
Engineer-to-Engineer Note EE-296

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using the UART Port Controller on SHARC® Processors
Contributed by Divya Sunkara Rev 2 – July 5, 2007

Copyright 2006-2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
Universal asynchronous receiver transmitters
(UARTs) are asynchronous serial
communication peripherals that convert parallel
data to serial data at the transmitter end and
convert serial data into parallel data at the
receiver end. These devices are capable of full-
duplex communication over EIA-232E (formally
referred to as RS-232) serial communication
links.

This EE-Note describes UART characteristics
and the programming required to configure
communication between the ADSP-21371
ADSP-21375, ADSP-21367, ADSP-21368, and
ADSP-21369 SHARC® processor’s UART port
controller and other asynchronous serial
communication devices.

The ADSP-21367, ADSP-21368,
ADSP-21369 SHARC processors have
two UARTs, while the ADSP-21371
and ADSP-21375 SHARC processors
have one. Hereafter, we will
representatively refer to all of them as
ADSP-21368 processors.

UART Data Frame
Figure 1 shows a typical UART data frame,
which comprises a start bit followed by data bits
and a stop bit. The parity bit, which can be
selected for even or odd parity, is used for error
detection. The total length of data bits in a frame

(excluding start, stop, and parity bits) may be of
any length varying from 5 to 8. The number of
stop bits per frame can be programmed to be 1
or 2. Considering all these variations, a UART
data frame length can vary between 7 and 12
bits. The frame's start bit is an active low bit and
is detected at the falling edge; the stop bit is an
active high bit and is detected at the rising edge.
Both the transmitter end and the receiver end
must be given identical baud rates for proper
communication between them.

Figure 1. UART data frame

Synchronization Effects

When two UARTs communicate, the transmitter
and receiver depend on the baud rate at which
data is being transmitted. The transmitter
transmits data at the given baud rate, and the
receiver detects the start of the frame and then
reads data by sampling at the same baud rate.
Because the receiver does not know when the
data frame arrives with respect to the receiver
clock, the communication is termed
asynchronous. Since the receiver has to detect
the start of the frame, the logic at the receiver
side is more complex than the transmitter side.

 a

Using the UART Port Controller on SHARC® Processors (EE-296) Page 2 of 7

Based on the communication protocol, the
receiver clock generated at the receiver side is 16
times the baud rate. Figure 2 shows the protocol
used by the receivers to synchronize to the data
frame. The receiver detects the start of a frame at
the falling edge of an active low start bit when
the data signal transitions from its stop bit or its
idle condition. At this falling edge, the receiver
resets its clock counter and expects to find the
midpoint of the start bit after eight clock cycles.
The start bit is re-sampled at the midpoint in
order to verify that the initially detected falling
edge is not noise or a glitch. It then samples the
next bit after 16 clock cycles, which is shown as
the midpoint of the D0 bit in Figure 2.

Figure 2. UART synchronization effects

Because the UART receiver re-synchronizes at
the start of each frame, sampling errors do not
accumulate beyond the stop bit of the previous
frame. Hence, sampling errors are a concern
within a data frame, but not in the entire
transmitted data signal. Sampling errors occur
usually due to a synchronization error between
the receiver clock and the received data frame.
This error builds over the entire frame and shifts
the sampling point of a data bit closer to the
transition edges. Due to the slow rise and fall
times of these transition edges, this may lead to
detection of erroneous data. The slow rise and
fall times occur due to the high capacitance of
the transmission wires. When the stop bit is
sampled low instead of high, a framing error
occurs. Since the baud rate for the UART on the
processor side is derived from the processor’s
peripheral clock, the required generated baud

rate may not be exact. This error may further
lead to timing variations on the transmitter and
receiver, which can lead to faulty data sampling.

UART External Interface
The EIA-232E interface is used to communicate
with other external serial communication devices
(such as a PC). The EIA-232E has the same data
format as that of a UART, but with different
voltage level detection (see Figure 3). The
standard output voltage level of an EIA-232E
interface usually ranges between +12V and -12V
with a dead area of +3V to -3V to absorb line
noise. Hence, the EIA-232E data is bipolar with
+3V to +12V, indicating an on-state or 0-state
(SPACE) condition. The -3V to -12V range
indicates an off-state or 1-state (MARK).

Figure 3. EIA-232E data logic levels

Because the UART port controller in the 21368
processors produce signals at lower logic levels,
an EIA-232E transceiver (see Figure 4) is
required to convert the UART signal levels to
EIA-232E levels and vice versa. The ADM3202
in Figure 4 has step-up voltage converters
coupled with level-shifting transmitters and
receivers that operate at a power supply voltage
of 3.3V. This EIA-232E transceiver is required
to communicate with other external devices. For
details on the specifications and internal
circuitry, refer to the ADM3202 data sheet. DB9
connectors are used to make physical
connections between two serial communicating
devices using EIA-232E cables.

 a

Using the UART Port Controller on SHARC® Processors (EE-296) Page 3 of 7

Figure 4 shows interface connections and the
devices required to allow the ADSP-21368

UART port controller communicate with external
serial devices such as a PC.

Figure 4. Connections and devices required to use the UART port controller signals on ADSP-21368 Processors

Each device capable of EIA-232E
communication is termed as a DTE (data
terminal equipment) or a DCE (data
communication equipment) device. You must
know whether the communicating devices are
DCE or DTE devices in order to use proper
connection cables between them. Figure 5 shows
the pin labeling of a DB9 connector.

Based on these pin designations, a serial
communication device with a DB9 connector
(male or female) can be determined as a DTE or
DCE device using a simple DC voltage

measurements on pin 2 and pin 3 with respect to
pin 5 (signal ground).

When the serial communication device is
powered and is not sending data, one of these
pins (either pin 2 or pin 3) will have a negative
voltage less than -3V and the other pin will have
little or no voltage. If the voltage on pin 2 is
more negative than -3V, the device is termed as a
DCE device; if pin 3 has a more negative
voltage, the device is termed as a DTE.

 a

Using the UART Port Controller on SHARC® Processors (EE-296) Page 4 of 7

Pin Signal Pin Signal
1 Data Carrier Detect 6 Data Set Ready

2 Received Data 7 Request to Send

3 Transmitted Data 8 Clear to Send

4 Data Terminal Ready 9 Ring Indicator

5 Signal Ground

Figure 5. DB9 connector pins

A straight-through cable is required for DTE-
DCE device communication. DTE-DTE device
communication requires a cross-over cable,
commonly called a null-modem cable. DCE-
DCE device communication requires a cross-
over cable called a tail circuit cable. The ADSP-
21369 and ADSP-21375 EZ-KIT Lite®
evaluation systems have a more negative voltage
on pin 2 of its DB9 connector (DCE). Windows-
based PCs are DTE devices; hence,
communication between an EZ-KIT Lite and a
PC requires a straight-through cable connection
between them. In Figure 5, pins 2 and 3 are used
for transmitting or receiving and the other pins
are used primarily for hardware handshaking
between the communication devices. There is no
handshaking support for the UART peripherals
in these processors and hence handshaking
signals are looped back as shown in Figure 4.

Programming Techniques
This section discusses programming techniques
required for looped-back full-duplex DMA,
UART interrupts, and communication with a PC
for ADSP-21368 processors.

Full-Duplex DMA

Because the UART is a full-duplex peripheral,
the transmitter and receiver operate
simultaneously and independent of each other.
When performing a full-duplex DMA in loop-
back mode, (in which the transmitter output is
connected to the receiver input), ensure that the
receiver side of the UART is enabled before the
transmitter side in order to avoid any loss of data
on the receiver side. Listing 1 shows an example
of full-duplex DMA on UART0 in loop-back
mode.

#include <def21367.h>
.section/dm seg_dmda;
.var source1[8] = 0x11,
 0x22,
 0x33,
 0x44,
 0x55,
 0x66,
 0x77,
 0x88;
.var receive1[8];

.section/pm seg_pmco;
_main:

SRU2(UART0_TX_O,UART0_RX_I);
/* UART transmit signal is connected
to the receive input */

/* Sets the Baud rate for UART0 */
ustat1= UARTDLAB;
dm(UART0LCR) = ustat1;

/*enables access to Divisor register
to set baud rate for UART0 */

r0=0x8b; dm(UART0DLL) = r0;
r0=0x2; dm(UART0DLH) = r0;

/*0x28b = 651 for divisor value and
gives a baud rate of19200 at a core
clock of 400Mhz */

/* Configure the UART0 line control
register */
ustat1 = UARTWLS8| /* word length 8 */
 UARTPEN; /* parity enable
odd parity */

dm(UART0LCR) = ustat1; /* sets UART0
Line with one stop bit, odd parity and
with baud rate of 19200 */

 a

Using the UART Port Controller on SHARC® Processors (EE-296) Page 5 of 7

/* UART0 receiver is configured in DMA
mode*/
ustat1 = 0;
dm(UART0RXCTL) = ustat1; /* clears
the UART receive control register */

/* set the DMA parameter registers */
r0=receive1; dm(IIUART0RX) = r0;
r0 = 1; dm(IMUART0RX) = r0;
r0 = length(receive1);
dm(CUART0RX)=r0;
ustat1= UARTEN| UARTDEN;
dm(UART0RXCTL) = ustat1; /* Enables
UART0 in receive DMA mode */

/* UART0 transmitter is configured in
DMA mode */
ustat1 = 0;
dm(UART0TXCTL) = ustat1;
/* clears the UART0 transmit control
register */

/* Set the DMA transmit parameter
registers */
r0=source1;
dm(IIUART0TX) =r0;
r0= 1;
dm(IMUART0TX) =r0;
r0 = length(source1);
dm(CUART0TX) =r0;
ustat1 = UARTEN | UARTDEN;
dm(UART0TXCTL) = ustat1;
/* Enables UART0 transmit DMA mode; */

/* UART0 receiver Status polling */
waiting1: ustat2 = dm(UART0RXSTAT);
/* poll to ensure receive DMA of UART0
is done */
bit tst ustat2 UARTDMASTAT;
if tf jump waiting1;

ustat1 = 0;
dm(UART0RXCTL) = ustat1;
/* Disable UART0 receive */
dm(UART0TXCTL) = ustat1;
/* Disable UART0 transmit */

_main.end: jump(pc,0);

Listing 1. Full-duplex DMA on UART0 in loop-back
mode

UART Interrupts

Two steps are required to enable UART
interrupts in I/O mode. Be careful while using
UART interrupts in I/O mode because all
interrupts are grouped as a single receive
interrupt. First, you must map the UART
interrupts to one of the interrupts in the interrupt
vector table. Use the DAI interrupt directly, by
programming the DAI interrupt control register,
or map the UART to any of the peripheral
interrupt sources. This can be achieved by
changing the default source of the peripheral
interrupt priority control register with the UART
source, using the interrupt select values of the
UART receive interrupt. The receive interrupt
select values for UART0 and UART1 are 0x13
and 0x14, respectively. Listing 2 illustrates the
mapping of UART receive interrupt to the DAI
interrupt.

bit set mode1 IRPTEN; /* enables
global interrupts */

bit set imask DPII; /* unmasks DPI
interrupt */

ustat1 = UART0_RX_INT;
dm(DPI_IRPTL_RE) = ustat1; /* Enables
transmit interrupt in I/O mode */

Listing 2. Mapping UART receive interrupt to the DAI
interrupt

Listing 3 illustrates the mapping of the interrupt
to peripheral 14 interrupt using the peripheral
interrupt control register. For details on
programming the peripheral interrupt control
register, refer to the ADSP-21368 SHARC
Processor Hardware Reference [1].

 a

Using the UART Port Controller on SHARC® Processors (EE-296) Page 6 of 7

#define MASKP14 (0x1f<<10)
#define UART0Rx (0x13<<10)

bit set mode1 IRPTEN;

/* Maps the UART0 receive interrupt to
P14 using the programmable interrupt
controller */

ustat1 = dm(PICR2);
bit clr ustat1 MASKP14;
bit set ustat1 UART0Rx;
dm(PICR2) = ustat1;

bit set IMASK P14I; /*Unmasks the
UART Receive interrupt */

Listing 3. Mapping interrupt to peripheral 14 interrupt
using peripheral interrupt control register

The second step in I/O mode involves enabling
the UART interrupts internally by setting the
corresponding bits in the UART interrupt enable
register (UARTxIER). Enable the interrupt
internally after all the UART settings (such as
word length, parity, and so on) have been
programmed, because in transmit mode as soon
as the transmit buffer empty bit is enabled in the
UARTxIER register, it vectors to the interrupt. If
this bit is enabled before any of the UART
settings are programmed, the data transmitted in
the transmit interrupt service routine does not
comply with the UART settings that are
programmed later, leading to a communication
error. In DMA mode, it is enough to enable the
corresponding interrupt for transmit or receive
DMA as described in step one of I/O mode. You
need not enable the interrupts internally using the
UARTxIER register in DMA mode for transmit or
receive interrupts. For line status interrupts
caused due by parity error, overrun errors,
framing errors, or address detect interrupts, the
corresponding interrupt in the UARTxIER register
must be enabled even in DMA mode.

While using UART interrupts, do not open the
UART register window (the UART registers in
this window affect the peripheral’s interrupt
status) in VisualDSP++® while running or
stepping through the code. Doing so would clear

the interrupt latches as a result of the emulator
constantly trying to read these registers when the
window is open. For information on bits in the
UART registers, refer to the Hardware Reference
Manual [1].

Communication with PC

For communication with a PC, ensure that the
internal settings programmed in the UART
match the configurations of the COM port by
using Windows® HyperTerminal. Listing 4
shows the UART initializations used for
communicating with PC. The UART settings in
the program match the configurations of
Windows HyperTerminal shown in Figure 6.

.SECTION / CODE program;

.section/pm seg_pmco;
_initUART:

/* Sets the Baud rate for UART0 */
ustat1= UARTDLAB;
dm(UART0LCR) = ustat1; /*enables
access to Divisor register to set baud
rate for UART0 */

r0=0x1c; dm(UART0DLL) = r0;
r0=0x2; dm(UART0DLH) = r0; //0x21c =
540 for divisor value and gives a baud
rate of 19200 at 331.776Mhz core clock

/* Configures the UART LCR */
ustat1 = UARTWLS8| /* word length 8 */
 UARTPEN| /* parity enable
for odd parity */
 UARTSTB ; /* two stop bits */
dm(UART0LCR) = ustat1; /* sets UART0
Line with one stop bit, odd parity and
with baud rate of 19200 */

ustat1 = UARTEN;
dm(UART0TXCTL) = ustat1; /* enable
UART0 transmitter */

ustat1 = UARTEN;
dm(UART0RXCTL) = ustat1; /* enables
UART0 in receive mode */
_initUART.end:

Listing 4. Initializing a UART to communicate with a
PC

 a

Using the UART Port Controller on SHARC® Processors (EE-296) Page 7 of 7

Figure 6. Configuring windows hyperterminal

Conclusion
This document discusses the characteristics of
UART port controller and its external interface.
It also discusses key programming techniques on
different aspects of the peripheral that require
attention for proper functioning.

References
[1] ADSP-21368 SHARC Processor Hardware Reference, Revision 1.0, September 2006. Analog Devices, Inc.

[2] ADSP-21367/ADSP-21368/ADSP-21369 SHARC Processor Data Sheet, Revision A, August 2006, Analog Devices, Inc.

[3] ADSP-21371: High Performance 32-bit Floating-Point SHARC Processor for Automotive Audio Preliminary Data Sheet,
Revision PrA, June 2006, Analog Devices, Inc.

[4] ADSP-21375: 266 MHz High Performance SHARC Processor Preliminary Data Sheet, Revision PrB, December 2005,
Analog Devices, Inc.

[5] ADSP-21369 EZ-KIT Lite Evaluation System Manual, Revision 2.1, August 2006, Analog Devices, Inc.

[6] ADSP-21375 EZ-KIT Lite Evaluation System Manual, Revision 1.0, September 2006, Analog Devices, Inc.

[7] ADM3202 – High-Speed, 2-Channel RS232/V.28 Interface Devices, Revision D, Analog Devices, Inc.

Document History

Revision Description

Rev 2 – July 5, 2007
by Divya Sunkara

Updated the external interface diagram in Figure 4. Connected the CTS and RTS
signal as there is no support for handshaking

Rev 1 – November 20, 2006
by Divya Sunkara

Initial release

	Introduction
	UART Data Frame
	Synchronization Effects

	UART External Interface
	Programming Techniques
	Full-Duplex DMA
	UART Interrupts
	Communication with PC

	Conclusion
	References
	Document History

