Per
0.5-Mbit Block

Instruction 48-bits 10.67 Kwords

Long word data 64-bits 8 Kwords

Extended-precision normal word data | 40-bits 10.67 Kwords

Normal word data 32-bits 16 Kwords

Short word data 16-bits 32 Kwords

External Memory

Although the processor’s internal memory is divided into blocks, the
processor’s external memory spaces are divided into banks. The internal
memory blocks and the external memory spaces may be addressed by
either data address generator (DAG). External memory banks are fixed
sizes that can be configured for various waitstate and access
configurations.

The processor can address 254 Mwords of external memory space.
External memory connects to the processor’s external port, which extends
the processor’s 24-bit address and 32-bit data buses off the processor. The
processor can make 8-, 16-, 32-, or 48-bit accesses to external memory for
instructions and 8-, 16-, or 32-bit accesses for data. Table 2-4 shows the
access types and words for processor’s external memory accesses. The pro-
cessor’'s DMA controller automatically packs external data into the
appropriate word width during data transfer.

2-29 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

The external data bus can be expanded to 48 bits if the link ports
are disabled and the corresponding full-width instruction packing
mode (IPACK) is enabled in the SYSCON register. Ensure that link
ports are disabled when executing code from external 48-bit
memory.

Table 2-4. Internal-to-External Memory Word Transfers

Word Type Transfer Type

Packed instruction 32-, 16-, or 8-t0-48 bit packing
Normal word data 32-bit word in 32-bit transfer
Short word data Not supported

The total addressable space for the fixed external memory bank sizes
depends on whether SDRAM or non-SDRAM (such as SRAM, SBSRAM)
is used. Each external memory bank for SDRAM can address 64 Mwords.
For non-SDRAM memory, each bank can address up to 16 Mwords. The
remaining 48 Mwords are reserved. These reserved addresses for
non-SDRAM accesses are aliased to the first 16 Mspaces within the bank.

TigerSHARC Memory Characteristics

As an example of the TigerSHARC memory architecture, the
ADSP-TS101 processor has three internal memory blocks: M0, M1, and
M2. Each memory block consists of 2 Mbits of memory space and is con-
figured as 64 Kwords (each 32 bits in width). There are three separate
internal 128-bit data buses, each connected to one of the memory blocks.
Memory blocks can store instructions and data interchangeably, with one
access per memory block per cycle. If the programmer ensures that pro-
gram and data are in different memory blocks, data access can occur at the
same time as program fetch. Therefore, in one cycle, up to three 128-bit
transfers can occur within the core (two data transfers and one program
instruction transfer).

Visual DSP++ 5.0 Linker and Utilities Manual 2-30

Link Target Description

The I/0O Processor can use only one internal bus at a time, and the I/O
Processor competes with the core for use of the internal bus. Therefore, in
one cycle, the processor can fetch four 32-bit instructions and load or
store 256 bits of data (four 64-bit words, eight 32-bit words, sixteen

16-bit words, or thirty-two 8-bit words).

The TigerSHARC processor 32-bit address bus provides an address space
of four gigawords. This address space is common to a cluster of Tiger-
SHARC processors that share the same cluster bus.

The zones in the memory space are made up of the following regions.

* External memory bank space—the region for standard addressing

of off-chip memory (including SDRAM, MBO, MB1, and host)

e External multiprocessor space—the on-chip memory of all other

TigerSHARC processors connected in a multiprocessor system

* Internal address space—the region for standard internal addressing

In the example system, the ADSP-TS101 processor has internal memory
addresses from 0x0 to 0x17FFFF. Refer to Table 2-5.

Table 2-5. ADSP-TS101 Processor Memory Structure

Block Range Word Size
MO memory block | 0x0000 0000 - 0x0000 FFFF | 32-bit instructions
0x0001 0000 - 0x0007 FFFF | Reserved
M1 memory block | 0x0008 0000 - 0x0008 FFFF | 32-bit instructions
0x0009 0000 - 0x0009 FFFF | Reserved
M2 memory block | 0x0010 0000 - 0x0010 FFFF | 32-bit instructions
0x0011 0000 - 0x0017 FFFF | Reserved
Internal registers 0x0018 0000 - 0x0018 07FF | Control, status, and I/O registers. This
cannot be used in LDFs. Internal registers
are memory accessible in MP space only.
0x0018 0800 - Ox01BF FFFF | Reserved

2-31

Visual DSP++ 5.0 Linker and Utilities Manual

Linker

Table 2-5. ADSP-TS101 Processor Memory Structure (Contd)

Block Range Word Size
0x01CO 0000 - 0x03FF FFFF | Broadcast and multiprocessor (not used
in LDF)
SDRAM 0x0400 0000 - Ox07FF FFFF | 32-bit instructions

Blackfin Memory Characteristics

Details of the Blackfin processor memory characteristics can be found in
the data sheets for individual processors, available in the appropriate
Hardware Reference or at:
www.analog.com/processors/productsDatasheets/dataSheets.html.

Linker MEMORY{} Command in an LDF

Referring to information in sections “Memory Usage and Default Mem-
ory Segments” and “Memory Characteristics Overview”, you can specify
the target’s memory with the MEMORY { } command for any of target proces-
sor architectures (Listing 2-1, Listing 2-2, and Listing 2-3 provide code
examples for specific processors).

Listing 2-1. ADSP-21161 MEMORY{} Command Code

MEMORY

{

seg_rth { TYPE(PM RAM) START(0x00040000) END(0x000400ff)
WIDTH(48) }

seg_init { TYPE(PM RAM) START(0x00040100) END(0x000401ff)
WIDTH(48) }

seg_int_code { TYPE(PM RAM) START(0x00040200) END(0x00040287)
WIDTH(48) }

seg_pmco { TYPE(PM RAM) START(0x00040288) END(0x000419ff)
WIDTH(48) }

Visual DSP++ 5.0 Linker and Utilities Manual 2-32

www.analog.com/processors/productsDatasheets/dataSheets.html

Link Target Description

seg_pmda { TYPECPM RAM) START(0x00042700) END(0x00043fff)
WIDTH(32) }

seg_dmda { TYPE(DM RAM) START(0x00050000) END(Ox00051fff)
WIDTH(32) }

seg_heap { TYPE(DM RAM) START(0x00052000) END(0x00052fff)

WIDTH(32) }

Listing 2-2. ADSP-TS101 MEMORY/{} Command

MEMORY

{
/* Internal memory blocks are 0x10000 (64K bytes) */
/* Start of TS101_memory.1df */

M0Code TYPE(RAM) START(0x00000000) END(OxOO000FFFF) WIDTH(32)
M1Data TYPE(RAM) START(0x00080000) END(OxO008BFFF) WIDTH(32)
M1Stack {TYPE(RAM) START(0x0008C000) END(OxO008FFFF) WIDTH(32)
M2Data TYPE(RAM) START(0x00100000) END(OxO0010BFFF) WIDTH(32)

{ () () (}
{ () () (}
{ () () (}
{ () () (}
M2Heap {TYPE(RAM) START(0x0010C000) END(Ox0010C7FF) WIDTH(32)}
M2Stack {TYPE(RAM) START(0x0010C800) END(OxO010FFFF) WIDTH(32)}
SDRAM {TYPE(RAM) START(0x04000000) END(OXO7FFFFFF) WIDTH(32)}
MSO {TYPE(RAM) START(0x08000000) END(OXOBFFFFFF) WIDTH(32)!
MS1 {TYPE(RAM) START(0x0C000000) END(OXOFFFFFFF) WIDTH(32)}

/* end of TS101_memory.ldf file */

Listing 2-3. ADSP-BF533 MEMORY{} Command Code

MEMORY /* Define/label system memory */
{ /* List of global Memory Segments */
MEM_L2_CODE

{ TYPE(RAM) START(O0xF0000000) END(OxFOO2FFFF) WIDTH(8) }

2-33 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

MEM_L1_DATA_A

{ TYPE(RAM) START(OxFF800000) END(OxFF803FFF) WIDTH(8) }
MEM_L1_DATA_B

{ TYPECRAM) START(OxFF900000) END(OXxFF903FFF) WIDTH(8) }
MEM_HEAP

{ TYPE(RAM) START(OxF0030000) END(OxFOO037FFF) WIDTH(8) }
MEM_STACK

{ TYPE(RAM) START(0xF0038000) END(OxFOO3DFFF) WIDTH(8) 1}
MEM_ARGV

{ TYPECRAM) START(OxFOO3FE00) END(OXxFOO3FFFF) WIDTH(8) }
MEM_SDRAMO

{ TYPE(RAM) START(0x00000004) END(OxO7FFFFFF) WIDTH(8) }

The above examples apply to the preceding discussion of how to
write a MEMORY { } command and to the following discussion of the
SECTIONS{} command. The SECTIONS{} command is not atomic;
it can be interspersed with other directives, including location
counter information. You can define new symbols within the .1df
file. These examples define the starting stack address, the highest
possible stack address, and the heap’s starting location and size.
These newly-created symbols are entered in the executable’s symbol

table.

Entry Address

In releases prior to Visual DSP++ 4.5, the entry address was filled in from a
global symbol “start” (no underscore), if present. The “start” symbol
could be a global file symbol or an LDF symbol.

Visual DSP++ 5.0 Linker and Utilities Manual 2-34

Link Target Description

Currently, the entry address field can also be set using:

e The -entry command-line switch (on page 2-58), where option’s
argument is a symbol.

e The ENTRY (symbol) command (on page 3-40) in the .1df file.
If -entry and ENTRY () are both present, they must be the same.
Neither overrides the other. If there is a mismatch, the linker
detects an error.

e In the absence of the -entry switch or the ENTRY () command, the
value of the global file symbol start, or LDF symbol start, is
used, if present.

e If none of the above is used, the address is 0.

Multiprocessor/Multicore Applications

The -entry switch for a multiprocessor/multi-core . 1df file applies the
same entry address to all processors. If the entry addresses differ
(multiprocessor systems), use ENTRY () commands in the . 1df file — do not
use the -entry switch.

If the -entry switch is specified, it is an error if any of the processors uti-
lize an ENTRY () command with a different specification.

Wildcard Characters

The linker supports the use of wildcards in input section name specifica-
tions in the .1df file. The * and ? wildcard characters are provided on
input section names so that you can specify multiple input sections.

* — Matches any number of characters
? — Matches any one character

For information about wildcard characters used (and an example) with the

INPUT_SECTIONS command, see “INPUT_SECTIONS()” on page 3-64.

2-35 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

Placing Code on the Target

Use the SECTIONS{} command to map code and data to the physical
memory of a processor in a processor system.

To write a SECTIONS{} command:
1. List all input sections defined in the source files.

* Assembly files — List each assembly code .SECTION directive,
identify its memory type (PM or CODE, or DM or DATA), and
note when location is critical to its operation. These .SEC-
TIONS portions include interrupt tables, data buffers, and
on-chip code or data. (See “Specifying Two Buffers in Dif-
ferent Memory Segments” on page 2-41 for
TigerSHARC-specific information.)

* C/C++ source files — The compiler generates sections with
the name “program” or “code” for code, and the names
“datal” and “data2” for data. These sections correspond to
your source when you do not specify a section by means of
the optional section() extension.

2. Compare the input sections list to the memory segments specified
in the MEMORY {} command. Identify the memory segment into
which each .SECTION must be placed.

3. Combine the information from these two lists to write one or more
SECTIONS{} commands in the .1df file

@ SECTIONS{} commands must appear within the context of
the PROCESSOR{) or SHARED_MEMORY () command.

Listing 2-4 presents a SECTIONS{} command that would work with the
MEMORY {} command in Listing 2-1.

Visual DSP++ 5.0 Linker and Utilities Manual 2-36

Link Target Description

Listing 2-4. ADSP-21161 SECTIONS{} Command in the LDF

SECTIONS
{
/* Begin output sections */
seg_rth { // run-time header and interrupt table
INPUT_SECTIONS($0BJS(seg_rth) $LIBS(seg_rth))
} >seg_rth
seg_init { // Initialization
1df_seginit_space = .
INPUT_SECTIONS($0BJS(seg_init) $LIBS(seg_init))
} >seg_init
seg_init_code { // Initialization data
INPUT_SECTIONS($0BJS(seg_init_code)
$LIBS(seg_init_code))
} >seg_init_code
seg_pmco { // PM code
INPUT_SECTIONS($0BJS(seg_pmco) $LIBS(seg_pmco))
} >seg_pmco
seg_pmda { // PM data
INPUT_SECTIONS($0BJS(seg_pmda) $LIBS(seg_pmda))
} >seg_pmda
.bss ZERO_INIT {
INPUT_SECTIONS($0BJS(.bss) $LIBS(.bss))
} >seg_dmda
seg_dmda { // DM data
INPUT_SECTIONS($0BJS(seg_dmda) $LIBS(seg_dmda))
} >seg_dmda

heap f{
// allocate a heap for the application
1df_heap_space = .;
1df_heap_length = MEMORY_SIZEOF(seg_heap);
1df_heap_end = 1df_heap_space + 1df_heap_length - 1;

2-37 Visual DSP++ 5.0 Linker and Utilities Manual

} > seg_heap;
} // end sections

Linker

Listing 2-5 presents a SECTIONS{} command that would work with the

MEMORY {} command in Listing 2-2.

Listing 2-5. ADSP-TS101 SECTIONS{} Command in the LDF

SECTIONS
{ /* List of sections for processor PO */
sec_rth {INPUT_SECTIONS ($0BJECTS(rth))} >
sec_code INPUT_SECTIONS ($0BJECTS(code)}

{ (>
sec_code?2 {INPUT_SECTIONS ($O0BJECTS(y_input)} >
sec_datal {INPUT_SECTIONS ($0BJECTS(datal))} >
}

}

seg_rth
seg_code
seg_code
seg_datal

Listing 2-6 presents a SECTIONS{} command that would work with the

MEMORY {} command in Listing 2-3.

Listing 2-6. ADSP-BF535 SECTIONS{} Command in the LDF

SECTIONS
{ /* List of sections for processor PO */

L1 _code
{
INPUT_SECTION_ALIGN(2)

/* Align all code sections on 2 byte boundary */
INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))

INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))

INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($OBJECTS(constdata)
$LIBRARIES(constdata))

Visual DSP++ 5.0 Linker and Utilities Manual

2-38

Link Target Description

INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($0BJECTS(ctor) $LIBRARIES(ctor))
} >MEM_L2_CODE

program
{
// Align all code sections on 2 byte boundary
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))
INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))
INPUT_SECTIONS($0BJECTS(cplb) $LIBRARIES(cplb))
INPUT_SECTIONS($0BJECTS(cplb_code)
$LIBRARIES(cplb_code))
INPUT_SECTIONS($0BJECTS(cplb_data)
$LIBRARIES(cplb_data))
INPUT_SECTIONS($0BJECTS(constdata)
$LIBRARIES(constdata))
INPUT_SECTIONS($0BJECTS(voldata) $LIBRARIES(voldata))
b >MEM_PROGRAM

stack
{
ldf_stack_space = .;
1df_stack_end =
1df_stack_space + MEMORY_SIZEOF(MEM_STACK) - 4;
} >MEM_STACK

heap
{ /* Allocate a heap for the application */
1df_heap_space = .;
1df_heap_end =
1df_heap_space + MEMORY_SIZEOF(MEM_HEAP) - 1;
1df_heap_length = 1df_heap_end - 1df_heap_space;
} >MEM_HEAP

2-39 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

argy
{ /* Allocate argv space for the application */
1df_argv_space = .;
ldf_argv_end =
1df_argv_space + MEMORY_SIZEOF(MEM_ARGV)
1df_argv_length =
1df_argv_end - 1df_argv_space;
} >MEM_ARGV

1;

}/* end SECTIONS */

Visual DSP++ 5.0 Linker and Utilities Manual 2-40

Link Target Description

Specifying Two Buffers in Different Memory Segments

On TigerSHARC processors, the linker supports optimized memory
placement, using the . SEPARATE_MEM_SEGMENTS assembler directive.

e The .SEPARATE_MEM_SEGMENTS assembler directive (or the compiler
pragma ffpragma separate_mem_segments) specifies two buffers
directing the linker to place the buffers into different memory
segments. For example,

.SECTION datal;

VAR bufl;

VAR buf2;

.EXTERN buf3;
.SEPARATE_MEM_SEGMENTS(bufl, buf2);
.SEPARATE_MEM_SEGMENTS(bufl, buf3);

* The set of available memory segments for each buffer is defined by
using the linker’s “one-to-many” feature—mapping input sec-
tion(s) that contain the buffer into multiple memory segments.
For example,

data2 {

INPUT_SECTIONS($0BJECTS(datal))
} >M2DataA
datad {

INPUT_SECTIONS($0BJECTS(datal))

} >M4DataA

2-41 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

* The linker tries to satisfy placement constraint requirements by
allocating the buffers to different memory segments.

1. If the linker fails to satisfy any or all of the requirements, the linker
produces a warning.

2. All symbols mentioned in . SEPARATE_MEM_SEGMENTS are mapped
before anything else by the linker (with the exception of absolute
placement).

3. Reference to symbol in . SEPARATE_MEM_SEGMENTS is a weak refer-
ence. If such symbol is defined in a library, the linker does NOT
bring the symbol from the library (unless the symbol is referenced
directly or indirectly from an object file.

4. The linker ignores the cases where the symbol is mentioned in the
.SEPARATE_MEM_SEGMENTS assembler directive is undefined or is not
defined in an input section (for example, as an LDF symbol).

@ See “Pragmas” in Chapter 1 of the VisualDSP++ 5.0 C/C++ Com-
piler and Library Manual for TigerSHARC Processors for more

information.

Linking with Attributes — Overview

Attributes are used within the . 1df file to create virtual subsets from the
usual input sources. Attributes are associated with .doj files, including
those within the library. Once created, these subsets exist for the duration
of the link and can be used anywhere a library or object list normally
appears within an .1df file.

Attributes are used within the .1df file to reduce the usual set of input
files into more manageable subsets. Inputs are in two forms (objects and
libraries) both of which appear in lists within the . 1df file. Filters can be
applied to these lists to winnow out momentarily-undesirable objects.

Visual DSP++ 5.0 Linker and Utilities Manual 2-42

Link Target Description

An attribute is a name/value pair of strings. A valid attribute name is a

valid C identifier.

Attribute names and attribute values are case-sensitive. Windows filenames
can be used as values, with care and consistency.

An attribute is associated with an object (. doj), but not with a library
(.d1b), not with a symbol name, and not with an ELF section. An object
has zero or more attributes associated with it. A given object may have
more than one attribute with the same name associated with it.

Using attributes, the filtering process can be used to remove some objects
from consideration, providing that the same objects are not included else-
where via other filters (or through unfiltered mappings). A filter operation
is done with curly braces, and can be used to define sub-lists and
sub-libraries. It may also be used in INPUT_SECTIONS commands (refer to
“‘INPUT_SECTIONS()” on page 3-64).

The linker reads the .1df file and uses the {. ..} filter commands (for
example, INPUT_SECTIONS commands) to eliminate some input objects
from consideration before resolving symbols. The linker does not change
its behavior if no filter commands are present in the .1df file.

Profile-Guided Optimization Support

The SHARC, TigerSHARC, and Blackfin processor architectures support
profile-guided optimization (PGO). PGO is the process of gathering
information about a running application over many invocations of the
executable with different input data, and then re-optimizing it using the
gathered information.

The process relies upon the same application being run with different data
sets, which often means that the application acts upon sample data sets
stored in files. More specifically, it means that the application is instructed
to process each file via command-line options passed to main().

2-43 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

The .1df files and the VisualDSP++ IDDE collaborate to provide support
for command-line arguments. Under normal circumstances, a typical
embedded program is not interested in command-line arguments, and
receives none. In these normal cases, the run-time header invokes a func-
tion to parse a global string __argv_string[] and finds it empty.

To support PGO, the LDF option IDDE_ARGS can be used to define a
memory segment called MEM_ARGV, and __argv_string[] is mapped
directly to the start of this section. The Visual DSP++ IDDE follows the
convention that command-line arguments can be passed to an application
by writing the argument string into memory starting at the beginning of
MEM_ARGV.

For more information on profile-guided optimization, refer to the
VisualDSP++ 5.0 C/C++ Compiler and Library Manual for the

appropriate processor architecture.

Passing Arguments for Simulation or Emulation

The symbol _argv_string is a null-terminated string that, if it contains
anything other than null, will be split at each space character and placed in
the argv[] array that gets passed to the main function on system startup.

Linker Command-Line Reference

This section provides reference information, including:
* “Linker Command-Line Syntax” on page 2-45

* “Linker Command-Line Switches” on page 2-49

Visual DSP++ 5.0 Linker and Utilities Manual 2-44

Linker Command-Line Reference

When you use the linker via the VisualDSP++ IDDE, the settings
on the Link page of the Project Options dialog box correspond
to linker command-line switches. Provided here is the detailed
descriptions of the linker’s command-line switches and their syn-
tax. For more information, refer to VisualDSP++ online Help.

Linker Command-Line Syntax

Run the linker by using one of the following normalized formats of the
linker command line.

lTinker -proc processor -switch [-switch ..] object [object ..]
linker -T target.ldf -switch [-switch ..] object [object ..]

@ The linker command requires -proc processor ora-T <1df name>
to proceed. If the command line does not include -proc processor,
the . 1df file following the - T switch must contain a -ARCHITECTURE
command. The linker command may contain both, but then the
ARCHITECTURE() command in the .1df file must match the
-proc processor.

Use -proc processor instead of the deprecated -Darchitecture
switch on the command line to select the target processor. See
Table 2-7 on page 2-51 for more information.

All other switches are optional, and some commands are mutually
exclusive.

The following are example linker commands.

linker -proc ADSP-21161 p0O.doj -T target.ldf -t -o program.dxe
linker -proc ADSP-TS201 pO.doj -T target.ldf -t -o program.dxe
linker -proc ADSP-BF535 p0O.doj -T target.ldf -t -o program.dxe

The linker command line (except for file names) is case sensitive.
For example, 1inker -t differs from 1inker -T.

2-45 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

The linker can be controlled by the compiler via the -flags-1ink com-
mand-line switch, which passes explicit options to the linker. For more
information, refer to Chapter 1 of the VisualDSP++ 5.0 C/C++ Compiler
and Library Manual for the appropriate processor.

When using the linker’s command line, be familiar with the following
topics:

* “Command-Line Object Files”
e “Command-Line File Names”

e “Object File Types” on page 2-49

Command-Line Object Files

The command line must identify at least one (typically more) object file(s)
to be linked together. These files may be of several different types.

» Standard object (.doj) files produced by the assembler

* One or more libraries (archives), each with a .d1b extension.
Examples include the C run-time libraries and math libraries
included with VisualDSP++. You may create libraries of common
or specialized objects. Special libraries are available from DSP algo-
rithm vendors. For more information, see Chapter 6, “Archiver”.

* An executable (.dxe) file to be linked against. Refer to
$COMMAND_LINE_LINK_AGAINST in “Built-In LDF Macros” on
page 3-30.

Object File Names

Visual DSP++ 5.0 Linker and Utilities Manual 2-46

Linker Command-Line Reference

An object file name may include:
e The drive, directory path, file name, and file extension

* The directory path may be an absolute path or a path relative to the
directory from which the linker is invoked

* Long file names enclosed within straight quotes

If the file exists before the link begins, the linker opens the file to verify its

type before processing the file. Table 2-6 lists valid file extensions used by
the linker.

Command-Line File Names

Some linker switches take a file name as a parameter. Table 2-6 lists the
types of files, names, and extensions that the linker expects on file name
arguments. The linker follows the conventions for file extensions in

Table 2-6.

Table 2-6. File Extension Conventions

Extension File Description

.d1b Library (archive) file
.doj Object file

.dxe Executable file

.1df Linker Description File
.ov] Overlay file

.sm Shared memory file

2-47 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

The linker supports relative and absolute directory names, default directo-
ries, and user-selected directories for file search paths. File searches occur
in the following order.

1. Specified path — If the command line includes relative or absolute
path information, the linker searches that location for the file.

2. Specified directories — If you do not include path information
on the command line and the file is not in the default directory,
the linker searches for the file in the search directories specified
with the -L (path) command-line switch, and then searches direc-
tories specified by SEARCH_DIR commands in the .1df file.
Directories are searched in order of appearance on the command
line or in the .1df file.

3. Default directory — If you do not include path information in the
.1df file named by the -T switch, the linker searches for the . 1df
file in the current working directory. If you use a default . 1df file
(by omitting LDF information in the command line and instead
specifying -proc <processor>), the linker searches in the proces-
sor-specific LDF directory; for example, $ADI_DSP/Blackfin/1df.

For more information on file searches, see “Built-In LDF Macros” on
page 3-30.
When providing input or output file names as command-line parameters:

* Use a space to delimit file names in a list of input files.

* Enclose file names that contain spaces within straight quotes; for
example, "lTong file name".

* Include the appropriate extension to each file. The linker opens
existing files and verifies their type before processing. When the
linker creates a file, it uses the file extension to determine the type
of file to create.

Visual DSP++ 5.0 Linker and Utilities Manual 2-48

Linker Command-Line Reference

Object File Types

The linker handles an object (file) by its file type. File type is determined
by the following rules.

* Existing files are opened and examined to determine their type.
Their names can be anything.

 Files created during the link are named with an appropriate exten-
sion and are formatted accordingly. A map file is generated in XML
format only and is given an .xm1 extension. An executable is writ-
ten in the ELF format and is given a . dxe extension.

The linker treats object (.doj) files and library (.d1b) files that appear on
the command line as object files to be linked. The linker treats executable
(.dxe) files and shared memory (.sm) files on the command line as
executables to be linked against.

For more information on objects, see the $COMMAND_LINE_OBJECTS macro.
For information on executables, see the $COMMAND_LINE_LINK_AGAINST
macro. Both are described in “Built-In LDF Macros” on page 3-30.

If link objects are not specified on the command line or in the . 1df file,
the linker generates appropriate informational or error messages.

Linker Command-Line Switches

This section describes the linker’s command-line switches. Table 2-7 on
page 2-51 briefly describes each switch with regard to case sensitivity,
equivalent switches, switches overridden or contradicted by the one
described, and naming and spacing constraints for parameters.

The linker provides switches to select operations and modes. The standard
switch syntax is -switch [argument].

2-49 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

Rules:

» Switches may be used in any order on the command line. Items in
brackets [] are optional. Items in 7zalics are user-definable and are
described with each switch.

e Path names can be relative or absolute.

* File names containing white space or colons must be enclosed by
double quotation marks, though relative path names such as
../../test.dxe do not require double quotation marks.

@ Different switches require (or prohibit) white space between the

switch and its parameter.

Example:
linker -proc ADSP-BF535 p0.doj pl.doj p2.doj -T target.ldf -t
-0 program.dxe

Note the difference between the -T and the -t switches. The command
calls the linker as follows:

® -proc ADSP-BF535
Specifies the processor

* p0.doj, pl.doj, and p2.doj
Links three object files into an executable file

e -T target.ldf
Uses a secondary LDF to specify executable program placement

. -t
Turns on trace information, echoing each link object’s name to
stdout as it is processed

® -0 program.dxe
Specifies the name of the linked executable file

Visual DSP++ 5.0 Linker and Utilities Manual 2-50

Linker Command-Line Reference

Typing 1inker without any switches displays a summary of command-line
options. Using no switches is the same as typing 1inker -help.

Linker Switch Summary and Descriptions

Table 2-7 briefly describes each linker switch. Each individual switch is
described in detail following this table. See “Project Builds” on page 2-7
for information on the Visual DSP++ Project Options dialog box.

Table 2-7. Linker Command-Line Switch Summary

should not take place

Switch Description More Info
@file Uses the specified file as input on the command line| on page 2-53
-DprocessoriID Specifies the target processor ID. The use of on page 2-53
-proc processorlID is recommended.
-L path Adds the path name to search libraries for objects | on page 2-54
-M Produces dependencies on page 2-54
-MM Builds and produces dependencies on page 2-54
-Map file Outputs a map of link symbol information to a file | on page 2-55
-MDmacrol=def] Defines and assigns value def to a preprocessor on page 2-55
macro
-MUDmacro Undefines the preprocessor macro on page 2-56
-S Onmits debugging symbols from the output file on page 2-56
-T filename Identifies the LDF to be used on page 2-56
-Werror number Promotes the specified warning message to an error | on page 2-57
-Wwarn number Demotes the specified error message to a warning | on page 2-57
-Wnumber Selectively disables warnings by one or more mes- | on page 2-57
sage numbers. For example,-W1010 disables warning
message 111010.
-e Eliminates unused symbols from the executable on page 2-57
-ek sechName Specifies a section name in which elimination on page 2-57

2-51

Visual DSP++ 5.0 Linker and Utilities Manual

Table 2-7. Linker Command-Line Switch Summary (Contd)

Linker

Switch Description More Info

-es secName Names input sections (secName list) to which the | on page 2-58
elimination algorithm is applied

-ev Eliminates unused symbols verbosely on page 2-58

-entry Specifies entry address where an argument can be | on page 2-58

either a symbol or an address

-flag-meminit Passes each comma-separated option to the Memory | on page 2-59
Initializer utility
-flag-pp Passes each comma-separated option to the prepro- | on page 2-59
cessor
-h Outputs the list of command-line switches and exits | on page 2-59
-help
-1 path Includes search directory for preprocessor include |on page 2-59
files
-ip Fills fragmented memory with individual data on page 2-59
objects that fit
-jes21 Converts out-of-range short calls and jumps to the | on page 2-60
longer form. It also allows the linker to convert
out-of-range branches to indirect calls and jump
sequences.
-jes21+ Same as -jcs?21 on page 2-60
-keep symName Keeps symbols from being eliminated on page 2-60
-meminit Causes post-processing of the executable file on page 2-61
-nomemcheck Turns off LDF memory checking on page 2-61
-0 filename Outputs the named executable file on page 2-61
-od filename Specifies the output directory on page 2-61
-pp Stops after preprocessing on page 2-62
-proc processor Selects a target processor on page 2-62
-reserve-null Directs the linker to reserve 4 addressable units on page 2-62
(words) in memory at address 0x0
-s Strips symbol information from the output file on page 2-62

Visual DSP++ 5.0 Linker and Utilities Manual

2-52

Linker Command-Line Reference

Table 2-7. Linker Command-Line Switch Summary (Contd)

Switch Description More Info
-save-temps Saves temporary output files on page 2-63
-si-revision version | Specifies silicon revision of the specified processor | on page 2-63
-sp Skips preprocessing on page 2-64
-t Outputs the names of link objects on page 2-64
-tx Outputs full names of link objects on page 2-64
v Verbose: Outputs status information on page 2-64
-verbose

-version Outputs version information and exits on page 2-64
-warnonce Warns only once for each undefined symbol on page 2-64
-xref Produces a cross-reference file on page 2-65

The following sections provide the detailed descriptions of the linker’s
command-line switches.

@filename

The @ switch causes the linker to treat the contents of filename as input
to the linker command line. The @ switch circumvents environmental
command-line length restrictions. The filename may not start with
“Vinker” (that is, it cannot be a linker command line). White space
(including “newline”) in filename serves to separate tokens.

-Dprocessor

The -Dprocessor (define processor) switch specifies the target processor
(architecture); for example, -DADSP-BF533.

The -proc processor switch (on page 2-62) is a preferred option
to be used as a replacement for the -Dprocessor command-line
entry to specify the target processor.

2-53 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

White space is not permitted between -D and processor. The architecture
entry is case sensitive and must be available in your VisualDSP++ installa-
tion. This switch (or -proc processor switch) must be used if no .1df file
is specified on the command line. (See -T on page 2-56.) This switch (or
-proc processor switch) must be used if the specified .1df file does not
specify ARCHITECTURE (). Architectural inconsistency between this switch
and the .1df file causes an error.

-L path

The -L path (search directory) switch adds a path name to search libraries
and objects. This switch is case-sensitive and spacing is unimportant. The
path parameter enables searching for any file, including the . 1df file itself.

To add multiple search paths, repeat the switch or specify a list of paths
terminated by semicolons (;) with the final semicolon being optional.

The paths named with this switch are searched before arguments in the
SEARCH_DIR{} command.

-M

The -M (generate make rule only) switch directs the linker to check a
dependency and to output the result to stdout.

-MM

The -MM (generate make rule and build) switch directs the linker to output
a rule, which is suitable for the make utility, describing the dependencies
of the source file. The linker checks for a dependency, outputs the result
to stdout, and performs the build. The only difference between -MM and
-M actions is that the linking continues with -MM. See “-M” for more
information.

Visual DSP++ 5.0 Linker and Utilities Manual 2-54

Linker Command-Line Reference

-Map filename

The -Map filename (generate a memory map) switch directs the linker to

output a memory map of all symbols. The map file name corresponds to

the filename argument. The linker generates the map file in XML format
only. For example, if the file name argument is test, the map file name is
test.map.xml.

Opening an .xm1 map file in a Web browser provides an organized view of
the map file. By using hyperlinks, it becomes easy to quickly find any rele-
vant information. Since the format of . xm1 files can be extended between
Visual DSP++ releases, the map file is dependant on particular installation
of Visual DSP++. Thus, the .xm1 map file can be used only on the machine
on which it was generated. In order to view the map file on a different
machine, the file should be transformed to HTML format using the
xmimap2html.exe command-line utility. The utility makes it possible to
view the map on virtually any machine with any browser.

XSLT is a language for transforming XML documents. VisualDSP++
includes the following XSLT files for transforming and displaying the
XML map files produced by the linker in a browser.

e System/Tinker_map_ssl.xsl
Does not display symbols that start with a dot. This file is the
default.

e /System/Tinker_map_ss2.xsl

Cause all symbols to be displayed.

Note that the compiler and libraries may use such symbols for local data
and code.

-MDmacro[=def]

The -MDmacrof=def] (define macro) switch declares and assigns value def
to the preprocessor macro named macro. For example, -MDTEST=BAR exe-

2-55 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

cutes the code following #ifdef TEST==BAR in the LDF (but not the code
following #ifdef TEST==XXX).

If =def is not included, macro is declared and set to “1” to ensure the code
following #ifdef TEST is executed. This switch may be repeated.

-MUDmacro

The -MUDmacro (undefine macro) switch undefines the preprocessor macro
where macro specifies a name. For example, -MUDTEST undefines macro
TEST. The switch is processed after all -MDmacro switches have been pro-
cessed. The -MUDmacro switch may be repeated on the command line.

The -S (strip debug symbol) switch directs the linker to omit source
debugging information from the output file. Compare this switch to the
-s switch on page 2-62.

-T filename

The -T filename (linker description file) switch directs the linker to use
filename as the name of the . 1df file. The .1df file specified following the
-T switch must contain an ARCHITECTURE () command if the command line
does not have -proc <processor>. The linker requires the -T switch when
linking for a processor for which no VisualDSP++ support has been
installed. In such cases, the processor ID does not appear in the Target
processor field of the Project Options dialog box.

The filename must exist and be found (for example, via the -L option).
White space must appear before fi7ename. A file’s name is unconstrained,
but must be valid. For example, a.b works if it is a valid . 1df file, where
.1df is a valid extension but not a requirement.

Visual DSP++ 5.0 Linker and Utilities Manual 2-56

Linker Command-Line Reference

-Werror [number]

The -Werror switch directs the linker to promote the specified warning

message to an error. The number argument specifies the message to
promote.

-Wwarn [number]

The -Wwarn switch directs the linker to demote the specified error message
to a warning. The number argument specifies the message to demote.

-Wnumber[,number]

The -Wnumber or ~wnumber (warning suppression) switches selectively
disables warnings specified by one or more message numbers.

For example, -W1010 disables warning message 111010. Optionally, this
switch accepts a list, such as [,number ...7.

-e

The -e switch directs the linker to eliminate unused symbols from the
executable file.

@ In order for the C and C++ run-time libraries to work properly,
the following symbols should be retained with the “KEEP()” LDF
command (described on page 3-42):

___ctor_NULL_marker and ___1ib_end_of_heap_descriptions.
-ek sectionName

The -ek sectionName (no elimination) switch specifies a section to which
the elimination algorithm is not applied. Both this switch and the

KEEP_SECTIONS() LDF command (on page 3-42) may be used to specify a
section name in which elimination should 7oz take place.

2-57 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

-es sectionName

The -es sectionName (eliminate listed section) switch specifies a section to
which the elimination algorithm is to be applied. This switch restricts
elimination to the named input sections. The -es switch may be used on a
command line more than once. In the absence of the -es switch or the
ELIMINATE_SECTIONS() LDF command (on page 3-40), the linker applies
elimination to all sections. Both this switch and the
ELIMINATE_SECTIONS() LDF command may be used to specify sections
from which unreferenced code and data are to be eliminated.

@ In order for the C and C++ run-time libraries to work properly,
the following symbols should be retained with the “KEEP()” LDF
command (described on page 3-42):
_ ctor_NULL_markerand __ 1ib_end_of_heap_descriptions

-entry

The -entry switch indicates the entry address where an argument can be
either a symbol or an address.

-ev

The -ev switch directs the linker to eliminate unused symbols and reports
on each eliminated symbol.

-flags-meminit -opt1[,-opt2...]

The -flags-meminit switch passes each comma-separated option to the
Memory Initializer utility. (For more information, see “Memory Initial-
izer” in Chapter 7, Memory Initializer.)

-flags-pp-opti[,-opt2...]

The -flags-pp switch passes each comma-separated option to the
preprocessor.

Visual DSP++ 5.0 Linker and Utilities Manual 2-58

Linker Command-Line Reference

Use -flags-pp with caution. For example, if the pp legacy
comment syntax is enabled, the comment characters become
unavailable for non-comment syntax.

-h[elp]

The -h or -help switch directs the assembler to output to <stdout> a list
of command-line switches with a syntax summary.

-i|l directory

The -idirectory or -Idirectory (include directory) switch directs the

linker to append the specified directory to the search path for included
files.

To add multiple directories, repeat the switch or specify a list of directo-
ries terminated by semicolons (;) with the final semicolon being optional.

The -ip (individual placement) switch directs the linker to fill in frag-
mented memory with individual data objects that fit. When the -ip
switch is specified on the linker’s command line (or via the Visual DSP++
IDDE), the default behavior of the linker—placing data blocks in consec-
utive memory addresses—is overridden. The -ip switch allows individual
placement of a grouping of data in processor memory to provide more
efficient memory packing.

Absolute placements take precedence over data/program section place-
ments in contiguous memory locations. When remaining memory space is
not sufficient for the entire section placement, the link fails. The -ip
switch allows the linker to extract a block of data for individual placement
and fill in fragmented memory spaces.

2-59 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

-jcs2l
® Used with Blackfin processors only.

The -jcs21 (jump/call short to long) switch directs the linker to convert
out-of-range calls and jump instructions to a code sequence that will use
an indirect jump or call. Because the indirect sequence uses a register P1,

the expansion will only be applied to instructions that use the CALL.X or
JUMP. X opcodes.

The following table shows how the Blackfin linker handles jump/call

conversions.
Instruction Without -jes2l With -jcs2l
JUMP. S Short Short
JUMP Short or long Short or long
JUMP . L Long Long
JUMP . X Short or long Short, long, or indirect
CALL CALL CALL
CALL.X CALL CALL or indirect

Refer to the instruction set reference for target architecture for more infor-
mation on jump and call instructions.

-jcs2l+

® Used with Blackfin processors only.

This deprecated switch is equivalent to the -jcs21 switch.

-keep symbolIName

The -keep symbolName (keep unused symbols) switch directs the linker to
keep symbols from being eliminated. It directs the linker (when -e or -ev

Visual DSP++ 5.0 Linker and Utilities Manual 2-60

Linker Command-Line Reference

is enabled) to retain listed symbols in the executable even if they are
unused.

-meminit

The -meminit (post-process executable file) switch directs the linker to
post-process the .dxe file through the Memory Initializer utility. (For
more information, see “Memory Initializer” in Chapter 7, Memory Ini-
tializer.) This action causes the sections specified in the .1df file to be
run-time initialized by the C run-time library. By default, if this flag is not
specified, all sections are initialized at “load” time (for example, via the
Visual DSP++ IDDE or the boot loader). Refer to “SECTIONS{}” on
page 3-61 for more information on section initialization. For information
about the __ MEMINIT predefined macro, see “__MEMINIT__” on
page 3-306.

-nomemcheck

The -nomemcheck (memory checking off) switch allows you to turn off
memory checking.

-o filename

The -o filename (output file) switch sets the value of the
$COMMAND_LINE_OUTPUT_FILE macro which is normally used as a parameter
to the LDF 0UTPUT() command, which specifies the output file name.

If no -o is present on command line, the $COMMAND_LINE_OUTPUT_FILE
macro gets a value of “a.dxe”.

-od directory

The -od directory switch directs the linker to specify the value of the
$COMMAND_LINE_OUTPUT_DIRECTORY LDF macro. This switch allows you to
make a command-line change that propagates to many places without
changing the LDF. Refer to “Built-In LDF Macros” on page 3-30.

2-61 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

-pp

The -pp (end after preprocessing) switch directs the linker to stop after the
preprocessor runs without linking. The output (preprocessed LDF) is
printed to a file with the same name as the .1df file with an . is extension.
This file is in the same directory as the . 1df file.

-proc processor

The -proc processor (target processor) switch directs the linker to pro-
duce code suitable for the specified processor. For example,

linker -proc ADSP-BF533 p0O.doj pl.doj p2.doj -o program.dxe

See also “-si-revision version” for more information on silicon
revision of the specified processor.

-reserve-null

The -reserve-null switch directs the linker to reserve four addressable
units (words) in memory at address 0x0. The switch is useful for C/C++

programs, to avoid allocation of code or data at the 0x0 (NULL pointer)
address.

The -s (strip all symbols) switch directs the linker to omit all symbol
information from the output file.

Some debugger functionality (including “run to main”), all stdio
functions, and the ability to stop at the end of program execution
rely on the debugger’s ability to locate certain symbols in the exe-
cutable file. This switch removes these symbols.

Visual DSP++ 5.0 Linker and Utilities Manual 2-62

Linker Command-Line Reference

-save-temps

The -save-temps switch directs the linker to save temporary (intermedi-
ate) output files.

-si-revision version

The -si-revision version (silicon revision) switch directs the linker to
build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The version parameter
represents a silicon revision of the processor specified by the -proc switch
(on page 2-62). For example,

linker -proc ADSP-BF533 -si-revision 0.1

If silicon version “none” is used, no errata workarounds are enabled.
Specifying silicon version “any” enables all errata workarounds for the
target processor.

If the -si-revision switch is not used, the linker builds for the latest
known silicon revision for the target processor, and any errata work-
arounds appropriate for the latest silicon revision are enabled.

If the silicon revision is set to “any”, the __ SILICON_REVISION__ macro is
set to Oxffff. If the -si-revision switch is set to “none”, the linker will
not set the __STLICON_REVISION__ macro.

The linker passes the -si-revision <silicon version> switch when
invoking another Visual DSP++ tool, for example when the linker invokes
the assembler.

Example:
The Blackfin linker invoked as
lTinker -proc ADSP-BF533 -si-revision 0.1 ..

invokes the assembler with

2-63 Visual DSP++ 5.0 Linker and Utilities Manual

Linker

easmblkfn -proc ADSP-BF533 -si-revision 0.1

-sp

The -sp (skip preprocessing) switch directs the linker to link without
preprocessing the . 1df file.

-t
The -t (trace) switch directs the linker to output the names of link objects
to standard output as the linker processes them.

-tx
The -tx (full trace) switch directs the linker to output the full names of
link objects (full directory path) to standard output as the linker
processes them.

-v[erbose]
The -v or -verbose (verbose) switch directs the linker to display version
and command-line information for each phase of linking.

-version
The -version (display version) switch directs the linker to display version
information for the linker.

-warnonce

The -warnonce (single symbol warning) switch directs the linker to warn
only once for each undefined symbol, rather than once for each reference
to that symbol.

Visual DSP++ 5.0 Linker and Utilities Manual 2-64

Linker Command-Line Reference

-xref

The -xref switch directs the linker to produce an XML cross-reference file
xref.xml in the linker output directory. The XML file can be opened in a
web-browser for viewing.

This linker switch is distinct from the -xref compiler driver
switch.

2-65 Visual DSP++ 5.0 Linker and Utilities Manual

3 LINKER DESCRIPTION FILE

Every DSP project requires one Linker Description File (. 1df). The .1df
file specifies precisely how to link projects. Chapter 2, “Linker”, describes
the linking process and how the . 1df file ties into the linking process.

When generating a new . 1df file, use the Expert Linker to generate
an .1df file. Refer to Chapter 4, “Expert Linker” for details.

The .1df file allows code development for any processor system. It defines
your system to the linker and specifies how the linker creates executable
code for your system. This chapter describes. 1df file syntax, structure and
components. Refer to Appendix C, “LDF Programming Examples for
TigerSHARC Processors”, Appendix D, “LDF Programming Examples
for SHARC Processors”, and Appendix E, “LDF Programming Examples
for Blackfin Processors” for example .1df files for typical systems.

This chapter contains:
e “LDF File Overview” on page 3-3
e “LDF File Structure” on page 3-18
e “LDF Expressions” on page 3-20
e “LDF Keywords, Commands, and Operators” on page 3-21
* “LDF Operators” on page 3-23
e “LDF Macros” on page 3-29
e “LDF Commands” on page 3-36

Visual DSP++ 5.0 Linker and Utilities Manual 3-1

The linker runs the preprocessor on the . 1df file, so you can use
preprocessor commands (such as ffidefines) within the file. For
information about preprocessor commands, refer to a VisualDSP++
5.0 Assembler and Preprocessor Manual.

Assembler section declarations in this document correspond to the
assembler’s . SECTION directive.

Refer to example DSP programs shipped with VisualDSP++ for
sample .1df files supporting typical system models.

3-2

VisualDSP++ 5.0 Linker and Utilities Manual

Linker Description File

LDF File Overview

The .1df file directs the linker by mapping code or data to specific mem-
ory segments. The linker maps program code (and data) within the system
memory and processor(s), and assigns an address to every symbol, where:

symbol = Tlabel
symbol = function_name
symbol = variable_name

If you neither write an . 1df file nor import an .1df file into your project,
nor have Visual DSP++ generate an .1df file, VisualDSP++ links the code
using a default . 1df file. The chosen default .1df file is determined by the
processor specified in the Visual DSP++ Project Options dialog box.
Default . 1df files are packaged with your processor tool distribution kit in
a subdirectory specific to your target processor’s family. One default .1df
file is provided for each processor supported by your Visual DSP++ instal-
lation (see “Default LDFs”).

The .1df file combines information, directing the linker to place input
sections in an executable file according to the memory available in the
DSP system.

The linker may output warning messages and error messages.

You must resolve the error messages to enable the linker to produce
valid output. See “Linker Warning and Error Messages” on

page 2-10 for more information.

Blackfin-Generated LDFs

On the Blackfin platform, the Visual DSP++ New Project Wizard and the
Project Options dialog allow you to generate and configure a custom
Linker Description File (.1df). (Add an .1df file via the Add Startup
Code/LDF subpage of the Project Options dialog box.) This is the quick-

Visual DSP++ 5.0 Linker and Utilities Manual 3-3

LDF File Overview

est and easiest way to customize your . 1df files. See VisualDSP++ Help
for information about the Project Wizard and the Project Options dialog
box.

Default LDFs

The name of each .1df file indicates the intended processor (for example,
ADSP-BF531.1df). If the .1df file name has no suffix, it is the “default . 1df
file”. That is, when no .1df file is explicitly specified, the default file is
used to link an application when building for that processor. Therefore,
ADSP-BF531.1df is the default .1df file for the ADSP-BF531 processor.

If no .1df file is specified explicitly via the -T command-line switch, the
compiler driver selects the default . 1df file for the target processor. For
example, the first of the following commands uses the default . 1df file,
and the second uses a user-specified file:

ccblkfn -proc ADSP-BF531 hello.c // uses default ADSP-BF531.1df
ccblkfn -proc ADSP-BF531 hello.c -T ./my.1df // uses ./my.ldf

On SHARC and TigerSHARC platforms, for each processor, there are
three . 1df files with the suffixes _C, _CPP, and _ASM (for example,
ADSP-21363_C.1df).

On SHARC and TigerSHARC platforms, these .1df files are templates
for the Expert Linker. If you use the Expert Linker to create a custom . 1df
file for your project, the Expert Linker queries for the kind (assembly, C,
or C++) of .1df file you want to create and then copies one of the above
templates. The suffixes indicate the kind of .1df files they support.

3-4

VisualDSP++ 5.0 Linker and Utilities Manual

Linker Description File

The cPP template is a superset of the C template, and the C template is a
superset of the ASM template. The differences are as follows:

e The cPP template links against C++ run-time libraries, C++
exception libraries, and the run-time headers built to initialize C++
constructors. It maps data sections that contain information con-
trolling how thrown exceptions are caught.

* The C template is currently identical to the CPP template, since a C
project may link against local or system libraries that have been
implemented in C++. There may be differences in a future release.

e The ASM template does not include a run-time header, and does not
permit command-line arguments to applications. The ASM template
is not suitable for use with profile-guided optimization. Since the
ASM template has no run-time header, it does not mandate a
“start” symbol resolved to the Reset address. It does not map the
C++ exception sections into memory.

Each .1df file handles a variety of demands, allowing applications to be
built in multiple configurations, merely by supplying a few command-line
options. This flexibility is achieved by extensive use of preprocessor mac-
ros within the .1df file. Macros serve as flags to indicate one choice or
another, and as variables within the .1df file to hold the name of a chosen
file or other link-time parameter. This reliance on preprocessor operation
can make the .1df file seem an imposing sight.

In simple terms, different LDF configurations are selected by defining
preprocessor macros on the linker command line. This can be specified
from the Link page of the VisualDSP++ IDDE’s Project Options dialog

box or directly from the command line.

At the top of the default Blackfin . 1df files, you will find documentation
on the macros you can use to configure the default . 1df files.

Visual DSP++ 5.0 Linker and Utilities Manual 3-5

LDF File Overview

You can use an .1df file written from scratch. However, modifying an
existing . 1df file (or a default .1df file) is often the easier alternative when
there are no large changes in your system’s hardware or software.

See Listing 3-1 on page 3-7, Listing 3-2 on page 3-10, and Listing 3-3 on
page 3-11 for examples of basic .1df files for supported processors. See
“Common Notes on Basic LDF Examples” on page 3-13 for basic infor-
mation on LDF structure.

See “LDF Programming Examples for TigerSHARC Processors” on

page E-1, “LDF Programming Examples for SHARC Processors” on
page D-1, and “LDF Programming Examples for Blackfin Processors” on
page C-1 for code examples for TigerSHARC, SHARC, and Blackfin

processors, respectively.

3-6

VisualDSP++ 5.0 Linker and Utilities Manual

Linker Description File

Example 1 - Basic LDF for Blackfin Processors

Listing 3-1 is an example of a basic .1df file for ADSP-BF535 processors
(formatted for readability). Note the MEMORY {} and SECTIONS{} commands
and refer to “Common Notes on Basic LDF Examples” on page 3-13.
Other LDF examples are provided in “LDF Programming Examples for
Blackfin Processors”.

Listing 3-1. Example LDF for ADSP-BF535 Processor

ARCHITECTURE(ADSP-BF535)
SEARCH_DIR($ADI_DSP/Blackfin/Tib)
$O0BJECTS = CRT, $COMMAND_LINE_OBJECTS ENDCRT;

MEMORY /* Define/label system memory */
{ /* List of global Memory Segments */
MEM_L2
{ TYPE(RAM) START(O0xFO000000) END(OxFOO2FFFF) WIDTH(8) }
MEM_HEAP
{ TYPE(RAM) START(0xF0030000) END(OxFOO37FFF) WIDTH(8) }
MEM_STACK
{ TYPE(RAM) START(O0xF0038000) END(OxFOO3DFFF) WIDTH(8) }
MEM_SYSSTACK
{ TYPE(RAM) START(OxFOO3EO0Q0) END(OxFOO3FDFF) WIDTH(8) }
MEM_ARGV
{ TYPE(RAM) START(OxFOO3FEOO) END(OxFOO3FFFF) WIDTH(8) }

PROCESSOR PO { /* the only processor in the system */
OUTPUT ($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{ /* List of sections for processor PO */

Visual DSP++ 5.0 Linker and Utilities Manual 3-7

LDF File Overview

INPUT_SECTION_ALIGN(2)

/* Align all code sections on 2 byte boundary */

INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))

INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))

INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($O0BJECTS(constdata)

$LIBRARIES(constdata))

INPUT_SECTION_ALIGN(1)

INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
} >MEM_L2

stack
{
ldf_stack_space = .;
1df_stack_end =
1df_stack_space + MEMORY_SIZEOF(MEM_STACK) - 4;
} >MEM_STACK

heap
{ /* Allocate a heap for the application */
1df_heap_space = .;
1df_heap_end =
1df_heap_space + MEMORY_SIZEOF(MEM_HEAP) - 1;
1df_heap_length = 1df_heap_end - 1df_heap_space;
} >MEM_HEAP

argv
{ /* Allocate argv space for the application */
1df_argv_space = .;
1df_argv_end =

3-8 VisualDSP++ 5.0 Linker and Utilities Manual

Linker Description File

1df_argv_space + MEMORY_SIZEOF(MEM_ARGV) - 1;
1df_argv_length =
1df_argv_end - 1df_argv_space;
} >MEM_ARGV

} /* end SECTIONS */

} /* end PROCESSOR pO */

Memory Usage in Blackfin Processors

The default . 1df files define memory areas for all defined spaces on the
processor.! Not all of these memory areas are used within the .1df files.
Instead, the .1df files provide three basic memory configurations:

* The default configuration specifies that only internal memory is
available and caching is disabled. Thus, no code or data is mapped
to SDRAM unless explicitly placed there, and all of the available

L1 space is used for code or data.

* Defining the USE_CACHE macro selects the alternative configuration,
where code and data caches are enabled and external SDRAM is
used. Code and data are mapped into L1 where possible, but the
Cache/SRAM areas are left empty; any spill-over goes into the
SDRAM.

* Defining the USE_SDRAM macro has the same effect as defining the
USE_CACHE macro, except that code and data are mapped to the L1
Cache/SRAM areas.

If USE_CACHE is used, caches may safely be turned on, because doing so will
not corrupt code or data. Selecting this option does not actually enable the
caches — that must be done separately (for example, through the

1 With the exception of the core MMRs, which the linker considers “out of bounds”.

Visual DSP++ 5.0 Linker and Utilities Manual 3-9

LDF File Overview

___cplb_ctrl configuration variable). Instead, this option ensures that the
memory layout allows caches to be enabled later.

A common user error occurs when cache is enabled despite not having
specified USE_CACHE. This leads to code or data corruption as cache activity
overwrites the contents of SRAM. Therefore, the LDFs use the following
“guard symbols”:

___11_code_cache
_ 11 _data_cache_a
__11_data_cache_b

These symbols are defined by the .1df files and are given values (that is,
resolved to addresses 0 or 1), depending on whether USE_CACHE is defined.
The run-time library examines these symbols when cache configuration is
requested, and refuses to enable a cache if the corresponding guard symbol
is zero, indicating that valid information already occupies this space.

For more information, refer to VisualDSP++ 5.0 C/C++ Compiler and
Library Manual, section “Caching and Memory Protection”.

Example 2 - Basic LDF for TigerSHARC Processors

Listing 3-2 is an example of a basic . 1df file for the ADSP-TS101 proces-
sor (formatted for readability). Note the MEMORY { } and SECTIONS{)
commands and refer to “Common Notes on Basic LDF Examples” on
page 3-13. Other LDF examples are provided in “LDF Programming
Examples for TigerSHARC Processors”.

Listing 3-2. Example LDF for ADSP-TS201 Processor
ARCHITECTURE(CADSP-TS101)

SEARCH_DIR($ADI_DSP/TS/1ib)
$0BJECTS = main.doj, $COMMAND_LINE_OBJECTS;

3-10 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

MEMORY { /* Define and label system memory */
/* List of global memory segments */
MOCode {TYPE(RAM) START(0x000000) END(OXOOFFFF) WIDTH(32)}
MIlData {TYPE(RAM) START(0x080000) END(OxO8FFFF) WIDTH(32)}
M2Data {TYPE(RAM) START(0x100000) END(OxIOFFFF) WIDTH(32)}
}
PROCESSOR PO { /* the only processor in the system */
OUTPUT ($COMMAND_LINE_OUTPUT_FILE)

SECTIONS{
code { INPUT_SECTIONS ($0BJECTS(program))} > M0Code
datal { INPUT_SECTIONS ($0OBJECTS(datal))! > MlData
data2 { INPUT_SECTIONS ($0BJECTS(data2))} > M2Data

} /* End of SECTIONS command for processor PO */
} /* End of PROCESSOR command. /*

Example 3 - Basic LDF for SHARC Processors

Listing 3-3 is an example of a basic . 1df file for the ADSP-21161 proces-
sor (formatted for readability). Note the MEMORY {} and SECTIONS{)
commands and refer to “Common Notes on Basic LDF Examples” on
page 3-13. Other examples for assembly and C source files are in “LDF
Programming Examples for SHARC Processors”.

Listing 3-3. Example LDF File for ADSP-21161 Processor

// Link for the ADSP-21161
ARCHITECTURE(ADSP-21161)

SEARCH_DIR ($ADI_DSP/211xx/1ib)

MAP (SINGLE-PROCESSOR.XML) // Generate a MAP file

// $ADI_DSP is a predefined Tinker macro that expands to
// the VisualDSP++ installation directory. Search for objects
// in directory 21k/1ib relative to the installation directory

Visual DSP++ 5.0 Linker and Utilities Manual 3-11

LDF File Overview

// 1ibléel.d1b is an ADSP-2116x-specific library and must
precede
// precede Tibc.dlb, C Tibrary to Tink 2116x-specific routines

$LIBS

1ib161.d1b, Tibc.dlb;

// single.doj is a user-generated file.

// The Tlinker will be invoked as follows:

// linker -T single-processor.1ldf single.doj.

// $COMMAND_LINE_OBJECTS is a predefined Tinker macro.
// The linker expands this macro into the name(s) of the
// the object(s) (.doj files) and libraries (.dIb files)
// that appear on the command Tine. In this example,

// $COMMAND_LINE_OBJECTS = single.doj

// 161_hdr.doj is the standard initialization file for 2116x
$0BJS = $COMMAND_LINE_OBJECTS, 161_hdr.doj;

// A linker project to generate a .dxe file
PROCESSOR PO
{
QUTPUT (./SINGLE.dxe) // The name of the output file

MEMORY // Processor-specific memory command
{ INCLUDE("21161_memory.h"}

SECTIONS // Specify the output sections
{
INCLUDE("21161_sections.h")
} // end PO sections
} // end PO processor

3-12 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

Common Notes on Basic LDF Examples

In the following description, the MEMORY {} and SECTIONS{} commands
connect the program to the target processor. For syntax information on
LDF commands, see “LDF Commands” on page 3-36.

These notes describe features of a typical . 1df file (as presented in
Listing 3-1, Listing 3-2, and Listing 3-3).

* ARCHITECTURE(ADSP-xxxxx) specifies the target architecture (pro-
cessor). For example, ARCHITECTURE (ADSP-BF533). The architecture
dictates possible memory widths and address ranges, the register
set, and other structural information used by the debugger, linker,
and loader. The target architecture must be installed in

Visual DSP++.

* SEARCH_DIR() specifies directory paths searched for libraries and
object files (on page 3-60). For example, the argument
$ADI_DSP/Blackfin/1ib specifies one search directory for Blackfin
libraries and object files.

The linker supports a sequence of search directories presented as an
argument list (directoryl, directory2, ...). The linker follows
this sequence and stops at the first match.

* $LIBRARIES is a list of the library and object files searched to resolve
references, in the required order. Some of the options specify the
selection of one library over another.

* $0BJECTS is an example of a user-definable macro, which expands to
a comma-delimited list of file names. Macros improve readability
by replacing long strings of text. Conceptually similar to preproces-
sor macro support (ffdefines) also available in the .1df file, string
macros are independent. In this example, $0BJECTS expands to a
comma-delimited list of the input files to be linked.

Visual DSP++ 5.0 Linker and Utilities Manual 3-13

LDF File Overview

Note: In this example and in the default . 1df files that accompany
Visual DSP++, $0BJECTS in the SECTIONS () command specifies the
object files to be searched for specific input sections.

As another example, $ADI_DSP expands to the VisualDSP++ home
directory.

$COMMAND_LINE_OBJECTS (on page 3-30) is an LDF command-line
macro, which expands in the . 1df file into the list of input files that
appears on the command line.

Note: The order in which the linker processes object files (which
affects the order in which addresses in memory segments are
assigned to input sections and symbols) is determined by the order
the files are listed in INPUT_SECTIONS() commands. As noted
above, this order is typically the order listed in $0BJECTS
($COMMAND_LINE_OBJECTS).

Visual DSP++ generates a linker command line that lists objects in
alphabetical order. This order carries through to the $0BJECTS
macro. You may customize the . 1df file to link objects in any
desired order. Instead of using default macros such as $0BJECTS,
each INPUT_SECTION command can have one or more explicit object
names.

3-14

Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

The following examples are functionally identical:
dxe_program { INPUT_SECTIONS (main.doj(program)
fft.doj(program)) } > mem_program
$D0JS = main.doj, fft.doj;
dxe_program {
INPUT_SECTIONS ($D0JS(program))
} >mem_program;

e The MEMORY{} command (on page 3-44) defines the target system’s
physical memory and connects the program to the target system.
Its arguments partition the memory into memory segments. Each
memory segment is assigned a distinct name, memory type, a start
and end address (or segment length), and a memory width. These
names occupy different namespaces from input section names and
output section names. Thus, a memory segment and an output sec-
tion may have the same name.

e Each PROCESSOR{} command (on page 3-54) generates a single
executable file.

e The OUTPUT() command (on page 3-54) produces an executable
(.dxe) file and specifies its file name.

In the basic example, the argument to the OUTPUT() command is
the $COMMAND_LINE_OUTPUT_FILE macro (on page 3-30). The linker
names the executable file according to the text following the -o

Visual DSP++ 5.0 Linker and Utilities Manual 3-15

LDF File Overview

switch

(which corresponds to the name specified in the Project

Options dialog box when the linker is invoked via the
Visual DSP++ IDDE).

Tinker

SECTIO

-0 outputfilename

NS{} (on page 3-61) specifies the placement of code and

data in physical memory. The linker maps input sections (in object

files) to output sections (in executable files), and maps the output
sections to memory segments specified by the MEMORY {} command.

The INPUT_SECTIONS() statement specifies the object file that the
linker uses as an input to resolve the mapping to the appropriate
memory segment declared in the .1df file.

For example, in TigerSHARC processors, the following
INPUT_SECTIONS() statement directs the linker to place the
program input section in the code output section and to
map it to the M0Code memory segment.

code { INPUT_SECTIONS ($0BJECTS(program))} >
MOCode

For SHARC processors, the following INPUT_SECTIONS()
statement directs the linker to place the isr_tb1 input sec-
tion in the dxe_isr output section and to map it to the
mem_isr memory segment.

dxe_isr{ INPUT_SECTIONS ($OBJECTS C(isr_tbl)) } >
mem_isr

For Blackfin processors, the following two input sections
(programand datal) are mapped into one memory segment
(L2), as shown below.

dxe_L2

1 INPUT_SECTIONS_ALIGN (2)

3-16

Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

2 INPUT_SECTIONS($0BJECTS(program)
$LIBRARIES(program))

3 INPUT_SECTIONS_ALIGN (1)

4 INPUT_SECTIONS($0BJECTS(datal)
$LIBRARIES(datal))

}OMEM_L2

The second line directs the linker to place the object code
assembled from the source file’s “program” input section
(via the “.section program” directive in the assembly source
file), place the output object into the “DXE_L2” output sec-
tion, and map the output section to the “MEM_L2” memory
segment. The fourth line does the same for the input section
“datal” and output section “DXE_L2”, mapping them to the
memory segment “MEM_L2".

The two pieces of code follow each other in the program
memory segment.

The INPUT_SECTIONS() commands are processed in the same order
as object files appear in the $0BJECTS macro. You may intersperse
INPUT_SECTIONS() statements within an output section with other
directives, including location counter information.

Visual DSP++ 5.0 Linker and Utilities Manual 3-17

LDF File Structure

LDF File Structure

One way to produce a simple and maintainable . 1df file is to parallel the
structure of your DSP system. Using your system as a model, follow these
guidelines.

» Split the file into a set of PROCESSOR{} commands, one for each
DSP in your system.

* Place a MEMORY { } command in the scope that matches your system
and define memory unique to a processor within the scope of the
corresponding PROCESSOR{} command.

e Ifapplicable, place a SHARED_MEMORY { } command in the .1df file’s
global scope. This command specifies system resources available as
shared resources in a multiprocessor environment.

Declare common (shared) memory definitions in the global
scope before the PROCESSOR{} commands. See “Command
Scoping” for more information.

Comments in the LDF

C-style comments begin with /* and may cross “newline” boundaries until
y g y
a */ terminator is encountered.

A C++ style comment begins with // and ends at the end of the line.
For more information on .1df file structure, see:

e “Link Target Description” on page 2-11

* “Placing Code on the Target” on page 2-36

Also see “LDF Programming Examples for TigerSHARC Processors” on
page E-1, “LDF Programming Examples for SHARC Processors” on

3-18 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

page D-1, and “LDF Programming Examples for Blackfin Processors” on
page C-1 for code and .1df file structure examples for TigerSHARC,
SHARGC, and Blackfin processors, respectively.

Command Scoping

The two LDF scopes are global and command (see Figure 3-1).

s (" MEMORY{}

MPMEMORY { }
SHARED_MEMORY
{

QUTPUT()
Global SECTIONS{}
LDF \ }

Scope 4 PROCESSOR PO
{

Scope of SHARED_MEMORY{} <

QUTPUT()
Scope of PROCESSOR PO{} < MEMORY { }
SECTIONS{}
RESOLVE{}

\ L
Figure 3-1. LDF Command Scoping Example

A global scope occurs outside commands. Commands and expressions that
appear in the global scope are always available and are visible in all subse-
quent scopes. LDF macros are available globally, regardless of the scope in
which the macro is defined (see “LDF Macros” on page 3-29).

A command scope applies to all commands that appear between the braces
({ }) of another command, such as a PROCESSOR{} or PLIT{} command.
Commands and expressions that appear in the command scopes are lim-
ited to those scopes.

Figure 3-1 illustrates some scoping issues. For example, the MEMORY {}
command that appears in the LDF’s global scope is available in all com-

Visual DSP++ 5.0 Linker and Utilities Manual 3-19

LDF Expressions

mand scopes, but the MEMORY { } command that appears in command scopes
is restricted to those scopes.

LDF Expressions

LDF commands may contain arithmetic expressions that follow the same
syntax rules as C/C++ language expressions. The linker:

* Evaluates all expressions as type unsigned long and treats
constants as type unsigned long

» Supports all C/C++ language arithmetic operators
* Allows definitions and references to symbolic constants in the LDF
* Allows reference to global variables in the program being linked
* Recognizes labels that conform to these constraints:
* Must start with a letter, an underscore, or point
* May contain any letters, underscores, digits, or points
* Are delimited by white space
* Do not conflict with any keywords
* Are unique

Table 3-1 lists valid items used in expressions.

Table 3-1. Valid Items in Expressions

Convention Description

Current location counter (a period character in an address expres-
sion). See “Location Counter (.)” on page 3-29.

Oxnumber Hexadecimal number (a 0x prefix)

3-20 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

Table 3-1. Valid Items in Expressions (Contd)

Convention Description
number Decimal number (a number without a prefix)
numberk A decimal number multiplied by 1024
or
numberK
Bffnumber A binary number
or
b#number

LDF Keywords, Commands, and

Operators

Descriptions of LDF keywords, operators, macros, and commands are
provided in the following sections.

e “LDF Keywords” on page 3-22

e “Miscellaneous LDF Keywords” on page 3-23

e “LDF Operators” on page 3-23

e “LDF Macros” on page 3-29

* “Built-in Preprocessor Macros” on page 3-33

* “LDF Commands” on page 3-36

@ Keywords are case sensitive; the linker recognizes a keyword only
when the entire word is UPPERCASE.

Visual DSP++ 5.0 Linker and Utilities Manual

3-21

LDF Keywords, Commands, and Operators

LDF Keywords

Table 3-2 lists all general LDF keywords (used in Blackfin, SHARC, and

TigerSHARC processor families).

Table 3-2. LDF Keywords Summary

ABSOLUTE ADDR ALGORITHM
ALIGN ALL_FIT ARCHITECTURE
BEST_FIT BOOT COMMON_MEMORY
DEFINED DYNAMIC ELIMINATE
ELIMINATE_SECTIONS ENTRY END

FALSE FILL FIRST_FIT
INCLUDE INPUT_SECTION_ALIGN INPUT_SECTIONS

INPUT_SECTIONS_PIN

INPUT_SECTIONS_PIN_
EXCLUSIVE

KEEP

KEEP_SECTIONS LENGTH LINK_AGAINST
MAP MEMORY MEMORY_SIZEOF
MPMEMORY NUMBER_OF_OVERLAYS ouUTPUT
OVERLAY_GROUP OVERLAY_ID OVERLAY_INPUT
OVERLAY_QUTPUT PACKING PLIT
PLIT_SYMBOL_ADDRESS PLIT_SYMBOL_OVERLAYID PROCESSOR

RAM RESERVE RESOLVE
RESERVE_EXPAND ROM

SEARCH_DIR SECTIONS SHARED_MEMORY
SHT_NOBITS SIZE SIZEOF

START TYPE DATA64
VERBOSE WIDTH XREF

PM DM SW

3-22

Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

Miscellaneous LDF Keywords

The following linker keywords are not operators, macros, or commands.

Table 3-3. Miscellaneous LDF Keywords

Keyword Description

FALSE A constant with a value of 0

TRUE A constant with a value of 1

XREF A cross-reference option setting. See “-xref” on page 2-65.

For more information about other LDF keywords, see “LDF Operators”
on page 3-23, “LDF Macros” on page 3-29, and “LDF Commands” on
page 3-306.

LDF Operators

LDF operators in expressions support memory address operations.
Expressions that contain these operators terminate with a semicolon,
except when the operator serves as a variable for an address. The linker
responds to several LDF operators including the location counter.

Each LDF operator is described in the following sections.

ABSOLUTE() Operator
Syntax:

ABSOLUTE(expression)

Visual DSP++ 5.0 Linker and Utilities Manual 3-23

LDF Keywords, Commands, and Operators

The linker returns the value expression. Use this operator to assign an
absolute address to a symbol. The expression can be:

* A symbolic expression in parentheses; for example,
1df_start_expr = ABSOLUTE(start + 8);

This example assigns 1df_start_expr the value correspond-
ing to the address of the symbol start, plus 8, as in:

1df_start_expr = start + 8;

* An integer constant in one of these forms: hexadecimal, decimal, or
decimal optionally followed by “K” (kilo [x1024]) or “M” (Mega
[x1024x1024])

* A period, indicating the current location (see “Location Counter

(.)” on page 3-29)

The following statement, which defines the bottom of stack
space in the LDF

1df_stack_space = .;
can also be written as:
1df_stack_space = ABSOLUTEC(.);

* A symbol name

ADDR() Operator
Syntax:
ADDR(section_name)

This operator returns the start address of the named output section
defined in the .1df file. Use this operator to assign a section’s absolute
address to a symbol.

3-24 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

Blackfin Code Example:

If an .1df file defines output sections as,

dxe_L2_code
{

INPUT_SECTIONS($0BJECTS(program) $LIBRARIES(program))
}> mem_L2

dxe_L2_data
{

INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))
}> mem_L2

the .1df file may contain the command:
Idf_start_L2 = ADDR(dxe_LZ2_code)

The linker generates the constant 1df_start_L2 and assigns it the start
address of the dxe_L2 output section.

SHARC Code Example:
If an .1df file defines output sections as,

dxe_pmco
{

INPUT_SECTIONS($OBJECTS(seg_pmco) $LIBRARIES(seg_pmco))
}> mem_pmco

dxe_dmda
{

INPUT_SECTIONS($0BJECTS(seg_dmda) $LIBRARIES(seg_dmda))
}> mem_seg_dmda

the .1df file may contain the command:

ldf_start_dmda = ADDR(mem_seg_dmda)

Visual DSP++ 5.0 Linker and Utilities Manual 3-25

LDF Keywords, Commands, and Operators

The linker generates the constant 1df_start_dmda and assigns it the start
address of the mem_seg_dmda output section.

DEFINED() Operator
Syntax:
DEFINED(symbol)

The linker returns 1 when the symbol appears in the global symbol table,
and returns 0 when the symbol is not defined. Use this operator to assign
default values to symbols.

Example:

If an assembly object linked by the .1df file defines the global symbol
test, the following statement sets the test_present constant to 1.
Otherwise, the constant has the value 0.

test_present = DEFINED(test);

MEMORY_END() Operator
Syntax:
MEMORY_END(segment_name)

This operator returns the end address (the address of the last word) of the
named memory segment.

Example:

This example reserves six words at the end of a mem_stack memory
segment using the MEMORY_END operator.

RESERVE(reserved_space = MEMORY_END(mem_stack) - 6 + 1,
reserved_space_length = 6)

3-26 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

MEMORY_SIZEOF() Operator
Syntax:
MEMORY_SIZEOF (segment_name)

This operator returns the size (in words) of the named memory segment.
Use this operator when a segment’s size is required to move the current
location counter to an appropriate memory location.

Example:

This example (from a default . 1df file) sets a linker-generated constant
based on the location counter plus the MEMORY_SIZEOF operator.

sec_stack

1df_stack_Timit = .;

ldf_stack_base = . + MEMORY_SIZEOF(mem_stack) - 1;
} > mem_stack

The sec_stack section is defined to consume the entire mem_stack
memory segment.

MEMORY_START() Operator
Syntax:
MEMORY_START (segment_name)

This operator returns the start address (the address of the first word) of the
named memory segment.

Example:

This example reserves four words at the start of a mem_stack memory
segment using the MEMORY_START operator:

RESERVE(reserved_space =

MEMORY_START(mem_stack), reserved_space_length = 4)

Visual DSP++ 5.0 Linker and Utilities Manual 3-27

LDF Keywords, Commands, and Operators

The sec_stack section is defined to consume the entire mem_stack
memory segment.

SIZEOF() Operator
Syntax:
SIZEOF(section_name)

This operator returns the size (in bytes) of the named output section.
Use this operator when a section’s size is required to move the current
location counter to an appropriate memory location.

SHARC Code Example:

The following code fragment defines the _sizeofdatal constant to the
size of the seq_dmda section.

seg_dmda

{
INPUT_SECTIONS($0BJECTS(seg_dmda) $LIBRARIES(seg_dmda))
_sizeofdatal = SIZEOF(seg_dmda);

} > seg_dmda

Blackfin Code Example:

The following code fragment defines the _sizeofdatal constant to the
size of the datal section.

datal

{
INPUT_SECTIONS($0BJECTS(datal) $LIBRARIES(datal))
_sizeofdatal = SIZEOF(datal);

} > MEM_DATAIL

3-28 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

Location Counter (.)

The linker treats a “.” (period surrounded by spaces) as the symbol for the
current location counter. The location counter is a pointer to the memory
location at the end of the previous linker command. Because the period
refers to a location in an output section, this operator may appear only
within an output section in a SECTIONS{} command.

Observe these rules:
* Use a period anywhere a symbol is allowed in an expression.

* Assign a value to the period operator to move the location counter
and to leave voids or gaps in memory.

* Do not allow the location counter to be decremented.

LDF Macros

LDF macros (or linker macros) are built-in macros. They have predefined
system-specific procedures or values. Other macros, called user macros, are
user-definable.

LDF macros are identified by a leading dollar sign ($) character. Each
LDF macro is a name for a text string. You may assign LDF macros with
textual or procedural values, or simply declare them to exist.

The linker:

» Substitutes the string value for the name. Normally, the string
value is longer than the name, so the macro expands to its textual

length.

* Performs actions conditional on the existence of (or value of) the
macro

* Assigns a value to the macro, possibly as the result of a procedure,
and uses that value in further processing

Visual DSP++ 5.0 Linker and Utilities Manual 3-29

LDF Keywords, Commands, and Operators

LDF macros funnel input from the linker command line into predefined
macros and provide support for user-defined macro substitutions. Linker
macros are available globally in the .1df file, regardless of where they are
defined. For more information, see “Command Scoping” on page 3-19
and “LDF Macros and Command-Line Interaction” on page 3-32.

LDF macros are independent of preprocessor macro support,
which is also available in the .1df file. The preprocessor places pre-
processor macros (or other preprocessor commands) into source
files. Preprocessor macros (see “Built-in Preprocessor Macros” on
page 3-33) repeat instruction sequences in your source code or
define symbolic constants. These macros facilitate text replace-
ment, file inclusion, and conditional assembly and compilation.
For example, the assembler’s preprocessor uses the #define com-
mand to define macros and symbolic constants.

For more information, refer to the VisualDSP++ 5.0 Compiler
and Library Manual for appropriate target processor and the

VisualDSP++ 5.0 Assembler and Preprocessor Manual.

Built-In LDF Macros
The linker provides the following built-in LDF macros.
® $COMMAND_LINE_OBJECTS

This macro expands into the list of object (.doj) and library
(.d1b) files that are input on the linker’s command line. Use
this macro within the INPUT_SECTIONS() syntax of the

3-30 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

linker’s SECTIONS{} command. This macro provides a com-
prehensive list of object file input that the linker searches
for input sections.

* $COMMAND_LINE_LINK_AGAINST

This macro expands into the list of executable (. dxe or .sm)
files that one input on the linker’s command line. This
macro provides a comprehensive list of executable file input
that the linker searches to resolve external symbols.

e $COMMAND_LINE_OUTPUT_FILE

This macro expands into the output executable file name,
which is set with the linker’s -o switch. This file name cor-
responds to the <projectname.dxe> set via the Visual DSP++
Project Options dialog box. Use this macro only once in
your LDF for file name substitution within an OUTPUT ()
command.

¢ $COMMAND_LINE_OUTPUT_DIRECTORY

This macro expands into the path of the output directory,
which is set with the linker’s -od switch (or -o switch when
-od is not specified).

Visual DSP++ 5.0 Linker and Utilities Manual 3-31

LDF Keywords, Commands, and Operators

For example, the following statement permits a configura-

tion change (release vs. debug) without modifying the .1df
file.

OVERLAY_OUTPUT($COMMAND_LINE_OUTPUT_DIRECTORY/0VLI.ov1)
e S$ADI_DSP

This macro expands into the path of the VisualDSP++
installation directory. Use this macro to control how the
linker searches for files.

User-Declared Macros

The linker supports user-declared macros for file lists. The following
syntax declares $macroname as a comma-delimited list of files.
$macroname = filel, file2, file3, ... ;

After $macroname has been declared, the linker substitutes the file list
when $macroname appears in the .1df file. Terminate a $macroname decla-
ration with a semicolon. The linker processes the files in the listed order.

LDF Macros and Command-Line Interaction

The linker receives commands through a command-line interface,
regardless of whether the linker runs automatically from the VisualDSP++
IDDE or explicitly from a command window. Many linker operations,
such as input and output, are controlled through command-line entries.
Use LDF macros to apply command-line inputs within the .1df file.

3-32 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

Base your decision on whether to use command-line inputs in the . 1df file
or to control the linker with LDF code on the following considerations.

* An.1df file that uses command-line inputs produces a more
generic . 1df file that can be used in multiple projects. Because the
command line can specify only one output, an .1df file that relies
on command-line input is best suited for single-processor systems.

* An .1df file that does not use command-line inputs produces a

more specific .1df file that can control complex linker features.

Built-in Preprocessor Macros

The linker’s preprocessor defines a number of macros to provide informa-
tion about the linker. These macros can be tested, using the #ifdef and
related directives, to support your program’s needs.

This section provides information about the following built-in preproces-
SOr macros.

e _ VISUALDSPVERSION__
e _ VERSIONNUM__

e __ VERSION__

e _ SILICON_REVISION__
e _ MEMINIT__

__VISUALDSPVERSION__

The __VISUALDSPVERSION__ predefined macro provides Visual DSP++
product version information. The macro allows a pre-processing check to
be placed within the .1df file. It can be used to differentiate between
Visual DSP++ releases and updates. This macro applies to all Analog
Devices processors.

Visual DSP++ 5.0 Linker and Utilities Manual 3-33

LDF Keywords, Commands, and Operators

Syntax:
_ VISUALDSPVERSION__=0xMMmmUUxx

Table 3-4 explains the parameters of this macro.

Table 3-4. __ VISUALDSPVERSION Macro Parameters

Parameter |Description

MM VersionMajor. The major release number; for example, 4 in release 4.5.

mm VersionMinor. The minor release number; for example, 5 in release 4.5.

uUuu VersionPatch. The number of the release update, such as version 4.5, update 6.
xx Reserved for future use (always 00 initially)

The 0xMMmmUUxx information is obtained from the <install-dir>\Sys-
tem\VisualDSP.ini file. The xx is initially set at 00.

If an unexpected problem occurs in trying to locate VisualDSP.ini or in
extracting information from the VisualDSP.ini file, the
__VISUALDSPVERSION__ macro will not be encoded to the Visual DSP++
product version. The __VISUALDSPVERSION__ Oxffffffff string is dis-
played as part of an error message when the version information is unable
to be encoded.

Code Example (Legacy):

#if !defined(__VISUALDSPVERSION__)

ffwarning Building with VisualDSP++ 4.5 Update 5 or prior. No
__VISUALDSPVERSION__ available.

ffendif

Code Example (VisualDSP++ 4.5 Update 6 or Later):

#if __VISUALDSPVERSION__ >= 0x04050600

f#warning Building with VisualDSP++ 4.5 Update 6 or later
ffendif

3-34 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

Code Example (Error Check):

#if __VISUALDSPVERSION__ == Oxffffffff
fferror Unexpected build problems, unknown VisualDSP++ Version
frendif

__VERSIONNUM__

The __VERSIONNUM__ predefined macro provides VisualDSP++ linker ver-
sion information in hex form. The macro allows a pre-processing check to
be placed within the .1df file. It can be used to differentiate between
Visual DSP++ linker versions. This macro applies to all Analog Devices
processors.

In other words, this macro defines _ VERSIONNUM__ as a numeric variant of
__VERSION__ constructed from the version number of the linker. Eight bits
are used for each component in the version number and the most signifi-
cant byte of the value represents the most significant version component.

For example, a linker with version 3.6.0.0 defines __VERSIONNUM__ as
0x03060000 and 3.6.2.10 would define __VERSIONNUM__ to be 0x0306020A.

__VERSION__

The __VERSION__ predefined macro provides Visual DSP++ linker version
information in string form, giving the version number of the linker. The
macro allows a pre-processing check to be placed within the . 1df file. It
can be used to differentiate between Visual DSP++ linker versions. This
macro applies to all Analog Devices processors.

For example, for linker version 3.9.1.1, the value of the macro would be
3.9.1.1.

Visual DSP++ 5.0 Linker and Utilities Manual 3-35

LDF Keywords, Commands, and Operators

__SILICON_REVISION__

The __STLICON_REVISION__ predefined macro value is defined by the
-si-revision version switch.

For example, if the silicon revision switch (-si-revision) is set to “any”,
the _STLICON_REVISION__ macro is set to Oxffff. If the -si-revision
switch is set to “none”, the linker does not set the SILICON_REVISION
macro.

__MEMINIT__

The __MEMINIT__ predefined macro is defined if the -meminit switch is
used on the command line.

LDF Commands

Commands in the .1df file (called LDF commands) define the target
system and specify the order in which the linker processes output for that
system. LDF commands operate within a scope, influencing the operation
of other commands that appear within the range of that scope. For more
information, see “Command Scoping” on page 3-19.

The linker supports the use of wildcards in section name specifica-
tions in the .1df file. The * and ? are provided on input section
names.

The linker supports these LDF commands (not all commands are used
with specific processors):

e “ALIGN()” on page 3-37
 “ARCHITECTUREC()” on page 3-38

e “COMMON_MEMORY{}” on page 3-38
e “ELIMINATE()” on page 3-39

3-36 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

* “ELIMINATE_SECTIONS()” on page 3-40
* “INCLUDE()” on page 3-40

e “INPUT_SECTION_ALIGN()” on page 3-40
* “KEEP()” on page 3-42

e “KEEP_SECTIONS()” on page 3-42

e “LINK_AGAINST()” on page 3-42
 “MEMORY{}” on page 3-44

e “MPMEMORY{}” on page 3-47

« “OVERLAY_GROUP{}” on page 3-48

e “PACKING()” on page 3-48

e “PLIT{}” on page 3-53

e “PROCESSOR({}” on page 3-54

e “RESERVE()” on page 3-56

e “RESERVE_EXPAND()” on page 3-58

« “RESOLVE()” on page 3-59

* “SEARCH_DIR()” on page 3-60

e “SECTIONS{}” on page 3-61

* “SHARED_MEMORY{}” on page 3-72

ALIGN()

The ALIGN(number) command aligns the address of the current location
counter to the next address that is a multiple of number, where number is a

Visual DSP++ 5.0 Linker and Utilities Manual 3-37

LDF Keywords, Commands, and Operators

power of 2. The number is a word boundary (address) that depends on the
word size of the memory segment in which the ALIGN() takes action.

ARCHITECTURE()

The ARCHITECTURE() command specifies the target system’s processor.
An ..1df file may contain one ARCHITECTURE() command only.

The ARCHITECTURE () command must appear with global LDF scope,
applying to the entire . 1df file.

The command’s syntax is:
ARCHITECTURE(processor)

The ARCHITECTURE () command is case sensitive. For example, a valid entry
is ADSP-BF533. Thus, ADSP-BF533 is valid, but adsp-BF533 is not.

If the ARCHITECTURE () command does not specify the target processor, you
must identify the target processor via the linker command line

(Tinker -proc processor ...). Otherwise, the linker cannot link the
program.

If processor-specific MEMORY { } commands in the . 1df file conflict with the
processor type, the linker issues an error message and halts.

Test whether your Visual DSP++ installation accommodates
a particular processor by typing the following linker command.
linker -proc processor

If the architecture is not installed, the linker prints a message to
that effect.

COMMON_MEMORY{}

The COMMON_MEMORY { } command is used to map objects into memory that
is shared by more than one processor. The mapping is done in the context

3-38 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

of the processors that will use the shared memory; these processors are
identified as a "master" of the common memory.

For detailed command description, refer to “COMMON_MEMORY{}”
on page 5-53.

ELIMINATE()

The ELIMINATE() command enables object elimination, which removes
symbols from the executable file if they are not called. Adding the VERBOSE
keyword, ELIMINATE(VERBOSE), reports on objects as they are eliminated.
This command performs the same function as the -e command-line
switch (see on page 2-57).

When using either the linker’s data elimination feature (via the Expert
Linker or command-line switches) or the ELIMINATE() command in an
.1df file, it is essential that certain objects are continue to use the KEEP ()
command, so that the C/C++ run-time libraries function properly. The
safest way to do this is to copy the KEEP () command from the default . 1df
file into your own .LDF file.

For the C and C++ run-time libraries to work properly, retain the
following symbols with “KEEP()” (on page 3-42):

_ctor_NULL_marker and 1 ib_end_of_heap_descriptions.

In order to allow efficient elimination, the structure of the assembly
source has to be such that the linker can unambiguously identify the
boundaries of each “source object” in the input section (a “source object”
is a function or a data item). Specifically, an input section must be fully
covered by non-overlapping source objects with explicit boundaries. The
boundary of a function item is specified by the function label and its cor-
responding “.end” label. If an input section layout does not conform to
the rule described above, no elimination is performed in the section. See
the VisualDSP++ 5.0 Assembler and Preprocessor Manual for more details

on using “.end” labels.

Visual DSP++ 5.0 Linker and Utilities Manual 3-39

LDF Keywords, Commands, and Operators

ELIMINATE_SECTIONS()

The ELIMINATE_SECTIONS (sectionlist) command instructs the linker to
remove unreferenced code and data from listed sections only.

The sectionlist is a comma-delimited list of input sections. Both this
LDF command and the linker’s -es command-line switch (on page 2-58)

may be used to specify sections where unreferenced code and data should
be eliminated.

ENTRY()

The ENTRY (symbol) command specifies the entry address. The entry
address is usually filled from a global symbol “start” (no underscore),
if present. Refer to “Entry Address” on page 2-34 for more information.

Both this LDF command and the linker’s -entry command-line switch
(on page 2-58) may be used to specify the entry address.

INCLUDE()

The INCLUDE() command specifies additional . 1df files that the linker
processes before processing the remainder of the current . 1df file. Specify
any number of additional .1df files. Supply one file name per INCLUDE()
command.

Only one of these additional .1df files is obligated to specify a target

architecture. Normally, the top-level .1df files includes the other .1df
files.

INPUT_SECTION_ALIGN()

The INPUT_SECTION_ALIGN(number) command aligns each input section
(data or instruction) in an output section to an address satisfying number.
The number argument, which must be a power of 2, is a word boundary

3-40 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

(address). Valid values for number depend on the word size of the memory
segment receiving the output section being aligned.

The linker fills empty spaces created by INPUT_SECTION_ALIGN()
commands with zeros (by default), or with the value specified with the
preceding FILL command valid for the current scope. See FILL under

“SECTIONS{}” on page 3-61.

The INPUT_SECTION_ALIGN() command is valid only within the scope of
an output section. For more information, see “Command Scoping” on
page 3-19. For more information on output sections, see the syntax

description for “SECTIONS{}” on page 3-61.
Example:

In the following Blackfin example, input sections from a.doj, b.doj, and
c.doj are aligned on even addresses. Input sections from d.doj and e.doj
are not quad-word aligned because INPUT_SECTION_ALIGN(1) indicates
subsequent sections are not subject to input section alignment.

SECTIONS

{
program
{
INPUT_SECTION_ALIGN(2)

INPUT_SECTIONS (a.doj(program))
INPUT_SECTIONS (b.doj(program))
INPUT_SECTIONS (c.doj(program))

// end of alignment directive for input sections
INPUT_SECTION_ALIGN(1)

// The following sections will not be aligned.
INPUT_SECTIONS (d.doj(datal))
INPUT_SECTIONS (e.doj(datal))

Visual DSP++ 5.0 Linker and Utilities Manual 3-41

LDF Keywords, Commands, and Operators

} >MEM_PROGRAM

KEEP()

The linker uses the KEEP (keepList) command when section elimination is
enabled, retaining the listed objects in the executable file even when they
are not called. The keepList is a comma-delimited list of objects to be
retained.

When utilizing the linker’s data elimination capabilities, it is essential that
certain objects continue to use the KEEP() command, so that the C/C++
run-time libraries function properly. The safest way to do this is to copy
the KEEP() command from the default . 1df file into your own .1df file.

For the C and C++ run-time libraries to work properly, retain the
following symbols with KEEP:

_ctor_NULL_marker and __ 1ib_end_of_heap_descriptions

A symbol specified in keeplist must be a global symbol.

KEEP_SECTIONS()

The linker uses the KEEP_SECTIONS() command to specify a section name
in which elimination should not take place. This command can appear
anywhere the ELIMINATE_SECTION command appears. You may either use
the KEEP_SECTIONS() command or the -ek switch (on page 2-57).

LINK_AGAINST()

The LINK_AGAINST () command checks specific executables to resolve
variables and labels that have not been resolved locally.

To link programs for multiprocessor systems, a LINK_AGAINST ()
command must be present in the . 1df file.

3-42 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

This command is an optional part of the PROCESSOR{} and
SHARE_MEMORY { } commands. The syntax of the LINK_AGAINST() command
(as part of a PROCESSOR{} command) is:

PROCESSOR Pn
{

LINK_AGAINST (executable_file_names)

where:
* Pnis the processor name; for example, PO or P1.

* executable_file_names is a list of one or more executable (.dxe)
or shared memory (.sm) files. Separate multiple file names with
commas. However, Expert Linker allows the use of white spaces to
separate multiple file names.

The linker searches the executable files in the order specified in the
LINK_AGAINST() command. When a symbol’s definition is found, the
linker stops searching. Override the search order for a specific variable or
label by using the RESOLVE () command (see “RESOLVE()” on page 3-59),
which directs the linker to use the specified resolver, thus ignoring
LINK_AGAINST() for a specific symbol. The LINK_AGAINST () command for
other symbols still applies.

MAP()

The MAP(filename) command outputs a map (.xm1) file with the specified
name. You must supply the file name. Place this command anywhere in
the .1df file.

The MAP(filename) command corresponds to (and may be overridden by)
the linker’s -Map <fi7ename> command-line switch (on page 2-55). In
Visual DSP++, if project options (Link page of the Project Options dialog

Visual DSP++ 5.0 Linker and Utilities Manual 3-43

LDF Keywords, Commands, and Operators

box) specify the generation of a symbol map, the linker runs with -Map
<projectname>.xml asserted and the .1df file’s MAP() command generates
a warning.

MEMORY{}

The MEMORY { } command specifies the memory map for the target system.
After declaring memory segment names with this command, use the mem-
ory segment names to place program sections via the SECTIONS{}
command.

The .1df file must contain a MEMORY { } command for global memory on
the target system and may contain a MEMORY { } command that applies to
each processor’s scope. There is no limit to the number of memory seg-
ments you can declare within each MEMORY {} command. For more
information, see “Command Scoping” on page 3-19.

In each scope scenario, follow the MEMORY { } command with a SECTIONS{)
command. Use the memory segment names to place program sections.
Only memory segment declarations may appear within the MEMORY {} com-
mand. There is no limit to section name lengths.

If you do not specify the target processor’s memory map with the

MEMORY { } command, the linker cannot link your program. If the combined
sections directed to a memory segment require more space than exists in
the segment, the linker issues an error message and halts the link.

3-44 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

The syntax for the MEMORY {} command appears in Figure 3-2, followed by
a description of each part of a segment declaration.

MEMORY { segment_commands }

ST

segment_name {

TYPE(RAM |ROM)
START (address_expression)

> LENGTHC(length_expression)| END (address_expression)
WIDTH (width_expression)

1

L I

Figure 3-2. MEMORY{} Command Syntax Tree

Segment Declarations

A segment declaration declares a memory segment on the target proces-
sor. Although an .1df file may contain only one MEMORY { } command that

applies to all scopes, there is no limit to the number of memory segments
declared within a MEMORY {} command.

Each segment decilaration must contain a segment_name, TYPE(),

START(), LENGTH() or END(), and a WIDTH(). The parts of a segment
declaration are described below.

segment_name

The segment_name identifies the memory region. The segment_name must
start with a letter, underscore, or point, may include any letters, under-
scores, digits, and points, and must not conflict with LDF keywords.

START(address_number)

The START() command specifies the memory segment’s start address.
The address_number must be an absolute address.

Visual DSP++ 5.0 Linker and Utilities Manual 3-45

LDF Keywords, Commands, and Operators

TYPE()

The TYPE() command identifies the architecture-specific type of memory
within the memory segment.

Not all target processors support all types of memory. The linker
stores this information in the executable file for use by other devel-
opment tools.

For Blackfin and TigerSHARC processors, use TYPE() to specify the func-
tional or hardware locus (RAM or ROM). The RAM declarator specifies
segments that need to be booted. ROM segments are not booted; they are
executed/loaded directly from off-chip PROM space.

For SHARC (ADSP-21xxx) processors, use TYPE()to specify two parame-
ters: memory usage (PM for program memory or DM for data memory),
and functional or hardware locus (RAM or ROM, as described above).

On ADSP-21261/2/6/7 and ADSP-21362/3/4/5/6 processors, it is not
possible to access external memory directly, but through DMA. To vali-
date placement of code accessible through DMA in external memory, use
the DMAONLY segment qualifier to mark a memory segment in the . 1df file
as external memory. For example,

seg_dmda {
TYPE(DM DMAONLY)
START(0x00200000)
END(OX3FFFFFFF)
WIDTH(32)
}
<o
seg_dmda{INPUT_SECTIONS($0BJECTS(seg_extm))}
> seg_dmda

The linker identifies the section as dmaonly. At link time, the linker
verifies that the section must reside in external memory identified with
the DMAONLY qualifier. More importantly, the linker checks that only

3-46 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

sections marked dmaon1ly are placed in external memory. The linker issues
an error if there is any inconsistency between memory the section
is mapped to and that section’s qualifier:

[Error e12017] Invalid/missing memory qualifier for memory 'sec-
tion name.

LENGTH(length_number)/END(address_number)

The LENGTH/END() command identifies the length of the memory segment
(in words) or specifies the segment’s end address. When you state the
length, Tength_number is the number of addressable words within the
region. When you state the end address, address_number is an absolute

address.

WIDTH(width_number)

The WIDTH() command specifies the physical width (number of bits) of
the on-chip or off-chip memory interface. The width_number parameter
must be a whole number. The parameters are:

* For Blackfin processors, width must be 8 (bits)
* For TigerSHARC processors, width must be 32 (bits)
* For SHARC processors, width may be 8, 16, 32, 48, or 64 (bits)

MPMEMORY{}

The MPMEMORY { } command specifies the offset of each processor’s physical
memory in a multiprocessor target system. After you declare the processor
names and memory segment offsets with the MPMEMORY {} command, the
linker uses the offsets during multiprocessor linking.

Refer to “MPMEMORY/{}” on page 5-45 for a detailed description of the
MPMEMORY { } command.

Visual DSP++ 5.0 Linker and Utilities Manual 3-47

LDF Keywords, Commands, and Operators

OVERLAY_GROUP{}

The OVERLAY_GROUP{} command is deprecated. This command provides
support for defining a set of overlays that share a block of run-time
memory.

For detailed command description, refer to “OVERLAY_GROUP{}” on
page 5-29. Refer to “Memory Management Using Overlays” on page 5-4
for a detailed description of overlay functionality.

PACKING()

In VisualDSP++ 5.0, the PACKING() command is used with
ADSP-21xxx (SHARC) processors only (as described in “Packing
in SHARC Processors” on page 3-50).

Processors exchange data with their environment (on-chip or off-chip)
through several buses. The configuration, placement, and amounts of
memory are determined by the application. Specify memory of width(s)
and data transfer byte order(s) that suit your needs.

The linker places data in memory according to the constraints imposed by
your system’s architecture. The LDF PACKING() command specifies the
order the linker uses to place bytes in memory. This ordering places data
in memory in the sequence the processor uses as it transfers data.

The PACKING() command allows the linker to structure its executable out-
put to be consistent with your installation’s memory organization. This
command can be applied (scoped) on a segment-by-segment basis within
the .1df file, with adequate granularity to handle heterogeneous memory
configurations. Any memory segment requiring more than one packing
command may be divided into homogeneous segments.

Syntax

The syntax of the PACKING() command is:

3-48 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

PACKING (number_of_bytes byte_order_Tlist)
where:

* number_of_bytes is an integer specifying the number of bytes to
pack (reorder) before repeating the pattern

* byte_order_list is the output byte ordering — what the linker
writes into memory. Each list entry consists of “B” followed by the
byte’s number (in a group) at the storage medium (memory).

The list follows these rules:
* DParameters are whitespace-delimited
* The total number of non-null bytes is number_of_bytes
* If null bytes are included, they are labeled B0

For example, in SHARC processors, the first byte is B1 (not B0).
The second byte is B2, and so on.
PACKING (12 B1 B2 B3 B4 BO B11 B12 B5 B6 BO B7 B8 B9 B10 BO)

Non-default use of the PACKING() command reorders bytes in executable
files (.dxe, .sm, or .ov1), so they arrive at the target in the correct number,
alignment, and sequence. To accomplish this task, the command specifies
the size of the reordered group, the byte order within the group, and
whether and where “null” bytes must be inserted to preserve alignment on
the target. The term “null” refers to usage — the target ignores a null byte;
the linker sets these bytes to zeros.

The order used to place bytes in memory correlates to the order the pro-
cessor may use while unpacking the data when the processor transfers data
from external memory into its internal memory. The processor’s unpack-
ing order can relate to the transfer method.

Visual DSP++ 5.0 Linker and Utilities Manual 3-49

LDF Keywords, Commands, and Operators

VisualDSP++ comes with the packing.h file in the .../include
folder. This file provides macros that define packing commands for
use in an LDF. The macros support various types of packing for
direct memory access functionality (used in overlays) and for direct
external execution. To use these macros, place them in an .1df
file’s SECTIONS{} command when a PACKING() command is needed.

Packing in SHARC Processors

On SHARC processors, PACKING() applies to the processor’s external port.
Each external port buffer contains data packing logic that allows the pack-
ing of 8-, 16-, or 32-bit external bus words into 32- or 48-bit internal
words. This logic is fully reversible.

The following information describes how the PACKING() command may
apply in an .1df file for your ADSP-21xxx processor.

In some direct memory access (DMA) modes, SHARC processors unpack
three 32-bit words to build two 48-bit instruction words when the proces-
sor receives data from 32-bit memory. For example, the unpacked order

and storage order (Table 3-5) could apply to a DMA mode.

Table 3-5. DMA Packing Order

Transfer Order Unpacked Order

(from storage in a 32-bit external memory) Two 48-bit internal words

(after the third transfer)

B1 and B2 (word 1, bits 47-32)
B3 and B4 (word 1, bits 31-16)
B1, B2, B3, B4, B5, B6
B11 and B12 (word 2, bits 15-0) (word 1, bits 47-0)

B5 and B6 (word 1, bits 15-0)
B7, B8, B9, B10, B11, B12
B7 and B8 (word 2, bits 47-32) (word 2, bits 47-0)

B9 and B10 (word 2, bits 31-16)

3-50 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

The order of unpacked bytes does not match the transfer (stored) order.
Because the processor uses two bytes per short word, the above transfer
translates into the format in Table 3-6.

Table 3-6. Storage Order vs. Unpacked Order

Storage Order Unpacked Order

(in 32-bit external memory) (two 48-bit internal words)
B1, B2, B3, B4, B11, B12 B1, B2, B3, B4, B5, B6
B5, B6, B7, B8, B9, B10 B7, B8, B9, B10, B11, B12

You specify to the linker how to accommodate processor-specific byte
packing (for example, non-sequential byte order) with the PACKING() syn-
tax within the OVERLAY_INPUT{} command. The above example’s byte
ordering translates into the following PACKING() command syntax, which
supports 48-bit to 32-bit packing over the processor’s external port.
PACKING (12 B1 B2 B3 B4 BO B11 B12 B5 B6 BO B7 B8 B9 B10 BO)

The above PACKING() syntax places instructions in an overlay stored in a
32-bit external memory, but is unpacked and executed from 48-bit
internal memory.

Refer to fft_ovly.fft, which uses a macro that defines the packing.
This file is included with the overlay3 example that ships with
Visual DSP++.

Overlay Packing Formats in SHARC Processors
Use the PACKING() command when:

* Data and instructions for overlays are executed from external mem-
ory (by definition those overlays “live” in external memory)

e The width or byte order of stored data differs from its run-time
organization

The linker word-aligns the packing instruction as needed.

Visual DSP++ 5.0 Linker and Utilities Manual 3-51

LDF Keywords, Commands, and Operators

Table 3-7 indicates packing format combinations for SHARC DMA
overlays available under each of the two operations.

Table 3-8 indicates packing format combinations for ADSP-21161N
overlays available for storage in 8-bit-wide memory; 8-bit packing is avail-
able on ADSP-2106x and ADSP-21160 processors during EPROM
booting only.

Table 3-7. Packing Formats for SHARC DMA Opverlays

Execution Storage Memory
Memory type type Packing Instruction
32-bit PM 16-bit DM PACKING(6 BO BO Bl B2 B5 BO BO B3 B4 B6)
32-bit DM 16-bit DM PACKING(4 BO BO Bl B2 BO BO B3 B4 B5)
48-bit PM 16-bit DM PACKING(6 BO BO B1 B2 BO BO BO B3 B4
BO BO BO B5 B6 BO)
48-bit DM 32-bit DM PACKING(12 B1 B2 B3 B4 BO BB5 B6 Bll
Bl12 BO B7 B8 B9 B10 BO)

Table 3-8. Additional Packing Formats for DMA Overlays

Execution Storage

Memory type Memory type |Packing Instruction

48-bit PM 8-bit DM PACKING(6 BO BO BO B1 BO BO BO B2 BO BO BO B3
BO BO BO BO B4 BO BO BO BO BS5 BO BO
BO BO B6 BO BO BO BO BO BO BO BO BO
BO BO)

32-bit DM 8-bit DM PACKING(4 BO BO BO B1 BO BO BO BO B2 BO
BO BO BO B3 BO BO BO BO B4 BO)

16-bit DM 8-bit DM PACKING(2 BO BO BO B1 BO BO BO BO B2 BO)

External Execution Packing in SHARC Processors

The only two processors that require packed memory for external
execution are the ADSP-21161N and the ADSP-21065L chips. The
ADSP-21161N processor supports 48-, 32-, 16-, and 8-bit-wide external

3-52

Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

memory. The ADSP-21065L processor supports 32-bit external memory
only.

@ Previous to VisualDSP++ 3.5, it was required to use “packing”

commands in the . 1df file to cause the code to be placed properly.
In VisualDSP++ 3.5 and latter releases, the Visual DSP++ tools are
enhanced to perform packing automatically.

In order for the VisualDSP++ tools to execute packing directly from exter-
nal memory on ADSP-21065L and ADSP-21161N processors, the tools
“pack” the code into the external memory providing the following condi-
tions are met:

1. Ensure the “type” of the external memory is PM (Program
Memory)

2. Ensure the data width matches the “real/actual” memory width:
ADSP-21065L processors — 32 bits; ADSP-21161N processors —
48, 32, 16, and 8 bits

3. If the .1df file has the PACKING() command for the particular
section, remove the command.

When defining memory segments (required for external memory), the
“type” of a memory section is recommended to be:

* PM — code or 40-bit data (data requires PX register to access)
e DM - all other sections

Width should be the “actual/physical” width of the external memory.

PLIT{}

The PLIT{} (procedure linkage table) command in an .1df file inserts
assembly instructions that handle calls to functions in overlays. The
PLIT{} commands provide a template from which the linker generates
assembly code when a symbol resolves to a function in overlay memory.

Visual DSP++ 5.0 Linker and Utilities Manual 3-53

LDF Keywords, Commands, and Operators

Refer to “PLIT{}” on page 5-34 for a detailed description of the PLIT{}
command. Refer to “Memory Management Using Overlays” on page 5-4
for a detailed description of overlay and PLIT functionality.

PROCESSOR{}

The PROCESSOR{} command declares a processor and its related link
information. A PROCESSOR{} command contains the MEMORY { }, SEC-
TIONS{}, RESOLVE{}, and other linker commands that apply only to that
specific processor.

The linker produces one executable file from each PROCESSOR{} command.
If you do not specify the type of link with a PROCESSOR{ } command, the
linker cannot link your program.

The syntax for the PROCESSOR{} command appears in Figure 3-3.

PROCESSOR processor_name
{
OUTPUT (fzle_name DXE)
[MEMORY { segment_commands }]
[PLIT{ plit_commands } |
SECTIONS {section_commands)
RESOLVE (symbol, resolver)
}

Figure 3-3. PROCESSOR{} Command Syntax Tree

3-54 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

The PROCESSOR{} command syntax is defined as:
* processor_name

Assigns a name to the processor. Processor names follow the
same rules as linker labels. For more information, see “LDF
Expressions” on page 3-20.

® QUTPUT(file_name.dxe)

Specifies the output file name for the executable (. dxe) file.
An OUTPUT() command in a scope must appear before the
SECTIONS{} command in that same scope.

® MEMORY{segment_commands}

Defines memory segments that apply only to this specific
processor. Use command scoping to define these memory
segments outside the PROCESSOR{} command. For more
information, see “Command Scoping” on page 3-19 and

“MEMORY{}” on page 3-44.
e PLIT{plit_commands}

Defines procedure linkage table (PLIT) commands that
apply only to this specific processor. For more information,

see “PLIT{}” on page 3-53.
e SECTIONS{section_commands}

Defines sections for placement within the executable (.dxe)
file. For more information, see “SECTIONS{}” on
page 3-61.

e RESOLVE{symbol, resolver}

Ignores any LINK_AGAINST () command. For details, see the
“RESOLVE()” command.

Visual DSP++ 5.0 Linker and Utilities Manual 3-55

LDF Keywords, Commands, and Operators

Multiprocessor/Multicore Applications

The PROCESSOR{} command may be used in linking projects on multipro-
cessor/multicore Blackfin architectures such as the ADSP-BF561
processor. For example, the command syntax for two-processor system is
as follows:

PROCESSOR p0 {
}
PROCESSOR pl {
}

See also “LINK_AGAINST()” on page 3-42, “MPMEMORY{}” on
page 5-45, “COMMON_MEMORY/{}” on page 5-53, and
“SHARED_MEMORY({}” on page 5-47.

RESERVE()

The RESERVE (start_symbol, length_symbol, min_size [,align])
command allocates address space and defines symbols start_symbol and
length_symbol. The command allocates the largest free memory block
available, larger than or equal to min_size. Given an optional parameter
align, RESERVE allocates aligned address space.

Input:

* The min_size parameter defines a required minimum size of mem-
ory to allocate.

e The align parameter is optional and defines alignment of allocated
address space.

3-56 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

Output:

e The start_symbol is assigned the starting address of the allocated
address space.

e The Tength_symbol is assigned the size of the allocated address
space.

A user may restrict the command by defining the start and Tength sym-
bols together or individually. For example,

RESERVE (start_symbol address, length_symbol, min_size)
RESERVE (start_symbol = address, length_symbol = size)
RESERVE (start_symbol, length_symbol = size [,align])

The RESERVE () command is valid only within the scope of an output sec-
tion. For more information on output sections, see “Command Scoping”
on page 3-19 and “SECTIONS{}” on page 3-61. Also see

“RESERVE_EXPAND()” on page 3-58 for more information on how to

claim any unused memory after input sections have been mapped.

Linker Error Resolutions

Linker error 111224:

When a user defines Tength_symbol, the min_size parameter is redundant
and not included in the command. When a user defines start_symbol, the
align parameter is redundant and not included in the command.

Linker errors 111221, 111222, and 111223:
When a user defines start_symbol = address, the align parameter is
redundant and should not be included in the command.

When a user defines align parameter, the Tength_symbol or min_size
parameter should be divisible by a1ign; the align parameter must be a
power of 2.

Given the start_symbol is not restricted (not defined), RESERVE allocates
address space, starting from a segment end address.

Visual DSP++ 5.0 Linker and Utilities Manual 3-57

LDF Keywords, Commands, and Operators

Example

Consider an example where given memory segment [0 - 8]. Range [0 - 2]
is used by an input section. To allocate address space of minimum size 4
and aligned by 2, the RESERVE command has minimum length require-
ment of 4 and alignment 2.

MO {START(0), END(8), WIDTH(1)}
out{.. RESERVE(start, length, 4, 2) } >MO
1. Allocate 4 words {5, 6, 7, 8},
start = 5
length = 4
2. To satisfy alignment by 2, allocate address space {4, 5, 6, 7, 8}
start = 4
length =5

3. Consider length exactly 4 (not minimum 4). Allocated address
space is {4, 5, 6, 7}. Address [8] is freed.

start

4

length = 4

RESERVE_EXPAND()

The RESERVE_EXPAND(start_symbol, length_symbol, min_size)
command may follow a RESERVE command and is used to define same
symbols as RESERVE. Ordinarily, RESERVE_EXPAND is specified last in an
output section to claim any unused memory after input sections have been
mapped. RESERVE_EXPAND attempts to allocate memory adjacent to the
range allocated by RESERVE. Accordingly, start_symbol and

3-58 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

lTength_symbol are redefined to include expanded address range. Refer to
“RESERVE()” on page 3-56 for more information.

RESOLVE()

Use the RESOLVE(symbol_name, resolver) command to ignore a
LINK_AGAINST() command for a specific symbol. This command overrides
the search order for a specific variable or label. Refer to

“LINK_AGAINST()” on page 3-42 for more information.

The RESOLVE (symbol_name, resolver) command uses the resolver to
specify an address of a particular symbol (variable or label). The resoiver
is an absolute address or a file (. dxe or .sm) that contains the symbol’s
definition. For example,

RESOLVE(start, OxFFA00000)
If the symbol is not located in the designated file, an error is issued.
For the RESOLVE (symbol_name, resolver) command:

e When the symbol is not defined in the current processor scope, the
<resolver> supplies a file name, overriding any LINK_AGAINST ().

e When the symbol is defined in the current processor scope, the
<resolver> supplies to the linker the symbol location address.

@ Resolve a C variable by prefixing the variable with an underscore in
the RESOLVE () command (for example, _symbol_name).

Potential Problem with Symbol Definition

Assume the symbol used in the RESOLVE () command is defined in the link
project. The linker will use that definition from the link project rather one
from the symbol_name, resolver) (also known as “resolve-against”) link
project specified in the RESOLVE() command. For example,

Visual DSP++ 5.0 Linker and Utilities Manual 3-59

LDF Keywords, Commands, and Operators

RESOLVE(_main, pl.dxe) Tinker -T a.ldf -Map a.map -o
.\Debug\a.dxe

The linker then issues the following message:

[Warning 11214371 "a.1df":12 Symbol '_main' used in
resolve-against command is defined in processor 'p0'.

If you want to use a local definition, remove the RESOLVE() command.
Otherwise, remove the definition of the symbol from the link project.

SEARCH_DIR()

The SEARCH_DIR() command specifies one or more directories that the
linker searches for input files. Specify multiple directories within a
SEARCH_DIR command by delimiting each path with a semicolon (;).

On Windows, enclose long directory names with embedded spaces within
straight quotes.

The search order follows the order of the listed directories. This command
appends search directories to the directory selected with the linker’s -L
command-line switch (on page 2-54). Place this command at the begin-
ning of the .1df file to ensure that the linker applies the command to all
file searches.

Example:

ARCHITECTURE (ADSP-Blackfin)
MAP (SINGLE-PROCESSOR.XML) // Generate a MAP file

SEARCH_DIR($ADI_DSP/Blackfin/1ib; ABC/XYZ)
// $ADI_DSP is a predefined linker macro that expands
// to the VisualDSP++ install directory. Search for objects
// in directory Blackfin/lib relative to the install directory
// and to the ABC/XYZ directory.

3-60 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

SECTIONS{}

The SECTIONS{} command uses memory segments (defined by MEMORY { }
commands) to specify the placement of output sections into memory.
Figure 3-4 shows syntax for the SECTIONS{} command.

SECTIONS{ section_statements}

expression
[section_name [type_qualifier|init_qualifierl{section_commands}[> memory_segment]

I—|—I

FORCE_CONTIGUITY|NO_FORCE_CONTIGUITY

INPUT_SECTIONS(file_source {archive_member}(input_labels))

) LDF macro
expression list_of_files

OVERLAY_QUTPUT(f7Te_name.OVL)
INPUT_SECTIONS (input_section_commands)
FILL(hex number) ALGORITHM(ALL_FIT)

SIZE(expression)
RESOLVE_LOCALLY(TRUE|FALSE)

PLIT{ plit_commands}

I 1
_OVERLAY_INPUT(overlay_commands)>overlay_live_memory_segment

Figure 3-4. SECTIONS{} Command Syntax Tree

An .1df file may contain one SECTIONS{} command within each of the
PROCESSOR{} commands. The SECTIONS{} command must be preceded by
a MEMORY{} command, which defines the memory segments in which the
linker places the output sections. Though an .1df file may contain only
one SECTIONS{} command within each processor command scope, multi-
ple output sections may be declared within each SECTIONS{} command.

The SECTIONS{} command’s syntax includes several arguments.

Visual DSP++ 5.0 Linker and Utilities Manual 3-61

LDF Keywords, Commands, and Operators

expressions

or

section_declarations

Use expressions to manipulate symbols or to position the current
p y
location counter. Refer to “LDF Expressions” on page 3-20.

Use a section_declaration to declare an output section. Each
section_declaration hasa section_name, optional section_type or
init_qualifier, section_commands, and a memory_segment.

Parts of a SECTION declaration are:

section_name

Starts with a letter, underscore, or period and may include any let-
ters, underscores, digits, and points. A section_name must not
conflict with any LDF keywords.

The special section name .PLIT indicates the procedure linkage
table (PLIT) section that the linker generates when resolving sym-
bols in overlay memory. Place this section in non-overlay memory
to manage references to items in overlay memory.

type_qualifier

Specifies the address space into which the section should be
mapped and the logical organization of the data. Note that this
qualifier applies only to SHARC ADSP-2146x/2147x/2148x

processors.
The qualifiers are:
* PM— Program memory, contains 6 bytes per word.
* DM — Data memory, contains 4 bytes per word.
* DATA64 — Contains 8 bytes per word.

* SW — Contains 2 bytes per word.

3-62

Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

The output section memory type supersedes the memory type that
the section is mapped into. If the output section memory type dif-
fers from the segment type, an additional ELF section is created in
the output. This ELF section contains the output section and
defines its contents.

The use of an output section qualifier also instructs the linker to
ignore input sections whose memory type is different than specified
by the qualifier. All ignored input sections from a particular map-
ping command are listed in the linker log file.

® Jnit_qualifier
Specifies run-time initialization type (optional).

The qualifiers are:

* NO_INIT — Contains un-initialized data. There is no data
stored in the . dxe file for this section (equivalent to
SHT_NOBITS legacy qualifier).

* ZERO_INIT — Contains only “zero-initialized” data. If
invoked with the -meminit switch (on page 2-61), the
“zeroing” of the section is done at runtime by the C
run-time library. If -meminit is not specified, the “zeroing”
is done at “load” time.

® RUNTIME_INIT — If the linker is invoked with the -meminit
switch, this section fills at runtime. If -meminit is not spec-
ified, the section fills at “load” time.

* section_commands
May consist of any combination of commands and/or expressions,
such as:

“INPUT_SECTIONS()” on page 3-64
“expression” on page 3-69

“FILL(hex number)” on page 3-69

Visual DSP++ 5.0 Linker and Utilities Manual 3-63

LDF Keywords, Commands, and Operators

“PLIT{plit_commands}” on page 3-69
“OVERLAY_INPUT{overlay_commands}” on page 3-70
“FORCE_CONTIGUITY/NOFORCE_CONTIGUITY” on
page 3-72

memory_segment
Declares that the output section is placed in the specified memory
segment.

INPUT_SECTIONS()

The INPUT_SECTIONS() portion of a section_command identifies the parts
of the program to place in the executable file. When placing an input
section, you must specify the file_source. Optionally, you may also
specify a filter expr. When file_source is a library, specify the input
section’s archive_member and input_Tlabels.

The command syntax is:

INPUT_SECTIONS(1ibrary.dlb [member.doj (input_label) 1)

@ Note that spaces are significant in this syntax.

In the INPUT_SECTIONS() of the LDF command:

file_source may be a list of files or an LDF macro that expands
into a file list, such as $COMMAND_LINE_0BJECTS. Delimit the list of
object files or library files with commas.

archive_member names the source-object file within a library. The
archive_member parameter and the left/right brackets ([1) are
required when the file_source of the input_label is a library.

input_Tlabels are derived from run-time .SECTION names in assem-
bly programs (for example, program). Delimit the list of names
with spaces. The * and ? wildcard characters can be used to place

3-64

Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

multiple section names from an object in a library. For more infor-
mation about wildcard characters, see “Wildcard Characters” on

page 2-35.
Example:

To place the section “program” of the object “foo.doj” in the library
“myLib.d1b”:

INPUT_SECTIONS(myLib.d1b [foo.doj (program) 1)

To use a wildcard character that places all sections with a prefix of “data”
of the object “foo.doj” in the library “myLib.d1b”:

INPUT_SECTIONS(myLib.d1b [foo.doj (data*) 1)

Using an Optional Filter Expression

The filter operation is done with curly braces, and can be used to define
sub-lists and sub-libraries. It can be used for linking with attributes.

INPUT_SECTIONS($FILES { expr } (program))
The optional filter expr is a Boolean expression that may contain:
* Actribute operators:

* pame
Returns true if the object has one or more attributes called
name, regardless of value; otherwise, returns false.

® name("string")
Returns true if the attribute name has a value that matches
string. The comparison 1s case-sensitive string. This
operator may be used on multi-valued attributes. Note that
string must be quoted.

Visual DSP++ 5.0 Linker and Utilities Manual 3-65

LDF Keywords, Commands, and Operators

® name cmp-op "string"
Returns true if the attribute name has a single value that
matches string, according to cmp-op. Otherwise, returns
false. Cmp-op can be “==” or “1=", for equality and inequal-
ity, via case-sensitive string comparison. Note that string
must be quoted. This operator may only be used on sin-
gle-valued attributes. If the attribute does not have exactly

one value, the linker generates an error.

* name cmp-op number
Returns true if the attribute name has a single value that
numerically matches integer number (which can be nega-

_”» <« | _»

tive). Otherwise, returns false. Cmp-op can be “==", ,
“7, 9<=7, 7 or “>=7. This operator may only be used on
single-valued attributes. If the attribute does not have

exactly one value, the linker generates an error.

”»

» “| ‘)’

* Logical operators: “&3”,
ings and precedence.

, and “!1”, having the usual C mean-

* Darentheses, for grouping: “(" and “)”
Example:

$0BJS_1_and_2
$0BJS_3_and_2

$0BJS {attrl && attr2 };
$0BJIS { attr3("value3") && attr2 == "value2" };

Outsec {
INPUT_SECTIONS($0BJS_1_and_2(program))
INPUT_SECTIONS($0BJS_3_and_2(program))
INPUT_SECTIONS($0BJS_2 { attr2 } (program))

b >mem

3-66 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

INPUT_SECTIONS_PIN/_PIN_EXCLUSIVE Commands

The INPUT_SECTIONS_PIN and INPUT_SECTIONS_PIN_EXCLUSIVE commands
are used to allow mapping of an input section in one of several output sec-
tions, as in “one input section to many output section” linker feature. For
example,

os_meml {
INPUT_SECTIONS($0BJECTS(program))
} > meml

os_mem2 {
INPUT_SECTIONS($0OBJECTS(program))
} > mem2

In the above example, if some of the input sections included in
$0BJECTS (program) do not fit in os_mem1, the linker will try to map them
into os_mem2.

An input section listed in an INPUT_SECTIONS_PIN() command will not be
mapped by any INPUT_SECTIONS commands that appear later in the .1df
file, and an input section listed in INPUT_SECTIONS_PIN_EXCLUSIVE com-
mand(s) will not be mapped by any other INPUT_SECTIONS command.

Each time an input sections is mentioned in an INPUT_SECTIONS com-
mand, the linker is instructed to “give another chance” to the input
section by trying to map it in different output section (given the section
has not been already mapped), thus achieving the effect of “one-to-many”

mapping.

The INPUT_SECTIONS_PIN() and INPUT_SECTIONS_PIN_EXCLUSIVE() com-
mands limit the effect of “one-to-many” mapping — once the input section
is mentioned inside INPUT_SECTIONS_PIN(), the linker will not map it in
any of the following output sections; an input section mentioned inside
INPUT_SECTIONS_PIN_EXCLUSIVE() command can not be mapped in any
other output section.

Visual DSP++ 5.0 Linker and Utilities Manual 3-67

LDF Keywords, Commands, and Operators

The commands help to avoid breaking existing LDF macros. To achieve
the same affect without using INPUT_SECTIONS_PIN and
INPUT_SECTIONS_PIN_EXCLUSIVE commands, the definition of the output
sections would have be:

os_meml {
INPUT_SECTIONS(b.doj(program))
INPUT_SECTIONS(c.doj(program) d.doj(program))
} > meml

os_mem2 {
INPUT_SECTIONS(c.doj(program) d.doj(program))
INPUT_SECTIONS(a.doj(program))

> mem?2

Without the use of general LDF macros and INPUT_SECTIONS_PIN
commands, the .1df file will have to change every time the list of
objects changes.

If the same section is mentioned in more than one of
INPUT_SECTIONS_PIN() commands, linker will honor the first command
only.

In conjunction with attribute expressions, the commands can be used to
control the order of input section placement without explicitly mention-

ing the object files.

os_internal f{
INPUT_SECTIONS_PIN($0BJECTS{high_priority}(program))
INPUT_SECTIONS($0BJECTS(program))

} > mem_internal

os_external {
INPUT_SECTIONS($0BJECTS(program))
INPUT_SECTIONS_EXCLUSIVE($OBJECTS{low_priority}(program))
} > mem_external

3-68 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

In the above example,

* “program” input sections from input files marked with
“high_priority” attribute can be mapped to “mem_internal” only

* “program” input sections from input files marked with
“Tow_priority” attribute can be mapped to “mem_external” only

e All other “program” input section can be mapped to
“mem_internal” or “mem_external”

expression

In a section_command, an expression manipulates symbols or positions
the current location counter. See “LDF Expressions” on page 3-20 for
details.

FILL(hex number)

Ina section_command, the FILL() command fills gaps (created by aligning
or advancing the current location counter) with hexadecimal numbers.

@ The FILL() command is used only within a section declaration.

By default, the linker fills gaps with zeros. Specify only one FILL()
command per output section. For example,

FILL (0x0)
or

FILL (OxFFFF)

PLIT{plit_commands}

Ina section_command, a PLIT{} command declares a locally-scoped pro-
cedure linkage table (PLIT). It contains its own labels and expressions.
For more information, see “PLIT{}” on page 5-34.

Visual DSP++ 5.0 Linker and Utilities Manual 3-69

LDF Keywords, Commands, and Operators

OVERLAY_INPUT{overlay_commands}

In a section_command, OVERLAY_INPUT{} identifies the parts of the pro-
gram to place in an overlay executable (.ov1) file. For more information
on overlays, see “Memory Management Using Overlays” on page 5-4. For
overlay code examples, see the examples that came bundled with the devel-
opment software.

The overlay_commands item consists of at least one of the following com-
mands: INPUT_SECTIONS(), OVERLAY_ID(), NUMBER_OF_OVERLAYS(),
OVERLAY_OUTPUT (), ALGORITHM(), or SIZE().

The overlay_memory_segment item (optional) determines whether the
overlay section is placed in an overlay memory segment. Some overlay sec-
tions, such as those loaded from a host, do not need to be included in the
overlay memory image of the executable file, but are required for other
tools that read the executable file. Omitting an overlay memory segment
assignment from a section retains the section in the executable file, but
marks the section for exclusion from the overlay memory image of the exe-
cutable file.

3-70 Visual DSP++ 5.0 Linker and Utilities Manual

Linker Description File

The overilay_commands portion of an OVERLAY_INPUT{} command follows
these rules.

e DEFAULT_OVERLAY
When the DEFAULT_OVERLAY command is used, the linker initially
places the overlay in the run-time space (that is, without running
the overlay manager).

® OVERLAY_OUTPUT()
Outputs an overlay (.0vL) file for the overlay with the specified
name. The OVERLAY_OUTPUT() in an OVERLAY_INPUT{} command
must appear before any INPUT_SECTIONS() for that overlay.

e INPUT_SECTIONS()
Has the same syntax within an OVERLAY_INPUT{} command as
when it appears within an output_section_command, except that a
.PLIT section may not be placed in overlay memory. For more

information, see “INPUT_SECTIONS()” on page 3-64.

e OQOVERLAY_ID()
Returns the overlay ID.

® NUMBER_OF_OVERLAYS()
Returns the number of overlays that the current link generates
when the FIRST_FIT or BEST_FIT overlay placement for ALGO-
RITHM() is used.
Note: Not currently available.

* ALGORITHM()
Directs the linker to use the specified overlay linking algorithm.
The only currently available linking algorithm is ALL_FIT.

For ALL_FIT, the linker tries to fit all the OVERLAY_INPUT{} into a
single overlay that can overlay into the output section’s run-time

memory segment.

(FIRST_FIT — Not currently available.)

Visual DSP++ 5.0 Linker and Utilities Manual 3-71

LDF Keywords, Commands, and Operators

For FIRST_FIT, the linker splits the input sections listed in
OVERLAY_INPUT{} into a set of overlays that can each overlay the

output section’s run-time memory segment, according to
First-In-First-Out (FIFO) order.

(BEST_FIT — Not currently available.)

For BEST_FIT, the linker splits the input sections listed in
OVERLAY_INPUT{} into a set of overlays that can each overlay the
output section’s run-time memory segment, but splits these over-
lays to optimize memory usage.

e SIZEQ)
Sets an upper limit to the size of the memory that may be occupied
by an overlay.

FORCE_CONTIGUITY/NOFORCE_CONTIGUITY

Ina section_command, the FORCE_CONTIGUITY command forces contiguous
placement of the output section. The NOFORCE_CONTIGUITY command sup-
presses a linker warning about non-contiguous placement in the output
section.

SHARED_MEMORY{}

The linker can produce two types of executable output—. dxe files and
.sm files. A .dxe file runs in a single-processor system’s address space.
Shared memory executable (.sm) files reside in the shared memory of a
multiprocessor/multi-core system. The SHARED_MEMORY { } command is
used to produce . s files.

For more information, see “SHARED_MEMORY{}” on page 5-47.

3-72 Visual DSP++ 5.0 Linker and Utilities Manual

4 EXPERT LINKER

The linker (1inker) combines object files into a single executable object
module. Using the linker, you can create a new Linker Description File

(LDF), modify an existing LDF, and produce an executable file (files).
The linker is described in Chapter 2, “Linker”, of this manual.

The Expert Linker is a graphical tool that simplifies complex tasks such as
memory-mapping manipulation, code and data placement, overlay and

shared memory creation, and C stack/heap adjustment. This tool comple-
ments the existing Visual DSP++ LDF format by providing a visualization

capability enabling new users to take immediate advantage of the powerful
LDF format flexibility.

Graphics in this chapter demonstrate Expert Linker features.
Some graphics show features not available to all processor families.
Processor-specific features are noted in neighboring text.

This chapter contains:
* “Expert Linker Overview” on page 4-2
e “Launching the Create LDF Wizard” on page 4-3
* “Expert Linker Window Overview” on page 4-9
e “Input Sections Pane” on page 4-10
e “Memory Map Pane” on page 4-16
* “Managing Object Properties” on page 4-47

Visual DSP++ 5.0 Linker and Utilities Manual 4-1

Expert Linker Overview

Expert Linker Overview

Expert Linker is a graphical tool that allows you to:
* Define a target processor’s memory map
* Dlace a project’s object sections into that memory map

* View how much of the stack or heap has been used after running

the DSP program

Expert Linker takes available project information in an .1df file as input
(object files, LDF macros, libraries, and target memory description) and
graphically displays it. You can then use drag-and-drop action to arrange
the object files in a graphical memory-mapping representation. When you
are satisfied with the memory layout, you can generate the executable
(.dxe) file via Visual DSP++ project options.

Use default LDFs that come with Visual DSP++, or use the Expert
Linker interactive wizard to create new LDFs.

When opening Expert Linker in a project that has an existing .1df file,
Expert Linker parses the .1df file and graphically displays the target’s
memory map and the object mappings. The memory map displays in the
Expert Linker window (Figure 4-1).

Use this display to modify the memory map or the object mappings.
When the project is ready to be built, Expert Linker saves the changes to
the .1df file.

Expert Linker is able to show graphically how much space is allocated for
program heap and stack. After you load and run the program, Expert
Linker can show how much of the heap and stack has been used. You can
interactively reduce the amount of space allocated to heap or stack if they
are using too much memory. Freeing up memory enables you to store
other things like processor code or data.

4-2 VisualDSP++ 5.0 Linker and Utilities Manual

Expert Linker

There are three ways to launch the Expert Linker from VisualDSP++:

e Double-click the .1df file in the Project window.

* Right-click the .1df file in the Project window to display a menu

and then choose Open in Expert Linker.

* From the Visual DSP++ main menu, choose Tools -> Expert Linker

-> Create LDF.

@ This menu item is disabled for Blackfin projects.

The Expert Linker window appears.

upert Linker [x]
Input Sections: Memary bap:

|I""'Ir"t1 0 Segment/Section | Stait Address | End Address [
[int1 #- < mem_INT_INT14 Oxlch Tl o

-0 Vin12 <R mem_INT_INT15 Dxled D1t

[i3 < mem_itab 0200 05241

wE Ivinitd B4R mem_code (242 [T

200 M5 Il g mem_dats2 0000 Dxaeff

[Mind <R mem_heap Oxaf00 Db

- Ivints B4 mem_stack (%b300 (ebifff

MintE <R mem_datal D000 Dt

[Wint7 E
F-E Iintd N

& n - Cieo

Figure 4-1. Expert Linker Window

Launching the Create LDF Wizard

The Create LDF Wizard is not available for the Blackfin processor.
Blackfin users should choose Project -> Project Options -> Add
Startup Code/LDF to add a new LDF to a project.

Also note that Expert Linker cannot be used to modify an LDF file
generated by the Project wizard or via the Add Startup Code/LDF

page of the Project Options dialog box.

Visual DSP++ 5.0 Linker and Utilities Manual

4-3

Launching the Create LDF Wizard

From the Visual DSP++ main menu, choose Tools -> Expert Linker ->
Create LDF to invoke a wizard for creating and customizing a new .1df
file. Use the Create LDF option (Figure 4-1) when creating a new project.

Create LOF = B

Welcome to the Create LDF
Wizard

Thig wizard will guide vou through the creation of a new LDF
file.

To continue, click Next.

< Bach I Mext > I Cancel | Help |

Table 4-1. Welcome Page of the Create LDF Wizard

If an .1df file is already in the project, you are prompted to confirm
whether to create a new .1df file to replace the existing one. This menu
command is disabled when VisualDSP++ does not have a project opened
or when the project’s processor-build target is not supported by Expert
Linker. Press Next to run the wizard.

4-4 VisualDSP++ 5.0 Linker and Utilities Manual

Expert Linker

Step 1: Specifying Project Information

The first wizard window is displayed (Figure 4-2).

Create LDF - Step 1 of 3 H B

Project Information
Chooge the LDF file name and the project tppe.

LOF filenarne: .
o hexamplesidot_product_c df |

Project type
oL
 Ca+

. Aszembly

© VisualDSP++ kemel [VDK)

< Back I Hext > I Cancel | Help |

Figure 4-2. Selecting File Name and Project Type

You may use or specify the default file name for the .1df file. The default
file name is project_name.1df, where project_name is the name of the
currently opened project.

The Project type selection specifies whether the LDF is for a C, C++,
assembly, or a VDK project. The default setting depends on the source
files in the project. For example, if . c files are in the project, the default is
C; if a vdk.h file is in the project, the default is VDK, and so on. This set-

ing determines which template is used as a starting point.
ting det hich templat d tarting point

For a case where there is a mix of assembly and C files (or any other file
combination), the most abstract programming language should be
selected. For example, for a project with C and assembly files, a C LDF
should be selected. Similarly, for a C++ and C project, the C++ LDF
should be selected.

Press Next.

Visual DSP++ 5.0 Linker and Utilities Manual 4-5

Launching the Create LDF Wizard

Step 2: Specifying System Information

Choose whether the project is for a single-processor system or a multipro-
cessor (MP) system (Figure 4-3).

Create LDF - Step 2 of 3 =]

System Information
Configure the DSP system by choosing the processors in your system and the processar type.

— Systemn typ Processor type:

& Single processar IADSF‘-BFSE)S d
' Mullipiocessor

7| Setup systerm fram debug sessitn settings

-~ Processor propertie:

Frocessors: Output file
Frocessar | |$CDMMAND_LINE_DUTPUT_FILE
[

Executables to link against:

< Back I MNext > I Cancel | Help |

Figure 4-3. Selecting System and Processor Types

By default, the .1df file is set for single processors. Under System type,
select Single processor or Multiprocessor.

* For a single-processor system, the Processors list shows only one
processor and the MP address columns do not appear.

* Fora multiprocessor system, right-click in the Processor Properties
box to add the desired number of processors included in the .1df
file, name each processor, and set the processor order (which will
determine each processor’s MP memory address range).

Processor type identifies the DSP system’s processor architecture. This
setting is derived from the processor target specified via the Project
Options dialog box in Visual DSP++.

4-6 VisualDSP++ 5.0 Linker and Utilities Manual

Expert Linker

By selecting Set up system from debug session settings, the processor
information (number of processors and the processor names) is filled auto-
matically from the current settings in the debug session. This field is

grayed out when the current debug session is not supported by the Expert
Linker.

You can also specify the Output file name and the Executables to link
against (object libraries, macros, and so on).

When you select a processor in the Processors list, the system displays the
output file name and the list of executable files to link against for that pro-
cessor appear. You can change these files by typing a new file name. The
file name may include a relative path, an LDF macro, or both. In addition,
if the processor’s ID is detected, the processor is placed in the correct posi-
tion in the processor list.

For multiprocessor systems, the window (Figure 4-4) shows the list of pro-
cessors in the project.

System Information
Confiqure the DSP system by choosing the processars in pour spstem and the processar twpe.

— System tppe Frocessar pe:

(" Eingle processor IADSF’-TS1D1 ;I
* Muliprocessor

[Sat up system from debug session setings

ﬁocessor propetie:
Processars: Dutput file

Frocessor I ME Start .. I MHEnd & = |$CDMMA.ND_LINE_DUTF’UT_DIHECTDH‘

FO (2000000
»F1 i 00 Ox
Ov2800000 Dw2bifff

Cw2c00000 Cw2fRfRE
=

< Back I Hext = I Cancel | Help

Executables to link. againzl:

Figure 4-4. Processors and MMS Offset

Visual DSP++ 5.0 Linker and Utilities Manual 4-7

Launching the Create LDF Wizard

St

Expert Linker automatically displays MP address range for each processor
space providing specific MP addresses and multiprocessor memory space
(MMS) offsets which makes using MP commands much easier. This is an
automatic replacement for the MPMEMORY linker command used in the .1df
source file.

The MP address range is available only for processors that have MP
memory space.

Press Next to advance to the Wizard Completed page.

ep 3: Completing the LDF Wizard

From the Wizard Completed page, you can go back and verify or modify
selections made up to this point.

When you click the Finish button, Expert Linker copies a template .1df
file to the same directory that contains the project file and adds it to the
current project. The Expert Linker window appears and displays the con-
tents of the new .1df file.

Create LDF - Step 3 of 3 HEB

Wizard Completed

The Create LOF Wizard now has enough information to create
your LDF file.

Summary of choices:

LDF file name: C:hexamplesidot_product_chdotprode. Idf
Froject type: C
System type: Single processor
Processor type: ADSP-BFE35
Processors:
FO
Dutput file name: $COMMAND_LINE_OUTPUT_FILE

Click Finish to close this wizard. create the new LDF file, and
wiews the LDF file with Expert Linker,

< Back I Finizh I Cancel | Help |

Figure 4-5. Wizard Completed Page of the Create LDF Wizard

4-8

VisualDSP++ 5.0 Linker and Utilities Manual

Expert Linker Window Overview

The Expert Linker window contains two panes:

Expert Linker

* The Input Sections pane (Figure 4-6) provides a tree display of the
project’s input sections (see “Input Sections Pane” on page 4-10).

e The Memory Map pane displays each memory map in a tree or
graphical representation (see “Memory Map Pane” on page 4-16).

Expert Linker
Input Sections: Memany bap:
] . Segment/Section | Start Address | End Address |;|
int11 B memNT_NT14 OxlcD Deldt
int12 H- < mem INT_INTIS Owled D411t
Wint13 mem_itab 0v200 w241
Iinit14 mem_code 0+242 071
int15 mem_data2 048000 Dvasht
Vintd mem_heap Dwaf0l D47
IYint5 mem_stack ObE00 Db
:‘\‘j!“:? mem_datal 0000 D
1 -
I¥intd Oeo l

Figure 4-6. Expert Linker Window

Using LDF commands, the linker reads the input sections from object
(.doj) files and places them in output sections in the executable file. The
LDF defines the processor’s memory and indicates where within that

memory the linker is to place the input sections.

Using drag-and-drop, you can map an input section to an output section
in the memory map. Each memory segment may have one or more output
sections under it. Input sections that have been mapped to an output sec-

tion are displayed under that output section.

For more information, refer to “Input Sections Pane” on page 4-10 and

“Memory Map Pane” on page 4-16.

Visual DSP++ 5.0 Linker and Utilities Manual

4-9

Input Sections Pane

Access various Expert Linker functions with your mouse.
Right-click to display appropriate menus and make selections.

Input Sections Pane

The Input Sections pane initially displays a list of all the input sections
referenced by the .1df file, and all input sections contained in the object
files and libraries. Under each input section, a list of LDF macros, librar-
ies, and object files may be contained in that input section. You can add or
delete input sections, LDF macros, or objects/library files in this pane.

Input Sections Menu

Right-click an object in the Input Sections pane, and a menu appears as

shown in Figure 4-7.

Input Sections:

+ bsz
bsz_i
B datal
datal
datal
dataz

B dataz
-- datad
datad

[HEM sort by

Add 3

Memary Map:

Delete

Expand All LDF Macras
View Legend...

View Global Properties. ..

dataz v Allow Docking

Hide:

Float In Main ‘Window

-

m-[F] databa
: databb
B databa
w-[E] datasb
program

L1l I

G Mi0DataR
M50

ME1
M5500
M550
ME502
M5503
HNET

5699684

Start Address End Address
0x0 (w113t
040000 Owdtit
0x50000 (w5t
0x80000 Owatt
030000 w3ttt
D000 Owesft
0xd0000 Owalftit
0x100000 (w10
0x170000 OwT T
0140000 0w 41K
0150000 w15t
030000000 w37
038000000 (w3
040000000 Owd3HHEEE
050000000 OwS3EEE
0x60000000 (wB3HFE
070000000 Ow73AEEE

2NNNNNNN

uAFEEE

|4

y _.PIJ

Figure 4-7. Input Sections Right-Click Menu

4-10

Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

The main menu functions include:

* Sort by — Sorts objects by input sections or LDF macros. These
selections are mutually exclusive.

* Add - Adds input sections, object/library files, and LDF macros.
Appropriate menu selections are grayed out when right-clicking on
a position (area) in which you cannot create a corresponding
object.

Create an input section as a shell, without object/library
files or LDF macros in it. You can even map this section to
an output section. However, input sections without data are
grayed out.

* Delete — Deletes the selected object (input section, object/library
file, or LDF macro).

* Remove — Removes an LDF macro from another LDF macro but
does not delete the input section mappings that contain the
removed macro. The difference between Delete and Remove is that
Delete completely deletes the input section macros that contain the
deleted macro.

NOTE: The Remove option becomes available only if you
right-click on an LDF macro that is part of another LDF macro.

* Expand All LDF Macros — Expands all the LDF macros in the
input sections pane so that the contents of all the LDF macros are
visible.

* View Legend — Displays the Legend dialog box which shows icons
and colors used by the Expert Linker.

Visual DSP++ 5.0 Linker and Utilities Manual 4-11

Input Sections Pane

* View Section Contents — Opens the Section Contents dialog box,
which displays the section contents of the object file, library file, or
.dxe file. This command is available only after you link or build
the project and then right-click on an object or output section.

* View Global Properties — Displays the Global Properties dialog
box which provides the map file name (of the map file generated
after linking the project) as well as access to various processor and
setup information (see Figure 4-42 on page 4-48).

Mapping an Input Section to an Output Section

Using the Expert Linker, you can map an input section to an output sec-
tion. By using Windows drag-and-drop action, click on the input section,
drag the mouse pointer to an output section, and then release the mouse

button to drop the input section onto the output section.

All objects, such as LDF macros or object files under that input section,
are mapped to the output section. Once an input section has been
mapped, the icon next to the input section changes to denote that it is

mapped.

If an input section is dragged onto a memory segment with no output sec-
tion in it, an output section with a default name is automatically created

and displayed.

A red “x” on an icon indicates the object/file is not mapped. Once an
input section has been completely mapped (that is, all object files that
contain the section are mapped), the icon next to the input section
changes to indicate that it is now mapped; the “x” disappears. See

Figure 4-8.

As you drag the input section, the icon changes to a circle with a diagonal
slash if it is over an object where you are not allowed to drop the input
section.

4-12 Visual DSP++ 5.0 Linker and Utilities Manual

Viewing Icons and Colors

Expert Linker

Use the Legend dialog box to display all possible icons in the tree pane as

well as short descriptions of each icon. (Figure 4-8)

Legend H

lcons | Colors I

Al LDF Macro

j'i[Unmapped LDF Macro

& Library File

g Unmapped Library File

@ Object File

’ Unmapped Object File

Object Section

Unmapped Dbject Section
@ Finned Object S ection
Processor

<@ Memory Segment

G5 Inwalid Memory Segment

&P Shared Memaory

[Output Section

B Output Section that Overflaws
L1 Owverlay [Live Space]

Overlay [Flun Space)

E Object Section with kMouse-over Information

Dynamic

Figure 4-8. Legend Dialog Box — Icons Page

@ The red “x” on an icon indicates this object/file is not mapped.

Click the Colors tab to view the Colors page (Figure 4-9). This page con-

tains a list of colors used in the graphical memory map view; each item’s

Visual DSP++ 5.0 Linker and Utilities Manual

4-13

Input Sections Pane

color can be customized. The list of displayed objects depends on the pro-
cessor family.

Legend HE

lcons Colors |

[Intemal Memary

[External Memary

[Urused Memary

& Reserved Mermary

[Output Section

[] Object Section

O Owerlay [Live Space]

[Overlay [Run Space)

O Hardware Overlay (Live Space]
[Hardware Overlay [Run Space]
B Hardware Overlay [Live and Bun Space)

Figure 4-9. Legend Dialog Box — Colors Page

To change a color:

1. Double-click the color. You can also right-click on a color and

select Properties. The system displays the Select a Color dialog box
(Figure 4-10).

2. Select a color and click OK.

Click Other to select other colors from the advanced palette. Click
Reset to reset all memory map colors to the default colors.

Scleck o Color T E3

Figure 4-10. Select a Color Dialog Box

4-14 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Sorting Objects

Objects in the Input Sections pane can be sorted by input sections
(default) or by LDF macros, like $0BJECTS or $COMMAND_LINE_OBJECTS.
The Input Sections and LDF Macros menu selections are mutually exclu-

sive—only one can be selected at a time. Refer to Figure 4-11 and
Figure 4-12.

Input Sections:

SRR -t
ctor
E-[datal

mycode
-] program

Figure 4-11. Expert Linker Window — Sorted by Input Sections

o oy

-] SMEWMACRO
=-A1 $0BJECTS

Figure 4-12. Expert Linker Window — Sorted by LDF Macros

Other macros, object files, or libraries may appear under each macro.
Under each object file are input sections contained in that object file.

When the tree is sorted by LDF macros, only input sections can be
dragged onto output sections.

Visual DSP++ 5.0 Linker and Utilities Manual 4-15

Memory Map Pane

Memory Map Pane

In an .1df file, the linker’s MEMORY () command defines the target system’s
physical memory. Its argument list partitions memory into memory seg-
ments and specifies start and end addresses, memory width, and memory
type (such as program, data, stack, and so on). It connects your program
to the target system. The 0UTPUT () command directs the linker to produce
an executable (.dxe) file and specifies its file name. Figure 4-13 shows a
typical memory map pane.

Input Sections: emary bap:
EE | Segment/Section [Statdddiess | End Address |
w0 et < mem_sdram0_bank Oxd 7

it g mem_sdram0_bank1 0x800000 DfFEFe

f -5 mem_scham0_bank2 01000000 Dw1 T

o b %R mem_sdram0_bank3 0x1800000 D HFFE

o -5 mem_N_data_s 04100000 DwifanTif

L’:"b - mem_l1_data_b 0xf1300000 wiFa07I

52

-0 detaL1_data b
-3 bez_L1_data b
P i | stack_and_he...

L1_code
il $BASE_LIBRARIES
Al $COMMAMD_LINE_DBJECTS

. - mem 1 _code Dta00000 Ouifafif
] $INPUT_BY_MEM_TvPE S mem_I1_code_cache Dfta10000 Oifa 3

s &:% :t:ngH'ES m-% mem_l1_scralch D4ffh00000 OxfFbODF

e i

< g i~

Processor Tab
Figure 4-13. Expert Linker Window — Memory Map

This section describes:
e “Context Menu” on page 4-19
* “Tree View Memory Map Representation” on page 4-21
* “Graphical View Memory Map Representation” on page 4-22
e “Specifying Pre- and Post-Link Memory Map View” on page 4-26
e “Zooming In and Out on the Memory Map” on page 4-28

4-16 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

e “Adding a Memory Segment” on page 4-29

* “Inserting a Gap Into a Memory Segment” on page 4-31
* “Working With Overlays” on page 4-32

e “Viewing Section Contents” on page 4-33

* “Viewing Symbols” on page 4-36

* “Profiling Object Sections” on page 4-37

e “Adding Shared Memory Segments and Linking Object Files” on
page 4-42

The Memory Map pane has tabbed pages. You can page through the
memory maps of the processors and shared memories to view their
makeup. The two viewing modes are a tree view and a graphical view.

Select these views and other memory map features by means of the
right-click (context) menu. All procedures involving memory map han-
dling assume the Expert Linker window is open.

The Memory Map pane displays a tooltip when the mouse cursor moves
over an object in the display. The tooltip shows the object’s name,
address, and size. The system also uses representations of overlays, which
display in “run” space and “live” space.

Use the right-click menu (“Context Menu” on page 4-19) to select and
perform major memory map functions.

Invalid Memory Segment Notification:

When a memory segment is invalid (for example, when a memory range
overlaps another memory segment or if the memory width is invalid), the
tree shows an Invalid Memory Segment icon (see Figure 4-14). Move the

Visual DSP++ 5.0 Linker and Utilities Manual 4-17

Memory Map Pane

mouse pointer over the icon and a tooltip displays a message describing
why the segment is invalid.

Invalid Memory Segments

Expert Linker

Input Sections: Memory M ap:
Segmept{Section | Start Address | End Address |;|
it 1 < mem_INT_RSTI 0wl D2t

Vint12 -5 mem_INT_PWR... 0x20 0x3f

I¥int13 -5 mem_INT_KERM... x40 0x5f

I¥int14 E-s@ mem_INT_STKI 080 a7t

Vint15 B mem INT_INT4 0480 081

IV!nt4 ...@ mem_[MT_IMTS Oxal Oxbf

Vint3 Fih mem IMT_INTE OxcD Oad

[VintE -5 mem INT_INT7 Oxel Oxff

[Vint? e mem INT IMTS 10N M1 =
; it

Figure 4-14. Memory Map With Invalid Memory Segments

4-18 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Context Menu

Display the context menu by right-clicking in the Memory Map pane.
This menu (Figure 4-15) allows you to select and perform major
functions. The available right-click menu commands are listed below.

Input Sections Mermory Map
MEM_ARG! Segment/Section Start Address End Addiess
e[sz Y | o de _ " 9
31 tisz_init 53 MOk t::a BT . noon i
B[datat g M2Datah " ;| owom ¥
B[] datallla -6 MdDatad = 0+B0000 DwEE
[3 datattp F-9 MADatB e 0430000 Out
-1 e MEDatad Fin ta CuEpUE Sectian (%0000 Onchtff
G- MEDataB Goto 0xd0000 Dnclitf
- MBDatab, Wigw Section Conterts. . 0100000 el O
- #- & MEDataB Wiew Symbals. .. 0x110000 Ox17KffF
[A datads g MIDDatad Properties. .. 04140000 R4
[0 databa - M1DDatal Expard Al 150000 i
[databn & M50 view Legerd... (30000000 iter it
- dataa e M3 View Glabal Properties. . 1x30000000 %
[0 datadh g MESDO | pu0oooo0 w3
3 pogam G MSSDT » Allow Docking 0450000000 it
g MESDZ Hide 1450000000 B3
G MSEDE 7000000 D7
| .em HnaT (R I e G AN IR
« | = Po |

Figure 4-15. Memory Map Main Menu

View Mode

View

Memory Map Tree — Displays the memory map in a tree represen-
tation (see Figure 4-16 on page 4-21)

Graphical Memory Map — Displays the memory map in graphical
blocks (see Figure 4-17 on page 4-23)

Mapping Strategy (Pre-Link) — Displays the memory map that

shows the placement of your object sections.

Link Results (Post-Link) — Displays the memory map that shows
the actual placement of the object sections.

Visual DSP

++ 5.0 Linker and Utilities Manual 4-19

Memory Map Pane

New

* Memory Segment — Specifies the name, address range, type, size,
and so on for memory segments you want to add.

* Output Section — Adds an output section to the selected memory
segment. (Right-click on the memory segment to access this com-
mand.) If you do not right-click on a memory segment, this
option is disabled.

* Shared Memory — Adds a shared memory to the memory map.

* Opverlay — Invokes a dialog box that allows adding a new overlay to
the selected output section or memory segment. The selected out-
put section is the new overlay’s run space (see Figure 4-53 on

page 4-65).
Delete — Deletes the selected object.

Expand All — Expands all items in the memory map tree so that their con-
tents are visible.

Pin to Output Section — Pins an object section to an output section to
prevent it from overflowing to another output section. This command
appears only when right-clicking an object section that is part of an output
section specified to overflow to another output section.

View Section Contents — Invokes a dialog box that displays the contents
of the input or output section. It is available only after you link or build
the project and then right-click on an input or object section (see

Figure 4-30 on page 4-35).

View Symbols — Invokes a dialog box that displays the symbols for the
project, overlay, or input section. It is available only after you link the
project and then right-click on a processor, overlay, or input section (see

Figure 4-42 on page 4-48).

4-20 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Properties — Displays a Properties dialog box for the selected object. The
Properties menu is context-sensitive; different properties are displayed for
different objects. Right-click a memory segment and choose Properties to
specify a memory segment’s attributes (name, start address, end address,
size, width, memory space, PM/DM/(BM), RAM/ROM, and internal or
external flag).

View Legend — Displays the Legend dialog box showing tree view icons
and a short description for each icon. The Colors page lists the colors used
in the graphical memory map. You can customize each object’s color. See

Figure 4-8 on page 4-13 and Figure 4-9 on page 4-14.
View Global Properties — Displays a Global Properties dialog box that

lists the map file generated after linking the project. It also provides access
to some processor and setup information (see Figure 4-43 on page 4-49).

Tree View Memory Map Representation

In the tree view (selected by right-clicking and choosing View Mode ->
Memory Map Tree), the memory map is displayed with memory segments
at the top level (Figure 4-16 on page 4-21).

Expert Linker - YDK-BF533.1df []
Input Sections: emary Map:
e | Segment/Section | Statdddiess | End Address |
et <@ mem_sdram0_bankD Oxd DT
it <@ mem_sdram0_bank1 0x800000 OfFEFe
l % mem_scham0_bank2 0x1000000 1 7
ok [< mem_sdram0_bank3 0%1800000 sl
-odtl - mem_N_data_a 0800000 OwfFB07H
R 2% mem_l_data_b 01900000 [iFa07H

#-C0 data_L1_data b
+1-[0 bsz_L1_data b
alil $B4SE_LIBRARIES ‘{0 stack_and_he..
il $COMMAND_LINE_OBJECTS e

. -6 mem__code Dfla00000 Duifaliff
lll $INPUT_BY_MEM_TPE E-4 mem_N_code_cache Dxffe10000 Oifal 3
[+ mem__scratch Oxffb00000 OufFBOOEF

| 1)

Processor Tab

Figure 4-16. Expert Linker Window — Memory Map Tree View

Visual DSP++ 5.0 Linker and Utilities Manual 4-21

Memory Map Pane

Each memory segment may have one or more output sections under it.
Input sections mapped to an output section appear under that output
section.

The start address and size of the memory segment display in separate col-
umns. If available, the start address and the size of each output section are
displayed (for example, after you link the project).

Graphical View Memory Map Representation

In the graphical view (selected by right-clicking in the Memory Map pane
and choosing View Mode -> Graphical Memory Map), the graphical
memory map (Figure 4-17) displays the processor’s hardware memory
map (refer to your processor’s hardware reference manual or data sheet).
Each hardware memory segment contains a list of user-defined memory
segments.

View the memory map from two perspectives: pre-link view and post-link
view (see “Specifying Pre- and Post-Link Memory Map View” on

4-22 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

page 4-26). Figure 4-17 through Figure 4-21 show examples of graphical

memory map representations.

Memary Map: %lkﬁ%lk‘%
fooooooo ME M_FROGRARM fooooooo
Output Sections -
|
Hnused FO02E£ef
MEM_PCI_IO fO0ZE£a0
Intput Sections WEM_HFAR £00RDOUN
Unused
FO037EEE User-defined
WMEM_STALK, £0038000 Memory
Segments
Unused
- fO03df£f
WMEM_SYSSTACK f£003e000
FO03fdEE
WER_ARGY fO03fe00
 —
rooorrrr

Figure 4-17. Graphical Memory Map Representation

In graphical view, the memory map comprises blocks of different colors
that represent memory segments, output sections, objects, and so on. The
memory map is drawn with these rules:

* An output section is represented as a vertical header with a group
of objects to the right of it.

* A memory segment’s border and text change to red (from its nor-
mal black color) to indicate that it is invalid. When moving the
mouse pointer over the invalid memory segment, a tooltip displays
a message, describing why the segment is invalid.

Visual DSP++ 5.0 Linker and Utilities Manual 4-23

Memory Map Pane

* The height of the memory segments is not scaled as a percentage of
the total memory space. However, the width of the memory seg-
ments is scaled as a percentage of the widest memory.

* Object sections are drawn as horizontal blocks stacked on top of
each other. Before linking, the object section sizes are not known
and are displayed in equal sizes within the memory segment. After
linking, the height of the objects is scaled as a percentage of the
total memory segment size. Object section names appear only
when there is enough room to display them.

* Addresses are listed in ascending order from top to bottom.

Three buttons at the top right of the Memory Map pane permit zooming,.
If there is not enough room to display the memory map when zoomed in,
horizontal and/or vertical scroll bars allow you to view the entire memory
map (for more information, see “Zooming In and Out on the Memory
Map” on page 4-28).

You can drag-and-drop any object except memory segments. See
Figure 4-18.

MEm_pci_io ffa0efdn
$LIERARIES [p@ 1. Select an input section

ff906fff

mem_stack, f£907000

ix - 2. Drag it to an output section

i FLIERARIES [poi_io]

2 .

Fl 1

Figure 4-18. Dragging and Dropping an Object (1)

4-24 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

rr9ubttrt
mem_stack f£907000
ﬁ 1. Select an output section
% $LIBRARIES [pei_in]
[
3]
]
7]
b=
2. Drag it to a new location
mem_sy $LIBRARIES [peiin) [9
v
3] T

Figure 4-19. Dragging and Dropping an Object (2)

Select a memory segment to display its border. Memory segments, when
selected, display a tiny box at their top and bottom borders (Figure 4-20).
Drag the border (at this box) to change the memory segment’s size. By
doing this, the size of the selected and adjacent memory segments change.

Memory Map: Ql@ll%

FEO03EEE |«
££304000

[| ££904000
I
[

f£907££f [[] ££907800

f£308000

fE9f£££1
ffa00000

[Move this box to adjust
FEaldffo the size of the memory
segment

ffal7fff
ffa0B000

ffal3fff
ffal4000

T Do
Figure 4-20. Adjusting the Size of a Memory Segment

| ffal3fif

=

Visual DSP++ 5.0 Linker and Utilities Manual 4-25

Memory Map Pane

When the mouse pointer is on top of the box, the resize cursor appears as

4
-

When an object is selected in the memory map, it is highlighted as
shown in Figure 4-21 on page 4-26. If you move the mouse pointer
over an object in the graphical memory map, a yellow tooltip dis-
plays the information about the object (such as name, address, and
size).

aono mern_data: aoono

L] | a04a
mem_heap a04db

Unuzed

8191
s o =
P
Highlighted _< :mem_sta.:k 35
Object)
Freeeedats] 1 81c8

PRIMES.DOJ [datal]

_dxe

LIEIO.OLE [datal)

data 1

Unuzed
ffff 832c

Figure 4-21. A Highlighted Memory Segment in the Memory Map

Specifying Pre- and Post-Link Memory Map View

View the memory map from two perspectives: pre-link view and post-link
view. Pre-link view is typically used to place input sections. Post-link view
is typically used to view where the input sections are placed after linking

4-26 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

the project. Other information (such as the sizes of each section, symbols,
and the contents of each section) is available after linking.

e To enable pre-link view from the Memory Map pane, right-click
and choose View and Mapping Strategy (Pre-Link). Figure 4-22
on page 4-27 illustrates a memory map before linking.

tdemory kap: ﬁlQlQ
fooonooo MEK_PROGRAM fooooooo
foozffef
MEM_FCI_IO fO0ZE£d0
MEW_HEAR fo030000
MEM_STACK fo03s000
MEM_SVISTACK f£003=000
[| e
MEM_ARGY f003f=00
o
fO03ffff

Figure 4-22. Memory Map Pane in Pre-Link View

e To enable post-link view from the Memory Map pane, right-click
and choose View and Link Results (Post-Link). Figure 4-23 on

Visual DSP++ 5.0 Linker and Utilities Manual 4-27

Memory Map Pane

page 4-28 illustrates a memory map after linking.

temory kap: QlQlQ
£0000000 MEM_PROGRAM fooooooo
— £OD2Efef
MEM_PCI_IO foozfido
MEM_HEAP £0030000
fO037EFF
MEM_STACK 0038000

Unused

fO03dEEE
MEM_SYSETACK f003=000

Unused
£O003fdEE
MEM_ARGY f003fe00

ﬂ

fO03fEEE

Figure 4-23. Memory Map Pane in Post-Link View

Zooming In and Out on the Memory Map

From the Memory Map pane, you can zoom in or out incrementally or
zoom in or out completely. Three buttons at the top right of the pane per-
form zooming operations. Horizontal and/or vertical scroll bars appear
when there is not enough room to display a zoomed memory map in the
Memory Map pane (see Figure 4-24 on page 4-28).

Ezpert Linker*

Input Sections: Memary Map:IPM hd @l@l@l Zoom Options

ERERTT |

) Wind1
Figure 4-24. Memory Map — Zoom Options

[Es I WS)

4-28 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

To:

e Zoom in, click on the magnifying glass icon with the + sign above
the upper right corner of the memory map window.

* Zoom out, click on the magnifying glass icon with the - sign above
the upper right corner of the memory map window.

«“_»

* Exit zoom mode, click on the magnifying glass icon with the “x
above the upper right corner of the memory map window.

* View a memory object by itself by double-clicking on the memory
object.

* View the memory object containing the current memory object by

double-clicking on the white space around the memory object

Adding a Memory Segment

You can add memory segments to the memory map. This procedure
assumes that the Expert Linker window (Memory Map pane) is open.

To add a memory segment:
1. Right-click in the Memory Map pane.

2. Choose New and then choose Memory Segment. The Memory
Segment Properties dialog box appears (Figure 4-25 on
page 4-30).

3. In Name, type a name for the memory segment.

Visual DSP++ 5.0 Linker and Utilities Manual 4-29

Memory Map Pane

4. Specify the following attributes:

Memory Segment Properties [2] %]

Memory Segment |

Mame:

Imem_l‘l_data_b

Start Address: End Address: Size: width:
[oiran0000 | [ostra07i [oe000 E =
Memory Space ROM/RAM—— [Intemal/Esternal
1B & RAM %) [termal
Ln] " ROM) Ertermal

£ 1B SROM

0 DATEEY

Cancel |

Figure 4-25. Memory Segment Properties Dialog Box

e Start address
¢ End address
e Size (hexadecimal)

It is only necessary to specify either “End Address” or “Length” and
not both.

e Width

* Memory Space
For Blackfin and TigerSHARC processors, this option is
unavailable, because VisualDSP++ employs a unified mem-
ory space.

* RAM/ROM/SROM

4-30 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

* Internal/External (memory location)

5. Click OK.

Inserting a Gap Into a Memory Segment

A gap may be inserted into a memory segment in the graphical memory
map.

To insert a gap:
1. Right-click on a memory segment.

2. Choose Insert gap. The Insert Gap dialog box appears, as shown in
Figure 4-26. It displays the start address, end address, and size of
the selected memory segment.

Insert Gap ﬂ m

— Memary segment propertie
Start address: 0x22000
End address: D=23ff
Size: 02000

— Location of ga

" End of memary seament

— Size of gap

Start address: IUH220EID Size: I
End address: I

oK I Cancel |

Figure 4-26. Insert Gap Dialog Box

Visual DSP++ 5.0 Linker and Utilities Manual 4-31

Memory Map Pane

You may insert a gap at the start of the memory segment or the end of it.

If the Start... is chosen, the Start address for the gap is grayed out
and you must enter an End Address or Size (of the gap).

e If the End... is chosen, the End address of the gap is grayed out and
you must enter a Start Address or Size.

Working With Overlays

Overlays appear in the memory map window in two places: “run” space
and “live” space. Live space is where the overlay is stored until it is
swapped into run space. Because multiple overlays can exist in the same

“run” space, the overlays display as multiple blocks on top of each other in
cascading fashion.

Figure 4-27 shows an overlay in “live” space, and Figure 4-28 shows an
overlay in “run” space.

| Expcrt Linker

Input Secions: tamony bep: alala
5!--. congtdata, -

: r 1] =l
El@ clatal LIWE_SPACE gooo J
g odl

8- oz overay.doj fod1)
8- pragam

overny?.doj (od1)

OWYERALAYZ 00U (o)

SEEE

=

O]

Figure 4-27. Graphical Memory Map Showing an Overlay in “Live” Space

Overlays in a “run” space appear one at a time in the graphical memory
map. The scroll bar next to an overlay in “run” space allows you to specify
an overlay to be shown on top. Drag the overlay on top to another output
section to change the “run” space for an overlay.

4-32 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Click the Up arrow or Down arrow button in the header to display a pre-
vious overlay or next overlay in “run” space. Click the browse button to
display the list of all available overlays. The header shows the number of
overlays in this “run” space as well as the current overlay number.

B Excperd Linhesr

Input Sectione: Mmoo Map: QIQ|Q
riata -
BB 35?:1 QLY _RLIN ff80196L el
B ovit =
E ovl2
& pragram A .
N areetlend doj (ouwll)
=
|- o
Flks
i I coj 11
g a ovErlay? doj (owl1)
53
E
i 803245
L =
=L

Browse Button
Figure 4-28. Graphical Memory Map Showing an Overlay “Run” Space
To create an overlay in the “run” space:
1. Right-click on an output section.
2. Choose New -> Overlay.

3. Select the “live” space from the Overlay Properties dialog box (see
“Managing Overlay Properties” on page 4-65). The new overlay
appears in the “run” and “live” spaces in two different colors in the
memory map.

Viewing Section Contents

To view the contents of an input section or an output section, specify the
particular memory address and the display’s format.

Visual DSP++ 5.0 Linker and Utilities Manual 4-33

Memory Map Pane

This capability employs the e1fdump utility (e1fdump.exe) to obtain the
section contents and display it in a window similar to a memory window
in Visual DSP++. Multiple Section Contents dialog boxes may be dis-
played. For example, Figure 4-29 shows output section contents in HEX

format.

Section Contents L 0=
Section:
I Frimes.doj [z2q_pmco] j

Section contents:

[000000] [1607Fffffff e6715£8100 0000ad02ff ffffe50f02 &)
[00001E] 0£01000000 Olad0lffff f£=70£1400 000000716f
[00003C] 0=00140000 0d459be0000 00005bbe80 0000000000
[000054] adO0cffffff fdacO2ffff ff=70£0100 000014013e
[000078] 073=000000 1c0f040000 0000180400 000000G5ffe
[00009%96] 0£00000000 00073=0000 004073200 Uﬂﬂﬂ4cacﬂ2-J
[0000EB4] 013=0000=0 2107040000 002d4013=00 0290104400
[0000D2] 716£8a0000 001604ffff ffe=8493=04 000000ac04
[0000F0] Sff=810000 005ffebl80 0000013=00 0210000700
[00010E] acO2ffffff =7013=0002 9120ad01ff ffffe?ac0l
[00012C] 716£8a0000 001604ffff ff{=8493=80 000000acic
[000144] 0£08000000 145ff=8400 0000180400 0000005ffe -
| | 3

Figure 4-29. Output Section Contents in Hex Format

4-34 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

To display the contents of an output section:
1. In the Memory Map pane, right-click an output section.

2. Choose View Section Contents from the menu.
The Section Contents dialog box appears.

By default, the memory section content appears in Hex
format.

3. Right-click anywhere in the section view to display a menu with
these selections:

* Go To - Displays an address in the window.

¢ Select Format — Provides a list of formats: Hex, Hex and
ASCII, and Hex and Assembly. Select a format type to
specify the memory format.

Figure 4-30 and Figure 4-31 illustrate memory data formats available for
the selected output section.

Section Contents 2]
Section
|PRIMES.DOJ (program) 5

Section contents:

[0000307 (09901340 003a0fbc 96400001 400cB015 .. .@. .. =
[000040] 70011570 111cO004 01202008 fcB708fc p..p
[0ooos0] ¥5082fc5 40014522 =%3a1800 05082£45 u.~. i
[000060] OBEfcS2a =%aalB800 05086fd4 22200£08 o.=. ..
[000070] bide0d04 71040611 010ca415 0057082qg..
[oooo0g0] 951c0004 2a7%aa18 0001082c 9522615f*y.-J
[000090] 0O8bc9640 000a08bf dele0000 O%afc?08 ... @, ..
[0000&40] 6fch52228 0f£08bfot 08229504 047b0406 ol (...
[0000BO] 11010cad4 15101715 70114000 05157051
[ooooco] en000115 70111c00 04012030 082c9522p..
[0000Do0] 615f08be 9640000a 08bfdélc 00004000 a_...@.
[0000ED] 01157011 1cOO00401 20104000 DllCDUﬂD ..p...;Ij
*

4

Figure 4-30. Output Section Contents in Hex and ASCII Format

Visual DSP++ 5.0 Linker and Utilities Manual 4-35

Memory Map Pane

Section Contents HE
Section:
Idﬂduj (program) j
Section contents:
[000000] 403b3aBe j26 = j27 - 0X40;; |
[000001] 403b3a%: kZe = k27 - 0X40;;
[00000Z] fO0bb4087 [127 += OXFFFFFFFO] = cjmp::
[000003] 043b3b%: k27 = k27 - 0X4::
[000004] 00804488 wrd = 0;:
[000005] 3edad4id [i26 + OX3E] = vrd;;
[000006] 3edalc8l =zrl2 [j26 + DX3E]:: |

[000007] 408004688 =rl3

[00000A] 140c0cB88 jl0 = xrlZ;;
[00000B] 003f0k0Oe¢ 000000BZ 311

L]

0x40;
[000008] 8d0118a4 =COMP(rlZ, rl3)::
[00000%] 110051kl IF nxzalt, JUMP Oz11(MNP)::

131 + Oiimex::
12

Figure 4-31. Output Section Contents in Hex and Assembly Format

Viewing Symbols

Symbols can be displayed per a processor program (.dxe), per overlay
(.ov1), or per input section. Initially, symbol data is in the same order in
which it appears in the linker’s map output. Sort symbols by name,
address, and so on by clicking the column headings.

4-36

Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

To view symbols (Figure 4-32):

View Spmbols =B
Mame | Addresz | Size | Binding | File Mame | S ection I;l
_LMN$7_m.. 0x288 0=0 STE_LOCAL PRIMES.DOJ program
_LN$E m.. O=28e 0:0 STB_LOCAL PRIMES.DOJ program
_LN$3 m.. 0O=292 0:0 STB_LOCAL PRIMES.DOJ program
_L_250002 Ox28e 0x0 STE_LOCAL PRIMES.DOJ program

_L_Z50004 Ox2bd 040 STB_LOCAL PRIMES.DOJ program
_L 280005 0s292 040 STB_LOCAL PRIMES.DOJ program
_L 280007 0x2a? 0x0 STB_LOCAL PRIMES.DOJ program
_L 280008 Ox2a6 0x0 STB_LOCAL PRIMES.DOJ program
_L 316000 Ow2ed 040 STB_LOCAL PRIMES.DOJ pragram
_L_31e001 0=281 00 STB_LOCAL PRIMES.DOJ program
_L 316002 0284 00 STB_LOCAL PRIMES.DOJ program
_ EPC_temt 0x273 w0 STE_LOCAL PRIMES.DOJ program

_main 04273 00 STB_GLOBE.. PRIMES.DOJ program
program 0273 0:0 STE_LOCAL PRIMES.DOJ program =

Figure 4-32. View Symbols Dialog Box

1. In the post-link view of the Memory Map pane, select the item
(memory segment, output section, or input section) whose symbols
you want to view.

2. Right-click and choose View Symbols.

The View Symbols dialog box displays the selected item’s
symbols. The symbol’s address, size, binding, file name, and
section appear beside the symbol’s name.

Profiling Object Sections

Use Expert Linker to profile object sections in your program. After doing
so, Expert Linker graphically displays how much time was spent in each
object section so you can locate code “hotspots” and move the code to
faster, internal memory.

The following is a sample profiling procedure.

Visual DSP++ 5.0 Linker and Utilities Manual 4-37

Memory Map Pane

Start by selecting Profile execution of object sections in the General page

of the Global Properties dialog box (Figure 4-33).

Global Properties HE

General I Processorl PLIT I Eliminationl

Linker map

IEZ: “examplesmyproject |df

™ Show stack/heap usage

¥ Profile execution of ohiect sections

QK. I Cancel |

Figure 4-33. General Page of the Global Properties Dialog Box

Then build the project and load the program. After the program is loaded,
Expert Linker sets up the profiling bins to collect the profiling
information.

4-38 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

When the program run is complete, Expert Linker colors each object sec-
tion with a different shade of red to indicate how much time was spent

executing that section. For an example, see Figure 4-34.

=

|nput Sections: Memorny Map: ﬁl Ql Q
. zeq_ctdm ﬂ
seg_.dr.nda 20000 ext_mem 20000
zeg_init
$Eg_pmco libc.dlb [seg_pmco)

[0 seq prda
e[seqth libio.dlb [geg_prco)
» [
Po |

Expert Linker®

Figure 4-34. Colored Object Sections

The fir.doj (seg_pmco) section appears in the brightest shade of red,
indicating that it takes up most of the execution time. The shading of the
libio.d1b (seg_pmco) section is not as bright. This indicates that it takes

up less execution time than fir.doj (seg_pmco). The shading of the

libc.d1b (seg_pmco) section is black, indicating that it takes up a negligi-
ble amount of the total execution time.

Visual DSP++ 5.0 Linker and Utilities Manual

4-39

Memory Map Pane

From Expert Linker, you can view PC sample counts for object sections.
To view an actual PC sample count (Figure 4-35), move the mouse
pointer over an object section and view the PC sample count.

fir.doj [zeg_pmco] [0x20c5e - 0x218a4d]
PC Sample Count = 2107396 [57.68%)

[
Figure 4-35. PC Sample Count

To view sample counts for functions located within an object section,
double-click on the object section (Figure 4-36).

x
j |nput S ections: tdemany kap: ﬂ Q Q
-1 |seq ctdm
geq_dmda 20cse
zeg_init
$2g_pmco
: geq_pmda
- seg_th
pre_filter()
da_filter{] - 1
" 218bék
4
-
H
3
= | 0|
% Ceo |

Figure 4-36. Sample Count of Functions Within Object Section

Functions are available only when objects are compiled with debug
information.

4-40 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

You can view detailed profile information such as the sample counts for
each line in the function (Figure 4-37). To view detailed profile informa-

tion, double-click on a function.

Histograml ‘/.| Ezecution Uni.= le.lne |C ~C-FIRfir.c I;l
4 65% =mtheputcha. .. 6.64% 207 for (i = 0, temp = 0; i ¢ taps. i++)
0.70% printf 32. ... 21.15% 208 temp += coefficients[1] * state[i].
0.00% =decimal_d... 209
0.00% mdecimal s 210 /7 compiler gemerated code for abo
0.00% =zprint_es f... 211 << lontr=16, doipc._L$316001-1)unt. ..
0.00% =print_f f... 212 A7 mri=mrf+r2#*rl (55I). rl=dm{il.m...
0.00% wprint_g f 213 /7 _16316001:

|] 10.22% =prnt_32 .d... 214

I B7.76% g fir.doj . 0.36% 215 output[k] = tenp:

| 1 17.86% do_filter() 216

'] 8 97 pre_filter(_ || 0.70% 217 for (j = taps-1: j > taps: j—) =1

F 30.93% mainl) || 0.52x% 218 state[i+l] = state[]]:

. | 5 219]

|TDlaISampIes: 366165 |Elapsed Time: 00:00:12 |Enabled

Figure 4-37. Profile Information (Detail)

To view PC samples as a percentage of total samples, view the memory
map tree (Figure 4-38).

Input S ections:

seq_dmda
seg_init
s80_pmco
zeg_pmda
-] seg_rth

[#- . seg_ctdm

demany b ap:
Segment/Section | Start Addrassl End Addrassl % | Count |
B seg_rth 08000 OxB0f
(== %2000 OxE09e
[OBBL_hddojfseq_th] 0x3000 w03 nod4x 13
zeg_dmda 0x3300 OB
B zeq_heap 0x3000 O34t
@ seq_stak 0x9500 O3FFF
@ seq_init Oxc000 Oxc10F
G segq_pmoco Oxc110 Ocfff
s segq prda Oxd00 Dredfff
- sen_pmda WA A
B < ext_mem 020000 O2fEet
E-23 ent_mem 0420000 21824
-- libc. dib [s20_prca) 0=20000 042033 B.80% 24845
+ libio. dlb (zeq_pmca) 0x2033f 020c5d 3m48% 129681
fir.doj [seg_pmeco] 0x20c5e 0x218ad A7 68% 210796

i
U
&
=
3
1
&
]

Figure 4-38. Percentage of Total PC Sample Count

Visual DSP++ 5.0 Linker and Utilities Manual

4-41

Memory Map Pane

Adding Shared Memory Segments and Linking
Object Files

In many DSP applications where large amounts of memory for multipro-
cessing tasks and sharing of data are required, an external resource in the
form of shared memory may be desired.

Refer to Engineer-to- Engineer Note EE-202 “Using the Expert
Linker for Multiprocessor LDF” for a detailed description and proce-
dure. Find this EE Note on Analog Devices Web site at:
http://www.analog.com/ee-notes.

System Information
Confiqure the D5SP svstem by choosing the processors in your system and the processor tupe.

— System type Processor pe:
" Single pracessar IAD SP-TS107 ;I

+ Multiprocessor

[Szt up system from debug session setings

600&880[propetie:

Processorg: Dutput file
Hrocessor I MH Start ... I MF End & ~ I$EUMM."-‘«ND_LIHE_DUTF’UT_DIHECTDH‘
Oro ek

() I Tif Executables ta link againsk:

(O Zhffrff |

T
. - 'T""'_»FI
\ V.

< Back I Mext » I Canicel | Help

Figure 4-39. Multiprocessor LDF Selection

To add a shared memory section to the .LDF file, right-click in the
Memory Map pane and select New/Shared Memory. Then specify a name
for the shared memory segment (.sm) and select the processors that have
access to this shared memory segment. Refer to “Managing Shared Mem-
ory Properties” on page 4-70 for more information.

4-42 Visual DSP++ 5.0 Linker and Utilities Manual

http://www.analog.com/ee-notes

Expert Linker

As shown in Figure 4-40, a new shared memory segment, visible to pro-
cessors PO and P1, has been successfully added to the system. Note that
variables declared in the shared memory segment will be accessed by both
processors in the system. In order for the linker to be able to correctly
resolve these variables, the link against command should be used once

again.

Shared Memory Properties

Shared Mamary | Elimination |

Outputfile name
shared.sm

Expert Linker - MP TS101.1df*

hemaory Map

B
wlals

Input Sections:
Processors sharing MEM AR
= s

bsz_init
datal
datal

B program

[wF1

| |

h0Code

loooo

80000 [[niDete |

So00o d
100000 [[WeDats |
110000
180000
180800
400000

lcOO000
2000000
2400000
2800000
200000
3oooooo
3400000
3800000
300000
4000000

goooooo
c00000a

S0
[EER

10000000

0

o000

100000

4000000
8000000
000000

- Qﬂxhnmd,xmj

Figure 4-40. Shared Memory Segment

Expert Linker automatically adds shared memory segments, and therefore
no any additional modifications to the LDF are needed.

Confirm that Expert Linker has correctly added the . sm file to the link
against command line by selecting View Global Properties in the Memory
Map pane and clicking on the Processor tab.

Visual DSP++ 5.0 Linker and Utilities Manual

4-43

Memory Map Pane

The shared. sm file should now be contained in the Executables to Link
Against box for each processor.

Use Expert Linker to detect non-linked input sections, such as a variable
declared in external SDRAM memory, which belongs to the shared mem-
ory segment.

When both processors and the shared memory segments have been prop-
erly configured, and Expert Linker has detected all input sections, you can
link the object files from different input sections to their corresponding
memory sections.

In general, the linking process consists of these steps:

1.

Sort the left pane of the Expert Linker window by LDF macros
instead of input sections (default setting). To do that, right-click
on the left pane and select Sort by/LDF Macros.

Right-click on the LDF Macro window and add a new macro for
PO (Add/LDF Macro). For example, $0BJECTS_P0. Repeat the

same step for P1 and shared.sm.

Add the object (. doj) files that correspond to each processor as well
as to the shared memory segment.

To do this, right-click on each recently created LDF macro and
then select Add/Object/Library File. The use of LDF macros
becomes extremely useful in systems where there is more than one
object files, .doj files per processor or shared memory segments, in
which case the same step previously explained should be followed
for each .doj file.

Delete the LDF macro, $COMMAND_LINE_OBJECTS, from the
$0BJECTS macro to avoid duplicate object files during the linking
process. Right-click on the $COMMAND_LINE_OBJECTS macro and
click Remove.

4-44

Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

5. The left pane needs to be sorted by Input Sections instead of LDF
macros. To do that, right-click on the left pane and select Sort
by/Input Sections. Additionally, in the right pane, change the
Memory Map View Mode from Graphical to Tree mode.
Right-click on the Memory Map window, select View Mode, and
then Memory Map Tree.

6. Map the new macros into memory. To do this, place each macro
into its corresponding memory section.

7. Repeat the same steps for processor P1 ($0BJECTS_P1) and for the

shared memory segment, shared.sm (place $0BJECTS_SM in the
SDRAM section).

8. Press Rebuild All.

9. Select one of the processors by clicking on the processor’s name
tab. In this case, PO is selected first. Then, place (drag-and-drop)
the recently created LDF macro, $0BJECTS_PO, in its corresponding
memory segment. The red crosses denoting the “non-linked” sec-
tions have disappeared, indicating that the input sections have been
properly mapped into memory.

@ Also, note that the LDF macros that were moved from the Input
Sections window (left pane) to their corresponding sections in the
Memory Map window (right pane) have been automatically

replaced during the linking process with the actual object files used

by the linker.

Visual DSP++ 5.0 Linker and Utilities Manual 4-45

Memory Map Pane

The LDF is now complete. Figure 4-41 illustrates the generated LDF in
the Source Code View mode.

Inpat Seclons: Hemory Map:
[0 atal SegrenSection [StatAdgress | ErdAddess |
| @ gl SCOMMAND_LINE_OBJECTS = & MiCode]
gl $ORIECTS 15424 code] 053
i il $OBIECTS_PO “-[2] 1D1.doi forogram) 00 Db
. Gl $0BJECTS P £ % MiData 0:20000 L=
[100 doj | 2 datal OLE0000 02001 §
: 1071, doj LN dn atat) MR MBANTE
B[] oata2 £ % M2Data 0100000 10
Bl SEOMMAND _LINE_DBJECTS 50N data? 0100000 (10000
-l $OBIECTS “o[H101.doj [data2) 0100000 010000
Al $0BJECTS_PO %@ SDAAM (4000000 i
[l il $08JECTS_P1 & M5 UsUULUIL Uttt
@ D0 doi B ME Cbe000000 ChififF
[AL @ HOST 010000000 il
£ et data o HOETY CLAN000000 D
| gl $COMMAND_LINE_OBJECTS G HOSTZ2 0550000000 Dt
el $ORJECTS_Sh % HO3TZ 0570000000 D2t
L@ datads @ HOST4 (530000000 et
= B pogan % HO3TS (550000000 OuecHfift
= fl] $COMMAND_LINE_DBJECTS g HOSTE (0000000 Cieeift
Al $0BJECTS % HOSTT 0:0000000 Ot

ol $0RJECTS_PD
gl $0BJECTS_F1
|00 daj
- @ D1 dof

Oro | Tet [0 shoreizm |

Figure 4-41. Expert Linker Multiprocessor LDF

The multiprocessor linker commands, MPMEMORY, SHARED MEMORY and LINK
AGAINST, as well as the corresponding LDF macros, were successfully gen-
erated by the Expert Linker in a way absolutely transparent to the user.

The complete project is now ready to be built. Once again, perform a
Rebuild All and start debugging with the application code.

4-46 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Managing Object Properties

You can display different properties for each type of object. Since different
objects may share certain properties, their Properties dialog boxes share

pages.

The following procedures assume the Expert Linker window is
open.

To display a Properties dialog box, right-click an object and choose
Properties. You may choose these functions:

* “Managing General Global Properties” on page 4-48

* “Managing Processor Properties” on page 4-49

e “Managing PLIT Properties for Overlays” on page 4-50
e “Managing Elimination Properties” on page 4-51

* “Managing Symbols Properties” on page 4-53

* “Managing Memory Segment Properties” on page 4-57
* “Managing Output Section Properties” on page 4-58

* “Managing Packing Properties” on page 4-61

* “Managing Alignment and Fill Properties” on page 4-63
* “Managing Overlay Properties” on page 4-65

e “Managing Stack and Heap in Processor Memory” on page 4-67
* “Managing Shared Memory Properties” on page 4-70

Visual DSP++ 5.0 Linker and Utilities Manual 4-47

Managing Object Properties

Managing General Global Properties

To access Global Properties, right-click in the Input Sections pane and
choose Properties.

The Global Properties dialog box appears.

The General tab of the Global Properties dialog box provides these selec-
tions (Figure 4-42):

* Linker map file displays the map file generated after linking the
project. This is a read-only field.

» If Show stack/heap usage is selected after you run a project, Expert
Linker shows how much of the stack and heap were used.

* If Profile execution of object sections is selected, Expert Linker
enables the profiling feature that allows you to see “hotspots” in
object sections and to fine-tune the placement of object sections.

Global Properties HE
General | Processorl PLIT I Eliminationl

Linker map

IEI: ewamplesimyproject.df

™ Show stack/heap usage

¥ Prafile execution of object sections

()8 I Cancel |

Figure 4-42. General Page of the Global Properties Dialog Box

4-48 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Managing Processor Properties

To specify processor properties:

1. In the Memory Map pane, right-click on a Processor tab and
choose Properties.

The Processor Properties dialog box appears.
2. Click the Processor tab (Figure 4-43).

The Processor tab allows you to reconfigure the processor setup.

Proceszor Properties []=]
Processor | Elimination | Symbas |

Processor type:

— Spstem
g of [aDsP-21180 |
© Multprocessar
— Processor propertie:
Processors: Dutput file
Fiocessor |$CDMMAND_LINE_DUTF’UT_FILE

Ero

Executables to link against:

o | oo |

Figure 4-43. Processor Page of the Processor Properties Dialog Box

With a Processor tab in focus, you can:

* Specify System Type — It may be a Single processor or Multipro-
cessor selection. (The Processors list displays the names of all the
processors in the project and the address range for each processor.)

* Select a Processor type (such as ADSP-21060).

Visual DSP++ 5.0 Linker and Utilities Manual 4-49

Managing Object Properties

* Specify an Output file name — The file name may include a relative
path and/or LDF macro. Specify an output file for each processor.

* Specify Executables to link against — Multiple files names are per-
mitted, but must be separated with space characters or commas.
Only .sm, .d1b, and .dxe files are permitted. A file name may
include a relative path, LDF macro, or both.

Additionally, a processor can be renamed by selecting the processor,
right-clicking, choosing Rename Processor, and typing a new name.

For multiprocessor systems, you can add, delete, and rearrange processor
order. Right-click in the Processors box, choose Add Processor, and type a
name for the new processor, or choose Delete Processor. To move a pro-

cessor, select the processor and drag it to another position in the
Processors list.

When a processor in a multiprocessor system is moved to a differ-
ent position, its address range changes. The MP Start Addr. and
MP End Addr. information is static.

Managing PLIT Properties for Overlays

The PLIT tab allows you to view and edit the function template used in
overlays. Assembly instructions observe the same syntax coloring
as specified for editor windows.

@ Enter assembly code only. Comments are not allowed.

4-50 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

To view and edit PLIT information:
1. Right-click in the Input Sections pane.

2. Choose Properties.
The Global Properties dialog box appears.

3. Click the PLIT tab (Figure 4-44).

Global Properties H

Genera\l Processor PLIT |Elimination|

Procedure Linkage Table(PLIT):

J4 = PLIT_RYMEOL OVERLAYID;; ﬂ
J5 = PLIT_SYMBOL_ADDRESS; ;

JUME _Overl ayManager;;

Figure 4-44. PLIT Page of the Global Properties Dialog Box

Managing Elimination Properties

Eliminate unused code from the target .dxe file. Specify the input sections
from which to eliminate code and the symbols you want to keep.

Select the Global Properties dialog box by right-clicking in the Input

Sections pane and choosing Properties.

Visual DSP++ 5.0 Linker and Utilities Manual 4-51

Managing Object Properties

Use the Elimination tab to perform elimination (Figure 4-45).

Global Properties HE

Generall Processorl PLIT Eliminatian |

¥ Enable elimination of unused objects

I¥ verbose linker output of eliminated objects

Sections to apply elimination:

Iint10 i'
Iint1 1
Iint1 2
I¥int1 3

Symbals to keep:

_main

Yerbose linken autput of elimitated ohjects Ok I Cancel

Figure 4-45. Elimination Tab

Selecting the Enable elimination of unused objects option enables elimi-
nation. This check box is grayed out when elimination is enabled through
the linker command line or when the .1df file is read-only.

When Verbose linker output of eliminated objects is selected, the elimi-
nated objects are shown as linker output in the Output window’s Build
page during linking. This check box is grayed out when the Enable elimi-
nation of unused objects check box is cleared. It is also grayed out when
elimination is enabled through the linker command line or when the .1df
file is read-only.

The Sections to apply elimination box lists all input sections with a check
box next to each section. Elimination applies to the sections that are
selected. By default, all input sections are selected.

The Symbols to keep box displays a list of symbols to be retained (see
“Managing Symbols Properties” on page 4-53 for more information).

4-52 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Managing Symbols Properties

You can view the list of symbols resolved by the linker. You can also add
and remove symbols from the list of symbols kept by the linker. The sym-
bols can be resolved to an absolute address or to a program (. dxe) file. It is
assumed that the elimination of unused code is enabled.

To add or remove a symbol:
1. Right-click in the Input Sections pane.

2. Choose Properties. The Global Properties dialog box appears.

Visual DSP++ 5.0 Linker and Utilities Manual 4-53

Managing Object Properties

3. Click the Elimination tab to add or remove a symbol

(Figure 4-46).

Global Properties = 1=]

Genara\l F‘rocessorl PLIT Elimination |

™ Enable elimination of unused objects

I | Werbose linfker autaut of eliminated|ckiests

Sections to apply elimination:

[wllvint10 :-|
[Wlvint11
[lvint 2
[Wlvint1 3

Symbaols to keep:

_main

__ctor_MULL_marker

Cancel

Figure 4-46. Elimination Page of he Global Properties Dialog Box

4. Right-click in the Symbols to keep box.

Using the menu, choose Add Symbol to open the dialog box
and type a new symbol name (names) at the end of the exist-
ing list.

To delete a symbol, select the symbol, right-click, and
choose Remove Symbol.

To specify symbol resolution:
1. In the Memory Map pane, right-click a Processor tab.

2. Choose Properties.
The Processor page of the Processor Properties dialog box appears.
The Symbols tab allows you to specify how symbols are to be

4-54 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

resolved by the linker (Figure 4-47).

Processor Properties HE
Processor I Eliminationl Symbolsl
Symbols ta resobee
Symbol ||| Address or File Mame
faal 10000
fooz c:\examplesiprograms.dxe
oK | Cancel I

Figure 4-47. Processor Properties Dialog Box — Symbols Tab

The symbols can be resolved to an absolute address or to a program file.
Right-clicking in the Symbols field allows you to add or remove symbols.

Choosing Add Symbol from the menu invokes the Add Symbol to
Resolve dialog box (Figure 4-48), which allows you to pick a symbol by
either typing the name or browsing for a symbol. Using Resolve with, you

Visual DSP++ 5.0 Linker and Utilities Manual 4-55

Managing Object Properties

can also decide whether to resolve the symbol from a known absolute
address or file name (.dxe or .sm) file.

Add Symbol to Resolve HE

Symbol:
]‘OD Browse.. |

Resohve with

& Absolute Address:

|3x1 0000
" File Name:
Cancel |

Figure 4-48. Add Symbol to Resolve Dialog Box

The Browse button is grayed out when no symbol list is available; for
example, if the project has not been linked. When this button is active,
click it to display the Browse Symbols dialog box, which shows a list of all
the symbols.

Selecting a symbol from that list places it in the Symbol box of the Edit
Symbol to Resolve dialog box.

To delete a symbol from the resolve list:
1. Click Browse to display the Symbols to resolve list (Figure 4-48).
2. Select the symbol to delete.

3. Right-click and choose Remove Symbol.

4-56 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Managing Memory Segment Properties

Specify or change the memory segment’s name, start address, end address,
size, width, memory space, memory type, and internal/external flag.

To display the Memory Segment Properties dialog box (Figure 4-49 on
page 4-57):
1. Right-click a memory segment (for example, PROGRAM or MEM_CODE)
in the Memory Map pane.

2. Choose Properties.
The selected segment properties are displayed.

Memory Segment Properties [%]

temary Segment |

Name:

Imam_H_data_b

Start Address: End Address: Size: Width:

[oaiz00000 - [outfa07 Joe000 E =l
tdemary Space ROM/Rak Intemal/E xtemal
£ B &+ RAM % [ntemal
£ Ok " ROM 7] Exterral
L " SROM

! DATLEY

—
Figure 4-49. Memory Segment Properties Dialog Box

Visual DSP++ 5.0 Linker and Utilities Manual 4-57

Managing Object Properties

Managing Output Section Properties

Use the Output Section tab to change the output section’s name or to set
the overflow (Figure 4-50).

Output Section Properties [2]x]
Output Section | Packing | Alignmentl

MNarne: Initialization

|pr09ram [one =l

—Overflo

Ouput section to which objects overlow:

INDne j

— Contiguity of Input Section

@ Display linkerwaming if section is not mapped contiguously
" Force contiguous placement of sections

" Suppress linkerwarning about non-contiguous placemeant of sections

i~ Placement
Address: Mot &vailable

Size (inwords). Mot available

0K I Cancel |

Figure 4-50. Output Section Properties Dialog Box — Output Section Tab

Overflow allows objects that do not fit in the current output section to
spill over into the specified output section. By default, all objects that do
not fit (except objects that are manually pinned to the current output sec-
tion) overflow to the specified section.

To specify output section properties:

1. Right-click an output section (for example, PROGRAM_DXE or
CODE_DXE) in the Memory Map pane.

2. Choose Properties.

The selections in the output section/segment list include “None” (for no
overflow) and “All” output sections. Pin objects to an output section by
right-clicking the object and choosing Pin to output section.

4-58 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

You can:
* Type a name for the output section in Name.

* In Overflow, select an output section into which the selected out-
put section will overflow; select None for no overflow. This setting
appears in the Placement box.

Before linking the project, the Placement box indicates the
output section’s address and size as “Not available”. After
linking is done, the box displays the output section’s actual
address and size.

* Initialization allows you to choose the initialization quali-
fier for an output section. The section qualifier set by this
option controls the operation of run-time initialization by
tools that process the executable file and the run-time ini-
tialization that can be achieved by enabling the meminit
utility.

The choices are:

* None: Stipulates no special treatment for the section — the
section data are statically initialized according to their defi-
nition in the source, no runtime initialization is called for.
Please note that data that have no explicit initialization in
source are initialized to 0.

* No initialization: Stipulates no data initialization, even stat-
ically. No data for the section are in the executable file. This
is equivalent to specifying a section qualifier SHT_NOBITS in

the LDF.

* Initialize to zero: The memory space for this section will be
initialized to zero at either “load” or “runtime”, if invoked
with the linker’s -meminit switch. If the -meminit switch is
not used, the memory is initialized at “load” time when the

.dxe file is loaded via VisualDSP++ IDDE, or boot-loaded

Visual DSP++ 5.0 Linker and Utilities Manual 4-59

Managing Object Properties

by the boot kernel. If the memory initializer is invoked, the
C/C++ run-time library (CRTL) will process embedded
information to initialize the memory space during the
CRTL initialization process.

Initialize at runtime: If the linker is invoked with the -mem-
init switch, this section will be filled at runtime. If the
-meminit switch is not specified, the section is filled at
“load” time.

Contiguity of Input Sections allows you to choose whether
or not code or data in an output section should be mapped
contiguously. The choices are:

Display linker warning if section is not mapped
contiguously

Force contiguous placement of sections

Suppress linker warning about non-contiguous placement
of sections in the operating system

Specify the Packing (on page 4-61) and Alignment (with
Fill value) properties (on page 4-63) as needed.

4-60

Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Managing Packing Properties

Use the Packing tab to specify the packing format that the linker employs
to place bytes into memory. The choices include No packing or Custom
packing. You can view byte order, which defines the order that bytes will
be placed into memory, and you can change this order. It can be viewed
via the Packing order box.

To specify packing properties:
1. Right-click a memory segment in the Memory Map pane.

2. Choose Properties and click the Packing tab (Figure 4-51).

Output Section Properties HEB3
Output Section Packing I Alignmment I

Packing Murnber of bytes:

Packing arder:

Ok I Cancel |

Figure 4-51. Memory Segment Properties Dialog Box — Packing Tab

Visual DSP++ 5.0 Linker and Utilities Manual 4-61

Managing Object Properties

3. In Packing method, select a method.

Method Description
No packing Specifies no packing. Number of bytes and Packing order are grayed out.
Custom

Permits the selection of number of bytes and packing order.

Other choices

Specifies the number of bytes and packing order of the selected method.
The list of packing methods is derived from the included packing.h file.
Packing method information (number of bytes and packing order) appears,
but you cannot change it.

4. In Number of bytes (if Custom is selected), specify the number of
bytes to be reordered at one time. This value does not include the
number of null bytes inserted into memory.

5. In Packing order, specify byte packing. To do that, select a byte
and perform one of these actions:

Click the keyboard's Up arrow or Down arrow key.
Drag and drop it to a new location.
Insert a null byte by clicking on Insert.

Delete a null byte by selecting the null byte and clicking
Delete.

6. Click OK.

4-62

Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Managing Alignment and Fill Properties

Use the Alignment tab to set the alignment and fill values for the output
section. When the output section is aligned on an address, the linker fills
the gap with zeros (0), NOP instructions, or a specified value.

To specify alignment properties:
1. Right-click a memory segment in the Memory Map pane.
2. Choose Properties.

3. Click the Alignment tab (Figure 4-52).

Output Section Properties HEB

Output Sectionl Packing ~Alignment |

— Alignment
& Mo Alighment

" &lign each input section to the next address that |4 'l

iz a multiple of:

i Fill alue
& Fill gaps with the default value of 0

" Fill gaps with NOP instruction

" Fill gaps with the value: I

oK I Cancel I

Figure 4-52. Output Section Properties — Alignment Tab

If you select No Alignment, the output section is not be aligned on an

address.

If you choose Align each input section to the next address that is a multi-
ple of, select an integer value from the drop-down list to specify the
output section alignment.

Visual DSP++ 5.0 Linker and Utilities Manual 4-63

Managing Object Properties

When the output section is aligned on an address, a gap is filled by the
linker. Based on the processor architecture, Expert Linker determines the
opcode for the NOP instruction.

The Fill value is either 0 (default), a NOP instruction, or a user-specified
value (a hexadecimal value entered in the entry box).

4-64 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Managing Overlay Properties

Use the Overlay tab to add/choose the output file for the overlay, its “live”
memory, and its linking algorithm.

To specify overlay properties:
1. Right-click an overlay object in the Memory Map pane.
2. Choose Properties and click the Overlay tab (Figure 4-53)

Overlay Properties HEB
Overlay I Packingl

Output file narme:

Ioverla_l,ﬂ Lol

Live Memary Owerlay linking

Jmem_cade 1 | T =
Placement
Live Address: Mot available Size [in Mot available

Run &ddress: Mot available

QK I Cancel |

Figure 4-53. Overlay Properties Dialog Box — Overlay Tab

Use the Output file name box to specify the name of the overlay file

(.ov1).

The Live Memory drop-down list contains all output sections or memory
segments within one output section. The “live” memory is where the over-
lay is stored before it is swapped into memory.

The Overlay linking algorithm box permits one overlay algorithm—
ALL_FIT. Expert Linker does not currently allow changes to this setting.

Visual DSP++ 5.0 Linker and Utilities Manual 4-65

Managing Object Properties

When ALL_FIT is used, the linker tries to fit all of the mapped objects into
one overlay.

The Placement box provides the following information:
* Live Address—The starting address of the overlay

* Run Address—The starting address where the overlay is swapped
into memory at runtime

* Size—The overlay’s size
Click the Packing tab to specify byte packing order.

The Browse button is only available after the overlay build and when the
symbols are available. Clicking Browse opens the Browse Symbols dialog
box.

You can choose the address for the symbol group or let the linker choose

the address.

4-66 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Managing Stack and Heap in Processor Memory

Expert Linker shows how much space is allocated for your program’s heap

and stack.

Figure 4-54 shows stack and heap output sections in the Memory Map
pane. Right-click on either of them to display its properties.

Input Sections: tMemory Map:
RE} . Segment/S ection I Start Address I End Address |;|
| Iint11 B o mem_INT_INTT4 OxleD 01 f
E| Wint12 -5 mem INT_INT1G Oxled 1
o I\u"?nt13 G mem_itab 0x200 0x241
o I\u"?nt1-'1 g mem_code Ox242 07t
13 wnnts | G mem_dataZ 03000 Dvaeft
13 ninta -G mem_heap Diaf0l 0sb7H
[nints - mem_stack 0200 Dbt
13 ninte -5 mem_datal Dxc000 Dt
B win? El
] minte N
: in . Ciro |

Figure 4-54. Memory Map Window With Stack and Heap Sections

Use the Global Properties dialog box to select Show stack/heap usage
(Figure 4-55). This option graphically displays the stack/heap usage in
memory (Figure 4-56).

Global Properties []=]
General I Procassorl PLIT | Eliminat\onl
Linker map
IE \examplesimyproject Idf
¥ Show stack/heap usage
¥ Profile execution of object sections
Cancel |

Figure 4-55. Global Properties — Selecting Stack and Heap Usage

Visual DSP++ 5.0 Linker and Utilities Manual

4-67

Managing Object Properties

The Expert Linker can:
* Locate stacks and heaps and fill them with a marker value.

This occurs after loading the program into a processor tar-
get. The stacks and heaps are located by their output section
names, which may vary across processor families.

e Search the heap and stack for the highest memory locations written
to by the DSP program.

This action occurs when the target halts after running the
program. (assume the unused portion of the stack or heap
starts here). The Expert Linker updates the memory map to
show how much of the stack and heap are unused.

Use this information to adjust the size of your stack and heap. This infor-
mation helps make better use of the processor memory, so the stack and
heap segments do not use too much memory.

4-68 Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

Use the graphical view (View Mode -> Graphical Memory Map) to dis-
play stack and heap memory map blocks. Figure 4-56 shows a possible
memory map after running a project program.

Expert Linker™ H

Input Sections: Memary ap: ﬁl@;l@
=- [[Wint10 =l
Iint11 8000 [] mem_dataz 8000
Iimt1 2
IWint13
it 4 LIBC.DLE (data2)
IWint15 g04a
Iintd mem_heap 804b
IWintS
IimtG
IWint?
[Vintg
IWint3 a191
I"kemel merm_stack 8192
: I prardian
I"reset |
IV stackint Unuzed

datal 8260
mem_datal 8261 |

r':‘ ;I

" Oro

Figure 4-56. Graphical Memory Map Showing Stack and Heap Usage

Visual DSP++ 5.0 Linker and Utilities Manual 4-69

Managing Object Properties

Managing Shared Memory Properties

Specify the path and name of the file used by shared memory. This proce-

dure assumes the Expert Linker window is open.

To specify shared memory properties:

1. In the Memory Map pane, click the Shared Memory tab (located
at the bottom of dialog box).

Shared Memory Properties

Shared Memory | Elimination |

Dutput ile name
shared.sm

Input Sections:

[2]]

Expert Linker - MP TS101_Idf*

Memory Map

E
alaln

Processors sharing

FEEEE

MEM_AH]
B hez

[bez_init
[datat
[datar
#-E program

4] |

T On O B9 shared.sm ||

0 [[Twicads
10000 [
N L —
90000 [
100000 [[WeDom |
110000 B i
180000
1680800 [
400000
100000
2000000
2400000
2800000
2c00000 |58
3000000 B
3400000
3600000 B
3c00000
4000000
8000000
<000000
10000000

MS1

a

g0000

100000

4000000
8000000
000000

Figure 4-57. Shared Memory Tab

2. Right-click anywhere on the Memory Map pane.
Note: Do not right-click on a memory segment, output section,
input section, or overlay.

Choose Properties.

The Shared Memory page of the Shared Memory Properties dialog

box appears.

4-70

Visual DSP++ 5.0 Linker and Utilities Manual

Expert Linker

4. In Output file name, specify the name of the output file for the
shared memory.

5. In Processors sharing this memory, select the processors that share
the file whose name appears in Output file name. Selecting a pro-
cessor links its executable file against this shared memory file.

6. Optionally, click the Elimination tab (see “Managing Elimination
Properties” on page 4-51) and specify options.

7. Click OK.

Visual DSP++ 5.0 Linker and Utilities Manual 4-71

Managing Object Properties

4-72 Visual DSP++ 5.0 Linker and Utilities Manual

5 MEMORY OVERLAYS AND
ADVANCED LDF
COMMANDS

This chapter describes memory management with the overlay functions as
well as several advanced LDF commands used for multiprocessor-based
systems.

This chapter includes:

e “Overview” on page 5-2
Provides an overview of Analog Devices processor’s overlay strategy

* “Memory Management Using Overlays” on page 5-4
Describes memory management using the overlay functions

e “Advanced LDF Commands” on page 5-29
Describes LDF commands that support memory management with
overlay functions

e “Linking Multiprocessor Systems” on page 5-39
Describes LDF commands that support the implementation of
physical shared memory and building executable images for
multiprocessor systems

This chapter generally uses code examples for Blackfin processors.
If used, other processor’s code examples are marked accordingly.

Visual DSP++ 5.0 Linker and Utilities Manual 5-1

Ov

erview

Overview

Analog Devices processors generally have a hierarchy of memory. The fast-
est memory is the “internal” memory that is integrated with the processor
on the same chip. For some processors, like Blackfin processors, there are

two levels of internal memory (L1 and L2), with L1 memory being faster

than L2 memory. Users can configure their system to include “external”

memory, usually SDRAM or ROM that is connected to the part.

Ideally, a program can fit in internal memory for optimal performance.
Large programs need to be expanded to use external memory. When that
happens, accessing code and data in slower memory can affect program
performance.

One way to address performance issues is to partition the program so that
time-critical memory accesses are done using internal memory while parts
of the program that are not time-critical can be placed in external mem-
ory. The placement of [program] sections into specific memory sections
can be done using MEMORY {} and SECTION{} commands in the .1df file.

Another way to address performance issues is via memory architecture.
Some memory architectures, for example, Blackfin architecture, have
instruction and data cache. The processor can be configured to bring
instructions and data into faster memory for fast processing.

The third way to optimize performance is to use overlays. In an overlay
system, code and data in slower memory is moved into faster memory
when it is to be used. For architectures without cache, this method is the
only way to run large parts of the program from fast internal memory.
Even on processors with cache support, you may want to use overlays to
have direct control of what is placed in internal memory for more deter-
ministic behavior.

VisualDSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

The overlay manager is a user-defined function responsible for ensuring
that a required symbol (function or data) within an overlay is in run-time
memory when it is needed. The transfer usually occurs using the direct
memory access (DMA) capability of the processor. The overlay manager
may also handle other advanced functionality described in “Introduction
to Memory Overlays” on page 5-5 and “Overlay Managers” on page 5-7.

Visual DSP++ 5.0 Linker and Utilities Manual 5-3

Memory Management Using Overlays

Memory Management Using Overlays

To reduce DSP system costs, many applications employ processors with
small amounts of on-chip memory and place much of the program code
and data off-chip. The linker supports the linking of executable files for
systems with overlay memory. Several applications notes (EE-Notes) on
the Analog Devices Web site describe this technique in detail.

This section describes the use of memory overlays. The topics are:

“Introduction to Memory Overlays” on page 5-5
“Overlay Managers” on page 5-7

“Memory Overlay Support” on page 5-8

“Example — Managing Two Overlays” on page 5-13
“Linker-Generated Constants” on page 5-15
“Overlay Word Sizes” on page 5-16

“Storing Overlay ID” on page 5-20

“Overlay Manager Function Summary” on page 5-20
“Reducing Overlay Manager Overhead” on page 5-21
“Using PLIT{} and Overlay Manager” on page 5-25

The following LDF commands facilitate overlay features.

“OVERLAY_GROUP{}” on page 5-29
“PLIT{}” on page 5-34

5-4

Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Infroduction to Memory Overlays

Memory overlays support applications that cannot fit the program instruc-
tions into the processor’s internal memory. In such cases, program
instructions are partitioned and stored in external memory until they are
required for program execution. These partitions are memory overlays, and
the routines that call and execute them are called overlay managers.

Overlays are “many to one” memory-mapping systems. Several overlays
may “live” (be stored) in unique locations in external memory, but “run”
(execute) in a common location in internal memory. Throughout the
following description, the overlay storage location is referred to as the
“live” location, and the internal location where instructions are executed is
referred to as the “run” (run-time) space.

Overlay functions are written to overlay files (.ov1), which are specified as
one type of linker executable output file. The loader can read .ov1 files to
generate an .1dr file.

Figure 5-1 demonstrates the concept of memory overlays. The two mem-
ory spaces are: internal and external. The external memory is partitioned
into the live space for four overlays. The internal memory contains the

Visual DSP++ 5.0 Linker and Utilities Manual 5-5

Memory Management Using Overlays

main program, an overlay manager function, and two memory segments
reserved for execution of overlay program instructions (run space).

External Memory Internal Memory
Overlay 1 FUNC_A Main: call FUNC_H
call .plt_FUNC_A
FUNC_B
Overlay 2 FUNG C Overlay Manager
Overlay 3 FUNC_D
FUNC_E Overlay 1 and 2
Runtime Memory
Overlay 4 FUNC_F \
FUNC_G Overlay 3 and 4
Runtime Memory

Figure 5-1. Memory Overlays

In this example, overlays 1 and 2 share the same run-time location within
internal memory, and overlays 3 and 4 also share a common run-time
memory. When FUNC_B is required, the overlay manager loads overlay 2
to the location in internal memory where overlay 2 is designated to run.
When FUNC_D is required, the overlay manager loads overlay 3 into its
designated run-time memory.

The transfer is typically implemented with the processor’s direct memory
access (DMA) capability. The overlay manager can also handle advanced
functionality, such as checking whether the requested overlay is already in
run-time memory, executing another function while loading an overlay,
and tracking recursive overlay function calls.

5-6

Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Overlay Managers

An overlay manager is a user-definable routine responsible for loading a
referenced overlay function or data buffer into internal memory (run
space). This task is accomplished with linker-generated constants and
PLIT{} commands.

Linker-generated constants inform the overlay manager of the overlay’s
live address, where the overlay resides for execution. The number of words
in the overlay PLIT{} commands inform the overlay manager of the
requested overlay and the run-time address of the referenced symbol.

An overlay manager’s main objective is to transfer overlays to a run-time
location when required. Overlay managers may also:

* Set up a stack to store register values

e Check whether a referenced symbol has already been transferred
into its run-time space as a result of a previous reference

If the overlay is already in internal memory, the overlay transfer is
bypassed and execution of the overlay routine begins immediately.

* Load an overlay while executing a function from a second overlay
(or a non-overlay function)

You may require an overlay manager to perform other specialized tasks to
satisfy the special needs of a given application. Overlay managers are
application-specific and must be developed by the user.

Breakpoints on Overlays

The debugger relies on the presence of the _ov_start and _ov_end
symbols to support breakpoints on overlays. These symbols should appear
in the user’s overlay manager for debugger support of overlays. The
symbol manager sets a silent breakpoint at each symbol.

Visual DSP++ 5.0 Linker and Utilities Manual 5-7

Memory Management Using Overlays

The more important of the two symbols is the breakpoint at _ov_end.
Code execution in the overlay manager passes through this location once
an overlay is fully swapped in. At this point, the debugger may probe the
target to determine which overlays are in context. The symbol manager
now sets any breakpoints requested on the overlays and resumes
execution.

The second breakpoint is at symbol _ov_start. The label _ov_start is
defined in the overlay manager (in code always executed immediately
before the transfer of a new overlay begins). The breakpoint disables all of
the overlays in the debugger—the idea being that while the target is run-
ning in the overlay manager, the target is “unstable” in the sense that the
debugger should 7ot rely on the overlay information it may gather since
the target is “in flux”. The debugger still functions without this break-
point, but there may be inconsistencies while overlays are being moved in
and out.

Memory Overlay Support

The overlay support provided by the DSP tools includes:
* Specification of the live and run locations of each overlay
* Generation of constants
* Redirection of overlay function calls to a jump table

Overlay support is partially user-designed in the . 1df file. You specify
which overlays share run-time memory and which memory segments
establish the “live” and “run” space.

Listing 5-1 shows the portion of an .1df file that defines two overlays.
This overlay declaration configures the two overlays to share a common
run-time memory space. The syntax for the OVERLAY_INPUT{} command is

described in “OVERLAY_INPUT{overlay_commands}” on page 3-70.

5-8 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

In this code example, 0VLY_one contains FUNC_A and lives in memory seg-
ment ov]_live; OVLY_two contains functions FUNC_B and FUNC_C and also
lives in memory segment ovl_Tlive.

Listing 5-1. Overlay Declaration in an LDF

.dxe_code
{ OVERLAY_INPUT ¢{
OVERLAY_OUTPUT (OVLY_one.ov1)
INPUT_SECTIONS (FUNC_A.doj(program))
} >ovl_Tive

OVERLAY_INPUT {
OVERLAY_OUTPUT (OVLY_two.ovl)
INPUT_SECTIONS (FUNC_B.doj(program) FUNC_C.doj(sec_code))
} >ovl_Tive
} >ovi_run

The common run-time location shared by overlays 0VLY_one and 0VLY_two
is within the ov1_run memory segment.

The .1df file configures the overlays and provides the information
necessary for the overlay manager to load the overlays. The information
includes the following linker-generated overlay constants (where # is the
overlay ID).

_ov_startaddress_#
_ov_endaddress_#
_ov_size_i#
_ov_word_size_run_#
_ov_word_size_live_#
_ov_runtimestartaddress_#

Each overlay has a word size and an address, which is used by the overlay
manager to determine where the overlay resides and where it is executed.

Visual DSP++ 5.0 Linker and Utilities Manual 5-9

Memory Management Using Overlays

_ov_word_size_run_#and ov_word_size 1ive_i are both in terms of
words, _ov_size_ff specifies the total size in bytes.

Overlay “live” and “run” word sizes differ when internal memory and
external memory widths differ. A system containing either 16-bit-wide or
32-bit-wide external memory requires data packing to store an overlay
containing instructions.

The Blackfin processor architecture supports byte addressing that
uses 16-, 32-, or 64-bit opcodes. Thus, no data packing is required.

Redirection

In addition to providing constants, the linker replaces overlay symbol
references to the overlay manager within your code. Redirection is accom-
plished by means of a procedure linkage table (PLIT), which is essentially a
jump table that executes user-defined code and then jumps to the overlay
manager. The linker replaces an overlay symbol reference (function call)
with a jump to a location in the PLIT.

You must define PLIT code within the . 1df file. This code prepares the
overlay manager to handle the overlay that contains the referenced sym-
bol. The code initializes registers to contain the overlay ID and the
referenced symbol’s run-time address.

The linker reserves one word (or two bytes in Blackfin processors)
at the top of an overlay to house the overlay ID.

The following is an example call instruction to an overlay function:
CALL FUNC_A;; /* Call to function in overlay */

If FUNC_A is in an overlay, the linker replaces the function call with the
following instruction:
CALL .pTt_FUNC_A; / * Call to PLIT entry */

.p1t_FUNC_A is the entry in the PLIT that contains defined instructions.
These instructions prepare the overlay manager to load the overlay con-
taining FUNC_A. The instructions executed in the PLIT are specified within

5-10 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

the .1df file. The user must supply the PLIT code to match the overlay
manager.

Listing 5-2 is an example PLIT definition from an .1df file, where register
RO is set to the value of the overlay ID that contains the referenced symbol
and register R1 is set to the run-time address of the referenced symbol.
The last instruction branches to the overlay manager that uses the initial-
ized registers to determine which overlay to load (and where to jump to
execute the called overlay function).

Listing 5-2. PLIT Definitions in LDF

PLIT /7 Blackfin PLIT
{

RO.1 = PLIT_SYMBOL_OVERLAYID;
Rl1.h = PLIT_SYMBOL_ADDRESS;
R1.1 = PLIT_SYMBOL_ADDRESS;

JUMP OverlayManager;
}

The linker expands the PLIT definition into individual entries in a table.
An entry is created for each overlay symbol as shown in Listing 5-2. The
redirection function calls the PLIT table for overlays 1 and 2 (Figure 5-2).

Visual DSP++ 5.0 Linker and Utilities Manual 5-11

Memory Management Using Overlays

For each entry, the linker replaces the generic assembly instructions with
specific instructions (where applicable).

Overlay 1 Overlay 2
FUNC_A FUNC_B
FUNC_C

Internal Memory

Main: PTit_table
call .plt_FUNC_A .pTt_FUNC_A RO.L = 0x00001;
R1.H = 0x00000;
R1.L = 0x22000;
jumpOverlayManager;
call .plt_FUNC_C .p1t_FUNC_B RO.L = 0x00002;
call .plt_FUNC_B R1.H = 0x00000;
call .plt_FUNC_C R1.L = 0x22000;
. jumpOverlayManager;
.pTt_FUNC_C RO.L = 0x00002;
R1.H = 0x00000;
R1.L = 0x23000;
jumpOverlayManager;

Figure 5-2. Expanded PLIT Table (for TigerSHARC Processors)

For example, the first PLIT entry in Figure 5-2 is for the overlay symbol
FUNC_A. The linker replaces the constant name PLIT_SYMBOL_OVERLAYID
with the ID of the overlay containing FUNC_A. The linker also replaces the
constant name PLIT_SYMBOL_ADDRESS with the run-time address of FUNC_A.

When the overlay manager is called via the jump instruction of the PLIT
table, RO contains the referenced function’s overlay ID and R1 contains the
referenced function’s run-time address. The overlay manager uses the
overlay ID and run-time address to load and execute the referenced
function.

5-12 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Example - Managing Two Overlays

Overlay manager are user-written, and the following is an example of what
an overlay manager can do. This example has two overlays, each contain-
ing two functions. Overlay 1 contains the functions
fft_first_two_stages and fft_last_stage. Overlay 2 contains functions
fft_middle_stages and fft_next_to_last.

For examples of overlay manager source code, refer to the example pro-
grams shipped with the development software.

The overlay manager:
* Creates and maintains a stack for the registers it uses
* Determines whether the referenced function is in internal memory
* Sets up a DMA transfer
e Executes the referenced function

Several code segments for the . 1df file and the overlay manager follow
with appropriate explanations.

Listing 5-3. FFT Overlay Example 1

{ OVERLAY_INPUT
{
OVERLAY_OUTPUT (fft_one.ovl)
INPUT_SECTIONS (Fft_lst_last.doj(program))
b > ovl_livee // Overlay to live in section ovI_Tlive

OVERLAY_INPUT
{
OVERLAY_OUTPUT (fft_two.ovl)
INPUT_SECTIONS (Fft_mid.doj(program))

Visual DSP++ 5.0 Linker and Utilities Manual 5-13

Memory Management Using Overlays

> ovl_Tlive // Overlay to live in section ovI_Tlive
} > ovil_run

The two defined overlays (fft_one.ov1l and fft_two.ov1) live in memory
segment ov1_live (defined by the MEMORY {} command), and run in sec-
tion ov1_run. All instruction and data defined in the program memory
segment within the Fft_lst_last.doj file are part of the fft_one.ov]
overlay. All instructions and data defined in program within the file
Fft_mid.doj are part of overlay fft_two.ov1. The result is two functions
within each overlay.

The first and the last called functions are in overlay fft_one. The two
middle functions are in overlay fft_two. When the first function
(fft_one) is referenced during code execution, overlay id=1 is transferred
to internal memory. When the second function (fft_two) is referenced,
overlay id=2 is transferred to internal memory. When the third function
(in overlay fft_two) is referenced, the overlay manager recognizes that it is
already in internal memory and an overlay transfer does not occur.

To verify whether an overlay is in internal memory, place the overlay ID

of this overlay into a register (for example, P0) and compare this value to

the overlay ID of each loaded overlay. This is done by loading these over-
lay values into a register (for example, R1).

/* Is overlay already in internal memory? */
CC = p0 == pl;

/* If so, do not transfer it in. */
if CC jump skipped_DMA_setup;

Finally, when the last function (fft_one) is referenced, overlay id=1is
again transferred to internal memory for execution.

The following code segment calls the four FFT functions.

fftrade:
call fft_first_2_stages;;
call fft_middle_stages;;

5-14 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

call fft_next_to_Tlast;;

call fft_last_stage;;
wait:

NOP; ;

Jjump wait;;

The linker replaces each overlay function call with a call to the appropriate
entry in the PLIT. For this example, only three instructions are placed in
each entry of the PLIT.

PLIT

{
RO.1 = PLIT_SYMBOL_OVERLAYID;
Rl1.h = PLIT_SYMBOL_ADDRESS;
R1.1 = PLIT_SYMBOL_ADDRESS;

JUMP OverlayManager;
}

Register RO contains the overlay ID with the referenced symbol, and
register R1 contains the run-time address of the referenced symbol. The
final instruction jumps to the starting address of the overlay manager.
The overlay manager uses the overlay ID in conjunction with the overlay
constants generated by the linker to transfer the proper overlay into
internal memory. Once the transfer is complete, the overlay manager
jumps to the address of the referenced symbol stored in R1.

Linker-Generated Constants

The following constants, which are generated by the linker, are used by
the overlay manager.

.EXTERN _ov_startaddress_1;
.EXTERN _ov_startaddress_2;
.EXTERN _ov_endaddress_1;
.EXTERN _ov_endaddress_2;
.EXTERN _ov_size_1;

Visual DSP++ 5.0 Linker and Utilities Manual 5-15

Memory Management Using Overlays

.EXTERN _ov_size_2;

.EXTERN _ov_word_size_run_1;

.EXTERN _ov_word_size_run_2;
.EXTERN _ov_word_size_live_1;
.EXTERN _ov_word_size_live_2;
.EXTERN _ov_runtimestartaddress_1;
.EXTERN _ov_runtimestartaddress_2;

The constants provide the following information to the overlay manager.

* Opverlay sizes (both run-time word sizes and live word sizes)

» Starting address of the “live” space

e Starting address of the “run” space

Overlay Word Sizes

Each overlay has a word size and an address, which the overlay manager
uses to determine where the overlay resides and where it is executed.

Table 5-1 shows the linker-generated constants and examples of

processor-specific addresses.

Table 5-1. Linker-Generated Constants and Processor Addresses

Constant Blackfin Processors
_ov_startaddress_1 0x00000000
_ov_startaddress_2 0x00000010
_ov_endaddress_1 0x0000000F
_ov_endaddress_2 0x0000001F
_ov_word_size_run_1 0x00000010
_ov_word_size_run_2 0x00000010
_ov_word_size_Tlive_1l 0x00000010
_ov_word_size_live_2 0x00000010

5-16

Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Table 5-1. Linker-Generated Constants and Processor Addresses (Cont’d)

Constant Blackfin Processors
_ov_runtimestartaddress_1 0xF0001000
_ov_runtimestartaddress_2 0xF0001000

The overlay manager places the constants in arrays as shown in Figure 5-3
and Figure 5-4. The arrays are referenced by using the overlay ID as the
index to the array. The index or ID is stored in a Modify register (Jn/Kn
for TigerSHARC processors and Mt for SHARC and Blackfin processors),
and the beginning address of the array is stored in the Index register
(Im/Km for TigerSHARC processors and 1# for SHARC and Blackfin

processors).

.VAR TliveAddresses[2] = _ov_startaddress_1,
_ov_startaddress_2;

.VAR runAddresses[2] = _ov_runtimestartaddress_1,
_ov_runtimestartaddress_2;

VAR runWordSizel[2] = _ov_word_size_run_1,
_ov_word_size_run_2;

Visual DSP++ 5.0 Linker and Utilities Manual 5-17

Memory Management Using Overlays

VAR TiveWordSizel[2] = _ov_word_size_live_1,
_ov_word_size_live_2;

External Memory Internal Memory
Address 0x04000000 Address 0x00001000
Overlay 1
(24 x 32-bits) Overlay Runtime Memory
(40 x 48-bits)
FUNC_A
0x0400007F Overlay 1 Overlay 2
16 x 48 bits 40 x 48 bits
0x04000080
Overlay 2
(60 x 32-bits)
FUNC_B
FUNC_C
0x040000FF

Figure 5-3. TigerSHARC Overlay Live and Run Memory Sizes

5-18 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

External Memory Internal Memory
Address 0x2 0000
Overlay 1 Address 0x8800
(24 x 32-bits) Overlay Runtime Memory
(40 x 48-bits)
0x2 0017 FUNC_A
Overlay 1 Overlay 2
0x2 0018 veray veray
16 x 48 bits 40 x 48 bits
Overlay 2
(60 x 32-bits)
FUNC_B
FUNC_C
0x2 0053

Figure 5-4. SHARC Opverlay Live and Run Memory Sizes

Figure 5-4 shows the difference between overlay “live” and “run” size in
SHARC processor memory:

* Overlays 1 and 2 are instruction overlays with a run word width of

48 bits.
* Because external memory is 32 bits, the live word size is 32 bits.

* Opverlay 1 contains one function with 16 instructions. Overlay 2
contains two functions with a total of 40 instructions.

e The “live” word size for overlays 1 and 2 are 24 and 60 words,
respectively.

* The “run” word size for overlay 1 and 2 are 16 and 40 words,
respectively.

Visual DSP++ 5.0 Linker and Utilities Manual 5-19

Memory Management Using Overlays

Storing Overlay ID

The overlay manager stores the ID of an overlay currently residing in
internal memory. When an overlay is transferred to internal memory, the
overlay manager stores the overlay ID in internal memory in the buffer
labeled ov_id_loaded. Before another overlay is transferred, the overlay
manager compares the required overlay ID with the ID stored in the
ov_id_loaded buffer. If they are equal, the required overlay is already in
internal memory and a transfer is not required. The PC is sent to the
proper location to execute the referenced function. If they are not equal,
the value in ov_id_loaded is updated and the overlay is transferred into its
internal run space via DMA.

On completion of the transfer, the overlay manager restores register values
from the run-time stack, flushes the cache, and then jumps the PC to the
run-time location of the referenced function. It is very important to flush
the cache before moving the PC to the referenced function. Otherwise,
when code is replaced or modified, incorrect code execution may occur. If
the program sequencer searches the cache for an instruction and an
instruction from the previous overlay is in the cache, that instruction may
be executed because the expected cache miss is not received.

Overlay Manager Function Summary

In summary, the overlay manager routine:

* Maintains a run-time stack for registers being used by the overlay
manager

* Compares the requested overlay’s ID with that of the previously
loaded overlay (stored in the ov_id_loaded buffer)

* Sets up the DMA transfer of the overlay (if it is not already in
internal memory)

e Jumps the PC to the run-time location of the referenced function

5-20 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

These are the basic tasks that are performed by an overlay manager.
More sophisticated overlay managers may be required for individual
applications.

Reducing Overlay Manager Overhead

The example in this section incorporates the ability to transfer one overlay
to internal memory while the core executes a function from another over-
lay. Instead of the core sitting idle while the overlay DMA transfer occurs,
the core enables the DMA, and then begins executing another function.

This example uses the concept of overlay function loading and executing.
A function Toad is a request to load the overlay function into internal
memory but not execute the function. A function execution is a request
to execute an overlay function that may or may not be in internal memory
at the time of the execution request. If the function is not in internal
memory, a transfer must occur before execution.

In several circumstances, an overlay transfer can be in progress while the
core is executing another task. Each circumstance can be labeled as deter-
ministic or non-deterministic. A deterministic circumstance is one where
you know exactly when an overlay function is required for execution. A
non-deterministic circumstance is one where you cannot predict when an
overlay function is required for execution. For example, a deterministic
application may consist of linear flow code except for function calls. A
non-deterministic example is an application with calls to overlay functions
within an interrupt service routine (ISR) where the interrupt occurs
randomly.

The example provided by the software contains deterministic overlay
function calls. The time of overlay function execution requests are known
as the number of cycles required to transfer an overlay. Therefore, an over-
lay function load request can be placed to complete the transfer by the
time the execution request is made. The next overlay transfer (from a load

Visual DSP++ 5.0 Linker and Utilities Manual 5-21

Memory Management Using Overlays

request) can be enabled by the core, and the core can execute the instruc-
tions leading up to the function execution request.

Since the linker handles all overlay symbol references in the same way
(jump to PLIT table and then overlay manager), the overlay manager must
distinguish between a symbol reference requesting the load of an overlay
function and a symbol reference requesting the execution of an overlay
function. In the example, the overlay manager uses a buffer in memory as
a flag to indicate whether the function call (symbol reference) is a load or
an execute request.

The overlay manager first determines whether the referenced symbol is in
internal memory. If not, it sets up the DMA transfer. If the symbol is not
in internal memory and the flag is set for execution, the core waits for the
transfer to complete (if necessary) and then executes the overlay function.
If the symbol is set for load, the core returns to the instructions immedi-
ately following the location of the function load reference.

Every overlay function call requires initializing the load/execute flag buf-
fer. Here, the function calls are delayed branch calls. The two slots in the
delayed branch contain instructions to initialize the flag buffer. Register
j4 is set to the value placed in the flag buffer, and the value in j4 is stored
in memory; 1 indicates a load, and 0 indicates an execution call. At each
overlay function call, the load buffer must be updated.

The following code is from the main FFT subroutine. Each of the four
function calls are execution calls so the pre-fetch (load) buffer is set to
zero. The flag buffer in memory is read by the overlay manager to deter-
mine whether the function call is a load or an execution call.

RO =0 (Z);
pO0.h = prefetch;
p0.1 = prefetch;

[PO] = RO;
call fft_first_2_stages;
RO =0 (2);

5-22 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

p0.h = prefetch;

p0.1 = prefetch;
[PO] = RO;

call fft_middle_stages;
RO =0 (2);
pO0.h = prefetch;
p0.1 = prefetch;
[PO] = RO;

call fft_next_to_last;
RO =0 (Z);
p0.h = prefetch;
p0.1 = prefetch;
[PO] = RO;

call fft_last_stage;

The next set of instructions represents a load function call.

RO =1 (Z);
p0.h = prefetch;
p0.1 = prefetch;
[PO] = RO:

/* Set prefetch flag to 1 to indicate a load */
call fft_middle_stages;

/* Pre-loads the function into the */

/* overlay run memory. */

The code executes the first function and transfers the second function and
so on. In this implementation, each function resides in a unique overlay
and requires two run-time locations. While one overlay loads into one
run-time location, a second overlay function executes in another run-time
location.

Visual DSP++ 5.0 Linker and Utilities Manual 5-23

Memory Management Using Overlays

The following code segment allocates the functions to overlays and forces

two run-time locations.

OVERLAY_GROUP1 {
OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(fft_one.ovl)
INPUT_SECTIONS(Fft_ovl.doj (program))
} >ovl_code // Overlay to Tive in section ovl_code
OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OQUTPUT(fft_three.ovl)
INPUT_SECTIONS(Fft_ovl.doj (program))
} >ovl_code // Overlay to Tive in section ovl_code

} > mem_code

OVERLAY_MGR {
INPUT_SECTIONS(ovly_mgr.doj(program))
} > mem_code

OVERLAY_GROUP2 {
OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(fft_two.ovl)
INPUT_SECTIONS(Fft_ovl.doj(program))
} >ovl_code // Overlay to live in section ovl_code
OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(fft_last.ovl)
INPUT_SECTIONS(Fft_ovl.doj(program))

5-24 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

} >ovl_code // Overlay to live in section ovl_code
} > mem_code

The first and third overlays share one run-time location, and the second
and fourth (last) overlays share the second run-time location.

Additional instructions are included to determine whether the function
call is a load or an execution call. If the function call is a load, the overlay
manager initiates the DMA transfer and then jumps the PC back to the
location where the call was made. If the call is an execution call, the over-
lay manager determines whether the overlay is currently in internal
memory. If so, the PC jumps to the run-time location of the called func-
tion. If the overlay is not in internal memory, a DMA transfer is initiated
and the core waits for the transfer to complete.

The overlay manager pushes the appropriate registers on the run-time
stack. It checks whether the requested overlay is currently in internal
memory. If not, the overlay manager sets up the DMA transfer. It then
checks whether the function call is a load or an execution call.

If it is a load call, the overlay manager begins the transfer and returns the
PC back to the instruction following the call. If it is an execution call, the
core is idle until the transfer is completed (if the transfer was necessary).
The PC then jumps to the run-time location of the function.

@ Specific applications may require specific code modifications,

which may eliminate some instructions. For instance, if your
application allows the free use of registers, you may not need a
run-time stack.

Using PLIT{} and Overlay Manager

The PLIT{} command inserts assembly instructions that handle calls to
functions in overlays. The instructions are specific to an overlay and are
executed each time a call to a function in that overlay is detected.

Visual DSP++ 5.0 Linker and Utilities Manual 5-25

Memory Management Using Overlays

Refer to “PLIT{}” on page 5-34 for basic syntax information. Refer to
“Introduction to Memory Overlays” on page 5-5 for detailed information
on overlays.

Figure 5-5 shows the interaction between a PLIT and an overlay manager.

Non-Overlay Memory

main()
{
int (*)pf)() = X;
YO
}

/* PLIT & overlay manager handle calls,
using the PLIT to resolve calls
and load overlays as needed */

.plt_X: call OM

plt_Y: call OM

Overlay 1 Storage // function X defined

Overlay 2 Storage // function Y defined

Run-time Overlay Memory // currently loaded overlay

Figure 5-5. PLITs and Overlay Memory; main() Calls to Overlays

To make this kind of interaction possible, the linker generates special
symbols for overlays. These overlay symbols are:

e ov_ startaddress #
® ov_endaddress_ #
® ov_size i

® ov_word_size_ run_#

5-26 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

* _ov_word_size_live_#
e _ov_runtimestartaddress_g#
The # indicates the overlay number.

Overlay numbers start at 1 (not 0) to avoid confusion when these
elements are placed into an array or buffer used by an overlay
manager.

The two functions in Figure 5-5 describe different overlays. By default,
the linker generates PLIT code only when an unresolved function refer-
ence is resolved to a function definition in overlay memory.

The main function calls functions X () and Y (), which are defined in over-
lay memory. Because the linker cannot resolve these functions locally, the
linker replaces the symbols X and ¥ with .plit_X and .plit_v. Unresolved
references to X and Y are resolved to .plit_X and .plit_Y.

When the reference and the definition reside in the same executable file,
the linker does not generate PLIT code. However, you can force the linker
to output a PLIT, even when all references can be resolved locally. The
PLIT code sets up data for the overlay manager, which first loads the over-
lay that defines the desired symbol, and then branches to that symbol.

Inter-Overlay Calls

PLITs resolve inter-processor overlay calls, as shown in Figure 5-6, for sys-
tems that permit one processor to access the memory of another processor.

When one processor calls into another processor’s overlay, the call
increases the size of the .p1it section in the executable file that manages
the overlay.

The linker resolves all references to variables in overlays, and the PLIT lets
an overlay manager handle the overhead of loading and unloading
overlays.

Visual DSP++ 5.0 Linker and Utilities Manual 5-27

Memory Management Using Overlays

Placing global variables in non-overlay memory optimizes overlays.
This action ensures that the proper overlay is loaded before a global
variable is referenced.

Inter-Processor Calls

PLITs resolve inter-processor overlay calls, as shown in Figure 5-6, for sys-
tems that permit one processor to access the memory of another processor.

Processor P1 Processor P2
Non-overlay Memory Non-overlay Memory
Tain() P2_Overlay_Manager()
. {
-plt_foo(): // manager routines

}

/* PLIT & overlay manager
handle calls using the
PLIT to resolve calls

> and load overlays as
needed */

.plt_foo:
call P2_0Overlay_Manager

Processor P2
Overlay Storage

——» 02 Overla

foo() { ... }

Processor P2
Overlay Memory

// current overlay €——

Figure 5-6. PLITs and Overlay Memory — Inter-Processor Calls

5-28 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

When one processor calls into another processor’s overlay, the call
increases the size of the .p1it section in the executable file that manages
the overlay.

The linker resolves all references to variables in overlays, and the PLIT lets
an overlay manager handle the overhead of loading and unloading
overlays.

Not putting global variables in overlays optimizes overlays. This
action ensures that the proper overlay is loaded before a global is
referenced.

Advanced LDF Commands

Commands in the .1df file define the target system and specify the order
in which the linker processes output for that system. The LDF commands
operate within a scope, which influences the operation of other commands
that appear within the range of that scope.

The following LDF commands support advanced memory management
functions, overlays, and shared memory features.

* “OVERLAY_GROUP{}” on page 5-29
e “PLIT{}” on page 5-34

For detailed information on multiprocessor-related LDF commands, refer
to “Linking Multiprocessor Systems” on page 5-39.

OVERLAY_GROUP{}

The OVERLAY_GROUP{} command provides legacy support. This command
is deprecated and is not recommended for use. When running the linker,
the following warning may occur.

Visual DSP++ 5.0 Linker and Utilities Manual 5-29

Advanced LDF Commands

[Warning 1125347 More than one overlay group or explicit
OVERLAY_GROUP command is detected in the output section
'seg_datal'. Create a separate output section for each group
of overlays. Expert Linker makes the change automatically upon
reading the LDF.

Memory overlays support applications whose program instructions and
data do not fit in the internal memory of the processor.

Overlays may be grouped or ungrouped. Use the OVERLAY_INPUT{}
command to support ungrouped overlays. Refer to “Memory Overlay
Support” on page 5-8 for a detailed description of overlay functionality.

Overlay declarations syntactically resemble the SECTIONS{} commands.
They are portions of SECTIONS{} commands.

The OVERLAY_GROUP{} command syntax is:

OVERLAY_GROUP
{
OVERLAY_INPUT

{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUTC()
INPUT_SECTIONS()
}

}

In the simplified examples in Listing 5-4 and Listing 5-5, the functions
are written to overlay (.ov1) files. Whether functions are disk files or
memory segments does not matter (except to the DMA transfer that
brings them in). Overlays are active only while being executed in run-time
memory, which is located in the program memory segment.

5-30 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Ungrouped Overlay Execution

In Listing 5-4, as the FFT progresses and overlay functions are called in
turn, they are brought into run-time memory in sequence as four function
transfers. Figure 5-7 shows the ungrouped overlays.

“Live” locations reside in several different memory segments. The
linker outputs the executable overlay (.ov1) files while allocating
destinations for them in the program section.

OVERLAY_INPUT ﬁtc;\‘/’gﬁéov' Main: 2:”
{fft_one.ovl} y
OVERLAY_INPUT fﬂ(;\‘/";’:’léo"' '\i);/rc]e:agr
{fft_two.ovl} y g
OVERLAY INPUT fft_three.ovl Overlay Run-time
— ——————— 3|
Overlay Memory
{fft_three.ovl} /
OVERLAY_INPUT filast o
{fft_last.ovl} Y

Figure 5-7. Example of Overlays — Not Grouped
Listing 5-4. LDF Overlays — Not Grouped

// This is part of the SECTIONS{} command for processor PO
// Declare which functions reside in which overlay.

// The overlays have been split into different segments

// in one file, or into different files.

// The overlays declared in this section (seg_pmco)

// will run in segment seg_pmco.

OVERLAY_INPUT f{ // Overlays to live in section ovl_code
ALGORITHM (ALL_FIT)
OVERLAY_QUTPUT (fft_one.ovl)

Visual DSP++ 5.0 Linker and Utilities Manual 5-31

Advanced LDF Commands

INPUT_SECTIONS

OVERLAY_INPUT {
ALGORITHM
OVERLAY_OUTPUT
INPUT_SECTIONS

OVERLAY_INPUT {
ALGORITHM
OVERLAY_OUTPUT
INPUT_SECTIONS

OVERLAY_INPUT {
ALGORITHM
OVERLAY_OUTPUT
INPUT_SECTIONS

Fft_1st.doj(program)

ALL_FIT)
fft_two.ovl)
Fft_2nd.doj(program)

ALL_FIT)
fft_three.ovl)
Fft_3rd.doj(program)

ALL_FIT)
fft_last.ovl)
Fft_last.doj(program)

)

)

)

)

J

}

}

J

>ovl_code

>ov1_code

>ovl_code

>ovl_code

5-32

Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Grouped Overlay Execution

Figure 5-8 demonstrates grouped overlays.

OVERLAY_GROUP{

OVERLAY_INPUT{ ﬁLOTe'OV' Main: call
fft_one.ovl} overiay call
OVERLAY_INPUT|
| fft_two.ovl} fft_two.ovl
OVERLAY_GROUP| overlay

Overlay Manager

OVERLAY_INPUT/{
fft_three.ovl}

OVERLAY_INPUT| fft_three.ovi

overla
fft_last.ovl} Y Overlay Group 1
} Runtime
fft_last.ovl Memory
overlay
Overlay Group 2
Runtime
Memory

v

Figure 5-8. Example of Overlays — Grouped

Listing 5-5 shows a different implementation of the same algorithm.
The overlay functions are grouped in pairs. Since all four pairs of routines
reside simultaneously, the processor executes both routines before paging.

Listing 5-5. LDF Overlays — Grouped

OVERLAY_GROUP { // Declare first overlay group
OVERLAY_INPUT { // Overlays to live in section ovl_code
ALGORITHM (ALL_FIT)

OVERLAY_OQUTPUT (fft_one.ovl)
INPUT_SECTIONS (Fft_lst.doj(program))
} >ovl_code

OVERLAY_INPUT {
ALGORITHM (ALL_FIT)

Visual DSP++ 5.0 Linker and Utilities Manual 5-33

Advanced LDF Commands

OVERLAY_OUTPUT (fft_two.ovl)
INPUT_SECTIONS (Fft_mid.doj(program))

} >ovl_code
}
OVERLAY_GROUP { // Declare second overlay group
OVERLAY_INPUT { // Overlays to live in section ovl_code
ALGORITHM (ALL_FIT)

OVERLAY_OQUTPUT (fft_three.ovl)
INPUT_SECTIONS (Fft_last.doj(program))
} >ovl_code

OVERLAY_INPUT {
ALGORITHM (ALL_FIT)
OVERLAY_OUTPUT (fft_last.ovl)
INPUT_SECTIONS (Fft_Tlast.doj(program))
} >ovl_code

PLIT{}

The linker resolves function calls and variable accesses (both direct and
indirect) across overlays. This task requires the linker to generate extra
code to transfer control to a user-defined routine (an overlay manager)
that handles the loading of overlays. Linker-generated code goes in a spe-
cial section of the executable file, which has the section name .PLIT.

The PLIT{} command in an .1df file inserts assembly instructions that
handle calls to functions in overlays. The assembly instructions are specific
to an overlay and are executed each time a call to a function in that overlay
is detected.

The PLIT{} command provides a template from which the linker generates
assembly code when a symbol resolves to a function in overlay memory.
The code typically handles a call to a function in overlay memory by
calling an overlay memory manager. Refer to “Memory Overlay Support”
on page 5-8 for a detailed description of overlay and PLIT functionality.

5-34 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

A PLIT{} command may appear in the global LDF scope, within

a PROCESSOR{} command, or within a SECTIONS{} command. For an
example of using a PLIT{} command, see “Using PLIT{} and Overlay
Manager” on page 5-25.

When writing the PLIT{} command in the .1df file, the linker generates
an instance of the PLIT, with appropriate values for the parameters
involved, for each symbol defined in overlay code.

PLIT Syntax

Figure 5-9 shows the general syntax of the PLIT{} command and indicates
how the linker handles a symbol (symbo1) local to an overlay function.

PLIT{plit_commands}

instruction
symbol= PLIT_SYMBOL_OVERLAYID [symbol]

symbol= PLIT_SYMBOL_ADDRESS
symbol= PLIT_DATA_OVERLAY_ID

Figure 5-9. PLIT{} Command Syntax Tree

Parts of the PLIT{} command are:

* instruction — None, one, or multiple assembly instructions.
The instructions may occur in any reasonable order in the com-
mand structure and may precede or follow symbols. The following

Visual DSP++ 5.0 Linker and Utilities Manual 5-35

Advanced LDF Commands

two constants contain information about symbo/ and the overlay in
which it occurs. You must supply instructions to handle that
information.

* PLIT_SYMBOL_OVERLAYID — Returns the overlay ID

e PLIT_SYMBOL_ADDRESS — Returns the absolute address of the
resolved symbol in run-time memory

Command Evaluation and Setup

The linker first evaluates the sequence of assembly code in each
plit_command. Each line is passed to a processor-specific assembler, which
supplies values for the symbols and expressions. After evaluation, the
linker places the returned bytes into the .p1it output section and manages
the addressing in that output section.

To help write an overlay manager, the linker generates PLIT constants for
each symbol in an overlay. Data can be overlaid, just like code. If an over-
lay-resident function calls for additional data overlays, include an
instruction for finding them.

After the setup and variable identification are completed, the overlay itself
is brought (via DMA transfer) into run-time memory. This process is con-
trolled by assembly code called an overlay manager.

The branch instruction, such as JUMP OverlayManager, is normally
the last instruction in the PLIT{} command.

Overlay PLIT Requirements and PLIT Examples

Both the .p1it output section (allocating space for PLIT) and the PLIT{}
command are necessary when specifying PLIT for overlays. The .1df file
must allocate space in memory to hold PLITs built by the linker. Typi-
cally, that memory resides in the program code memory segment.

5-36 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

No input section is associated with the .p1it output section. The . 1d¥ file
allocates space for linker-generated routines, which do not contain (input)
data objects.

A typical LDF declaration for that purpose is:

// ... [In the SECTIONS command for Processor PQO]
// Plit code is to reside and run in mem_program segment
.plit {} > mem_program

This segment allocation does not take any parameters. You write the struc-
ture of this command according to the PLIT syntax. The linker creates an
instance of the command for each symbol that resolves to an overlay. The
linker stores each instance in the .p1it output section, which becomes
part of the program code’s memory segment.

A PLIT{} command may appear in the global LDF scope, within a
PROCESSOR{} command, or within a SECTIONS{} command.

Simple PLIT — States are not Saved

A simple PLIT merely copies the symbol’s address and overlay ID into
registers and jumps to the overlay manager. The following fragment is
extracted from the global scope (just after the MEMORY { } command)

of sample fft_group.1df. Verify that the contents of P0 and P1 are either
safe or irrelevant. For example,

PLIT

{
PO PLIT_SYMBOL_OVERLAY_ID;
Pl.L = PLIT_SYMBOL_ADDRESS;
P1.H = PLIT_SYMBOL_ADDRESS;
JUMP _OverlayManager;

Visual DSP++ 5.0 Linker and Utilities Manual 5-37

Advanced LDF Commands

As a general rule, minimize overlay transfer traffic. Improve performance
by designing code to ensure overlay functions are imported and use mini-
mal (or no) reloading.

PLIT - Summary

A PLIT is a template of instructions for loading an overlay. For each
overlay routine in the program, the linker builds and stores a list of PLIT
instances according to that template, as it builds its executable file. The
linker may also save registers or stack context information. The linker does
not accept a PLIT without arguments.

If you do not want the linker to redirect function calls in overlays, omit
the PLIT{} commands entirely.

To help write an overlay manager, the linker generates PLIT_SYMBOL con-
stants for each symbol in an overlay.

The overlay manager can also:

* Be helped by manual intervention. Save the target’s state on the
stack or in memory before loading and executing an overlay func-
tion, to ensure it continues correctly on return. However, you can
implement this feature within the PLIT section of your .1df file.
Note: Your program may not need to save this information.

* Initiate (jump to) the routine that transfers the overlay code to
internal memory, after given the previous information about its
identity, size, and location: _OverlayManager. “Smart” overlay
managers first check whether an overlay function is already in
internal memory to avoid reloading the function.

5-38 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

Linking Multiprocessor Systems

The linker has several commands that can be used to build executable
images for multiprocessor systems. Selecting the right multiprocessor link-
ing commands and using them depend on the system you are building and
the Analog Devices processor in your system.

The linker will only support linking for homogeneous multiprocessors
(that is, the system must use the same kind of processor throughout).

If you are building a heterogeneous multiprocessing environment, you
will need to build the system with more than one link step, using an . 1df
file for each kind of processor in your system.

A homogeneous multiprocessor system can be linked with a single . 1df
file. The .1df file will have a PROCESSOR{} command that describes which
object files and libraries are to be linked into the memory for each proces-
sor. Every PROCESSOR{} command will produce a separate executable file
(.dxe).

For processors that can access the local memory of other processors

(for example, through link ports), the MPMEMORY {} command can be used
to define the offset of each processor's physical memory. The MPMEMORY { }
command is described below.

It is possible to specify the code and data that is to be placed into memory
that is shared between processors. Two commands are available for placing
objects and libraries into shared memory: SHARED_MEMORY { } and
COMMON_MEMORY { }. Which of these commands you use will depend on how
you intend to use the shared memory and the limitations of the processor
architecture. The SHARED_MEMORY { } command can be used if the shared
memory in the system does not contain any references to memory that is
internal to an individual processor, or if the processor architecture sup-
ports addressing the internal memory of other processors.

For other processors, such as ADSP-BF561 processors, where one proces-
sor can not access the internal memory of the other processor, use the

Visual DSP++ 5.0 Linker and Utilities Manual 5-39

Linking Multiprocessor Systems

COMMON_MEMORY { } command. These commands and their usage are
described in more detail below.

This section describes the following features and LDF commands:
e “Selecting Code and Data for Placement”
* “Mapping by Section Name” on page 5-42
e “Mapping Using Attributes” on page 5-43
* “Mapping Using Archives” on page 5-44
 “MPMEMORY{}” on page 5-45
e “SHARED_MEMORY{}” on page 5-47
e “COMMON_MEMORY{}” on page 5-53

Regardless of the linker commands that you use, you will have to make
decisions regarding which code is going to run on which processor, where
data will be placed, and what processors have access to what data. Once
you have a partitioning of your code and data you can use the .1df file to
instruct the linker on code/data placement.

Selecting Code and Data for Placement

There are many ways to identify code and data objects for placement in a
multiprocessor system. The methods are the same methods used when
being selective about placement of objects in internal or external memory.
There are advantages and disadvantages for each of the methods, and an
.1df file may combine many of these methods.

Using LDF Macros for Placement

The easiest way to partition code and data between processors is to explic-
itly place the object files by name. In the example below, the code that is

5-40 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

to be placed in core A are in object files that are explicitly named in the
1df file.

{
OUTPUT ($COMMAND_LINE_OUTPUT_DIRECTORY/corea.dxe)
SECTIONS
{
code
{
INPUT_SECTIONS (corea.doj(program)
coreamain.doj(program))
} > CoreaCode

}
PROCESSOR COREB
{
OUTPUT ($COMMAND_LINE_OQOUTPUT_DIRECTORY/coreb.dxe)
SECTIONS
{
code
{
INPUT_SECTIONS (coreb.doj(program)
corebmain.doj(program))
} > CorebCode

J

Doing placement explicitly by object file can be made easier through the
use of LDF macros. The example could be simplified with macros for the
objects to be placed in each core.

$COREAOBJECTS
$COREBOBJECTS

corea.doj, coreamain.doj;

coreb.doj, corebmain.doj;

Visual DSP++ 5.0 Linker and Utilities Manual 5-41

Linking Multiprocessor Systems

PROCESSOR COREA
{

SECTIONS
{
code
{
INPUT_SECTIONS ($COREAOBJECTS(program))
} > CoreaCode
}

By using an LDF macro, it is much easier to make changes if functionality
is going to be moved from one processor to another.

Object files can appear in more than one LDF macro. Depending on the
system, the same object file may be mapped to more than one processor.

The main advantages of explicitly naming object files when placing object
files to processors is that it is explicit in the . 1df file where each object file
goes. By using LDF macros, the list of object files can be localized. A dis-
advantage for explicitly naming object files is that every time a new file is
added to your system, the .1df file must be modified to explicitly refer-
ence the file. Also, it is not possible to share the .1df file with other
projects that are built on the same multiprocessing system.

Mapping by Section Name

Both the compiler and assembler allow you to name sections in object
files. In the assembler, this is done using the . SECTION directive:
.SECTION Corea_Code;

The compiler has two ways to name a section. The first method uses the
section() qualifier:
section("Corea_Code") main() (...}

5-42 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

The section name can also be specified using the section pragma. The use
of this pragma is recommended since it is more flexible and results in code
that is portable.

#fpragma section ("Corea_Code™)
main() {...}

Users can use section names to identify code that is to be placed with a
particular processor.

PROCESSOR COREA
{
OUTPUT ($COMMAND_LINE_QUTPUT_DIRECTORY/corea.dxe)
SECTIONS
{
code
{
INPUT_SECTIONS ($0BJECTS(Corea_Code))
} > CoreaCode

}

The advantage of mapping by section name is that the .1df file can be
made generic and reused for other projects using the same multiprocessor.
The disadvantage is that it requires making changes to C and assembly
source code files to make the mapping. Also, it may not be possible to
modify source code for some libraries or code supplied by third parties.

Mapping Using Attributes

The linker now supports mapping by attributes. When compiling and
assembling, users can assign attributes to object files. These attributes can
then be used to filter object files for inclusion (or exclusion) during map-
ping. Users can assign attributes to object files that identify a core that the
object files should be mapped to, a core that an object file should not be
mapped to, code that is safe to be shared by all processors, and so on.

Visual DSP++ 5.0 Linker and Utilities Manual 5-43

Linking Multiprocessor Systems

The run-time libraries are built using attributes so it possible to select
areas within the run-time libraries for placement. For example, it is possi-
ble to select the objects in the run-time libraries that are needed for I/0
and place them only in external memory.

An advantage of using attributes is that the .1df file can be made generic
and reused for other projects using the same multiprocessor. The disad-
vantage is that changing where an object is placed requires rebuilding the
object file in order to change the attributes. Also, if all of the object files
are being built in the same project, it can be inconvenient to use file-spe-
cific build options. Also, it may not be possible to rebuild the object for
some libraries.

Mapping Using Archives
Another way to partition files is to build an object archive or library.

As an example, you could create a project just for building the object files
to be placed in core A. The target of the project would be an archive
named corea.d1b. The project that actually links the multiprocessor sys-
tem would include corea.d1b. In fact, it is easiest to build a project group
in which the linking project would have dependencies on the projects that
build the archives it depends on. The .1df file would then use the archive
for linking:

PROCESSOR COREA
{
OUTPUT ($COMMAND_LINE_OUTPUT_DIRECTORY/corea.dxe)
SECTIONS
{
code
{
INPUT_SECTIONS (corea.dlb(program))
} > CoreaCode

5-44 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

}

The disadvantage of using archives for mapping is that it requires organiz-
ing more than one project. The advantage is that it can be easy to add,
delete, or move objects from one processor to another. Removing an
object from a project will remove it from the archive when the project is
rebuilt. Adding a file to a project that builds an archive will automatically
add the file to the link without needing to make changes to source. This
flexibility makes it easy to create an . 1df file that can be shared by users
building for the same architecture.

The COMMON_MEMORY { } command requires archives when mapping objects
into memory that is shared between processors. This command is

described in more detail in “COMMON_MEMORY{}” on page 5-53.

MPMEMORY/{}

@ The MPMEMORY { } command is not used with Blackfin processors.

The MPMEMORY { } command specifies the offset of each processor’s physical
memory in a multiprocessor target system. After you declare the processor
names and memory segment offsets with the MPMEMORY {} command, the
linker uses the offsets during multiprocessor linking. Refer to “Memory
Overlay Support” on page 5-8 for a detailed description of overlay
functionality.

Your .1df file (and other .1df files that it includes), may contain one
MPMEMORY { } command only. The maximum number of processors that you
can declare is architecture-specific. Follow the MPMEMORY { } command with
PROCESSOR processor_name!) commands, which contain each processor’s
MEMORY { } and SECTIONS{} commands.

Visual DSP++ 5.0 Linker and Utilities Manual 5-45

Linking Multiprocessor Systems

Figure 5-10 shows MPMEMORY { } command syntax.

MPMEMORY { shared_segment_commands}
L

processor_name {
START(address_expression)
}

Figure 5-10. MPMEMORY{} Command Syntax Tree

Definitions for parts of the MPMEMORY {} command’s syntax are:

shared_segment_commands — Contains processor_name declara-
tions with a START{} address for each processor’s offset in
multiprocessor memory. Processor names and linker labels follow
the same rules. For more information, refer to “LDF Expressions”
on page 3-20.

processor_namelplacement_commands} - Applies the
processor_name offset for multiprocessor linking.

Refer to “PROCESSOR({}” on page 3-54 for more information.

The MEMORY { } command specifies the memory map for the target
system. The .1df file must contain a MEMORY { } command for global
memory on the target system and may contain a MEMORY {} com-
mand that applies to each processor’s scope. An unlimited number
of memory segments can be declared within each MEMORY {} com-
mand. For more information, see “MEMORY{}” on page 3-44.
See “Memory Characteristics Overview” on page 2-27 for memory
map descriptions.

5-46

Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

SHARED_MEMORY{}

The SHARED_MEMORY { } command creates an executable output that maps
code and data into a memory space that is shared by multiple processors.
The output is given the extension .sm for shared memory. The
SHARED_MEMORY {} command is similar in structure to the PROCESSOR{}
command. The PROCESSOR{ } command contains, among other commands,
an OUTPUT () command that specifies a . dxe file for the output, and uses
SECTIONS{} command to map selected sections from object files into
specified sections in processor memory. Similarly, the SHARED_MEMORY { }
command uses an OUTPUT () command and SECTIONS{} command to create
an . s file.

Figure 5-11 shows the syntax for the SHARED_MEMORY { } command,
followed by definitions of its components.

SHARED_MEMORY

QUTPUT (file_name.SM)
SECTIONS {section_commands}
}

Figure 5-11. SHARED_MEMORY{} Command Syntax

The command components are:

* OUTPUT() — Specifies the output file name (fi7e_name.sm) of the
shared memory executable (.sm) file. An OUTPUT() command in a
SHARED_MEMORY { } command must appear before the SECTIONS{)
command in that scope.

* SECTIONS() — Defines sections for placement within the shared
memory executable (.sm) file.

The .1df file will have a MEMORY {} command that defines the memory
configuration for the multiprocessor. The SHARED_MEMORY { } command
must appear in the same LDF scope as the MEMORY {} command. The

Visual DSP++ 5.0 Linker and Utilities Manual 5-47

Linking Multiprocessor Systems

PROCESSOR{} commands for each processor in the system should also
appear at this same LDF scope.

Figure 5-12 shows the scope of SHARED_MEMORY {} commands in the LDF.

MEMORY
{

my_shared_ram

{
TYPE(PM RAM) START(5120k) LENGTH(8K) WIDTH(32)

J

L)
— SHARED_MEMORY

{
OUTPUT(shared.sm)

SECTIONS
{

3 my_shared_sections{ section_commands}
> my_shared_ram

}
J
PROCESSOR pO {
processor_commands with link against shared memory }

PROCESSOR p1 {
processor_commands with link against shared memory }

Figure 5-12. LDF Scopes for SHARED_MEMORY/{}

The mapping of objects into processors and shared memory is made useful
by being able to have processors and shared memory “link against” each
other. The LINK_AGAINST() command specifies a .dxe file or .sm file gen-
erated by the mapping for another processor or shared memory and makes
the symbols in that file available for resolution for the current processor.

The MEMORY { } command appears in a scope that is available to any
SHARED_MEMORY { } command or PROCESSOR{} command that uses the shared
memory. To achieve this type of scoping across multiple links, place the

5-48 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

shared MEMORY {} command in a separate .1df file and use the INCLUDE()
command to include that memory in both links.

When the .dxe file or .sm file that is named in the LINK_AGAINST() com-
mand is generated by another . 1df file, the linker will read in the
executable file just as it reads in object files and archives. When the . dxe
file of the . sm file that is named is being generated in the same .1df file,
the linker will use the executable file as it is being generated. When the
processor and shared memory appear in the same . 1df file, the order that
the processor or shared memory commands appear is not important.

For example, consider that the object file data.doj contains the global
data buffer DBUF, and the object file main.doj contains code that refer-
ences that data. Further, the data buffer DBUF is placed in shared memory
so that it is available to multiple processors, while main.doj contains code
that is going to be executed from core A. An .1df file that does this map-
ping would include:

SHARED_MEMORY
{
QUTPUT("shared_memory.sm")
SECTIONS
{
data_sm
{
INPUT_SECTIONS(data.doj(data))
} > mem_shared_mem

}
PROCESSOR CoreA
{
QUTPUT("corea.dxe™")
LINK_AGAINST("shared_memory.sm")
SECTIONS
{

Visual DSP++ 5.0 Linker and Utilities Manual 5-49

Linking Multiprocessor Systems

code_corea
{
INPUT_SECTIONS(main.doj(program))
} > corea_a_mem

}

In the example .1df file, the SHARED_MEMORY { } command creates the
output file shared_memory.sm. The data from the object file data.doj

is mapped into the output file and placed into the memory named
mem_shared_mem. (The memory definition is not shown.) Later in the .1df
file. the mapping for core A is done with a PROCESSOR{} command.

In addition to creating the output file (corea.dxe) and mapping the pro-
gram sections from the object file main.doj, it also “links against” the file
corea.dxe.

The LINK_AGAINST() command has the following effect:

After all of the objects and sections for processor core A have been
mapped, the symbol table in the file shared_memory.smis used to find any
symbols that could not be resolved. In the example, the object file
main.doj contains a reference to the DBUF symbol but none of the object
files mapped into core A contained that symbol. The symbols in
shared_memory.sm are then read and DBUF is found to have been mapped
into shared memory. The linker will resolve the reference in core A to be
the address in shared memory that DBUF was mapped into by processing
the SHARED_MEMORY { } command that produced shared_memory.sm.

The processing order described above is slightly modified if there are sym-
bols that have weak linkage. A symbol with strong linkage in an executable
named in a LINK_AGAINST() command will take precedence over a “weak”
symbol.

The LINK_AGAINST() command takes effect only after mapping of objects
and libraries in the input sections for the processor. Object from libraries
will be mapped if needed to resolve references, even if those symbols are
available in the shared memory .sm file named in the LINK_AGAINST ()

5-50 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

command. If the processor and shared memory both map the same library
files, it is possible that an object from that library may get mapped into
the processor and the shared memory. The multiple mapping is unlikely
to make the program incorrect, but it can be a waste of memory.

The LINK_AGAINST() command can also appear within a SHARED_MEMORY { }
command. It is possible for a shared memory to link against a processor
.dxe file. The LINK_AGAINST() command works in the same way. After
mapping objects and libraries that are listed in INPUT_SECTIONS() com-
mands, if there are symbols that have not been resolved, the .dxe file

(or .sm file) specified in the LINK_AGAINST () will be used.

It is possible for more than one LINK_AGAINST() command to appear in
the same processor or shared memory. The .dxe files or . sm files that are
named will be searched in the order they appear to resolve references.

It is also possible to have a processor link against a shared memory and
have the same shared memory link against that processor. The bidirec-
tional link against can allow code in the processor memory to call code
that exists in shared memory that can then call code that is in the proces-
sor memory. As mentioned above, linking behavior does not depend on
the order that processors and shared memory appear in the . 1df file.
This order independence is still true with a bidirectional link against.

Note that references from shared memory into processor memory may not
be supported by all processors. For example, for a multi-core Blackfin pro-
cessor like the ADSP-BF561 processor, it is not possible for code
executing in one core to access memory that is in internal memory of the
other processor.

If there is code in shared memory that references internal memory of
core A, that code can only be executed on core A. If core B executes the
code, once core B tries to reference the internal memory on core A, the
part will halt because of a hardware exception.

Visual DSP++ 5.0 Linker and Utilities Manual 5-51

Linking Multiprocessor Systems

Also note that on parts where processors can access the internal memory of
the other processors, that access may be slow and affect the performance of
your program.

If you don't have LINK_AGAINST() commands within a SHARED_MEMORY { }
command then there won't be any references from shared memory back to
internal memory of any of the cores. If your system needs to have refer-
ences from shared memory back to processors it is best to use the
COMMON_MEMORY { } command. If there are references from shared memory
back to processor internal memory for the Blackfin processors,
COMMON_MEMORY { } is required.

One solution is to partition shared memory into a section reserved for
core A, a section reserved for core B, and a section that is memory shared
between the two processors. The partitioning is managed by using the
MEMORY {} command. Then the PROCESSOR{} command for core A will map
into the core A internal memory and into the section of shared memory
reserved for core A. It will also typically link against the shared memory.
The PROCESSOR{} command for core B will map into the core B internal
memory and into the section of shared memory reserved for core B, and
link against the shared memory. The SHARED_MEMORY { }} command is used
to map the program and data that is common to both processors.

5-52 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

COMMON_MEMORY{}

The COMMON_MEMORY { } command provides another way to map objects into
memory that is shared by more than one processor. The mapping is done
in the context of the processors that will use the shared memory; these
processors are identified as a “master” of the common memory. The
COMMON_MEMORY { } command will also manage references from the shared
memory back to internal memory of the processors so that each processor
will not reference memory that is in another processor’s internal memory.
The COMMON_MEMORY { } command looks like the PROCESSOR{} and
SHARED_MEMORY { } commands in that it uses INPUT_SECTIONS() commands
for mapping. A restriction is that within a COMMON_MEMORY {} command,
only archives may be mapped and not individual object files.

The following example shows the basic components of the
COMMON_MEMORY { } command.

COMMON_MEMORY
{
QUTPUT("common_memory.cm")
MASTERS(CoreA, CoreB)
SECTIONS
{
data_cm
{
INPUT_SECTIONS(common.dlb(data))
} > mem_common_mem

}
PROCESSOR CoreA
{
QUTPUT("corea.dxe™")
SECTIONS
{

Visual DSP++ 5.0 Linker and Utilities Manual 5-53

Linking Multiprocessor Systems

code_corea
{
INPUT_SECTIONS(main.doj(program))
} > corea_a_mem

}
PROCESSOR CoreB
{
QUTPUT("coreb.dxe™)
SECTIONS
{
code_corea
{
INPUT_SECTIONS(main.doj(program))
} > corea_a_mem

}

The COMMON_MEMORY { } command uses the OUTPUT() to name the file that
will hold the result of the mapping. The command uses the . cm extension
for the file. The COMMON_MEMORY {} command also uses the SECTIONS{}
command to map files into memory segments. However, the only files
that can be mapped are archive (.d1b) files. Individual object files cannot
be mapped from inside of a COMMON_MEMORY { } command.

The biggest syntactic difference in the COMMON_MEMORY {} command is the
MASTERS () command. This command explicitly identifies the processors
that are going to share the memory. The processor names are the name
used in the PROCESSOR{} commands also appearing in the same . 1df file.
Within the PROCESSOR{} command, there is no need for a LINK_AGAINST ()
command specifying the common memory. The MASTERS() command
describes the connection.

The mapping of the archives in the COMMON_MEMORY { } command is really
done when the mapping is done for the masters named in the MASTERS ()

5-54 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

command. While mapping for each of the processors named as a master,
the linker will treat each INPUT_SECTIONS() command in the common
memory as if they appeared within the PROCESSOR{} command. Since only
archives are allowed, only the objects within the archive that are needed to
satisfy references for the processor will be mapped. The mapping will be
into the memory sections in the common memory.

For example, the effect of the previous example will be as if the
INPUT_SECTIONS() in the COMMON_MEMORY { } were part of the PROCESSOR{ }:

// NOT ACTUAL LDF - EFFECT OF COMMON_MEMORY{}
PROCESSOR CoreA
{
QUTPUT("corea.dxe™")
SECTIONS
{
code_corea
{
INPUT_SECTIONS(main.doj(program))
} > corea_a_mem
// when mapping CoreA, the input sections from
// the common memory are mapped as if they were
// part of this PROCESSOR{} because CoreA is
// Tisted as a MASTER
data_cm
{
INPUT_SECTIONS(common.dIb(data))
} > mem_common_mem

J

Of course, by specifying with the COMMON_MEMORY {} command, the same
mapping for the objects in common.d1b will also be done for core B, and
the objects that are shared by the two processors will only be mapped once
into the shared memory space.

Visual DSP++ 5.0 Linker and Utilities Manual 5-55

Linking Multiprocessor Systems

The mapping will be done for each of the processors named as a master.
Some symbols will be needed for each processor, and in simple cases the
common memory will share the code or data between the processors. If an
object is mapped into common memory that has a reference that goes back
into internal memory of a processor, if necessary, the linker will make a
copy of the object file so that both cores can safely use common memory.
This behavior is described in the example below.

To demonstrate the complexities of multiprocessing linking, the example
has several dependencies. The abbreviated C examples show the depen-
dencies for several object files.

// file mainA.doj

void mainA() {

// the main code in CoreA references 2 common functions
commonfuncl();
commonfunc2();

}

// file mainB.doj

void mainB() {

// the main code in CoreB references 3 common functions
commonfuncl();
commonfunc2();
commonfunc3();

}

// file funcl.doj

void commonfuncl() {

// a common function with a reference to a Tibrary
Tibfuncl();
}

// file func2.doj

void commonfunc2() {

// a common function with a reference to a library
lTibfunc2();
}

5-56 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

// file func3.doj
void commonfunc3() {
// no further references
}
// file Tibfuncl.doj and libfunc2.doj have no further references
// create archives for common files
elfar -c common.dlb funcl.doj func2.doj func3.doj
elfar -c commonlib.dlb Tibfuncl.doj 1ibfunc2.doj

Each of the processors has its own main function. Each main function
makes calls to common functions. Some of the common functions make
further calls to library functions. The common functions have been placed
in an archive named common.d1b, and the library files have been placed in
an archive named commonlib.d1b.

The .1df file to build the multiprocessor system is shown below.

COMMON_MEMORY
{
OUTPUT("common_memory.cm")
MASTERS(CoreA, CoreB)
SECTIONS
{
data_cm
{
// the common Tibraries are mapped into common
// memory
INPUT_SECTIONS(common.dlb(program)
commonlib.d1b(program))
} > mem_common_mem

}

PROCESSOR CoreA
{
OUTPUT("corea.dxe")

Visual DSP++ 5.0 Linker and Utilities Manual 5-57

Linking Multiprocessor Systems

SECTIONS
{
code_corea
{
INPUT_SECTIONS(mainA.doj(program))
// for performance reasons map
// Tibfuncl.doj into this core
INPUT_SECTIONS(Tibfuncl.doj(program))
} > corea_a_mem

}
PROCESSOR CoreB
{
QUTPUT("coreb.dxe™")
SECTIONS
{
code_coreb
{
INPUT_SECTIONS(mainB.doj(program))
} > corea_b_mem

J

Notice that processor core A explicitly maps 1ibfuncl.doj into its inter-
nal memory. Core B does not map a version of 1ibfuncl.doj. Both
processors link against the common memory that does mapping against
the archives that contain common functions.

To understand the operation of COMMON_MEMORY { }, let’s walk through the
mapping of the objects into memory, beginning with core A. The
INPUT_SECTIONS() commands for core A will map mainA.doj and
libfuncl.doj into the memory corea_a_mem. The references to
commonfuncl and commonfunc?2 will cause the object files funcl.doj and
func2.doj to be pulled out of the archive common.d1b and they will be
mapped into the common memory mem_common_mem. The object file

5-58 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Overlays and Advanced LDF Commands

funcl.doj has a reference to 1ibfuncl. This symbol was already mapped
when Tibfuncl.doj was mapped into the core memory. The object file
func2.doj has a reference to 1ibfunc?2 so the object 1ibfunc2.doj will be
pulled out of the archive common1ib.d1b and it will also be mapped into
mem_common_mem. Note that this mapping only considers the files required
for core A so commonfunc3 is not considered.

The mapping for core B will be similar. The INPUT_SECTIONS() command
for core B will map mainB.doj into the memory coreb_b_mem. The refer-
ences to the common functions will cause the object files funcl.doj,
func2.doj, and func3.doj to be pulled out of the archive common.d1b and
be mapped into mem_common_mem. The references in the common functions
to the library functions will cause the library objects to be pulled from the
commonlib.dlb so 1ibfuncl.doj and 1ibfunc2.doj will be mapped into
the common memory mem_common_mem. Note that this mapping only con-
siders the files for core B and the common memory. In particular, the fact
that Tibfuncl.doj was mapped into core A memory is not considered for

this mapping.

Now the linker ensures that all the objects mapped into common memory
can be shared; for those files that cannot be shared, it will fix them by
making duplications. Those object files mapped into common memory
that do not have any further references (the leaf functions func3.doj,
libfuncl.doj, and 1ibfunc2.doj) are fine as they are. The function
commonfunc? references 1ibfunc2.doj (which is only mapped into com-
mon memory), so it is also fine. The function commonfuncl references
Tibfuncl.doj. In the context of core A, funcl.doj will call the version of
libfuncl that is mapped into core A internal memory. In the context of
core B, funcl.doj will call the version of Tibfuncl that is mapped into
common memory. To resolve this problem, the linker will create a copy of
funcl.doj. The mainA function will call the version that references back to
the version of 1ibfuncl that is in core A memory while mainB will call the
version that references back to the version of 1ibfuncl that is in common
memory.

Visual DSP++ 5.0 Linker and Utilities Manual 5-59

Linking Multiprocessor Systems

It is rare that an object mapped into common memory will be duplicated.
When an object is duplicated, the linker will only duplicate the minimal
amount needed to keep integrity. The duplication will only happen in
cases where using the SHARED_MEMORY { } command would have resulted in a
run-time exception, because a processor was accessing memory in another
processor’s internal memory.

5-60 Visual DSP++ 5.0 Linker and Utilities Manual

6 ARCHIVER

The Visual DSP++ archiver (e1far) combines object (.doj) files into
library files, which serve as reusable resources for code development.

The Visual DSP++ linker rapidly searches library files for routines (library
members) referred to by other object files and links these routines into the
executable program.

This chapter provides:

* “Introduction” on page 6-2
Introduces the archiver’s functions

* “Archiver Guide” on page 6-3
Describes the archiver’s functions

* “Archiver Command-Line Reference” on page 6-14
Describes archiver operations by means of command-line switches

Visual DSP++ 5.0 Linker and Utilities Manual 6-1

Infroduction

Infroduction

The elfar utility combines and indexes object files (or any other files)
to produce a searchable library file. It performs the following operations,
as directed by options on the elfar command line:

Creates a library file from a list of object files

Appends one or more object files to an existing library file
Deletes file(s) from a library file

Extracts file(s) from a library file

Prints the contents of object files of an existing library file to
stdout

Replaces file(s) in an existing library file
Encrypts symbol(s) in an existing library file

Embeds version information into a library built with el1far

The archiver can run only one of these operations at a time. However, for

commands that take a list of file names as arguments, the archiver can
input a text file that contains the names of object files (separated by white
space). The operation makes long lists easily manageable.

The archiver, sometimes called a librarian, is a general-purpose utility.
It combines and extracts arbitrary files. This manual refers to DSP object
(.doj) files because they are relevant to DSP code development.

6-2

VisualDSP++ 5.0 Linker and Utilities Manual

Archiver

Archiver Guide

The elfar utility combines and indexes object files (or any other files)
to produce a searchable library file. This section describes the following
archiver functions:

e “Creating a Library”
e “Making Archived Functions Usable” on page 6-4

e “Archiver Symbol Name Encryption” on page 6-10

Creating a Library

To create an archive, use the -c switch when invoking the archiver from
the command line (as shown in “Archiver Command-Line Reference” on
page 6-14). The command line should include the name of the archive
being created and the list of objects files to be added.

Example:
elfar -c my_lib.dlb fft.doj sin.doj cos.doj tan.doj

If the objects files were created using the C/C++ compiler, it is recom-
mended that the compiler driver and the compiler’s -build-11ib switch are
used to build the library (the compiler driver invokes e1far to build the
library). Refer to the appropriate VisualDSP++ 5.0 C/C++ Compiler and

Library Manual for more information.

Example:
cchlkfn -build-Tib -o my_lib.dIb fft.doj sin.doj cos.doj tan.doj

On Window systems, it is possible to build a library from within the
VisualDSP++ development environment. Visual DSP++ writes its output
to <projectname>.dlb.

Visual DSP++ 5.0 Linker and Utilities Manual 6-3

Archiver Guide

To maintain code consistency, use the conventions in Table 6-1.

Table 6-1. File Name Extensions used with Archiver

Extension File Description

.d1b Library file

.doj Object file. Input to archiver.

Stxt Text file used as input with the -1 switch

Making Archived Functions Usable

In order to use the archiver effectively, you must know how to write
archive files, which make your DSP functions available to your code
(via the linker), and how to write code that accesses these archives.

Archive usage consists of two tasks:

Creating /ibrary routines, functions that can be called from other

programs, and library data, variables, that can be referenced from
programs

* Accessing library routines and data from your code

Writing Archive Routines: Creating Entry Points

A library routine (or function) in code can be accessed by other programs.
Each routine must have a globally visible start label (entry point). Library
data must be given a visible label. Code that accesses that routine must
declare the entry point’s name as an external symbol in the calling code.

To create visible external symbol:

1. Declare the start label of each routine and each variable as a global

symbol with the assembler’s . GLOBAL directive. This defines the
entry point.

6-4 VisualDSP++ 5.0 Linker and Utilities Manual

Archiver

The following code fragment has a visible entry point for the func-
tion dIriir and creates a visible symbol for the variable FAE.

.global dlIriir;
.section datal;
.byte2 FAE = 0x1234,0x4321;

.section program;
.global FAE;
dlriir: RO=N-2;
P2 = FAE;

2. Assemble the files into object files containing the global segments.

3. You can also write library functions in C and C++. Functions
declared in your C/C++ file will be given globally visible symbols
that can be referenced by other programs. Use the C/C++ compiler
to create objects files, and use the compiler driver and its
-build-1ib switch to create the library.

Accessing Archived Functions From Your Code

Programs that call a library routine must use the assembler’s . EXTERN
directive to specify the routine’s start label as an external label. When link-
ing the program, specify one or more library (.d1b) files to the linker,
along with the names of the object (.doj) files to link. The linker then
searches the library files to resolve symbols and links the appropriate
routines into the executable file.

Any file containing a label referenced by your program is linked into the
executable output file. Linking libraries is faster than using individual
object files, and you do not have to enter all the file names, just the library
name.

Visual DSP++ 5.0 Linker and Utilities Manual 6-5

Archiver Guide

In the following example, the archiver creates the filter.d1b library con-
taining the object files: taps.doj, coeffs.doj, and go_input.doj.
elfar -c filter.dlb taps.doj coeffs.doj go_input.doj

If you then run the linker with the following command line, the linker
links the object files main.doj and sum.doj, uses the default .1df file

(for example, ADSP-BF533.1df), and creates the executable file (nain.dxe).
linker -DADSP-BF533 main.doj sum.doj filter.dlb -o main.dxe

Assuming that one or more library routines from filter.d1b are called
from one or more of the object files, the linker searches the library,
extracts the required routines, and links the routines into the .dxe file.

Specifying Object Files

The list of object files on the command line is used to specify objects to be
added to the archive. Such commands are -c (create), -a (add), or -r
(replace). The list can also be used to specify objects in the library to be
extracted using the -e (extract) command.

When the list refers to object files to be added to the archive, the file name
is specified the way the file names are specified for the host operating
system. The file name can include path information — relative or absolute.
If path information is not included, the archiver will look for the file in
the current working directory.

When the list refers to object files already in the archive, the file names
should not include any path information. The archiver only saves the base
file name for the object files in the archive.

The archiver accepts the wildcard character “*” in the specification of the
object file names. On Windows systems, the archiver does all interpreta-
tion of the wildcard character. When it appears in a list of object files to
be added, the archiver searches the file system for files that match this
specification. When a wildcard appears in a list of objects already in the

6-6 VisualDSP++ 5.0 Linker and Utilities Manual

Archiver

library, the archiver will search through the object files in the library for
matches.

Tagging an Archive With Version Information

The archiver supports embedding version information into a library built
with elfar.

Basic Version Information

You can “tag” an archive with a version. The easiest way to tag an archive
is with the -t switch (see Table 6-2 on page 6-15), which takes an argu-
ment (the version number). For example,

elfar -t 1.2.3 1ib.d1lb

The -t switch can be used in addition to any other el far command.
For example, a version can be assigned at the same time that a library is
created:

elfar -c -t "Steve's sandbox Rev 1" 1ib.dlb *.doj

To hold version information, the archiver creates an object file,
__version.doj, that has version information in the .strtab section.
This file is not made visible to the user.

An archive without version information will not have the __version.doj
entry. The only operations on the archive using e1far that add version
information are those that use the -t switch. That is, an archive without
version information does not pick up version information unless specifi-
cally requested.

If an archive contains version information (__version.doj is present),

all operations on the archive preserve that version information, except
operations that explicitly request version information to be stripped from
the archive (see “Removing Version Information From an Archive” on

page 6-10).

Visual DSP++ 5.0 Linker and Utilities Manual 6-7

Archiver Guide

If an archive contains version information, that information can be
printed with the -p command.

elfar -p 1ib.dlb

::User Archive Version Info: Steve's sandbox Rev 1
a.doj

b.doj

The archiver adds “::” to the front of the version information to highlight
it.

User-Defined Version Information

You can provide any number of user-defined version values by supplying a
text file that contains those values. The text file can have any number of
entries. Each line in the file begins with a name (a single token with no
embedded white space), followed by a space and then the value associated
with that name. As an example, consider the file foo. txt:

my_name neo

my_location zion

CVS_TAG matrix_v_8_0

other version value can be many words; name is only one

This file defines four version names: my_name, my_location, CVS_TAG, and
other. The value of my_name is neo; the value of other is “version value
can be many words; name is only one”.

To tag an archive with version information from a file, use the -tx switch
(see Table 6-2 on page 6-15) which accepts the name of that file as an
argument:

elfar -c -tx foo.txt Tib.dlb object.doj
elfar -p 1ib.d1b

::CVS_TAG matrix_v_8_0

::my_location zion

::my_name neo

6-8 VisualDSP++ 5.0 Linker and Utilities Manual

Archiver

::other version value can be many words; name is only one
object.doj

Version information can be added to an archive that already has version
information. The effect is additive. Version information already in the
archive is carried forward. Version information that is given new values is
assigned the new values. New version information is added to the archive
without destroying existing information.

Printing Version Information

As mentioned above, when printing the contents of an archive, the -p
command (see Table 6-2 on page 6-15) prints any version information.
Two forms of the -p switch can be used to examine version information.

The -pv switch prints version information only, and does not print the
contents of the archive. This switch provides a quick way to check the
version of an archive.

The -pva switch prints all version information. Version names without
values cannot not be printed with -p or -pv but are shown with -pva.
In addition, the archiver keeps two additional kinds of information:

elfar -a Tib.dlb t*.doj
elfar -pva 1ib.dlb
::User Archive Version Info: 1.2.3
::elfar Version: 4.5.0.2
:__log: -a 1lib.dlb t*.doj

The archiver version that created the archive is stored in __version.doj
and is available using the -pva switch. Also, if any operations that cause
the archive to be written were executed since adding version information,
these commands appear as part of special version information called
<« » . .

__10g”. The log prints a line for every command that has been done on
the archive since version information was added to the archive.

Visual DSP++ 5.0 Linker and Utilities Manual 6-9

Archiver Guide

Removing Version Information From an Archive

Every operation has a special form of switch that can cause an archive to
be written and request that the version information is not written to the
archive. Version information already in the archive would be lost. Adding
“nv” (no version) to a command strips version information. For example,

elfar -anv 1ib.dlb new.doj
elfar -dnv lib.dIb *

In addition, a special form of the -t switch (see Table 6-2 on page 6-15),
which takes no argument, can be used for stripping version information
from an archive:

elfar -tnv Tib.dlb // only effect is to remove version info

Checking Version Number

You can have version numbers conform to a strict format. The archiver
confirms that version numbers given on the command line conform to
an nn.nn.nn format (three numbers separated by “.”). The -twc switch
(see Table 6-2 on page 6-15) causes the archiver to raise a warning if the
version number is not in this form. The check ensures that the version

number starts with a number in this format. For example,

elfar -twc "1.2 new library" 1ib.dlb

[Warning ar0081] Version number does not match num.num.num format
Version 0.0.0 will be used.

elfar -pv 1ib.dlb

::User Archive Version Info: 0.0.0 1.2 new library

Archiver Symbol Name Encryption

Symbol name encryption protects intellectual property contained in an
archive (.d1b) library that might be revealed when using meaningful
symbol names. Code and test a library with meaningful symbol names,

6-10 Visual DSP++ 5.0 Linker and Utilities Manual

Archiver

and then use archive library encryption on the fully tested library to
disguise the names.

@ Source file names in the symbol tables of object files in the archive

are not encrypted. The encryption algorithm is not reversible. Also,
encryption does not guarantee a given symbol is encrypted the
same way when different libraries, or different builds of the same
library, are encrypted.

The -s switch (see Table 6-2) is used to encrypt symbols in
<in_library_file> to produce <library_file>. Symbols in
<exclude_file> are not encrypted, and <type-letter> provides the first
letter of scrambled names.

Command Syntax

The following command line encrypts symbols in an existing archive file.
elfar -s [-v] library_file in_library_file exclude_file
type-letter

where:
-s — Selects the encryption operation.

-v — Selects verbose mode, which provides statistics on the
encrypted symbols.

library_file — Specifies the name of the library (.d1b) file to be
produced by the encryption process

in_library_file — Specifies the name of the archive (.d1b) file to
be encrypted. This file is not altered by the encryption process,
unless in-archive is the same as out-archive.

Visual DSP++ 5.0 Linker and Utilities Manual 6-11

Archiver Guide

exclude-file — Specifies the name of a text file containing a list of
symbols not to be encrypted. The symbols are listed one or more to
a line, separated by white space.

type-letter — The initial letter of type-Tetter provides the initial
letter of all encrypted symbols.

Encryption Constraints

All local symbols can be encrypted, unless they are correlated with a sym-
bol having external binding that should not be encrypted. Symbols with
external binding can be encrypted when they are used only within the
library in which they are defined. Symbols with external binding that are
not defined in the library (or are defined in the library and referred to out-
side of the library) should not be encrypted. Symbols that should not be
encrypted must be placed in a text file, and the name of that file given as
the exclude-file command-line argument.

Some symbol names have a prefix or suffix that has special meaning. The
debugger does not show a symbol starting with “.” (period), and a symbol
starting with “.” and ending with “.end” is correlated with another sym-
bol. For example, “.bar” would not be shown by the debugger, and
“._foo.end” would correlated with the symbol “_foo” appearing in the
same object file. The encryption process encrypts only the part of the sym-
bol after any initial “.” and before any final “.end”. This part is called the
root of the symbol name. Since only the root is encrypted, a name with a
prefix or suffix having special meaning retains that special meaning after
encryption.

The encryption process ensures that a symbol with external binding is
encrypted the same way in all object files contained in the library. This
process also ensures that correlated symbols within an object file are
encrypted the same way, so they remain correlated.

The names listed in the exclude-file are interpreted as root names. Thus,

4

“_fo0o” in the exclude-file prevents the encryption of the symbol names

“ foo”, “. _foo”,“ foo.end”, and “. foo.end”.

6-12 Visual DSP++ 5.0 Linker and Utilities Manual

Archiver

The type-letter argument, which provides the first letter of the
encrypted part of a symbol name, ensures that the encrypted names in dif-
ferent archive libraries can be made distinct. If different libraries are
encrypted with the same type-letter argument, unrelated external sym-
bols of the same length may be encrypted identically.

Visual DSP++ 5.0 Linker and Utilities Manual 6-13

Archiver Command-Line Reference

Archiver Command-Line Reference

The archiver processes object files into a library file with a .d1b extension,
which is the default extension for library files. The archiver can also
append, delete, extract, or replace member files in a library, as well as list
them to stdout. This section provides the following reference information
on the archiver command line and linking.

* “elfar Command Syntax”
e “Archiver Parameters and Switches”

¢ “Command-Line Constraints”

elfar Command Syntax

Use the following syntax to run elfar from the command line.
elfar -[a|c|d|e|p|r] <options> library_file object_file ...

Table 6-2 describes each switch.

Example:
elfar -v -c¢ my_lib.dlb fft.doj sin.doj cos.doj tan.doj

This command line runs the archiver as follows:
-v — Outputs status information
-c my_lib.d1b — Creates a library file named my_1ib.d1b

fft.doj sin.doj cos.doj tan.doj — Places these object files in the
library file

Table 6-1 on page 6-4 lists typical file types, file names, and extensions.

6-14 Visual DSP++ 5.0 Linker and Utilities Manual

Archiver

Symbol Encryption

When employing symbol encryption, use the following syntax.
elfar -s [-v] library_file in_Tibrary_file exclude_file
type-letter

Refer to “Archiver Symbol Name Encryption” on page 6-10 for more
information.

Archiver Parameters and Switches

Table 6-2 describes each archiver part of the e1far command. Switches
must appear before the name of the archive file.

Table 6-2. Command-Line Switches and Entries

Item Description
exclude_file Specifies the name of a text file containing a list of symbols not to be
encrypted.
lib_file Specifies the library that the archiver modifies. This parameter appears after
the switch.
obj_file Identifies one or more object files that the archiver uses when modifying the

library. This parameter must appear after 77b_f77e. Use the -1 switch to
input a list of object files.

type-letter The initial letter of type-Tetter provides the initial letter of all encrypted
symbols.

-a Appends one or more object files to the end of the specified library file

-anv Appends one or more object files and clears version information

-C Creates a new 17b_f171e containing the listed object files

-d Removes the listed object files from the specified 17b_file

-dnv Removes the listed obj_file(s) from the specified 1ib_file and clears

version information

-e Extracts the specified file(s) from the library

Visual DSP++ 5.0 Linker and Utilities Manual 6-15

Archiver Command-Line Reference

Table 6-2. Command-Line Switches and Entries (Cont'd)

Item

Description

-i filename

Uses filename, alist of object files, as input. This file lists obj_file(s) to
add or modify in the specified 77b_fiTe (.d1b).

-M Prints dependencies. Available only with the -c switch.
MM Prints dependencies and creates the library. Available only with the -¢

switch.

-p Prints a list of the obj_file(s) (.doj) in the selected 7ib_file (.d1b) to
standard output

-pv Prints only version information in library to standard output

-pva Prints all version information in library to standard output

-r Replaces the specified object file in the specified library file. The object file
in the library and the replacement object file must have identical names.

-s Specifies symbol name encryption. Refer to “Archiver Symbol Name
Encryption” on page 6-10.

-t verno Tags the library with version information in string

-tx filename

Tags the library with full version information in the file

-twe ver Tags the library with version information in the num.num.num form

~tnv Clears version information from a library

v (Verbose) Outputs status information as the archiver processes files
-version Prints the archiver (e1far) version to standard output

W Disables archiver-generated warnings

-Wnnnn Selectively disables warnings specified by one or more message numbers. For

example, -W0023 disables warning message ar0023.

The e1far utility enables you to specify files in an archive by using the
wildcard character “*’. For example, the following commands are valid:

elfar -c lib.dlb *.doj // create using every .doj file

elfar -a 1ib.dlb s*.doj // add objects starting with 's'

elfar -p 1ib.d1b *1* // print files with '"1' in their name

6-16 Visual DSP++ 5.0 Linker and Utilities Manual

Archiver

elfar -e Tib.dlb * // extract all files from the archive
elfar -d Tib.dlb t*.doj // delete .doj files starting with 't'
elfar -r Tib.d1b *.doj // replace all .doj files

The -c, -a, and -r switches use the wildcard to look up the file names in
the file system. The -p, -e, and -d switches use the wildcard to match file
names in the archive.

Command-Line Constraints

The e1far command is subject to the following constraints.

* Select one action switch (a, ¢, d, e, p, r, or s) only in a single
command.

* Do not place the verbose operation switch, -v, in a position where
it can be mistaken for an object file. It may not follow the 77p_fiTe
during an append or create operation.

* The file include switch, -1, must immediately precede the name of
the file to be included. The archiver’s -i switch enters a list of
members from a text file instead of listing each member on the
command line.

e Use the library file name first, following the switches. The -1 and
-v switches are not operational switches, and can appear later.

e When using the archiver’s -p switch, it is not necessary to identify
members on the command line.

* Enclose file names containing white space or colons within straight
quotes.

* Append the appropriate file extension to each file. The archiver
assumes nothing, and does not do it for you.

Visual DSP++ 5.0 Linker and Utilities Manual 6-17

Archiver Command-Line Reference

* Wildcard options are supported with the use of the wildcard
character “*7).

e The obj_file name (.doj object file) can be added, removed, or
replaced in the 77b_file.

e The archiver’s command line is #ot case sensitive.

6-18 Visual DSP++ 5.0 Linker and Utilities Manual

7 MEMORY INITIALIZER

Visual DSP++ 5.0 supports the memory initializer tool. The memory ini-
tializer’s main function is to modify executable files (. dxe files) so that the
programs are self-initializing. It does this by converting the program’s
RAM-based contents into an initialization stream which it embeds into
the executable file.

This chapter provides:
* “Memory Initializer Overview” on page 7-2
e “Basic Operation of Memory Initializer” on page 7-3
* “Initalization Stream Structure” on page 7-5
* “Run-Time Library Routine Basic Operation” on page 7-6
* “Using Memory Initializer” on page 7-7

e “Memory Initializer Command-Line Switches” on page 7-14

Visual DSP++ 5.0 Linker and Utilities Manual 7-1

Memory Initializer Overview

Memory Initializer Overview

The memory initializer may be used with processor systems where the
RAM memory needs to be initialized with the code and data stored in the
ROM memory before the execution of the application code begins. This is
generally true for a processor system running in NO-BOOT mode.

The initialization stream generated by the memory initializer is consumed
by a dedicated run-time library (RTL) routine. Following a system reset,

the RTL routine searches the initialization stream and initializes the pro-
cessor’'s RAM memory with the data in the initialization stream before the
call to main(), the starting point of the application code.

In creating the initialization stream, the memory initializer can, in most
cases, effectively reduce the overall size of an executable file by combining
contiguous, identical initialization into a single block. For example, a large
zero-initialized array in an executable file can be compressed to a single
small data block by the memory initializer.

In addition to a primary executable file (.dxe), the memory initializer
accepts one or more additional executable files called “callback” executable
files, and includes their data and instructions in the initialization stream.
The RTL routine is able to call and execute them before conducting the
process of the memory initialization for the primary application. This
allows you to perform memory configuration and any other set-up func-
tions that must occur before the code and data are extracted from ROM
memory.

7-2 VisualDSP++ 5.0 Linker and Utilities Manual

Memory Initializer

Basic Operation of Memory Initializer

This section describes the basic operations of the memory initializer, its
input and output files, as well as basic initialization stream generated by
the memory initializer.

Input and Output Files

The memory initializer takes an executable file (.dxe) as a primary input
file and augments it by adding an initialization stream. The enhanced
executable file is written as the output file.

Processing the Primary Input Executable File

After opening an input primary executable file, the memory initializer
looks for sections, marked with the initialization flag in their section head-
ers or specified from the command line, and extracts the data and
instructions from them to make the primary initialization stream.

By default, the stream is saved in the dedicated memory section called
“.meminit” in the output file. For the sections from which the memory
initializer extracts no data, the memory initializer simply copies them
from the input file to the output file. Sections that are processed by the
memory initializer to form the initialization stream are not needed in the
output executable file, as their contents will be regenerated at runtime
when the initialization stream is processed. Therefore, by default, such
sections are not copied to the output file in order to reduce the size of the
executable file.

Processing Callback Input Executable Files

In addition to a primary input executable file, the memory initializer
optionally accepts a number of individually-built “callback” executable
files specified with the -init switch (on page 7-16).

Visual DSP++ 5.0 Linker and Utilities Manual 7-3

Basic Operation of Memory Initializer

The memory initializer sequentially processes the callback executable files,
one at a time. After opening an input callback executable file, the memory
initializer looks for all of the sections marked with the initialization flag
and PROGBITS qualifier (it indicates that the section contains instructions,
data, or both), and extracts the data and instructions from them to make a
callback initialization stream. When this stream is built up, the callback
.dxe files are processed in the order specified on the command line.

The memory initializer continues making a callback initialization stream
from each of the callback executable files and pre-pending it to the pri-
mary initialization stream in the same sequence the callback executable
files appear in the command line until the last callback executable file is
processed.

When processing a callback executable file, the memory initializer extracts
all the code and data from it to make up the callback initialization stream
regardless of the memory initializer command-line switches used only for
the primary input file. Those switches are:

e “-Beginlnit Initsymbol” on page 7-15
e “-Init Initcode.dxe” on page 7-16

e “-NoAuto” on page 7-17

e “-NoErase” on page 7-17

e “-Section Sectionname” on page 7-18

This ensures the integrity of the code and data from each callback execut-
able file in the callback initialization stream — the code can be executed
independently and successfully, regardless of memory initializer com-
mand-line switches.

By taking multiple input files, the memory initializer supports systems
that have to run a number of independent service applications before
starting the primary application.

7-4

Visual DSP++ 5.0 Linker and Utilities Manual

Memory Initializer

Initialization Stream Structure

An initialization stream made from the memory initializer has three major
portions:

e The header of the initialization stream, which holds basic informa-
tion for the run-time library (RTL) routine, such as the number of
data blocks in the initialization stream

* The callback executable file, which itself may have a number of the
sub-portions, each containing a piece of the callback executable

* The initialization data and code from the primary application

Figure 7-1 shows the basic structure of the initialization stream:

Initialization Stream Header

First Callback Code (optional)

Second Callback Code (optional)

Additional Callback Code (optional)

Code and Data for
the Primary Executable

Figure 7-1. Memory Initializer Basic Initialization Stream Structure

Visual DSP++ 5.0 Linker and Utilities Manual 7-5

Run-Time Library Routine Basic Operation

Run-Time Library Routine Basic

O

peration

A run-time library (RTL) routine performs the memory initialization with
the initialization stream created by the memory initializer during runtime.
It can be a dedicated RTL routine or user-provided routine called
_mi_initialize (from the assembly code).

For more information on the definition of the initialization stream,

see EE-239 for Blackfin processors.

Following a system reset, the RTL routine is invoked by the application’s
start-up code. The RTL routine:

1. Searches for the initialization stream
2. Digests the stream header

3. For each callback executable specified, copies “callback” code into
RAM and then executes it. This is performed piece-by-piece and
continues until execution is complete.

4. Brings the code and data from the primary executable file into the
processor’s memory

Once each callback executable has been executed, it is no longer needed in
RAM; it may be overwritten by future callback executables or by the code
or data spaces of the primary executable. After all the “callback” codes are
executed, the RTL routine starts to initialize the processor’s memory with
the initialization stream created from the primary input executable file,
and overwrites the memory spaces previously initialized with the “call-
back” codes. After that, the RTL routine returns execution to the start-up
header, and the application proceeds as normal.

7-6

VisualDSP++ 5.0 Linker and Utilities Manual

Memory Initializer

If there are no callback executables to be executed, the RTL routine
immediately starts the process of initializing memory for the primary
application.

Using Memory Initializer

There are several reasons why it may be beneficial to use the memory
initializer:

* The system needs to initialize RAM memory from data stored in

ROM.
e It is desirable to reduce the overall size of the executable.

* Initialization executable files need to run to configure the system,
before the primary application starts.

If it is decided to use the memory initializer, the preparation starts from
the linker description file (.1df) and the source files of the project.

Preparing the Linker Description File (.1df)

If a section is to be processed by the memory initializer in order to create
the initialization stream, the section must be marked in the .1df file to
indicate the kind of initialization required. This is done using initializa-
tion qualifiers (ZERO_INIT and RUNTIME_INIT). Sections marked with
ZERO_INIT may contain only “zero-initialized” data, and sections marked
with RUNTIME_INIT may contain the data with any initialization values.

Refer to the SECTIONS description (on page 3-61) for detailed
information on these qualifiers.

Visual DSP++ 5.0 Linker and Utilities Manual 7-7

Using Memory Initializer

The following example shows how to use the ZERO_INIT and RUNTIME_INIT
qualifiers in an . 1df file to set up the section type.

my_zero_section ZERO_INIT
{
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($OBJECTS(my_zero_section)
$LIBRARIES(my_zero_section))
} >MEM_L1_DATA_A

my_data_section RUNTIME_INIT
{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($0BJECTS(my_data_section))
}>MEM_L1_DATA_A

The section my_zero_section is intended to hold all the zero-initialized
data, and the section my_data_section is to hold any other initialized
data. After the program is first linked, the sections in the .dxe file have
flags set according to the qualifiers in the .1df file. Then the memory ini-
tializer runs and processes the . dxe file sections according to those flags,
and produces a modified output . dxe file.

The memory initializer is able to identify the . dxe file sections with the
distinct initialization flag and extract the data from them to make an ini-
tialization stream. Any number of sections can be set as either ZERO_INIT
or RUNTIME_INIT type in an .1df file.

Note that two memory sections are specified in default . 1df files, which
also serve the memory initializer: bsz_init and .meminit. The bsz_init
section holds the pointer generated by the memory initializer, which
points to the start address of the initialization stream, and the section
.meminit holds the actual initialization stream generated by the memory
initializer. Although other sections may be selected as alternatives (using
the appropriate command-line switches), this is not recommended.

7-8

VisualDSP++ 5.0 Linker and Utilities Manual

Memory Initializer

Preparing the Source Files

The sections marked with the ZERO_INIT and RUNTIME_INIT qualifiers
must be initialized with the proper values in the source files before being
compiled. The following example shows one way to initialize a section.

#include <stdio.h>

#fpragma section("my_data_section", RUNTIME_INIT)
unsigned int A [100] =

{ Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd, Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd, Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd, Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd, Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd, Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd, Oxaabbccdd, Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd, Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,
Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd,Oxaabbccdd };

#fpragma section("my_zero_section", ZERO_INIT)
unsigned int B [128 1;

int main()
{

Visual DSP++ 5.0 Linker and Utilities Manual 7-9

Using Memory Initializer

int i;
int not_init = 0, not_zero = 0;

for (i = 0; 1 < 100; i++)
if (AL i 1 != 0Oxaabbccdd)
not_init++;

for (i = 0; i < 128; i++)
if (B[Li1!=20)
not_zero++;

printf ("A[]: %d elements not initialized/n", not_init);
printf ("B[]: %d elements not zeroed/n", not_zero);
return 0;

Invoking Memory Initializer

There are several ways to invoke the memory initializer, either from the
IDDE or from a command line.

Invoking meminit from the VisualDSP++ IDDE

From the Project menu in the VisualDSP++ IDDE, chose Project
Options, and select the Link page (see Figure 7-2). Type -meminit in the

7-10 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Initializer

Additional options field and then click OK. When the project is built, the
linker calls the memory initializer.

Project Options for NewProject

= @ Project s .
@ General i L
=] E Compile Lo
[General Use Debug System libraries
@ Language Settings [] Use C++ exceptions libraries
Eh MISRAC (%) Use Variable Instruction Set Encoding (WISA) Run-Time libraries
[k Preprocessor (O Use Normal Word code Run-Time libraries
@ Processor
@ Profile-guided Optimization
gh warning
[h Assemble
=-fig] Link
g General
@ LDF Preprocessing
[gh Elimination
@ Processor
[split
= E Load
[gh General
[gh Multiprocessor
@ Compression B -meminit |
[Pre-build w

Additional options:

[0K H Cancel]

Figure 7-2. Invoking the Memory Initializer from the Visual DSP++ IDDE

Invoking meminit from the Command Line

The simplest command line to invoke the memory initializer is:
meminit.exe input.dxe -o output.dxe

The memory initializer identifies all the sections with initialization flags in
the input file, produces an initialization stream, and places it in the output
file. Memory initializer command-line switches are listed in Table 7-1.

Visual DSP++ 5.0 Linker and Utilities Manual 7-11

Using Memory Initializer

Users of SHARC processors that have been using mem21k to invoke
the memory initializer from a command line can continue to do so.
However, invoking meminit accomplishes the same results, since
meminit passes the command to mem21k when used with a SHARC
processor.

Invoking meminit from the Linker's Command Line

The simplest way to invoke the memory initializer from the linker’s com-
mand line is to use the linker’s -meminit switch. The linker also provides
the -flag-meminit switch that passes each comma-separated option to the
memory initializer. For example,

linker -proc ADSP-BF535 main.doj -meminit -o projectl.dxe

Invoking meminit from the Compiler’'s Command Line

The simplest command line to invoke the memory initializer from the
compiler’s command line is (for example, for Blackfin processors):

ccblkfn -proc ADSP-BF535 -mem main.c -o output.dxe

Invoking meminit with Callback Executables

To directly invoke the memory initializer from a command line, use the
-Init switch for each “callback” executable as shown below:

meminit Input.dxe -o Output.dxe Init Callbackl.dxe
-Init Callback?2.dxe

From the VisualDSP++ IDDE, choose Project -> Project Options and
select the Link page. Use the Additional options field to process callback

executable files.

For example, if you have two callback executable files (cal1backl.dxe and
callback2.dxe) and you wish to pass them to the memory initializer,

7-12 Visual DSP++ 5.0 Linker and Utilities Manual

enter them in the Additional options box as:
-meminit -flag-meminit -Init callbackl.dxe -Init callback?2.dxe

Then click OK (see Figure 7-3).

Project Options for NewProject

= @ Project
[General
=] E Compile
[General
@ Language Settings
[MsrA-C
@ Preprocessor
@ Processar
[Profile-guided Optimization
@ Warning
[Assemble
=-fig] Link
[General
@ LDF Preprocessing
[Elimination
@ Processar
[split
=] E Load
[General
[Multiprocessor
[compression
[gh Pre-build

|

|£

Memory Initializer

= oo

Libraries
Use Debug System librares
[] Use C++ exceptions libraries

() Use Varable Instruction Set Encoding (VISA) Fun-Time libraries
() Use Nommal Wond code Run-Time libraries

Additional options:

-meminit -flag-meminit -Init callback 1. dxe -Init callback2. dxe| |

[ok][canee |

Figure 7-3. Invoking Callback Executable from the VisualDSP++ IDDE

Visual DSP++ 5.0 Linker and Utilities Manual

7-13

Memory Initializer Command-Line Switches

Memory Initializer Command-Line

Switches

Table 7-1 summarizes the memory initializer switches. It is followed by a
detailed description of each switch.

Most of the listed switches are optional. For a project in which the linker
description file is well-defined (the .meminit and bsz_init memory sec-
tions are defined and the ZERO_INIT and RUNTIME_INIT qualifiers are set on
the proper sections) and the sections are initialized properly in the source
files, most of these optional switches may not be required. By default, the
memory initializer automatically handles everything needed to create an

initialization stream.

Table 7-1. Summary of Command-Line Options and Entries

Item

Description

-BeginInit Initsymbol
on page 7-15

Specifies a symbol name for a variable that holds a pointer
pointing to the start address of an initialization stream.

-h[elp] on page 7-16

Displays the list of memory initializer switches.

-IgnoreSection Sectionname
on page 7-16

Directs the memory initializer to NOT process a section
selected in the primary input file.

-Init Initcode.dxe

Specifies an executable file to be inserted into the initial-

on page 7-16 ization stream and executed as a callback.

InputFile.dxe Specifies a primary input file.

on page 7-17

-NoAuto Directs the memory initializer to NOT process sections in

on page 7-17 the primary input file based on the section header flags.
This switch is optional.

-NoErase Directs the memory initializer not to erase the data of the

on page 7-17 processed sections in the primary executable file.

7-14

Visual DSP++ 5.0 Linker and Utilities Manual

Memory Initializer

Table 7-1. Summary of Command-Line Options and Entries (Contd)

Item Description

-0 Outputfile.dxe Specifies an output file.

on page 7-18

-Section Sectionname Specifies a section from which the data will be extracted by

on page 7-18 the memory initializer. This switch can be repeated to
specify a number of the sections from the specified input
primary file.

-V (Verbose) Outputs status information as the memory ini-

on page 7-18 tializer processes files.

The following sections provide the detailed descriptions of the command-
line switches.

-Beginlnit Initsymbol

The -BeginInit Initsymbol switch is used to specify a symbol name for a
variable that holds a pointer to the start address of an initialization stream.
The memory initializer updates this pointer with the start address of the
initialization stream produced by the memory initializer.

If this switch is absent, the default symbol name “___inits” (it has three
leading underscores, when called from assembly code) is searched, which,
by default, is in the bsz_init memory section. If this symbol cannot be
found in the input primary file, an error message is issued; for example:

meminit -BeginInit boggy input.dxe
ERROR: The specified destination section, .meminit, not found in
the input file

If a symbol other than “___inits” is specified using this switch in a sec-
tion other than “bsz_init”, the symbol must not be in any of the sections
specified via the -Section Sectionname switch (on page 7-18). It also
must be able to hold a value that is no less than the maximum address
value for the particular processor. The run-time library provides a default

Visual DSP++ 5.0 Linker and Utilities Manual 7-15

Memory Initializer Command-Line Switches

symbol of “___inits” for the memory initializer and, therefore, it is not
necessary to use this switch in most cases. This switch has no effect on
callback executable files specified using the “-Init Initcode.dxe” on

page 7-16.

-h[elp]

The -hlelp] switch displays the list of memory initializer switches.

-lgnoreSection Sectionname

The -IgnoreSection Sectionname switch is used to specify a section that is
not to be processed by the memory initializer. This switch can be repeated
to specify a number of sections not to be processed in the primary input
file. All the specified sections must exist in the primary input file.

The -IgnoreSection switch is optional. It is normally easier to remove a
section’s initialization qualifier (ZERO_INIT or RUNTIME_INIT) from the
.1df file than to use this switch. This switch does not affect a callback
executable file specified using the -Init Sectionname switch.

-Init Initcode.dxe

The -Init Initcode.dxe switch is used to specify an executable file to be
inserted into the initialization stream and executed as a callback. Any
number of executable files can be specified this way, and it is allowed to
specify the same file name a number of times. The callback executable file
must exist before the memory initializer is run. All the code and data from
callback executable files are extracted to make up the initialization stream.
This is an optional switch.

7-16 Visual DSP++ 5.0 Linker and Utilities Manual

Memory Initializer

InputFile.dxe

The InputFile.dxe parameter is used to specify a primary input file.
The memory initializer issues an error message if no primary input file is
specified.

-NoAuvto

The -NoAuto switch directs the memory initializer to not process sections
in the primary input file based on the section header flags (the section
specified as either ZERO_INIT and RUNTIME_INIT qualifier in the .1df file),
but to only process sections specified on the command line using the
-section SectionName switch.

By default, the memory initializer automatically processes only the sec-
tions with ZERO_INIT and RUNTIME_INIT qualifiers in the .1df file. This
switch has no effect on the code and data of callback executable files spec-
ified using the -init switch. All the code and data sections of a callback
executable file are processed by the memory initializer regardless whether
this switch is used. This switch is optional.

-NoErase

The -NoErase switch directs the memory initializer not to erase the data of
the processed sections. By default, the memory initializer empties the sec-
tions from which the data are extracted to create the initialization stream.
This switch is valid for the primary input file only and has no effect on
callback executable files. The memory initializer does not carry any sec-
tions of a callback executable file over to the output file, nor erase any
sections, but only extracts the code and data from it to form the initializa-
tion stream.

Visual DSP++ 5.0 Linker and Utilities Manual 7-17

Memory Initializer Command-Line Switches

-0 Ovutputfile.dxe

The -0 Outputfile.dxe switch is used to specify an output file. If this
switch is absent, the memory initializer makes an output file name from
the root of the input file name. For example, if the input file name is
InputFile.dxe, the output file name is created as InputFilel.dxe.

This switch is optional.

-Section Sectionname

The -Section Sectionname switch is used to specify a section from which
the data is extracted by the memory initializer. This switch can be
repeated to specify a number of the sections from the specified input pri-
mary file. All the section specified must exist in the specified input
primary file. Note that the section name specified via the -IgnoreSection
switches cannot be used with the -Section switch.

It is not necessary to use this switch to specify sections that already have
the ZERO_INIT or RUNTIME_INIT qualifiers in the linker description file
(.1df), as the memory initializer processes such sections automatically.
Using initialization qualifiers in the .1df file is usually the simpler and
recommended method. The -Section SectionName switch has no effect
on callback executable files specified via the -Init switch. Therefore, do
not use this switch to specify any sections in callback executable files.

-V

The -v or -verbose (verbose) switch directs the memory initializer
to output status information as it processes files.

7-18 Visual DSP++ 5.0 Linker and Utilities Manual

A FILE FORMATS

The Visual DSP++ development tools support many file formats. In some
cases, several file formats for each development tool are supported. This
appendix describes file formats that are prepared as input for the tools and
points out the features of files produced by the tools.

This appendix discusses three types of file formats:
* “Source Files” on page A-2
e “Build Files” on page A-5
e “Debugger Files” on page A-9

Most of the development tools use industry-standard file formats. Sources
that describe these formats appear in “Format References” on page A-10.

Visual DSP++ 5.0 Linker and Utilities Manual A-1

Source Files

Source Files

This section describes these input file formats:
e “C/C++ Source Files” on page A-2
* “Assembly Source Files (.asm)” on page A-3
e “Assembly Initialization Data Files (.dat)” on page A-3
e “Header Files (.h)” on page A-4
e “Linker Description Files (.1df)” on page A-4
e “Linker Command-Line Files (.txt)” on page A-5

C/C++ Source Files

C and C++ source files are text files (with extensions such as .c, .cpp,
.cxx, and so on) that contain C/C++ code, compiler directives, possibly a
mixture of assembly code and directives, and (typically) preprocessor
commands.

Several “dialects” of C code are supported: pure (portable) ANSI C, and at
least two subtypes!' of ANSI C with Analog Devices extensions. These
extensions include memory type designations for certain data objects, and
segment directives used by the linker to structure and place executable

files.

For information on using the C/C++ compiler and associated tools, as well
as a definition of Analog Devices extensions to ANSI C, refer to the
VisualDSP++ C/C++ Compiler and Library Manual for appropriate target
architecture.

1 With and without built-in function support; a2 minimal differentiator. There are others.

A-2 VisualDSP++ 5.0 Linker and Utilities Manual

File Formats

Assembly Source Files (.asm)

Assembly source files are text files that contain assembly instructions,
assembler directives, and (optionally) preprocessor commands. For
information on assembly instructions, see your processor’s Programming
Reference.

The instruction set is supplemented with assembler directives.
Preprocessor commands control macro processing and conditional
assembly or compilation.

For information on the assembler and preprocessor, refer to the
VisualDSP++ Assembler and Preprocessor Manual.

Assembly Initialization Data Files (.dat)

Assembly initialization data (.dat) files are text files that contain
fixed-point or floating-point data. These files provide the initialization
data for an assembler .var directive or serve in other tool operations.

When a .var directive uses a .dat file for data initialization, the assembler
reads the data file and initializes the buffer in the output object (. doj) file.
Data files have one data value per line and may have any number of lines.

The .dat extension is explanatory or mnemonic. A directive to #include
<file> can take any file name (or extension) as an argument.

Fixed-point values (integers) in data files may be signed, and they may be
decimal-, hexadecimal-, octal-, or binary-base values. The assembler uses
the prefix conventions in Table A-1 to distinguish between numeric
formats.

For all numeric bases, the assembler uses 16-bit words for data storage;
24-bit data is for the program code only. The largest word in the buffer
determines the size for all words in the buffer. If there is some 8-bit data
in a 16-bit-wide buffer, the assembler loads the equivalent 8-bit value into

Visual DSP++ 5.0 Linker and Utilities Manual A-3

Source Files

the most significant eight bits in the 8-bit memory location and zero-fills
the lower eight bits.

Table A-1. Numeric Formats

Convention Description
Oxnumber Hexadecimal number
Hinumber

hitnumber

number Decimal number
Difnumber

dftnumber

Bi#number Binary number.
binumber

Ofnumber Octal number.
offnumber

Header Files (.h)

Header files are ASCII text files that contain macros or other preprocessor
commands that the preprocessor substitutes into source files. For informa-
tion on macros or other preprocessor commands, refer to the
VisualDSP++ C/C++ Compiler and Library Manual for appropriate target
architecture. For information on the assembler and preprocessor, see the
VisualDSP++ Assembler and Preprocessor Manual.

Linker Description Files (.I1df)

Linker description files are ASCII text files that contain commands for the

linker in the linker’s scripting language. For information on this scripting
language, see “LDF Commands” on page 3-306.

A-4 VisualDSP++ 5.0 Linker and Utilities Manual

File Formats

Linker Command-Line Files (.txt)

Linker command-line files are ASCII text files that contain command-line
input for the linker. For more information on the linker command line,
see “Linker Command-Line Reference” on page 2-44.

Build Files

Build files are produced by the VisualDSP++ development tools when
building a project. This section describes these build file formats:

e “Assembler Object Files (.doj)” on page A-5

e “Library Files (.dlb)” on page A-6

e “Linker Output Files (.dxe, .sm, and .ovl)” on page A-6

e “Memory Map Files (.xml)” on page A-6

* “Loader Output Files in Intel Hex-32 Format (.1dr)” on page A-6

e “Splitter Output Files in ASCII Format (.1dr)” on page A-8

Assembler Object Files (.doj)

Assembler output object (.doj) files are in binary, executable and linkable
file (ELF) format. Object files contain relocatable code and debugging
information for a DSP program’s memory segments. The linker processes
object files into an executable (. dxe) file. For information on the object
file’s ELF format, see “Format References” on page A-10.

Visual DSP++ 5.0 Linker and Utilities Manual A-5

Bu

ild Files

Library Files (.dlb)

Library files, the archiver’s output, are in binary, executable and linkable
file (ELF) format. Library files (called archive files in previous software
releases) contain one or more object files (archive elements).

The linker searches through library files for library members used by the
code. For information on the ELF format used for executable files, refer to
“Format References” on page A-10.

Linker Output Files (.dxe, .sm, and .ovl)

The linker’s output files are in binary, executable and linkable file (ELF)
format. These executable files contain program code and debugging
information. The linker fully resolves addresses in executable files. For
information on the ELF format used for executable files, see the TIS Com-
mittee texts cited in “Format References” on page A-10.

The archiver automatically converts legacy input objects from

COFF to ELF format.

Memory Map Files (.xml)

The linker can output memory map files that contain memory and symbol
information for your executable file(s). The memory map file contains a
summary of memory defined with MEMORY {} commands in the .1df file,
and provides a list of the absolute addresses of all symbols. Memory map
files are available on/y in .xm1 format.

Loader Output Files in Intel Hex-32 Format (.1dr)

The loader can output Intel hex-32 format (. 1dr) files. These files support
8-bit-wide PROMs. The files are used with an industry-standard PROM

programmer to program memory devices for a hardware system. One file

contains data for the whole series of memory chips to be programmed.

Visual DSP++ 5.0 Linker and Utilities Manual

File Formats

The following example shows how the Intel hex-32 format appears in the
loader’s output file. Each line in the Intel hex-32 file contains an extended
linear address record, a data record, or an end-of-file record.

:020000040000FA Extended linear address record
:0402100000FEQ3FOF9 Data record
:00000001FF End-of-file record

Extended linear address records are used because data records have a
4-character (16-bit) address field, but in many cases, the required PROM
size is greater than or equal to OxFFFF bytes. Extended linear address
records specify bits 16-31 for the data records that follow.

Table A-2 shows an example of an extended linear address record.

Table A-2. Extended Linear Address Record Example

Field Purpose

:020000040000FA Example record

Start character

02 Byte count (always 02)

0000 Address (always 0000)

04 Record type

0000 Offset address

FA Checksum

Visual DSP++ 5.0 Linker and Utilities Manual A-7

Build Files

Table A-3 shows the organization of an example data record, and

Table A-4 shows an end-of-file record.

Table A-3. Data Record Example

Field

Purpose

:0402100000FEO3FOF9

Example record

Start character

04

Byte count of this record

0210

Address

00

Record type

00

First data byte

FO

Last data byte

F9

Checksum

Table A-4. End-of-File Record Example

Field

Purpose

:00000001FF

End-of-file record

Start character

00

Byte count (zero for this record)

0000

Address of first byte

01

Record type

FF

Checksum

For more information, refer to the VisualDSP++ Loader and Utilities

Manual.

Splitter Output Files in ASCIlI Format (.1dr)

When the loader is invoked as a splitter, its output can be an ASCII
format file. ASCII format files are text representations of ROM memory

A-8 Visual DSP++ 5.0 Linker and Utilities Manual

File Formats

images that you can use in post-processing. For more information, refer to
no-boot mode information in the VisualDSP++ Loader and Utilities
Manual.

Debugger Files

Debugger files provide input to the debugger to define simulation or
emulation support of your program. The debugger supports all the execut-
able file types produced by the linker (. dxe, .sm, .ov1). To simulate I/O,
the debugger also supports the assembler’s data file (.dat) format and the
loader’s loadable file (.1dr) formats.

The standard hexadecimal format for a SPORT data file is one integer
value per line. Hexadecimal numbers do not require a 0x prefix. A value
can have any number of digits, but is read into the SPORT register as:

* The hexadecimal number which is converted to binary

* The number of binary bits read which matches the word size set for
the SPORT register, which starts reading from the LSB. The
SPORT register then fills with zero values shorter than the word
size or conversely truncates bits beyond the word size on the MSB
end.

Example:

In this example, a SPORT register is set for 20-bit words and the data file
contains hexadecimal numbers. The simulator converts the HEX numbers

Visual DSP++ 5.0 Linker and Utilities Manual A-9

Format References

to binary and then fills or truncates to match the SPORT word size. In
Table A-5, the A5A5 number is filled and 123456 is truncated.

Table A-5. SPORT Data File Example

Hex Number Binary Number Truncated/Filled

ASA5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010
FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001
A5AD 1010 0101 1010 0101 0000 1010 0101 1010 0101
5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101
11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001
123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110

Format References

The following texts define industry-standard file formats supported by
Visual DSP++.

* Gircys, G.R. (1988) Understanding and Using COFF by O’Reilly &
Associates, Newton, MA

e (1993) Executable and Linkable Format (ELF) V1.1 from the
Portable Formats Specification V1.1, Tools Interface Standards
(TIS) Committee

Go to: http://developer.intel.com/and search on the text
string ELF.

* (1993) Debugging Information Format (DWARF) V1.1 from the
Portable Formats Specification V1.1, UNIX International, Inc.

Go to: http://developer.intel.com/ and search on the
text string DWARF.

A-10 VisualDSP++ 5.0 Linker and Utilities Manual

http://developer.intel.com/
http://developer.intel.com/

B UTILITIES

The Visual DSP++ development software includes the following utilities:
e “elfdump — ELF File Dumper”
* “clfpatch”
* “plinker”

elfdump - ELF File Dumper

The executable and linking format (ELF) file dumper (e1fdump) utility
extracts data from ELF-format executable (. dxe) files and yields text
showing the ELF file’s contents.

The el fdump utility is often used with the archiver (e1far).

Refer to “Disassembling a Library Member” on page B-3 for details.
Also refer to “Dumping Overlay Library Files” on page B-4 on how to
extract and view the contents of overlay library files.

Syntax:

elfdump [switches] [objectfile]

Visual DSP++ 5.0 Linker and Utilities Manual B-1

elfdump - ELF File Dumper

Table B-1 shows switches used with the e1fdump command.

Table B-1. ELF File Dumper Command-Line Switches

Switch Description

-fh Prints the file header

-arsym Prints the library symbol table

-arall Prints every library member

-help Prints the list of elfdump switches to stdout

-ph Prints the program header table

-sh Prints the section header table. This switch is the default when no options are
specified.

-notes Prints note segment(s)

-n name Prints contents of the named section(s).

The name may be a simple ‘glob’-style pattern, using “?” and “*” as wildcard
characters. Each section’s name and type determines its output format, unless
overridden by a modifier.

-1 x0[-x1] Prints contents of sections numbered x0 through x1, where x0 and x1 are
decimal integers, and x1 defaults to x0 if omitted. Formatting rules are the same
as for the -n switch.

-all Prints everything. This is the same as -fh -ph -sh -notes -n “*’.

-ost Onmits string table sections

-c Same as -ost (deprecated)

-s Same as -ost (deprecated)

-v Prints version information

objectfile

Specifies the file whose contents are to be printed.

It can be a core file, executable, shared library, or relocatable object file. If the
name is in the form A(B), A is assumed to be a library and B is an ELF member
of the library. B can be a pattern similar to the one accepted by -n.

B-2

VisualDSP++ 5.0 Linker and Utilities Manual

Utilities

The -n and -i switches can have a modifier letter options after the main
option character to force section contents to be formatted as:

* a — Dumps contents in hex and ASCII, 16 bytes per line.
* x — Dumps contents in hex, 32 bytes per line.
* xN — Dumps contents in hex, N bytes per group (default is N = 4).

* t — Dumps contents in hex, N bytes per line, where N is the sec-
tion’s table entry size. If N is not in the range 1 to 32, 32 is used.

* hN— Dumps contents in hex, N bytes per group.

* HN — Dumps contents in hex, (MSB first order), N bytes per group.
e i — Prints contents as list of disassembled machine instructions.

e s — Prints contents as list of disassembled machine instructions and

also prints labels.

Disassembling a Library Member

The elfar and el fdump utilities are more effective when their capabilities
are combined. One application of these utilities is for disassembling a
library member and converting it to source code. Use this technique when
the source of a particularly useful routine is missing and is available only
as a library routine.

For information about el far, refer to “Archiver” on page 6-1.

The following procedure lists the objects in a library, extracts an object,
and converts the object to a listing file. The first archiver command line
lists the objects in the library and writes the output to a text file.

elfar -p libc.dlb > Tibc.txt

Open the text file, scroll through it, and locate the object file you need.

Visual DSP++ 5.0 Linker and Utilities Manual B-3

elfdump - ELF File Dumper

To convert the object file to an assembly listing file with labels, use the
following el fdump command line, which references the library and the
object file in the library.

elfdump -ns * Tibc.dlb (fir.doj) > fir.asm

The output file is practically source code. Just remove the line numbers
and opcodes.

Disassembly yields a listing file with symbols. Assembly source with sym-
bols can be useful if you are familiar with the code and hopefully have
some documentation on what the code does. If the symbols are stripped
during linking, the dumped file contains no symbols.

Disassembling a third-party’s library may violate the license for the
third-party software. Ensure there are no copyright or license issues
with the code’s owner before using this disassembly technique.

Dumping Overlay Library Files

Use the e1far and e1fdump utilities to extract and view the contents of
overlay library (.ov1) files.

For example, the following command lists (prints) the contents (library
members) of the clone2.ov1 library file.
elfar -p clone2.ovl

The following command allows you to view one of the library members
(clone2.elf).
elfdump -all cloneZ2.ovl(clone2.elf)

The following commands extract clone2.elf and print its contents.

elfar -e clone2.ovl clone2.elf
elfdump -all clone2.elf

@ Switches for the e1fdump commands are case sensitive.

B-4

VisualDSP++ 5.0 Linker and Utilities Manual

Utilities

elfpatch

The ELF patch (e1fpatch) utility allows the bits of an ELF section to be
extracted or replaced from a file.

Syntax:

elfpatch -get [section-namel -oloutput-bits-filename] -text
[input-elf-filename]

elfpatch -replace [section-name] -oloutput-filename] -bits
Linput-bits-filename] -text [input-elf-filenamel

elfpatch [help | version]

Examples:

elfpatch -get _ov_os_overlay_1 -o bytes_bin ol.ovl (overlayl.elf)
elfpatch -get L1_code -0 bytes_txt -text p0.dxe

elfpatch -replace _ov_os_overlay_1 -o ol_new_from_txt.ovl -bits
bytes_txt -text ol.ovl (overlayl.elf)

elfpatch -replace Ll_code -0 pO_new.dxe -bits bytes_bin p0.dxe

Extracting a Section in an ELF File

The elfpatch -get command dumps the raw contents of a section
without any additional formatting. The input-elf-filename parameter
may be one of the following:

e A stand-alone (non-archive) ELF file containing a section specified
by the section-name parameter

e A library (filename) combination

The -text switch specifies that the output should be a stream of printable
text. Specifically, the output must be hexadecimal digital (with each one
byte of binary output resulting in two bytes of text (hex) output. If the -0
switch is not specified, the output (in bits) is written to stdout.

Visual DSP++ 5.0 Linker and Utilities Manual B-5

plinker

Replacing Raw Contents of a Section in an ELF File

The elfpatch -replace command replaces the raw contents of a section.
The replacement bits need not be the same size as the section being

replaced.

If the replacement resulted in the replace section clobbering a por-
tion of another section, an error would result in a resolved ELF file.

If the -bits switch is not specified, bits are read from stdin.

The input-elf-filename parameter must exist and be either of the
following:

* A stand-alone (non-archive) ELF file containing a section specified
by the section-name parameter

* A library (filename) combination

Ultimately, the input-elf-filename parameter must contain a section
specified by the section-name parameter. If the -0 switch is not specified,
the output (ELF file) is written to stdout.

The -text switch specifies that the input should be a stream of printable
text. Specifically, the output must be hexadecimal digital (with each one
byte of binary output resulting in two bytes of text (hex) output.

Standard input (stdin) and standard output (stdout) are used to
facilitate piping. Here is an example command line:
elfpatch -get code input.dxe | my-transformation | elfpatch
-replace code input.dxe -0 output.dxe

plinker

In VisualDSP++, the plinker command-line tool provides “partial linker”
functionality.

B-6 VisualDSP++ 5.0 Linker and Utilities Manual

Utilities

The plinker tool is a specialized linker that produces a partially-linked
relocatable object file instead of a fully-linked executable. It is similar in
function to a standard UNIX linker (1d) invoked with the -r switch.

The partial linker performs two main functions:

* It combines a number of input object files into a single output file
by concatenating sections having the same name into a single sec-
tion in the output file. All references to offsets or indices within the
input files are modified to reflect the new locations of sections, and
of records within sections, in the output file.

e For symbols with external linkage, it resolves multiple occurrences
of the same symbol to a single instance. Local function and object
symbols are made unique by adding a suffix in order to satisfy
linker input requirements.

The partial linker can link object files and archive libraries. The ordering
of object file and library arguments in the p1inker command line is highly
significant.

If a referenced external symbol has no global definition and multiple weak
definitions, the symbol is resolved to the first weak definition that is
encountered.

For example, consider the following p1inker command line:
plinker -o out.o inl.o in2.0 -1 Tibl.a in3.0 -1 1lib2.a

Library “1ib1.a” will be searched only for references encountered in
“inl.o;” and “in2.0”. It will not be searched again after “in3.0” and
library “1ib2.a” have been read. If either “in3.0” or “1ib2.a” has refer-
ences that should be resolved by “1ib1.a”, the “1ib1.a” must be specified
a second time, later in the command line.

2»

If invoked with no arguments, or with “-h” or “-help”, the partial linker
prints command-line information. The -info switch provides additional
details, including current anomalies and limitations. Tracing of linker

Visual DSP++ 5.0 Linker and Utilities Manual B-7

plinker

actions can be enabled and finely controlled with the -t, -tr, and -ntr
switches.

B-8 VisualDSP++ 5.0 Linker and Utilities Manual

C LDF PROGRAMMING
EXAMPLES FOR BLACKEFIN
PROCESSORS

This appendix provides several typical .1df files. used with Blackfin
processors. As you modify these examples, refer to the syntax descriptions

in “LDF Commands” on page 3-306.
This appendix provides the following examples.
e “Linking for a Single-Processor System” on page C-2

e “Linking Large Uninitialized or Zero-initialized Variables” on

page C-4
@ The source code for several programs is bundled with the

development software. Each program includes an .1df file. For
working examples of the linking process, examine the . 1df files
that come with the examples. These examples are in the directory:
VisualDSP++_install_path>/Blackfin/examples.

@ The development software includes a variety of default .1df files.
These files provide an example . 1df file for each processor’s inter-
nal memory architecture. The default . 1df files are in the
directory:
<VisualDSP++_install_path>/Blackfin/1df.

Visual DSP++ 5.0 Linker and Utilities Manual C-1

Linking for a Single-Processor System

Linking for a Single-Processor System

When you link an executable file for a single-processor system, the .1df
file describes the processor’s memory and places code for that processor.
The .1df file in Listing C-1 is for a single-processor system. Note the
following commands in this example file.

* ARCHITECTURE() defines the processor type

* SEARCH_DIR() commands add the 1ib and current working direc-
tory to the search path

* $0BJS and $LIBS macros retrieve object (.doj) and library (.d1b)
file input

* MAP() outputs a map file
* MEMORY{} defines memory for the processor
* PROCESSOR{} and SECTIONS{} commands define a processor and
place program sections for that processor’s output file by using the
memory definitions
Listing C-1. Example LDF for a Single-Processor System
ARCHITECTURE(ADSP-BF535)
SEARCH_DIR($ADI_DSP/BTlackfin/1ib)
MAP(SINGLE-PROCESSOR.MAP) // Generate a MAP file
// $ADI_DSP is a predefined linker macro that expands

// to the VDSP install directory. Search for objects in
// directory Blackfin/1ib relative to the install directory

C-2

VisualDSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for Blackfin Processors

LIBS Tibc.dlb, Tibevent.dlb, Tibsftflt.dlb, libcpp_blkfn.dlb,
lTibcpprt_blkfn.dlb, Tibdsp.dlb
$LIBRARIES = LIBS, Tibrt.dlb;

// single.doj is a user generated file. The linker will be
// invoked as follows

// linker -T single-processor.ldf single.doj.

// $COMMAND_LINE_OBJECTS is a predefined Tinker macro

// The Tlinker expands this macro into the name(s) of the
// the object(s) (.doj files) and archives (.dlb files)

// that appear on the command Tine. In this example,

// $COMMAND_LINE_OBJECTS = single.doj

$0BJECTS = $COMMAND_LINE_OBJECTS;
// A Tinker project to generate a DXE file

PROCESSOR PO
{
QUTPUTC(SINGLE.dxe) // The name of the output file

MEMORY // Processor specific memory command
{ INCLUDE("BF535_memory.1ldf") }

SECTIONS // Specify the Output Sections
{ INCLUDE("BF535_sections.ldf" }
// end PO sections
} // end PO processor

Visual DSP++ 5.0 Linker and Utilities Manual C-3

Linking Large Uninitialized or Zero-initialized Variables

Linking Large Uninitialized or
Zero-initialized Variables

When linking an executable file that contains large uninitialized variables,
use the NO_INIT (equivalent to SHT_NOBITS legacy qualifier) or ZERO_INIT
section qualifier to reduce the file size.

A variable defined in a source file normally takes up space in an object and
executable file even if that variable is not explicitly initialized when
defined. For large buffers, this action can result in large executables filled
mostly with zeros. Such files take up excess disk space and can incur long
download times when used with an emulator. This situation also may
occur when you boot from a loader file (because of the increased file size).
Listing C-2 shows an example of assembly source code. Listing C-3 shows
the use of the NO_INIT and ZERO_INIT sections to avoid initialization of a
segment.

The .1df file can omit an output section from the output file. The
NO_INIT qualifier directs the linker to omit data for that section from the
output file.

Refer to “SECTIONS{}” on page 3-61 for more information on
the NO_INIT and ZERO_INIT section qualifiers.

The NO_INIT qualifier corresponds to the /UNINIT segment qualifier
in previous (.ach) development tools. Even if you do not use
NO_INIT, the boot loader removes variables initialized to zeros from
the .1dr file and replaces them with instructions for the loader
kernel to zero out the variable. This action reduces the loader’s
output file size, but still requires execution time for the processor
to initialize the memory with zeros.

Listing C-2. Large Uninitialized Variables: Assembly Source

LSECTION/NO_INIT extram_area; /* 1Mx8 EXTRAM */

C-4

VisualDSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for Blackfin Processors

.BYTE huge_buffer[0x0060007;
.SECTION/ZERO_INIT zero_extram_area;
.BYTE huge_zero_buffer[0x006000];

Listing C-3. Large Uninitialized Variables: LDF Source

ARCHITECTURE (ADSP-BF535)
$0BJECTS = $COMMAND_LINE_OBJECTS; // Libraries & objects from
// the command Tine
MEMORY {
mem_extram {
TYPE(RAM) START(0x10000) END(Ox15fff) WIDTH(8)
t // end segment
} // end memory

PROCESSOR PO {
LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
OUTPUT($COMMAND_LINE_OUTPUT_FILE)
// NO_INIT section isn’t written to the output file
SECTIONS {
extram_output NO_INIT {
INPUT_SECTIONS($0BJECTS (extram_area))
} >mem_extram
zero_extram_output ZERO_INIT {
INPUT_SECTIONS ($0BJECTS (zero_extram_area))
} >mem_extram
} // end section
} // end processor PO

Visual DSP++ 5.0 Linker and Utilities Manual C-5

Linking Large Uninitialized or Zero-initialized Variables

C-6 VisualDSP++ 5.0 Linker and Utilities Manual

D LDF PROGRAMMING
EXAMPLES FOR SHARC
PROCESSORS

This appendix provides several typical .1df files used with SHARC
processors. As you modify these examples, refer to the syntax descriptions

in “LDF Commands” on page 3-306.
This appendix provides the following examples:
e “Linking a Single-Processor SHARC System” on page D-2
e “Linking Large Uninitialized Variables” on page D-4
e “Linking for MP and Shared Memory” on page D-6
@ The source code for several programs is bundled with your devel-

opment software. Each program includes an . 1df file. For working
examples of the linking process, examine the .1df file that come
with the examples. Examples are in the following directory.
<VisualDSP++_install_path>/21k/Examples.

@ A variety of processor-specific default . 1df files come with the
development software, providing information about each proces-
sor’s internal memory architecture. Default . 1df files are located in
the following directory.
<VisualDSP++_install_path>/21k/1df.

Visual DSP++ 5.0 Linker and Utilities Manual D-1

Linking a Single-Processor SHARC System

Linking a Single-Processor SHARC
System

When linking an executable for a single-processor system, the . 1df file
describes the processor’s memory and places code for that processor.
Listing D-1 shows a single-processor . 1df file. Note the following com-
mands in this file:

* ARCHITECTURE() defines the processor type.

* SEARCH_DIR() adds the 1ib and current working directory to the
search path.

e $0BJS and $LIBS macros get object (.doj) and library (.d1b) file
input.
* MAP() outputs a map file.

* MEMORY({} defines memory for the processor.

* PROCESSOR{} and SECTIONS{} defines a processor and place pro-
gram sections for that processor’s output file, using the memory
definitions.

Listing D-1. Single-Processor System LDF Example

// Link for the ADSP-21161
ARCHITECTURE(ADSP-21161)

SEARCH_DIR ($ADI_DSP/211xx/1ib)

MAP (SINGLE-PROCESSOR.XML) // Generate a MAP file

// $ADI_DSP is a predefined linker macro that expands to
// the VisualDSP++ installation directory. Search for objects
// in directory 21k/1ib relative to the installation directory

D-2 VisualDSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for SHARC Processors

// 1ibl61.d1b is an ADSP-2116x-specific Tibrary
// and must precede libc.dlb, the C Tibrary
// to link the 2116x-specific routines.

$LIBS = 1ibl6l.d1b, Tibc.dlb;

// single.doj is a user-generated file.

// The Tinker will be invoked as follows:

!/ linker -T single-processor.1ldf single.doj.

// $COMMAND_LINE_OBJECTS is a predefined Tinker macro.
// The Tinker expands this macro into the name(s) of the
// the object(s) (.doj files) and Tibraries (.dlb files)
// that appear on the command line. In this example,

// $COMMAND_LINE_OBJECTS = single.doj

// 161_hdr.doj is the standard initialization file for 2116x
$0BJS = $COMMAND_LINE_OBJECTS, 161_hdr.doj;

// A linker project to generate a .dxe file
PROCESSOR PO
{
QUTPUT (./SINGLE.dxe) // The name of the output file

MEMORY // Processor-specific memory
command
{ INCLUDE("21161_memory.h") }

SECTIONS // Specify the output sections
{
INCLUDE("21161_sections.h")
} // end PO sections
} // end PO processor

Visual DSP++ 5.0 Linker and Utilities Manual D-3

Linking Large Uninitialized Variables

Linking Large Uninitialized Variables

When linking an executable file that contains large uninitialized variables,
use the NO_INIT (equivalent to SHT_NOBITS legacy qualifier) or ZERO_INIT
section qualifier to reduce the file size.

A variable defined in a source file normally takes up space in an object and
executable file even if that variable is not explicitly initialized when
defined. For large buffers, this action can result in large executables filled
mostly with zeros. Such files take up excess disk space and can incur long
download times when used with an emulator. This situation also may
occur when you boot from a loader file (because of the increased file size).
Listing D-2 shows an example of assembly source code. Listing D-3 shows
the use of the NO_INIT and ZERO_INIT sections to avoid initialization of a
segment.

The .1df file can omit an output section from the output file. The
NO_INIT qualifier directs the linker to omit data for that section from the
output file.

Refer to “SECTIONS{}” on page 3-61 for more information on
the NO_INIT and ZERO_INIT section qualifiers.

@ The NO_INIT qualifier corresponds to the /UNINIT segment qualifier

in previous (.ach) development tools. Even if NO_INIT is not used,
the boot loader removes variables initialized to zeros from the .1dr
file and replaces them with instructions for the loader kernel to
zero-out the variable. This action reduces the loader’s output file
size, but still requires execution time for the processor to initialize
the memory with zeros.

Listing D-2. Large Uninitialized Variables: Assembly Source

.SECTION/DM/NO_INIT sdram_area; /* 1Mx32 SDRAM */
.VAR huge_buffer[0x1000001];

D-4 Visual DSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for SHARC Processors

Listing D-3. Large Uninitialized Variables: LDF Source

ARCHITECTURE(ADSP-21161)
$OBJECTS = $COMMAND_LINE_OBJECTS; // Libraries & objects from
// the command line
MEMORY {
mem_sdram {
TYPE(DM RAM) START(0x3000000) END(Ox30FFFFF) WIDTH(32)
}// end segment

}// end memory

PROCESSOR PO {
LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
QUTPUT($COMMAND_LINE_OUTPUT_FILE)
// NO_INIT section isn’t written to the output file
SECTIONS {
sdram_output NO_INIT {
INPUT_SECTIONS($O0BJECTS (sdram_area))
} >mem_sdram
zero_sdram_output ZERO_INIT {
INPUT_SECTIONS ($OBJECTS (zero_sdram_area))
} >mem_sdram
} // end section
} // end processor PO

Visual DSP++ 5.0 Linker and Utilities Manual D-5

Linking for MP and Shared Memory

Linking for MP and Shared Memory

When linking executable files for a multiprocessor system using shared

memory, the . 1df file describes the multiprocessor memory offsets, shared

memory, each processor’s memory, and places code for each processor.
Here are the major commands in an . 1df file. For examples, examine the
.1df files included with the installation CD.:

The ARCHITECTURE() command defines the processor type, which
can be one type only.

The SEARCH_DIR() command adds the 1ib and current working
directory to the search path.

The $0BJS and $LIBS macros get object (.doj) and library (.d1b)
file input.

The MPMEMORY { } command defines each processor’s offset within
multiprocessor memory.

The SHARED_MEMORY { } command identifies the output for the
shared memory items.

The MAP() command outputs map files.
The MEMORY { } command defines memory for the processors.

The PROCESSOR{ } and SECTIONS{} commands define each processor
and place program sections using memory definitions for each pro-
cessor’s output file.

The LINK_AGAINST() commands resolve symbols within multipro-
cessor memory.

D-6

VisualDSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for SHARC Processors

Listing D-4. LDF for Multiprocessor System With Shared Memory

ARCHITECTURE(ADSP-21062)

//

// ADSP-21062 Memory Map:
i

// Internal memory 0x0000 0000 to 0x0007 ffff

[/ oo

// 0x0000 0000 to Ox0000 00ff IOP Regs
// 0x0000 0100 to 0x0001 ffff (reserved)
// Block 0 0x0002 0000 to 0x0002 7fff

// Normal Word (32/48) Addresses

// (0x0002 0000 to 0x0002 4fff)

// 48-bit words

// (0x0002 0000 to 0x0002 7fff)

// 32-bit words

// Block 1 0x0002 8000 to 0x0002 ffff

// Normal Word (32/48) Addresses

// (0x0002 8000 to 0x0002 cfff)

// 48-bit words

// (0x0002 8000 to 0x0002 ffff)

// 32-bit words

// alias of Block 1 0x0003 0000 to 0x0003 7fff
// Normal Word (32/48) Addresses
// alias of Block 1 0x0003 8000 to 0x0003 ffff
// Normal Word (32/48) Addresses

// Block 0 0x0004 0000 to 0x0004 ffff
// Short Word (16) Addresses
// Block 1 0x0005 0000 to 0x0005 ffff
// Short Word (16) Addresses

// alias of Block 1 0x0006 0000 to 0x0006 ffff
// Short Word (16) Addresses

Visual DSP++ 5.0 Linker and Utilities Manual D-7

Linking for MP and Shared Memory

// alias of Block 1 0x0007 0000 to 0x0007 ffff
// Short Word (16) Addresses

[/ oo

// Multiproc memory 0x0008 0000 to 0x003f ffff

[/ oo

// 0x0008 0000 to 0x000f ffff SHARC ID=001 Internal memory
// 0x0010 0000 to 0x0017 ffff SHARC ID=010 Internal memory
// 0x0018 0000 to 0x001f ffff SHARC ID=011 Internal memory
// 0x0020 0000 to 0x0027 ffff SHARC ID=100 Internal memory
// 0x0028 0000 to 0x002f ffff SHARC ID=101 Internal memory
// 0x0030 0000 to 0x0037 ffff SHARC ID=110 Internal memory
// 0x0038 0000 to 0x003f ffff SHARC ID=all Internal memory
[/ oo

// External memory 0x0040 0000 to Oxffff ffff

[/ oo

//

// This architecture file allocates:

// Internal

// External

SEARCH_DIR($ADI_DSP\21k\11ib)

$LIBRARIES = 11b060.d1b ;

$0BJECTS = $COMMAND_LINE_OBJECTS

//MAP(ffton2pe.map)

// Memory architecture description for FFT example on a 21062.
// 256 48-bit words for interrupt vector table

// (reset vector location).

// 5888 48-bit words of program memory for code storage.

// 2048 48-bit words of second segment of program memory

// for code storage.

D-8 VisualDSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for SHARC Processors

// 20k 32-bit words of internal program memory

// for data storage.

// 32k 32-bit words of internal data memory for data storage.
// 4k 32-bit words of first segment of external data memory
// for data storage.

// 4k 32-bit words of second segment of external data memory
// for data storage.

MEMORY

{

isr_tabl { TYPE(PM RAM) START(0x00020000) END(0x000200FF)
WIDTH(48) }

pm_code { TYPE(PM RAM) START(0x00020100) END(Ox00021fff)
WIDTH(48) }

pm_data { TYPE(PM RAM) START(0x00023000) END(Ox00027fff)
WIDTH(32) }

dm_data { TYPE(DM RAM) START(0x00028000) END(Ox0002ffff)
WIDTH(32) }

Ext_idat { TYPE(PM RAM) START (0x400000) END (Ox400FFF) WIDTH(32)
}
Ext_rdat { TYPE(DM RAM) START (0x401000) END (Ox401FFE) WIDTH(32)
}

}// End MEMORY

// Declare offset for multiprocessor memory space
// of the 2 processors.
MPMEMORY
{
pl { START(0x00080000) }
p2 { START(0x00100000) !}

Visual DSP++ 5.0 Linker and Utilities Manual D-9

Linking for MP and Shared Memory

// Generate an object file which contains memory to be shared
// by mutliple processors.
// SHARED_MEMORY

QUTPUT($COMMAND_LINE_OUTPUT_DIRECTORY\common.sm)
// SHARED MEMORY output file name.

// Map the sections specified in the program files
// to sections declared in SHARED MEMORY and
// use these sections to create the *.sm file.
SECTIONS
{

.Ext_idat

{

INPUT_SECTIONS(shared_mem.doj(Ext_idat))
} Ext_idat

.Ext_rdat
{

INPUT_SECTIONS(shared_mem.doj(Ext_rdat))
} Ext_rdat

} //End Sections
} // End Shared Memory

PROCESSOR pl
{
LINK_AGAINST($COMMAND_LINE_OUTPUT_DIRECTORY\common.sm ,
$COMMAND_LINE_OUTPUT_DIRECTORY\Fftrad2m.dxe)
// Other DXE and SM files to link against.
QUTPUT($COMMAND_LINE_OUTPUT_DIRECTORY\Fftrad2s.dxe)
// Shared memory and P2 executable.

D-10 Visual DSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for SHARC Processors

SECTIONS
{
INCLUDE("pel_sections.h")
// The file containing SECTIONs definition
}// End SECTIONs

}// End pl

PROCESSOR p2
{

LINK_AGAINST($COMMAND_LINE_OUTPUT_DIRECTORY\common.sm ,
$COMMAND_LINE_OUTPUT_DIRECTORY\Fftrad2s.dxe)
// Other DXE and SM files to link against,

QUTPUT($COMMAND_LINE_OUTPUT_DIRECTORY\Fftrad2m.dxe)
// Shared memory and Pl executable.

SECTIONS

{

INCLUDE("pe2_sections.h")

// The file containing SECTIONs definition

}// End Sections
}// End p2

Visual DSP++ 5.0 Linker and Utilities Manual D-11

Linking for MP and Shared Memory

Reflective Semaphores

Semaphores may be used in multiprocessor (MP) systems to permit
processors to share resources such as memory or I/O. A semaphore is a flag
that can be read and written by any of the processors sharing the resource.
A semaphore’s value indicates when the processor can access the resource.
Reflective semaphores permit communication among processors that share a
multiprocessor memory space.

Use broadcast writes to implement reflective semaphores in an MP system.
Broadcast writes allow simultaneous transmission of data to all the
SHARC processors in an MP system. The master processor can broadcast
writes to the same memory location or IOP register on all the slaves.

During a broadcast write, the master also writes to itself unless the
broadcast is a DMA write.

Broadcast writes can also be used to simultaneously download code or data
to multiple processors.

Bus lock can be used in combination with broadcast writes to implement
reflective semaphores in an MP system. The reflective semaphore should
be located at the same address in internal memory (or IOP register) of

each SHARC processor.

SHARC processors have a “broadcast” space. Use . 1df files (or header
files) to define a memory segment in this space, just as in internal memory
or any processor MP space. The broadcast space aliases internal space, so if
there is a memory segment defined in the broadcast space, the . 1df file
cannot have a memory segment at the corresponding address in the inter-
nal space (or in the MP space of any processor). Otherwise, the linker
generates an error indicating that the memory definition is not valid.

To check the semaphore, each SHARC processor reads from its own inter-
nal memory. Any object in the project can be mapped to an appropriate
memory segment defined in the broadcast space for use as a reflective

D-12 Visual DSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for SHARC Processors

semaphore. If an object defining symbol SemA is mapped to a broadcast
space, when the program writes to SemA, the written value appears at the
aliased internal address of each processor in the cluster. Each processor
may read the value using SemA, or read it from internal memory by select-
ing (SemA-0x380000), thus avoiding bus traffic.

To modify the semaphore, a SHARC processor requests bus lock and then

performs a broadcast write to the semaphore address (for example, Sema).

The processors should read the semaphore before modifying it to
verify that another processor has not changed it.

For more information on semaphores, refer to your processor’s Hardware
Reference manual.

Visual DSP++ 5.0 Linker and Utilities Manual D-13

Linking for MP and Shared Memory

D-14 Visual DSP++ 5.0 Linker and Utilities Manual

E LDF PROGRAMMING
EXAMPLES FORTIGERSHARC
PROCESSORS

This appendix provides several typical .1df file used with TigerSHARC
processors. As you modify these examples, refer to the syntax descriptions

in “LDF Commands” on page 3-306.
This appendix provides information about the following:
* “Linking a Single-Processor System” on page E-2

e “Linking Large Uninitialized or Zero-Initialized Variables” on

page E-4

* “Linking an ADSP-TS101 MP Shared Memory System” on
page E-6

@ The source code for several programs is bundled with your devel-

opment software. Each program includes an .1df file. For working
examples of the linking process, examine the .1df files that come
with the examples. Examples are in the following directory.
<VisualDSP++_install_path>/TS/Examples.

@ A variety of processor-specific default . 1df file come with the

development software, providing information about each
processor’s internal memory architecture. Default . 1df files are
located in the following directory.
<VisualDSP++_install_path>/TS/1df.

Visual DSP++ 5.0 Linker and Utilities Manual E-1

Linking a Single-Processor System

Linking a Single-Processor System

When linking an executable for a single-processor system, the . 1df file
describes the processor’s memory and places code for that processor.
The .1df file in Listing E-1 shows a single-processor . 1df file. Note the
following commands in this file:

* ARCHITECTURE() defines the processor type.

* SEARCH_DIR() adds the 1ib and current working directory to the
search path.

e $0BJS and $LIBS macros get object (.doj) and library (.d1b) file
input.

* MAP() outputs a map file.

* MEMORY({} defines memory for the processor.

* PROCESSOR{} and SECTIONS{} defines a processor and place pro-
gram sections for that processor’s output file, using the memory
definitions.

Listing E-1. Single-Processor System LDF Example
ARCHITECTURE(ADSP-TS201)
SEARCH_DIR ($ADI_DSP/TS/1ib)
MAP (SINGLE-PROCESSOR.xmT) // Generate a MAP file
// $ADI_DSP is a predefined Tinker macro that expands to

// the VisualDSP++ installation directory. Search for objects
// in directory TS/1ib relative to the installation directory

E-2 Visual DSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for TigerSHARC Processors

$LIBS = libc.dlb;

// single.doj is a user-generated file.

// The Tinker will be invoked as follows:

!/ linker -T single-processor.ldf single.doj.

// $COMMAND_LINE_OBJECTS is a predefined Tinker macro.
// The Tinker expands this macro into the name(s) of the
// the object(s) (.doj files) and Tibraries (.dlb files)
// $COMMAND_LINE_OBJECTS = single.doj

// ts_header.doj is the standard initialization file for
TSXXX

$0BJS = $COMMAND_LINE_OBJECTS, ts_hdr.doj;
// A Tinker project to generate a .dxe file

PROCESSOR PO
{
QUTPUT (./SINGLE.dxe) // The name of the output file

MEMORY // Processor-specific memory command
{ INCLUDE("TS201_memory.1df") }

SECTIONS // Specify the output sections
{
INCLUDE(C "TS201_sections.1df")
} // end PO sections
} // end PO processor

Visual DSP++ 5.0 Linker and Utilities Manual E-3

Linking Large Uninitialized or Zero-Initialized Variables

Linking Large Uninitialized or
Zero-Initialized Variables

When linking an executable file that contains large uninitialized variables,
use the NO_INIT (equivalent to SHT_NOBITS legacy qualifier) or ZERO_INIT
section qualifier to reduce the file size.

A variable defined in a source file normally takes up space in an object and
executable file even if that variable is not explicitly initialized when
defined. For large buffers, this action can result in large executables filled
mostly with zeros. Such files take up excess disk space and can incur long
download times when used with an emulator. This situation also may
occur when you boot from a loader file (because of the increased file size).
Listing E-2 shows an example of assembly source code. Listing E-3 shows
the use of the NO_INIT and ZERO_INIT sections to avoid initialization of a
segment.

The .1df file can omit an output section from the output file. The
NO_INIT qualifier directs the linker to omit data for that section from the
output file.

Refer to “SECTIONS{}” on page 3-61 for more information on
the NO_INIT and ZERO_INIT section qualifiers.

The NO_INIT qualifier corresponds to the /UNINIT segment qualifier
in previous (.ach) development tools. Even if NO_INIT is not used,
the boot loader removes variables initialized to zeros from the .1dr
file and replaces them with instructions for the loader kernel to
zero-out the variable. This action reduces the loader’s output file
size, but still requires execution time for the processor to initialize
the memory with zeros.

E-4

Visual DSP++ 5.0 Linker and Utilities Manual

LDF Programming Examples for TigerSHARC Processors

Listing E-2. Large Uninitialized Variables: Assembly Source

LSECTION/NO_INIT sdram_area; /* 1Mx32 SDRAM */
VAR huge_buffer[0x10000007;

Listing E-3. Large Uninitialized Variables: LDF Source

ARCHITECTURE(CADSP-TS201)
$OBJECTS = $COMMAND_LINE_OBJECTS; // Libraries & objects from
// the command line
MEMORY {
SDRAM {
TYPE(RAM) START(0x04000000) END(OXO7FFFFFF)
WIDTH(32)
} // end segment
} // end memory

PROCESSOR PO {
LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
OUTPUT($COMMAND_LINE_OUTPUT_FILE)
// NO_INIT section isn’t written to the output file
SECTIONS {
sdram_output NO_INIT {
INPUT_SECTIONS($O0BJECTS (sdram_area))
} >mem_sdram
zero_sdram_output ZERO_INIT f{
INPUT_SECTIONS ($0BJECTS (zero_sdram_area))
} >mem_sdram
} // end section
} // end processor PO

Visual DSP++ 5.0 Linker and Utilities Manual E-5

Linking an ADSP-TS101 MP Shared Memory System

Linking an ADSP-TS101 MP Shared
Memory System

When linking executable files for a multiprocessor system using shared
memory, the . 1df file describes the multiprocessor memory offsets, shared
memory, each processor’s memory, and places code for each processor.
Here are the major commands in an . 1df file. For examples, examine the
.1df files included with the installation CD.

The ARCHITECTURE() command defines the processor type, which
can only be one type.

The MPMEMORY { } command defines each processor’s offset within
multiprocessor memory.

The SHARED_MEMORY { } command identifies the output for the
shared memory items.

The MEMORY { } command defines memory for the processors.

The PROCESSOR{ } and SECTIONS{} commands define each processor
and place program sections using memory definitions for each pro-
cessor’s output file.

The LINK_AGAINST() commands resolve symbols within multipro-
cessor memory.

E-6

Visual DSP++ 5.0 Linker and Utilities Manual

| INDEX

A

-a archiver switch, 6-15
absolute data placements, 2-59
ABSOLUTE() LDF operator, 3-23
address space, allocating, 3-56
ADDR() LDF operator, 3-24
$ADI_DSP LDF macro, 3-32
ADSP-21xxx processors, See SHARC processors
ADSP-TSxxx processors, See TigerSHARC
processors

ALGORITHM() LDF command, 3-71
ALIGN() LDF command, 3-37
alignment properties, managing, 4-63
ALL_FIT LDF identifier, 3-71, 4-66
-anv archiver switch, 6-15
ARCHITECTURE() LDF command, 3-38
archive

files, See also library files

members, A-6

routines, 6-4

specify objects in, 6-6

viewing files, B-4

writing library files, 6-4

archiver
about, 6-1
accessing archived functions, 6-6
command-line switches and parameters, 6-15
command-line syntax, 6-14, 6-17
handling arbitrary files, 6-2
in code disassembly, B-3
symbol encryption, 6-11, 6-12, 6-15
tagging with version, 6-7, 6-8
version information, 6-7, 6-9, 6-10
wildcard character, 6-6, 6-16
arguments, passing for simulation or emulation,
2-44
_argv_string null-terminated string, 2-44
.asm files, assembler source, A-3
assembler
directives with archiver, 6-5
initialization data files (.dat), A-3
object files (.doj), A-5
source files (.asm), 1-3, A-3
attributes, used for linking, 2-42, 2-43

B

-Beginlnit InitSymbol switch, 7-15
BEST_FIT LDF identifier, 3-72

Visual DSP++ 5.0 Linker and Utilites Manual

I-1

Index

Blackfin memory sections
bsz_init input section, 2-23
.cht input section, 2-25
constdata input section, 2-22
cplb_code input section, 2-22
cplb_data input section, 2-22
cplb input section, 2-25
ctor input section, 2-22
ctorl input section, 2-24
dartal input section, 2-22
.edt input section, 2-25
exception handling data sections, 2-24
frt input section, 2-25
.gdt, .gdtl, frt, .che, .edt, and .reti, 2-24
.gdtl input section, 2-25
heap input section, 2-23
L1_bcz input section, 2-26
L1_code input section, 2-26
L1_DATA_A input section, 2-22, 2-26
L1_DATA_B input section, 2-22, 2-26
L1_data input section, 2-26
L2_becz input section, 2-26
12_shared input section, 2-27
L2_sram_a input section, 2-27
L2_sram_b input section, 2-27
L2_sram input section, 2-26
12_sram input section, 2-26
mc_data input section, 2-25
noncache_code input section, 2-23
primio_atomic_lock input section, 2-25
program input section, 2-21
.reti input section, 2-25
sdram0_bank input section, 2-24
sdramO input section, 2-23
sdram_bcz input section, 2-24
sdram_shared input section, 2-24
stack input section, 2-23
voldata input section, 2-22
vtbl input section, 2-24

Blackfin processors
basic .Idf file example, 3-7
byte addressing, 5-10
customized .Idf file, 3-3
Adf file programming examples, C-1
memory configurations, 2-32, 3-9
branch
expansion instruction, 2-59, 2-60, 2-63
instructions, 5-36
breakpoints, on overlays, 5-7
broadcast
space, D-12
writes, D-12
bsz_init memory section, serving memory
initializer, 7-8
buffers, allocating to different memory
segments, 2-42
build errors, linker, 2-10
build files, A-5
built-in LDF macros, 3-30
bus lock
broadcast writes, D-12
multiprocessor systems, D-12
byte
order, 4-61
packing, 4-62

C
C+

constructor functions, 2-22

virtual function tables, 2-17, 2-21, 2-24
caching, external memory, 3-9
callback executable file, 7-3, 7-5, 7-16
calls

inter-overlay, 5-27

inter-processor, 5-28
-c archiver switch, 6-15
C/C++ source files, A-2
character identifier (.), 1-8
.cht input section, 2-14

I-2 Visual DSP++ 5.0 Linker and Utilites Manual

color selection, in Expert Linker, 4-13

command LDF scope, 3-19

$COMMAND_LINE_LINK_AGAINSTLDF
macro, 3-31

$COMMAND_LINE_OBJECTS LDF macro,
3-14, 3-30

$COMMAND_LINE_OUTPUT_DIRECTO
RY LDF macro, 3-31

$COMMAND_LINE_OUTPUT_DIRECTO
RY macro, 2-61

$COMMAND_LINE_OUTPUT_FILE LDF
macro, 3-15, 3-31

$COMMAND_LINE_OUTPUT_FILE
macro, 2-61

commands, LDF, 5-29

commands, See LDF commands

comma-separated option, 2-58

comments in .ldf files, 3-18

common memory, 3-39, 5-53

COMMON_MEMORY{} LDF command,
3-38, 5-39, 5-53

compiler source files (.c .cc), 1-3

constdata input section, 2-22

constructors, 2-16, 2-20

converting

library members to source code, B-3
out-of-range short calls and jumps, 2-60

cplb_code input section, 2-22

___cplb_ctrl configuration variable, 3-9

cplb_data input section, 2-22

Create LDF wizard, 4-4

ctor0-4 input sections, 2-19

ctor input section, 2-19, 2-22

ctorl input section, 2-24

___ctor_NULL_marker symbol, 2-18, 2-20,
3-42

customer support, xxii

D

-d archiver switch, 6-15

Index

datal-2 input sections, 2-19, 2-22
DATAG4 qualifier, 3-62
data placement, 2-59
data sections, exception handling, 2-24
.dat files, initialization data, A-3
debugger, files, A-9
declaring, macros, 3-32
default .Idf file, 3-3, 3-4
DEFAULT_OVERLAY () LDF command,
3-71

DEFINED() LDF operator, 3-26
directories, supported by linker, 2-48
disassembly

library member, B-3

using archiver, B-3

using dumper, B-3
.dlb files

defined, A-6

extension convention, 2-47

symbol name encryption, 6-11
DMA accessing external memory, 3-46
DMAONLY memory segment qualifier, 3-46
DM qualifier, 3-62
-dnv archiver switch, 6-15
.doj files, 2-47, A-5
-Dprocessor (target architecture) linker switch,

2-53

dumper, in code disassembly, B-3
DWAREF reference information, A-10
.dxe files

data extraction, B-1, B-5

described, 1-7, 2-3, 2-6

extension conventions, 2-47

linker output files described, A-6

E

.edt input section, 2-14, 2-19
-ek (no elimination) linker switch, 2-57

Visual DSP++ 5.0 Linker and Utilites Manual

I-3

Index

elfar.exe
about, 6-1
command-line reference, 6-14
constraints, 6-17
elfdump.exe utility, B-1
ELF file, B-5
contents, B-1, B-5
ELF file dumper
about, B-1
command-line switches, B-1, B-5
dumping contents of an output section, 2-13,
B-1, B-5
extracting data, B-1
overlay library files, B-4
reference information, A-10
used by Expert Linker, 4-34
elfloader.exe loader utility, 1-10
ELF patch utility, B-5
elfspl21k.exe splitter utility, 1-10
ELIMINATE() LDF command, 3-39
ELIMINATE_SECTIONS() LDF command,
3-40
elimination
enabling, 3-39, 3-42
not applied to section, 2-57
restricting to named input sections, 2-58
specifying properties, 4-52
unused symbols, 2-58

encryption
constraints, 6-12
symbol names in libraries, 6-11
end address, memory segment, 3-47, 4-30
.end label
in assembly code, 1-5
specifying function boundary, 3-39
END() LDF identifier, 3-47
entry address
ENTRY() command, 3-40
global start symbol, 2-34
multiprocessor system, 2-35
setting, 2-35
using the -entry switch, 2-58
-entry (entry address) linker switch, 2-58
ENTRY() LDF command, 3-40
errata workaround, 2-63
errors, linker, 2-10
-es (eliminate listed sections) linker switch, 2-58
-ev (eliminate unused symbols, verbose) linker
switch, 2-58
exclude_file archiver command-line parameter,
6-15
executable files, 1-7, A-6
post-processing, 2-61
EXPAND() LDF command, 3-58

I-4

Visual DSP++ 5.0 Linker and Utilites Manual

Expert Linker
about, 4-1
adding input sections, 4-11
adding LDF macros, 4-11
adding object files, 4-11
adding output section to memory segment,

4-20

adding overlay, 4-20
adding shared memory, 4-20
adding shared memory segments, 4-42
alignment properties, 4-63
allocating for heap, 4-67
allocating for stack, 4-67
choosing initialization qualifier, 4-59
color selection, 4-13
context menu, 4-19
deleting objects, 4-11
deleting selected object, 4-20
displaying global properties, 4-12
displaying section contents, 4-12
elimination properties, 4-52
expanding items, 4-20
expanding LDF macros, 4-11
global properties, 4-48
heap properties, 4-67
icons, 4-13
Input Sections pane, 4-10
invalid memory segments, 4-17
launching, 4-3
Legend dialog box, 4-13
mapping memory sections in, 4-12
memory management, 5-29
memory management functions, 5-1
memory map graphical view, 4-22
Memory Map pane, 4-16
memory segment properties, 4-57
multiprocessing tasks, 4-42
multiprocessor properties, 4-49
object properties, 4-47
output sections properties, 4-58

Index

overlay properties, 4-65
overlays, 4-32, 5-2
overview, 2-9, 4-2
packing properties, 4-61
performance optimization, 5-2
processor properties, 4-49
profiling object sections, 4-37
properties for overlays, 4-50
removing LDF macro, 4-11
resize cursor, 4-26
shared memory properties, 4-70
sorting objects, 4-15
specifying new memory segments, 4-20
stack properties, 4-67
symbols properties, 4-53
viewing icons and colors, 4-13
viewing section contents, 4-34
viewing symbols, 4-36
window panes, 4-9
expressions, in .Idf files, 3-20
external execution packing, 3-53
external memory
access, 3-46
mapped explicitly into, 2-23
SHARC processors, 2-27, 2-29
TigerSHARC processors, 2-31
extracting, data from ELF executable files, B-1,

B-5

F
FALSE keyword, 3-23

file extension conventions, 2-47
@filename linker switch, 2-53

Visual DSP++ 5.0 Linker and Utilites Manual I-5

Index

file types

.asm (assembly source files), A-3

build, A-5

C/C++ source files, A-2

.dat (assembly initialization data), A-3

debugger, A-9

default .1df, 3-3, 3-4

.dlb (library)

.doj (assembler object), A-5

.dxe, A-6

executable, A-6

formats, A-1

input format, A-2

1dr (ASCII-format), A-9

1dr (hex format), A-6

linker command-line (.txt), 2-47, A-5

object, 2-49

output, 1-7

.ovl, A-6

reference information, A-10

.sm, A-6

txt, A-5

xml, A-6
FILL() LDF command, 3-40, 3-69
fill values, setting, 4-63
filter

expression (optional), 3-65

operation, 2-43, 3-65
FIRST_FIT LDF identifier, 3-71
-flags-meminit linker switch, 2-58
-flags-pp linker switch, 2-59

FORCE_CONTIGUITY LDF command,

3-72
fragmented memory, filling in, 2-59
frt input section, 2-14, 2-19
full trace, 2-64

G

gap, inserting into memory segment, 4-31

.gdt, .gdtl input sections, 2-14, 2-19
global

LDF file scope, 3-19

string, 2-44

symbol, 2-34

zero-initialized data, 2-15, 2-20, 2-23
Global Properties dialog box

General tab, 4-48

PLIT tab, 4-51

viewing, 4-21

H

hardware revision, building, 2-63
he, 6-15
header (.h) files, A-4
heap
graphic representation, 4-67
input section, 2-23
managing in memory, 4-67
hex-format files, .Idr format, A-6
-h (-help) switch, 2-59, 7-16

I

icons

Expert Linker, 4-13

unmapped icon, 4-12
IDDE, See integrated development and

debugging environment

IDDE_ARGS option, 2-44
-i filename archiver switch, 6-16
-IgnoreSection SectionName switch, 7-16
INCLUDE() LDF command, 3-40
individual placement, 2-59
initialization

flag, 7-8
initialization qualifier, choosing in Expert

Linker, 4-59

I-6 Visual DSP++ 5.0 Linker and Utilites Manual

initialization stream
generated from memory initializer, 7-2
inserting executable file into, 7-16
start address, 7-15
structure, 7-5
-Init Initcode.dxe switch, 7-16
___inits symbol name, 7-15
InputFile.dxe switch, 7-17
input files
callback input executable file, 7-3
primary input file, 7-3
input/output sections, contents of, 4-33
INPUT_SECTION_ALIGN() LDF
command, 3-40
input sections
adding, 4-10
contiguity, 4-60
directives, 1-4
names, 2-12
source code, 1-3
viewing, 4-10
with corresponding output sections and
memory segments, 2-13
INPUT_SECTIONS() LDF command, 3-64
Input Sections pane
displayed, 4-10
menu selections, 4-10
INPUT_SECTIONS_PIN_EXCLUSIVELDF
command, 3-67
INPUT_SECTIONS_PIN LDF command,
3-67

Index

INPUT_SECTIONS() statement, 3-16
internal memory

Blackfin processors, 2-32

in Expert Linker, 4-31

SHARC processors, 2-28

TigerSHARC processors, 2-30
inter-overlay calls, 5-27
inter-processor calls, 5-28
interrupt latch registers, 2-16
-ip (individual placement) linker switch, 2-59

J

-jcs2l (convert out-of-range short calls) linker
switch, 2-60
jumps, converting, 2-60

K

-keep (keep unused symbols) linker switch, 2-60
KEEP() LDF command, 3-42
KEEP_SECTIONS() LDF command, 3-42
keywords, 3-22, 3-23

__11_code_cache guard symbol, 3-10
L1_DATA_A input section, 2-22
L1_DATA_B input section, 2-22
__11_data_cache_a guard symbol, 3-10
__11_data_cache_b guard symbol, 3-10
LDF advanced commands, about, 5-29

Visual DSP++ 5.0 Linker and Utilites Manual

I-7

Index

LDF commands

about, 2-4, 3-36

ALIGN(), 3-37
ARCHITECTURE)(), 3-38
COMMON_MEMORY{}, 3-38, 5-53
ELIMINATE(), 3-39
ELIMINATE_SECTIONS(), 3-40
ENTRY(), 3-40

EXPAND(), 3-58

FILL(), 3-69

INCLUDE)(), 3-40
INPUT_SECTION_ALIGN(), 3-40
INPUT_SECTIONS(), 3-64
KEEP(), 3-42
KEEP_SECTIONS(), 3-42
LINK_AGAINST(), 3-42

MAP(), 3-43

MASTERS(), 5-53, 5-54
MEMORY{}, 3-44, 5-46
MPMEMORY{}, 3-47, 5-45
OVERLAY_GROUP{}, 3-48, 5-29
OVERLAY_INPUT{}, 3-70
PACKING(), 3-48

PLIT{}, 3-69, 5-34
PROCESSORY{}, 3-54

RESERVE(), 3-56

RESOLVE)(), 3-59
SEARCH_DIR(), 3-60
SECTIONS{}, 3-61
SHARED_MEMORY{}, 3-72, 5-47

Adf files

advanced commands in, 5-29

commands in, 2-4, 3-36

commenting, 3-18

creating in Expert Linker, 4-4

default, 2-11

defined, A-4

expressions in, 3-20

expression syntax, 3-20

extension conventions, 2-47

generated by Blackfin processors, 3-3

keywords, 3-21, 3-22

main features, 3-13

mapping output sections to memory segment,
2-5

miscellaneous keywords used in, 3-23

operators, 3-23

purpose, 2-6

scope, 3-19

specifying memory segment width, 2-5

structure of, 3-18

used to map code/data to specific memory
segments, 3-3

df files, See LDF commands
LDF macros

about, 3-29

adding, 4-10

built-in, 3-30

command-line input, 3-32

expanding, 4-11

_ MEMINIT__, 3-36

predefined, 3-33

removing, 4-11

__ SILICON_REVISION__, 3-36

user-declared, 3-32

using to partition code/data between
processors, 5-40

_ VERSION__, 3-35

__VERSIONNUM__, 3-35

_ _VISUALDSPVERSION__, 3-33

I-8

Visual DSP++ 5.0 Linker and Utilites Manual

LDF operators
about, 3-23
ABSOLUTE(), 3-23
ADDR(), 3-24
DEFINEDY(), 3-26
location counter, 3-29
MEMORY_END(), 3-26
MEMORY_SIZEOEF(), 3-27
MEMORY_START(), 3-27
SIZEOEF(), 3-28
1d linker (UNIX), B-7
Adr files
ASCII-format, A-9
hex-format, A-6
splitter output, A-9
leaf functions, 5-59
legends, Expert Linker, 4-11
LENGTHY() LDF identifier, 3-47
length_symbol symbol, 3-56

__lib_end_of heap_descriptions symbol, 3-42
lib_file archiver command-line parameter, 6-15

librarian, VisualDSP++, 6-1
$LIBRARIES library and object file list, 3-13
library, symbol name encryption, 6-11
library files (.dlb)

about

adding, 4-10

defined, A-6

searchable, 6-2
library members

converting to source code, B-3

linking into executable program, 6-1

Index

library routines, accessing, 6-5
LINK_AGAINST() LDF command, 3-42,
5-48, 5-50
linker
about, 2-2
command-line files (.txt), A-5
command-line syntax, 2-45
defined, 1-2
describing the target, 2-11
error messages, 2-10
executable files, A-6
file duplications by, 5-59
file name conventions, 2-48
generating PLIT constants, 5-36
linking object files, 2-49
mapping by attributes, 5-43
mapping using object archive, 5-44
memory map files (xml), A-6
options, 2-4
output files, 1-7, A-6
outputs, 1-7, 2-3, 2-6
overlay constants generated by, 5-9
running from command line, 2-45
running from Visual DSP++, 2-7
switches, 2-49
warning messages, 2-10
Linker Description Files
overview, 3-1
linker.exe, 1-2
linker-generated constants, 5-7, 5-15, 5-16
linker-generated overlay constants, 5-9
linker macros, 3-29, 3-30

Visual DSP++ 5.0 Linker and Utilites Manual I-9

Index

linker switches
-Darchitecture, 2-53
-Dprocessor, 2-53
-e (eliminate), 2-57
-ek secName, 2-57
-entry, 2-58
-es secName, 2-58
-ev, 2-58
@filename, 2-53
-flags-meminit, 2-58
-flags-pp, 2-58
-h (help), 2-59
-i (include search directory), 2-59
-ip (individual placement), 2-59
-jes2l, 2-60
-keep symbolName, 2-61
-M, 2-54
-Map filename, 2-55
-MDmacro, 2-55
-meminit, 2-61
-MM, 2-54
-MUDmacro, 2-56
-nonmemcheck, 2-61
-od directory, 2-61
-0 filename (output file), 2-61
-pp> 2-62
-proc processor, 2-62
-S, 2-56
-save-temps, 2-63
-si-revision version (silicon revision), 2-63
-sp (skip preprocessing), 2-64
-s (strips all symbols), 2-62
-T filename, 2-56
-t (trace), 2-64
-tx (full trace), 2-64
-version (display version), 2-64
-v (verbose), 2-64
-warnonce, 2-64
-Werror num (override warning message),

2-57

-Wnumber (warning suppression), 2-57
-Wwarn num (override error message), 2-57
-xref filename, 2-65

linking
about, 2-3
controlling, 2-4
environment, 2-7
file with large uninitialized variables, C-4,

D-4, E-4
file with large zero-initialized variables, C-4,
D-4, E-4

multiprocessor SHARC systems, D-6
multiprocessor systems, 5-39
multiprocessor TigerSHARC systems, E-6
process rules, 2-5
single-processor Blackfin system, C-2
single-processor SHARC system, D-2
single-processor TigerSHARC system, E-2
with attributes, 2-42

Link page, setting linker options, 2-7

link target, 2-11

loader
creating bootloadable image, 1-10, 1-11
hex-format files, A-6
output files (.Idr), A-6

location counter, definition of, 3-29

M

macros
LDF, 3-29
preprocessor, 3-30
undefining, 2-56
user-declared, 3-32
main function, 2-44
-Map (filename) linker switch, 2-55
map file (xml), 2-49, 2-55, 3-43
MAP() LDF command, 3-43

I-10 Visual DSP++ 5.0 Linker and Utilites Manual

mapping
archives, 5-53, 5-54
by attributes, 5-43
by section name, 5-42
input sections to output sections, 4-12
input section to several output sections, 3-67
into memory sections in common memory,
5-55, 5-58
using archive or library, 5-44
-M archiver switch, 6-16
master processor, 3-38, 5-53, 5-54, 5-56
MASTERS() LDF command, 5-53, 5-54
-M (dependency check and output) linker
switch, 2-54
-MDmacro (macro value) linker switch, 2-56
mem_argv input section, 2-19
MEM_ARGYV memory section, 2-44
_ MEMINIT__ LDF macro, 3-36
-meminit linker switch, 2-61
.meminit memory section, serving memory
initializer, 7-8
memory
allocation, 2-12
architecture representation, 2-11
Blackfin processor, 2-32
common, 3-39, 5-53
external multiprocessor space
(TigerSHARC), 2-31
initialization, 3-62, 7-6
internal, 2-30
managing heap/stack, 4-67
map files, A-6
mapping, 4-12, 5-42
multiprocessor (TigerSHARC), 2-31
overlays, 5-4, 5-5
partitions, 4-16
segments, 2-12, 3-47, 4-16
SHARC processor, 2-27
TigerSHARC processor, 2-30
types, 2-12, 3-46

Index

MEMORY_END() LDF operator, 3-26
memory initializer
about, 7-2
basic operations, 7-3
command line switches, 7-14
extracting data from section, 7-18
function of, 7-1
___inits default symbol name, 7-15
invoking, 2-61, 7-10, 7-12
Adf file preparation, 7-7
NO-BOOT mode, 7-2
output file, 7-18
passing comma-separated option to, 2-58
primary input file, 7-17
section initialization flag, 7-11
switches, See memory initializer switches
when to use, 7-7
memory initializer switches
-BeginlInit InitSymbol, 7-15
-h (help), 7-16
-IgnoreSection SectionName, 7-16
-Init Initcode.dxe, 7-16
InputFile.dxe, 7-17
-NoAuto, 7-17
-NoErase, 7-17
-0 OutputFile.dxe, 7-18
-Section SectionName, 7-18
-v (-verbose), 7-18
memory interface, width (bits), 3-47
MEMORY{} LDF command
described, 5-46
Adf file component, 3-15
segment_declaration, 3-45
syntax diagram, 3-44
using in an .Idf file, 2-32
writing, 2-12

VisualDSP++ 5.0 Linker and Utilites Manual I-11

Index

memory map

adding memory segments to, 4-29

generating, 2-55

graphical view, 4-23

highlighted objects in, 4-26

post-link view, 4-26

pre-link view, 4-26

specifying, 2-12

tree view, 4-21

viewing, 4-17
Memory Map pane

context menu, 4-19

described, 4-17

overlays, 4-32

right-click menu, 4-19

zooming in/out, 4-28
memory sections

Blackfin processors, 2-21

SHARC processors, 2-14

TigerSHARC processors, 2-19
memory segments

about, 1-3

adding, 4-29

adding to memory map, 4-29

changing size of, 4-25

inserting a gap, 4-31

invalid, 4-17

MEMORY/{} command, 4-16

new, 4-20, 4-29

rules, 2-5

size, 4-22

specifying properties, 4-57

start address, 4-22
MEMORY_SIZEOEF() LDF operator, 3-27
memory space, 4-30
MEMORY_START() LDF operator, 3-27
-MM archiver switch, 6-16
-MM (dependency check, output and build)

linker switch, 2-54

modify register, 5-17

MPMEMORY{} LDF command, 3-47, 5-45
-MUDmacro (undefine macro) linker switch,
2-56
multicore
applications, 2-35, 3-56
systems with shared SDRAM, 2-24
multiprocessor
applications, 2-35, 3-56
linking commands, 5-39
memory, 2-31
multiprocessor systems
bus lock in, D-12
code/data placement in, 5-40
heterogeneous, 5-39
homogeneous, 5-39
linking, 5-39
managing processor order, 4-50
processor physical memory offset, 5-45
semaphores, D-12
shared memory, 5-47

N

-NoAuto switch, 7-17

-NoErase switch, 7-17

NOFORCE_CONTIGUITY LDF command,
3-72

NO_INIT qualifier, 3-63, C-4, D-4, E-4

-nomemcheck linker switch, 2-61

noncache_code input section, 2-23

@)

object files
adding, 4-10
explained, 1-3
linking into executable, 2-3
object properties, managing with Expert Linker,

4-47

I-12 Visual DSP++ 5.0 Linker and Utilites Manual

objects

deleting, 4-11

sorting, 4-11, 4-15
$OBJECTS LDF macro, 3-13

obj_file archiver command-line parameter, 6-15

-od (output directory) linker switch, 2-61
offset, processor physical memory, 5-45
-o filename linker switch, 2-61
-0 OutputFile.dxe switch, 7-18
operator, 1-8
operators, .Idf file, 3-23
output directory, specifying, 2-61
OUTPUT() LDF command, 3-15, 4-16
output section qualifiers, 3-63
output sections

about, 2-4

dumping, 2-13

mapped contiguously, 4-60

new, 4-20

overflow, 4-59

rules, 2-5

specifying properties, 4-58
_ov_endaddress_# overlay constant, 5-9, 5-26
_ov_end breakpoint, 5-7, 5-8
overlay

ALL_FIT algorithm, 4-65

file, producing, 3-71

live space, 4-32

new, 4-20

run space, 4-32
OVERLAY_GROUP{} LDF command, 3-48,

5-29

overlay ID, storing, 5-20
OVERLAY_ID LDF identifier, 3-71
OVERLAY_INPUT{} LDF command

DEFAULT_OVERLAY() portion, 3-71

described, 3-70

Index

overlay library files, B-4

overlay manager

about, 5-4, 5-6, 5-7
assembly code, 5-36
constants, 5-15

major functions, 5-7
performance summary, 5-20
placing constants, 5-17
PLIT table, 5-12

routines, 5-5

storing overlay ID, 5-20

OVERLAY_OUTPUT() LDF command, 3-71

overlays

address, 5-9, 5-16
constants, 5-9, 5-15
debugging, 5-7

dumping library files, B-4
grouped, 5-30, 5-33

live address, 4-66

live space, 4-32

loading and executing, 5-21
loading instructions with PLIT, 5-38
managing properties, 4-65
memory, 5-4, 5-5
Memory Map pane, 4-32
multiple, 4-32
numbering, 5-27
reducing overhead, 5-21
run address, 4-66

run space, 4-32

size, 4-66

special symbols, 5-26
ungrouped, 5-30, 5-31
word size, 5-9, 5-16

ov_id_loaded buffer, 5-20

Visual DSP++ 5.0 Linker and Utilites Manual I-13

Index

.ovl files
described, A-6
diagram, 1-7, 2-3, 2-6
dumping, B-4
extracting content from, B-4
file conventions, 2-47
linker output, A-6
OVERLAY_INPUTY{} command used in,
3-71
viewing content, B-4
_ov_runtimestartaddress_# overlay constant,
5-9, 5-27
_ov_size_# overlay constant, 5-9, 5-26
_ov_startaddress_# overlay constant, 5-9, 5-26
_ov_start breakpoint, 5-8
_ov_word_size_live_# overlay constant, 5-9,
5-27
_ov_word_size_run_# overlay constant, 5-9,

5-26

P
packing

data, 3-48

DMA, 3-50

external execution, 3-52

header files, 3-50

in SHARC processors, 3-50

overlay format, 3-51

properties, specifying, 4-61

with PACKING() LDF command, 3-48
PACKING() LDF command, 3-48
-p archiver switch, 6-16
partial linker, B-7
partially-linked relocatable object file, B-7
PGO, See profile-guided optimization
pinning objects to output section, 4-20, 4-58
plinker command-line tool, B-6

PLIT
about, 5-10
allocating space for, 5-37
executing user-defined code, 5-10
overlay constants, 5-36
overlay management, 5-7
specifying overlay properties, 4-50
summary, 5-38
syntax, 5-35
PLIT{} LDF command
about, 5-34
in SECTIONS{}, 3-69
instruction qualifier, 5-35
LDF input section, 3-69
overview, 3-53
PLIT_SYMBOL_ADDRESS, 5-36
PLIT_SYMBOL_OVERLAYID, 5-36
syntax described, 5-34
.plit output section, 5-36
PLIT_SYMBOL_ADDRESS, 5-36
PLIT _SYMBOL constants, 5-38
PLIT_SYMBOL_OVERLAYID, 5-36
PM qualifier, 3-62
-pp (end after preprocessing) linker switch, 2-62
pp-exe preprocessor, 1-8
#pragma section, 5-43
preprocessor
compiler, 1-9
linker and assembler commands, 1-8
macros, 3-30
running from linker, 2-62
procedure linkage table (PLIT)
see also PLIT
about PLIT{} command, 3-53, 5-34
summary, 5-10
using, 5-25

I-14 Visual DSP++ 5.0 Linker and Utilites Manual

PROCESSOR{} LDF command
declaring a processor and its related link
information, 3-54
Adf file component, 3-15
linking projects on multiprocessor/multicore
Blackfin architectures, 3-56
syntax, 3-54
Processor Properties dialog box, 4-49
processors
common memoty, 5-53
selection of, 2-53, 2-62
sharing memory, 5-54
silicon revision of, 2-63
specifying properties of, 4-49
-proc (target processor) linker switch, 2-62
profile-guided optimization (PGO)
IDDE_ARGS option, 2-43
linker support for, 2-43
PROGBITS qualifier, 7-4
program input section, 2-19, 2-21
project builds, linker, 2-7
Project Options dialog box, 2-7
PROM, specified by TYPE() command, 3-46
Properties dialog box, viewing, 4-21
-pva archiver switch, 6-9, 6-16
-pv archiver switch, 6-9, 6-16

R

RAM, specified by TYPE() command, 3-46
RAM selection, 4-30

-r archiver switch, 6-16

reflective semaphores, D-12

removing, LDF macro, 4-11

RESERVE() LDF command, 3-56
-reserve-null linker switch, 2-62

resize cursor, 4-26

RESOLVE() LDF command, 3-43, 3-59
ROM, specified by TYPE() command, 3-46
ROM selection, 4-30

Index

RTL routine, performing memory initialization,
7-2,7-6
.rtti input section, 2-14, 2-19
run-time initialization
data (in bsz_init section), 2-20, 2-23
qualifiers, 3-63
type_qualifier, 3-62
RUNTIME_INIT qualifier, 7-7
defined, 3-63
example, 7-9
-IgnoreSection switch, 7-16
--NoAuto switch, 7-17
-Section switch, 7-18
run-time libraries, built using attributes, 5-44

S

-s archiver switch, 6-16
-save-temps linker switch, 2-63
SDRAM, enabled, 2-24
sdram0_bank input section, 2-23
sdram0 input section, 2-23
sdram_bcz input section, 2-24
sdram_shared input section, 2-24
SEARCH_DIR() directory paths, 3-13
SEARCH_DIR() LDF command, 3-60
sec_rth input section, 2-14
section

contents, 4-12

formats, selecting, 4-35

input, 2-13
.SECTION assembly directive, 1-4
section contents, viewing, 4-33
section mapping

Blackfin processors, 2-21

SHARC processors, 2-14

TigerfSHARC processors, 2-19
section_name qualifier, 3-62
section pragma, 5-43
-Section SectionName switch, 7-18

Visual DSP++ 5.0 Linker and Utilites Manual

I-15

Index

SECTIONS{} LDF command, 2-36, 3-16, 3-61

Adf file component, 3-16
specifying placement of code/data in physical
memory, 3-16

Linker Description Files

see also 1df files
seg_argv input section, 2-14
seg_ctdm input section, 2-14
seg_ctdml input section, 2-14
seg_dmda input section, 2-14
seg_ext_code input section, 2-14, 2-15
seg_ext_data input section, 2-15
seg_flash input section, 2-15
seg_heap input section, 2-15
seg_init_code input section, 2-14
seg_init input section, 2-14
segment declaration, 3-45
segment end address, 3-57
seg_pmco input section, 2-14
seg_pmda input section, 2-14
seg_sdram input section, 2-15
seg_sram input section, 2-14
seg_stak input section, 2-14
seg_swco input section, 2-15
seg_vtbl input section, 2-14
semaphores, reflective, D-12
.SEPARATE_MEM_SEGMENTS assembler

directive, 2-41

SHARC memory sections
section mapping, 2-14
.bss input section, 2-15
exception handling data sections, 2-18
.gdt .gdd frt .frel .cht .chd .edt .edtl, 2-18
.rtti input section, 2-15
seg_argv input section, 2-16
seg_ctdm input section, 2-16
seg_ctdml memory section, 2-18
seg_dmda memory section, 2-16
seg_ext_dmda input section, 2-18
seg_ext_nwco input section, 2-18
seg_ext_pmda input section, 2-18
seg_ext_swco input section, 2-18
seg_flash input section, 2-17
seg_heap input section, 2-17
seg_init input section, 2-15
seg_int_code input section, 2-16
seg_pmco input section, 2-16
seg_pmda input section, 2-16
seg_rth input section, 2-15
seg_sram input section, 2-17
seg_stak input section, 2-17
seg_vtbl input section, 2-17

SHARC processors
basic .1df file example, 3-11
broadcast space, D-12
external memory, 2-29
implementing reflective semaphores, D-12
internal memory, 2-28
LDF programming examples, D-1
memory architecture, 2-27
memory packing, 3-52
multiprocessor (MP) systems, D-12
overlay packing format, 3-52
packing in, 3-50

I-16

Visual DSP++ 5.0 Linker and Utilites Manual

shared memory
managing properties of, 4-70
mapping objects into, 3-39, 5-53
new, 4-20
SHARC system, D-6
TigerSHARC system, E-6
used with multiprocessor systems, 5-47
SHARED_MEMORY/{} LDF command, 3-72,
5-39, 5-47
short calls, converting, 2-60
SHT_NOBITS
keyword, 3-63, C-4, D-4, E-4
section qualifier, C-4, D-4, E-4
silicon revision, selecting, 2-63
__ SILICON_REVISION___ LDF macro, 3-36
-si-revision (silicon revision) linker switch, 2-63
size (hexadecimal), 4-30
SIZE() LDF command, 3-72
SIZEOF() LDF operator, 3-28
.sm files
described, A-6
diagram, 1-7, 2-3, 2-6
file extension conventions, 2-47
linker output, A-6
sort, objects, 4-11, 4-15
source code, in input sections, 1-3
source files
assembly initialization data (.dat) files, A-3
C/C++, A-2
command-line file (.txt), A-5
compiling into object files, 1-3
fixed-point data, A-3
header files, A-4
Adf, A-4
preparing, 7-9

Index

special section name (.PLIT), 3-62
splitter
ASCII-format files (.Idr), A-9
generating non-bootable PROM image files,
1-11
output file (Idr), A-8
SPORT data files, A-9
-sp (skip preprocessing) linker switch, 2-64
-s (strip all symbols) linker switch, 2-62
-S (strip debug symbols) linker switch, 2-56
stack
graphic representation, 4-67
input section, 2-23
managing in memory, 4-67
START() command, 3-45
start_symbol symbol, 3-56
SW qualifier, 3-62
symbols
adding, 4-53, 4-56
declaration, 3-13
deleting from resolve list, 4-56
encryption of names, 6-11
manager, 5-7
managing properties of, 4-53
removing, 2-62, 4-53
resolution, 4-54, 4-56
viewing, 4-20, 4-37, 4-53

T

-t archiver switch, 6-7, 6-16

target architecture (processor), 2-54, 3-13

-T file (executable program placement) linker
switch, 2-56

Visual DSP++ 5.0 Linker and Utilites Manual

I-17

Index

TigerSHARC memory sections
section mapping, 2-19
bsz_init input section, 2-20
bsz input section, 2-20
ctor]l memory section, 2-21
ctor input section, 2-20
datal input section, 2-20
data2 input section, 2-20
exception handling data sections, 2-21

.gdt .gdtl frc .cht .edt .rtti data sections, 2-21

mem_argyv input section, 2-20
program input section, 2-20
vtbl input section, 2-21
TigerSHARC processors
allocating buffers to different memory
segments, 2-41
basic .1df file example, 3-10
external memory, 2-31
internal memory, 2-30
LDF programming examples, E-1
memory architecture, 2-30
programming enhancement, 2-41
-tnv archiver switch, 6-16
tree view, memory map, 4-21
TRUE keyword, 3-23
st files, linker, A-5
-t (trace) linker switch, 2-64
-twc ver archiver switch, 6-16
-tx filename archiver switch, 6-16
-tx (full trace) linker switch, 2-64
.txt files, linker command-line files, A-5

TYPE() command, 3-46

type-letter archiver command-line parameter,

6-15

U

uninitialized variables, C-4, D-4, E-4
UNIX linker (Id), B-7

unmapped object icon, 4-12
unpacking, data, 3-49

USE_CACHE configuration, 3-9
user-declared macros, 3-32
utilities

archiver (elfar.exe), 6-1

producing relocatable object files, B-7

Vv
-version (display version)
archiver switch, 6-16
linker switch, 2-64
version information
built in with archiver, 6-7
user-defined, 6-8
_ VERSION__ LDF macro, 3-35
_ VERSIONNUM___ LDF macro, 3-35
Visual DSP++
archiver, 6-1
Assemble page, 2-8
Expert Linker, 4-2
integrated development and debugging
environment (IDDE), 2-2
librarian, 6-1
project builds, 2-7
Project Options dialog box, 2-7, 2-8
running linker from, 2-7
setting assembler options, 2-8
setting options, 2-8
__VISUALDSPVERSION___ LDF macro,
3-33
voldata input section, 2-22
vtbl input section, 2-19, 2-24
-v (verbose)
archiver switch, 6-16
linker switch, 2-64
Memlnit switch, 7-18

\\4

warnings, linker, 2-10

I-18 Visual DSP++ 5.0 Linker and Utilites Manual

-warnonce (single symbol warning) linker
switch, 2-64
-Werror num (override warning message) linker
switch, 2-57
width, memory segment, 4-30
WIDTH() command, 3-47
wildcard characters
in section names, 2-35, 3-36
specifying archive files, 6-16
using in archiver, 6-6
wizards, Create LDF, 4-4
-Wnnnn archiver switch, 6-16
-Wnumber (warning suppression) linker switch,
2-57
word width (number of bits), 3-47
-w (remove warning) archiver switch, 6-16
-Wwarn num (override error message) linker

switch, 2-57

Index

X

xmlmap2html.exe command-line utility, 2-55
xml map file
description, A-6
generating, 2-55
MAP filename command, 3-43
opening in Web browser, 2-55
XREF keyword, 3-23
XSLT, language for transforming XML
documents, 2-55

Z

ZERO_INIT qualifier, 7-7
defined, 3-63
example, 7-9
-IgnoreSection switch, 7-16
--NoAuto switch, 7-17
-Section switch, 7-18

Visual DSP++ 5.0 Linker and Utilites Manual

I-19

	Linker and Utilities Manual
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD
	EngineerZone
	Social Networking Web Sites

	Notation Conventions

	1 Introduction
	Software Development Flow
	Compiling and Assembling
	Inputs – C/C++ and Assembly Sources
	Input Section Directives in Assembly Code
	Input Section Directives in C/C++ Source Files

	Linking
	Linker and Assembler Preprocessor

	Loading and Splitting

	2 Linker
	Linker Operation
	Directing Linker Operation
	Linking Process Rules
	Linker Description File Overview

	Linking Environment for Windows
	Project Builds
	Expert Linker

	Linker Warning and Error Messages
	Link Target Description
	Representing Memory Architecture
	Specifying the Memory Map
	Memory Usage and Default Memory Segments
	Default Memory Segments for SHARC Processors
	Other Memory Segments

	Default Memory Segments for TigerSHARC Processors
	Other Memory Segments

	Default Memory Segments for Blackfin Processors
	Other Memory Segments

	Blackfin Special “Table” Input Sections
	Input Sections in Blackfin Default LDFs for User Code/Data
	Memory Characteristics Overview
	SHARC Memory Characteristics
	TigerSHARC Memory Characteristics
	Blackfin Memory Characteristics

	Linker MEMORY{} Command in an LDF
	Entry Address
	Wildcard Characters

	Placing Code on the Target
	Specifying Two Buffers in Different Memory Segments
	Linking with Attributes – Overview

	Profile-Guided Optimization Support
	Passing Arguments for Simulation or Emulation

	Linker Command-Line Reference
	Linker Command-Line Syntax
	Command-Line Object Files
	Command-Line File Names
	Object File Types

	Linker Command-Line Switches
	Linker Switch Summary and Descriptions
	@filename
	-Dprocessor
	-L path
	-M
	-MM
	-Map filename
	-MDmacro[=def]
	-MUDmacro
	-S
	-T filename
	-Werror [number]
	-Wwarn [number]
	-Wnumber[,number]
	-e
	-ek sectionName
	-es sectionName
	-entry
	-ev
	-flags-meminit -opt1[,-opt2...]
	-flags-pp-opt1[,-opt2...]
	-h[elp]
	-i|I directory
	-ip
	-jcs2l
	-jcs2l+
	-keep symbolName
	-meminit
	-nomemcheck
	-o filename
	-od directory
	-pp
	-proc processor
	-reserve-null
	-s
	-save-temps
	-si-revision version
	-sp
	-t
	-tx
	-v[erbose]
	-version
	-warnonce
	-xref

	3 Linker Description File
	LDF File Overview
	Blackfin-Generated LDFs
	Default LDFs
	Example 1 – Basic LDF for Blackfin Processors
	Memory Usage in Blackfin Processors

	Example 2 – Basic LDF for TigerSHARC Processors
	Example 3 – Basic LDF for SHARC Processors
	Common Notes on Basic LDF Examples

	LDF File Structure
	Command Scoping

	LDF Expressions
	LDF Keywords, Commands, and Operators
	LDF Keywords
	Miscellaneous LDF Keywords
	LDF Operators
	ABSOLUTE() Operator
	ADDR() Operator
	DEFINED() Operator
	MEMORY_END() Operator
	MEMORY_SIZEOF() Operator
	MEMORY_START() Operator
	SIZEOF() Operator
	Location Counter (.)

	LDF Macros
	Built-In LDF Macros
	User-Declared Macros
	LDF Macros and Command-Line Interaction

	Built-in Preprocessor Macros
	__VISUALDSPVERSION__
	__VERSIONNUM__
	__VERSION__
	__SILICON_REVISION__
	__MEMINIT__

	LDF Commands
	ALIGN()
	ARCHITECTURE()
	COMMON_MEMORY{}
	ELIMINATE()
	ELIMINATE_SECTIONS()
	ENTRY()
	INCLUDE()
	INPUT_SECTION_ALIGN()
	KEEP()
	KEEP_SECTIONS()
	LINK_AGAINST()
	MAP()
	MEMORY{}
	Segment Declarations
	segment_name
	START(address_number)
	TYPE()
	LENGTH(length_number)/END(address_number)
	WIDTH(width_number)

	MPMEMORY{}
	OVERLAY_GROUP{}
	PACKING()
	Packing in SHARC Processors
	Overlay Packing Formats in SHARC Processors
	External Execution Packing in SHARC Processors

	PLIT{}
	PROCESSOR{}
	RESERVE()
	Linker Error Resolutions
	Example

	RESERVE_EXPAND()
	RESOLVE()
	Potential Problem with Symbol Definition
	SEARCH_DIR()
	SECTIONS{}
	INPUT_SECTIONS()
	Using an Optional Filter Expression

	INPUT_SECTIONS_PIN/_PIN_EXCLUSIVE Commands
	expression
	FILL(hex number)
	PLIT{plit_commands}
	OVERLAY_INPUT{overlay_commands}
	FORCE_CONTIGUITY/NOFORCE_CONTIGUITY
	SHARED_MEMORY{}

	4 Expert Linker
	Expert Linker Overview
	Launching the Create LDF Wizard
	Step 1: Specifying Project Information
	Step 2: Specifying System Information
	Step 3: Completing the LDF Wizard

	Expert Linker Window Overview
	Input Sections Pane
	Input Sections Menu
	Mapping an Input Section to an Output Section
	Viewing Icons and Colors
	Sorting Objects

	Memory Map Pane
	Context Menu
	Tree View Memory Map Representation
	Graphical View Memory Map Representation
	Specifying Pre- and Post-Link Memory Map View
	Zooming In and Out on the Memory Map
	Adding a Memory Segment
	Inserting a Gap Into a Memory Segment
	Working With Overlays
	Viewing Section Contents
	Viewing Symbols
	Profiling Object Sections
	Adding Shared Memory Segments and Linking Object Files

	Managing Object Properties
	Managing General Global Properties
	Managing Processor Properties
	Managing PLIT Properties for Overlays
	Managing Elimination Properties
	Managing Symbols Properties
	Managing Memory Segment Properties
	Managing Output Section Properties
	Managing Packing Properties
	Managing Alignment and Fill Properties
	Managing Overlay Properties
	Managing Stack and Heap in Processor Memory
	Managing Shared Memory Properties

	5 Memory Overlays and Advanced LDF Commands
	Overview
	Memory Management Using Overlays
	Introduction to Memory Overlays
	Overlay Managers
	Breakpoints on Overlays

	Memory Overlay Support
	Example – Managing Two Overlays
	Linker-Generated Constants
	Overlay Word Sizes
	Storing Overlay ID
	Overlay Manager Function Summary
	Reducing Overlay Manager Overhead
	Using PLIT{} and Overlay Manager
	Inter-Overlay Calls
	Inter-Processor Calls

	Advanced LDF Commands
	OVERLAY_GROUP{}
	Ungrouped Overlay Execution
	Grouped Overlay Execution

	PLIT{}
	PLIT Syntax
	Command Evaluation and Setup
	Overlay PLIT Requirements and PLIT Examples
	PLIT – Summary

	Linking Multiprocessor Systems
	Selecting Code and Data for Placement
	Using LDF Macros for Placement

	Mapping by Section Name
	Mapping Using Attributes
	Mapping Using Archives
	MPMEMORY{}
	SHARED_MEMORY{}
	COMMON_MEMORY{}

	6 Archiver
	Introduction
	Archiver Guide
	Creating a Library
	Making Archived Functions Usable
	Writing Archive Routines: Creating Entry Points
	Accessing Archived Functions From Your Code
	Specifying Object Files
	Tagging an Archive With Version Information
	Basic Version Information
	User-Defined Version Information
	Printing Version Information
	Removing Version Information From an Archive
	Checking Version Number

	Archiver Symbol Name Encryption

	Archiver Command-Line Reference
	elfar Command Syntax
	Archiver Parameters and Switches
	Command-Line Constraints

	7 Memory Initializer
	Memory Initializer Overview
	Basic Operation of Memory Initializer
	Input and Output Files

	Initialization Stream Structure
	Run-Time Library Routine Basic Operation
	Using Memory Initializer
	Preparing the Linker Description File (.ldf)
	Preparing the Source Files
	Invoking Memory Initializer
	Invoking meminit from the VisualDSP++ IDDE
	Invoking meminit from the Command Line
	Invoking meminit from the Linker’s Command Line
	Invoking meminit from the Compiler’s Command Line
	Invoking meminit with Callback Executables

	Memory Initializer Command-Line Switches
	-BeginInit Initsymbol
	-h[elp]
	-IgnoreSection Sectionname
	-Init Initcode.dxe
	InputFile.dxe
	-NoAuto
	-NoErase
	-o Outputfile.dxe
	-Section Sectionname
	-v

	A File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files (.asm)
	Assembly Initialization Data Files (.dat)
	Header Files (.h)
	Linker Description Files (.ldf)
	Linker Command-Line Files (.txt)

	Build Files
	Assembler Object Files (.doj)
	Library Files (.dlb)
	Linker Output Files (.dxe, .sm, and .ovl)
	Memory Map Files (.xml)
	Loader Output Files in Intel Hex-32 Format (.ldr)
	Splitter Output Files in ASCII Format (.ldr)

	Debugger Files
	Format References

	B Utilities
	elfdump – ELF File Dumper
	Disassembling a Library Member
	Dumping Overlay Library Files

	elfpatch
	Extracting a Section in an ELF File
	Replacing Raw Contents of a Section in an ELF File

	plinker

	C LDF Programming Examples for Blackfin Processors
	Linking for a Single-Processor System
	Linking Large Uninitialized or Zero-initialized Variables

	D LDF Programming Examples for SHARC Processors
	Linking a Single-Processor SHARC System
	Linking Large Uninitialized Variables
	Linking for MP and Shared Memory
	Reflective Semaphores

	E LDF Programming Examples for TigerSHARC Processors
	Linking a Single-Processor System
	Linking Large Uninitialized or Zero-Initialized Variables
	Linking an ADSP-TS101 MP Shared Memory System

	I Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

