
Engineer-to-Engineer Note EE-320

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Implementing an Ogg Vorbis Decoder on SHARC® Processors
Contributed by Jeyanthi Jegadeesan and Kulin Seth Rev 1 – June 10, 2008

Copyright 2008, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note discusses the real-time implementation of an Ogg-Vorbis decoder on SHARC® processors.
The Ogg Vorbis decoder is implemented on the ADSP-21364 and ADSP-21369 SHARC processors,
although the same concepts apply for all ADSP-2136x SHARC processors. The ADSP-21364 and ADSP-
21369 EZ-KIT Lite® boards are used as the hardware platform, and the VisualDSP++® development
tools are used for the software development of the application. The VisualDSP++ source code for the
decoder application is provided with this EE-Note in the associated .ZIP file.

Throughout this document, details about the following items will be broadly addressed:

 Ogg Vorbis codecs

 Visual C++ as a cross-reference tool

 Architectural advantages of ADSP-2136x SHARC processors

 Decoder workflow

 Implementation on ADSP-2136x SHARC processors

 Features of VisualDSP++ tools

 Optimization

 MIPS calculation

Ogg Vorbis Codecs
Ogg is the Xiph.org foundation’s container format that holds multimedia data. Vorbis is a fully open,
patent-free, royalty-free audio compression format, which uses Ogg format to store its bit streams as files.
In many respects, Vorbis is similar in function to the MPEG-1/2 layer 3 (MP3) format and the newer
MPEG-4 (AAC) format. This codec was designed for mid-to-high quality (8-kHz to 48-kHz bandwidth,
>16-bit, polyphonic) audio at variable bit rates from 16 to 128 Kbps/channel, so it is an ideal format for
music. The Ogg transport bit stream is designed to provide framing, error protection and seeking structure
for higher-level codec streams that consist of raw, unencapsulated data packets, such as the Vorbis audio
codec or Tarkin video codec. Vorbis encodes short-time blocks of PCM data into raw packets of bit-
packed data. These raw packets may be used directly by transport mechanisms that provide their own
framing and packet-separation mechanisms (such as UDP datagrams). For stream-based storage (such as
files) and transport (such as TCP streams or pipes), Vorbis uses the Ogg bit stream format to provide
framing/sync, sync recapture after error, landmarks during seeking, and enough information to properly

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 2 of 24

separate data back into packets at the original packet boundaries without relying on decoding to find
packet boundaries. Refer to Appendix A ⎯ Ogg Details for more Ogg details. For information about
Vorbis packets, refer to Appendix B – Vorbis Details.

Real-Time Implementation
The real-time implementation of the decoder includes understanding the existing non-real-time open
source code and modification of it to use the SHARC processor architectural features. The existing open
source code reads the .ogg files from the hard disk of the PC and stores the decoded PCM samples to the
output .dat file. Visual C++ tools are used as a cross-reference tool for understanding and verifying the
open source code.

Once the code has been validated using the Visual C++ tools, the code is ported to a SHARC processor
using the VisualDSP++ tools. Initially, the decoder application is validated using the file I/O operation.
Later, the code is modified to read the input .ogg file from the parallel flash on the EZ-KIT Lite board.
The decoded PCM samples are sent using the serial port to the DAC of the AD1835 codec on the EZ-KIT
Lite board. The decoder is implemented in such a way that it utilizes the architectural features of the
processor more efficiently. Once the decoder is implemented, it is optimized further to improve
performance. The decoder application uses some VisualDSP++ features for optimization. The following
sections discuss in detail the implementation of the decoder on SHARC processors.

Using Visual C++ as a Reference Platform

The open source code for the Ogg Vorbis decoder is available from Xiph.org. This EE-Note uses the
Vorbis Library 1.1.2 (libvorbis) source code, which is a floating-point implementation. This code is tested
using the Visual C++ tools. The open source code is implemented with generic platforms in mind. The
Visual C++ source code is modified to run and be tested on the PC. This code is used as the reference for
the code implemented in the VisualDSP++ development tools. This stage includes modifying some header
files and defining the required macros for the Visual C++ project. The code is also modified to read the
.ogg file from the PC’s hard disk and to write the PCM data to a .dat file on the hard disk. The PCM data
file is converted into a .wav file and is played using the standard player for testing.

Advantages of using the Visual C++ tools as a reference include:

 Validation of results when testing the same code on other platforms. After running the code
successfully on Visual C++ tools, it is easier to compare the results, and solve the problems. (In this
case, it is VisualDSP++ tools.)

 Visual C++ Debugger features, like stepping through code, helps the user to understand the program
and data flow. The behavior of various functions and variables can be determined easily in the Visual
C++ tools, which can be used as the reference.

 Unwanted code and functions that are not used by the decoder can be removed and tested easily.

 The primary level optimization which is not related to the processor architecture can be implemented
in Visual C++ tools conveniently.

 Debugging and code execution is faster with the Visual C++ tools.

 Last but not least, Visual C++ tools provide confidence that the code works correctly and can be
implemented on other platforms.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 3 of 24

Architectural Advantages of SHARC Processors

ADSP-2136x SHARC processors are highly integrated, 32/40-bit, floating-point processors optimized for
high-performance audio processing. The processor core runs at higher speed up to 400 MHz. The I/O
processor runs in the background without interrupting the core processor. Internal memory is divided in to
4 blocks in such a way that the processor core and I/O processor can access internal memory at the same
time. The following architectural advantages of the processor are used for the algorithm development:

High Speed
The processor core runs at up to 400 MHz to achieve maximum performance.

I/O Processor
The I/O processor is used to get the input data from the flash memory and to send the decoded PCM data
over the serial port. DMA is used for the input and output parts. The I/O processor, which runs in the
background, fetches data from the external flash to the internal memory for the decoder to process and
also sends the decoded data to the DAC via the serial port. This allows the core to run without
interruption. The Vorbis decoder algorithm runs on the core, and the DMA controller takes care of the
input and output data of the decoder in parallel.

On-chip Memory Blocks
The internal memory of the ADSP-2136x SHARC processor has 4 blocks. The core has the PM and DM
data buses for core accesses, and the I/O processor has a dedicated bus for DMA accesses. The code is
placed in the internal memory block 0, the data used by the core is placed in block 1, and the data used by
the DMA controller is placed in block 2. Block 3 has some of the data used by the core and DMA
controller. This effectively ensures that the core can simultaneously execute code from one block and
access data from other block, and at the same time the I/O processor accesses the other blocks for DMA.

External Port on the ADSP-21369 Processor
The external port of the processor supports both the AMI and SDRAM interfaces. The AMI interface
allows the processor to connect to asynchronous memory devices like flash and SRAM. The on-chip
SDRAM controller allows the processor to interface with any SDRAM device without additional glue
logic. The processor can interface up to a maximum of 254 MB SDRAM to 4 external banks or up to
62 MB asynchronous memory using the AMI interface. The SDRAM can be interfaced up to a maximum
speed of 166 MHz, and the AMI devices can be interfaced up to the speed of 66 MHz. The DMA
controller supports reading the data into the internal memory with packing enabled or disabled.

The decoder uses external port DMA with packing disabled. This allows the data to be read as 8-bit data
into internal memory, and the decoder directly operates on this data. The AMI interface connects to the
parallel flash on the EZ-KIT Lite board. The input .ogg file, which is programmed on the flash, is read
using external port DMA. The SDRAM on the EZ-KIT Lite board is used for placing part of the data used
by the decoder. Since the internal memory of the processor is not sufficient for the dynamic memory
allocated by the decoder, the heap is placed on the external SDRAM.

Parallel Port on the ADSP-21364 Processor
The parallel port on the ADSP-21364 processor provides the interface to asynchronous 8-bit and 16-bit
memory. The parallel port supports a 56-Mbytes per second transfer rate (CCLK/6) and 256-word page
boundaries. The on-chip DMA controller automatically packs external data into the appropriate word

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 4 of 24

width during transfers. The parallel port supports packing of 32-bit words into 8- or 16-bit external
memory and programmable external data access duration from 3 to 32 clock cycles.

Serial Ports (SPORTs)
SPORTs provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices.
The SPORTs can operate at up to one-eighth the core clock (CCLK) rate. They allow the processor to
interface with codecs and high-speed data converters. On the EZ-KIT Lite board, the SPORT is connected
to the DAC of the AD1835 codec. The decoded PCM data is transferred to the DAC over the SPORT. The
output of the DAC, available on some of the headers, can be connected to speakers or a head phone.

Digital Application Interface (DAI)
The Signal Routing Unit (SRU) on the processor connects the peripherals to the pins or to each other. This
allows the peripherals to be suited for a wide variety of systems. On the ADSP-21369 EZ-KIT Lite board,
the SRU interface connects serial port signals to the DAC using DAI pins.

Development Tools

VisualDSP++ is the integrated software development platform used to develop applications on SHARC
processors. It allows users to move easily between editing, building, and debugging activities. It also helps
users to perform various levels of optimization to the generated code. The code profiling tool of
VisualDSP++ helps users to identify the amount of time spent on a function.

The EZ-KIT Lite board is the hardware platform used for developing the application. The following
ADSP-21364 and ADSP-21369 EZ-KIT Lite board’s features are used for the real-time implementation.

Parallel Flash
The EZ-KIT Lite board has 1 MB of 8-bit parallel flash (AM29LV08IB) which is connected to the
external port of the ADSP-21369 processor on the ADSP-21369 EZ-KIT Lite board and to the parallel
port of the ADSP-21364 processor on the ADSP-21364 EZ-KIT Lite board. This parallel flash is used to
store the compressed audio song in .ogg format. Since the flash on the EZ-KIT Lite board is 1 MB, the
current implementations of the Ogg Vorbis decoder are tested only for the song size of 1 MB.

AD1835A Codec
The AD1835A is a high-performance, single-chip codec, featuring four stereo digital-to analog converters
(DACs) for audio output and one stereo analog-to-digital converter (ADC) for audio input. The codec can
input and output data at a sample rate of up to 96 kHz on all channels. A 192-kHz sample rate can be used
with the one of the DAC channels. The serial port of the processor is interfaced with the AD1835A via the
DAI port. The master input clock (MCLK) for the AD1835A can be generated by the on-board 12.288-MHz
oscillator or can be supplied by one of the DAI pins of the processor. The AD1835A codec can be
configured as a master or as a slave, depending on DIP switch settings. In master mode, the AD1835A
drives the serial port clock and frame sync signals to the processor. The AD1835A audio codec’s internal
configuration registers are configured using the SPI port of the processor. The DACs of the codec were
used for the output of the decoded song.

Figure 1 explains the block diagram of the Ogg Vorbis decoder application on the EZ-KIT Lite board.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 5 of 24

Figure 1. Overview of the Ogg Vorbis application

Dataflow of the Decoder
Vorbis I uses four types of packets in the compressed audio stream (three headers and one audio packet).
Before decoding can begin, a decoder must initialize using the bit stream headers matching the stream to
be decoded. Once set up, decoding may begin at any audio packet belonging to the Vorbis stream. In
Vorbis I, all packets after the three initial headers are audio packets. The header packets are (in order) the
identification header, the comments header, and the setup header. The decoder initially decodes the header
information from the incoming stream and then starts decoding the audio packets. Figure 2 shows the
generic algorithm for the Ogg Vorbis decoder workflow.

Figure 2. Flow of the Ogg Vorbis code

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 6 of 24

Implementation on SHARC Processors

VisualDSP++ File I/O

The Visual C++ code is directly ported to the VisualDSP++ tools to check for compatibility. The
following modifications are added to make the code work with the VisualDSP++ tools:

 Since SHARC internal memory is 32-bit, the data types supported by the VisualDSP++ tools are 32-
bit only. Hence, 8- and 16-bit data types used by the open source code are modified to 32-bit.

 The file I/O functions provided by the VisualDSP++ tools return the data as 32-bit words. The data
read from the input .ogg file needs to be divided into four 8-bit words before processing since the
decoder algorithm assumes that the data to be decoded is in 8-bit format. Similarly, the PCM data is
combined to get a complete 32-bit data and written into the output file. The code snippet in Listing 1
shows how to unpack the data before passing it to the decoder.

for(temp = 0; temp < bytes; temp++)
{
buffer[j++] = buffer1[temp] & 0x000000FF;
buffer[j++] = (buffer1[temp] & 0x0000FF00) >> 8;
buffer[j++] = (buffer1[temp] & 0x00FF0000) >> 16;
buffer[j++] = (buffer1[temp] & 0xFF000000) >> 24;
}

Listing 1. Data unpacking logic

 The Ogg Vorbis codec application is an ongoing project written from a code-scalable perspective.
Some code portions were written so that they can be used in future upgrades. These redundant code
portions were removed after we got hold of the data flow of the application. For example, there was
code whose results were not used in any other part.

 The floating-point implementation of the Ogg Vorbis decoder requires the heap memory of about
2.8 Mbits. On ADSP-21369 processors, the heap is placed in external SDRAM since the internal
memory is not sufficient for the source code and complete heap allocation. The PLL initialization
function is added to the project to run the core at a higher frequency. SDRAM initialization is added to
initialize the on-chip SDRAM controller.

 For ADSP-21364 processors, the internal memory is not sufficient for the source code and complete
heap allocation. The external memory of the processor also cannot be used for placing some data
directly. Byte packing logic is added to use the 32-bit memory of the processor efficiently. This was
done by creating a data structure called DATA_PTR and defining a few functions for byte read/write
functionality in word-addressed memory environments, basically a set of wrapper functions to obtain
byte addressability in word-addressed memory (see Listing 2). This data structure contained 2 fields:
one that points to the word address and the other is a modulus value that points to the corresponding
byte in the word. This reduces the amount of memory required by the decoder.

typedef struct {
 unsigned int *data;
 int mod;
} DATA_PTR;

Listing 2. Data structure used for byte packing logic on an ADSP-21364 implementation

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 7 of 24

 For ADSP-21364 processors, with the byte packing logic, the internal memory was not sufficient for
the heap memory needed by the decoder. Hence, the reference application was rewritten according to
the decoder specification. It was observed that the major portion of the heap usage was due to the
vector tables that were decoded during header decode. This problem was overcome by building the
vector table when it was required during audio decode phase. This resulted in a reduction in the
memory requirements (to about 0.7 Mbits of heap) of the code.

With these modifications the worked fine with the VisualDSP++ tools. Since the file I/O operation
supported by the VisualDSP++ tools takes more cycles, the code takes a very long time to execute.

Modifications to the Real-Time Code

The following modifications are added to the file I/O code to make it real-time:

Input/Output
The input part is modified to read the data from the parallel flash on the external port/parallel port. The
output part is modified to send the data to the DAC of the AD1835A codec over a serial port. The SRU
initialization code is added to route the serial port signals to the DAC of the AD1835 and to route the MCLK
for the AD1835 codec on the EZ-KIT Lite board.

DMA Controller
The DMA controller is used for reading data from the parallel flash and sending it to the DAC over a
serial port. This allows the core to operate only on the decoder algorithm. External port DMA is used on
ADSP-21369 processors and parallel port DMA is used on ADSP-21364 processors to read the data from
the parallel flash. DMA chaining is used for the serial port on the output end for continuous data transfer.

Memory Management on ADSP-21369 Processors
ADSP-2136x processors have four blocks of internal memory. The ADSP-21369 processor has the overall
internal memory of 2 Mbits of RAM and 6 Mbits of ROM. Block 0 and block 1 have 0.75 Mbits of
SRAM and 3 Mbits of ROM. Block 2 and block 3 have 0.25 Mbits of SRAM. The memory requirement of
the floating-point implementation of the Ogg Vorbis decoder is too high.

The Ogg stream has a variable page size which can be a maximum of 64 Kbytes. The Ogg Vorbis decoder
open source code reads one complete page from the input file to the page buffer, which is dynamically
allocated according to the page size of the incoming stream. Then, from the page buffer, one complete
packet of data is extracted and the data is copied to the packet buffer. The Vorbis decoder operates on the
packet buffer and decodes the data. This approach uses more memory and also includes core activity that
copies data from the page buffer to packet buffer. Since the same data is used by the Vorbis decoder
function, the library functions to extract the page and packet data are modified to use the input buffer
directly. Some Ogg library functions are rewritten to reduce code size. This reduces the amount of
memory used for the input buffer and also reduces the core activity used for copying from one buffer to
other buffers by the Ogg library functions.

The open source code example processes the data as 8-bit data across the application. Since VisualDSP++
tools support only 32-bit data types, the data is initially read from parallel flash without enabling packing.
This avoided the unpacking logic needed in the file I/O code but added more memory requirement for the
input buffer. This way the minimum input buffer size needed was 3072 words which increased the internal
memory requirement. Hence, external port DMA is used with packing enabled. The 32-bit data in the
input buffer is accessed byte-wise using specific functions. Decoder functions were modified to use this

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 8 of 24

approach. This allowed part of the internal memory to be used for heap, which speeds up algorithm
execution. Multiple heaps were used in the decoder. One heap is placed in internal memory, and the other
heap is placed in external memory. The internal memory heap is used for placing the decoder output data
and some of the codebook tables used by the decoder. The external memory heap is used for the rest of the
dynamic memory used by the application.

unsigned char Get_Byte_Data(unsigned char *buffer_ptr,int position)
{
 if(position == 0)
 return (*buffer_ptr) & 0x000000FF;
 else if(position == 1)
 return ((*buffer_ptr) & 0x0000FF00) >> 8;
 else if(position == 2)
 return ((*buffer_ptr) & 0x00FF0000) >> 16;
 else
 return ((*buffer_ptr) & 0xFF000000) >> 24;
}

Listing 3. Function used for accessing the byte data from a word

In the real-time decoder application, the code and the data used by the decoder are placed in internal
memory block 0. The look-up tables used by the decoder are placed in internal memory block 2. The
buffers used by the DMA controller and the stack memory are placed in internal memory block 3. One of
the heaps is placed in internal memory block 1, and the other heap is placed in external SDRAM. The
external SDRAM interface is run at a speed of 133 MHz.

MEMORY
{
 seg_rth { TYPE(PM RAM) START(0x00090000) END(0x000900ff) WIDTH(48) }

 seg_init { TYPE(PM RAM) START(0x00090100) END(0x0009011f) WIDTH(48) }
 seg_int_code { TYPE(PM RAM) START(0x00090120) END(0x0009012F) WIDTH(48) }
 seg_pmco { TYPE(PM RAM) START(0x00090130) END(0x00093bff) WIDTH(48) }
 seg_dmda { TYPE(PM RAM) START(0x0009da00) END(0x0009dFFF) WIDTH(32) }

 seg_pmda { TYPE(PM RAM) START(0x000C0000) END(0x000c1FFF) WIDTH(32) }

 seg_heaq { TYPE(DM RAM) START(0x000b8000) END(0x000bdfff) WIDTH(32) }

 seg_dmda1{ TYPE(DM RAM) START(0x000e0000) END(0x000e0FFF) WIDTH(32) }
 seg_stak { TYPE(DM RAM) START(0x000e1000) END(0x000e1FFF) WIDTH(32) }

 seg_heap { TYPE(DM RAM) START(0x08000000) END(0x08FEFFFF) WIDTH(32) }
 seg_sram { TYPE(DM RAM) START(0x00200000) END(0x0027FFFF) WIDTH(8) }
}

Listing 4. .LDF file for the decoder on ADSP-21369 processors

Memory Management on ADSP-21364 Processors
The ADSP-21364 processor has the overall internal memory of 4 Mbits of RAM and 4 Mbits of ROM.
Block 0 and block 1 have 1 Mbit of SRAM and 2 Mbits of ROM. Block 2 and block 3 have 0.5 Mbits of
SRAM. The code is placed in block 0. The data used by the DMA controller and core are placed in
block 3. Block 1 is used for heap memory, and block 2 is used for stack memory space.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 9 of 24

MEMORY
{
 seg_rth {TYPE(PM RAM) START(0x00090000) END(0x000900ff) WIDTH(48)}
 seg_init {TYPE(PM RAM) START(0x00090100) END(0x000901ff) WIDTH(48)}
 seg_int_code {TYPE(PM RAM) START(0x00090200) END(0x000902ef) WIDTH(48)}
 seg_pmco {TYPE(PM RAM) START(0x000902f0) END(0x00095554) WIDTH(48)}
 seg_heap {TYPE(DM RAM) START(0x000b8000) END(0x000bffff) WIDTH(32)}
 seg_stak {TYPE(DM RAM) START(0x000e17bf) END(0x000e3fff) WIDTH(32)}
 seg_dmda {TYPE(DM RAM) START(0xc0000) END (0xc3fff)WIDTH(32)}
 seg_sram {TYPE(DMAONLY DM) START(0x01200000) LENGTH(0x3fff) WIDTH(8)}
}

Listing 5. .LDF file for the decoder on ADSP-21364 processors

Buffer Management
In the file I/O code, the data is read sequentially from the input file, and the decoded data is also written
sequentially. But for the real-time case, when the input buffer is processed by the decoder, the decoded
data in the output buffer is sent out in parallel. The buffer management must ensure that the same data is
not processed twice and that the data is not overwritten before the decoder processes it. The real-time
implementation uses the ping-pong buffers for this purpose. Figure 3 explains the ping-pong buffering
used by the decoder.

The Ogg Vorbis decoder implementation code uses two buffers in the input part. On ADSP-21369
processors, initially both input buffers are filled with the data from the flash. The decoder starts processing
the data on input buffer 1. Once input buffer 1 is processed, the decoder starts processing the data from
input buffer 2 and the DMA controller fills input buffer 1 with next set of data in the background. When
input buffer 1 is processed next, the DMA controller starts filling input buffer 2 in parallel. Before starting
the next DMA, the processor core ensures that the previous DMA is completed. If the DMA transfer is not
completed, the core waits for the current DMA transfer to finish before the next one is started. This is
explained with the code of Listing 6.

if(read_ptr >= PAGE_SIZE_IN)
{
 read_ptr = read_ptr - PAGE_SIZE_IN;
 data_process_count++;

 if(page_ptr < databuffer2)
 {
 while (data_ready == 0);
 data_ready = 0;
 FillBufferFromFlash(2);
 }
 else
 {
 while (data_ready == 0);
 data_ready = 0;
 FillBufferFromFlash(1);
 }
}

Listing 6. Code logic for reading from flash

External port or parallel port DMA is not continuous, since the next set of data can be read only when the
previous data read is processed.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 10 of 24

Figure 3. Ping-pong buffer mechanism

The output part uses two ping-pong buffers with DMA chaining. The decoder starts filling the decoded
data on output buffer 1. Once output buffer 1 is filled, serial port DMA is started to send the data out. In
the meantime, the decoder starts filling output buffer 2 in parallel. Once output buffer 2 is filled, the
decoder ensures that the previous DMA transfer is over before overwriting output buffer 1. This is done
by checking the flag which is set inside the serial port interrupt service routine. If the DMA is not over, it
waits for the DMA to complete before writing output buffer 2 with the new set of PCM data. When output
buffer 2 is transferred by the DMA, output buffer 1 is filled with decoded data in parallel.

if(output_filled >= (PAGE_SIZE_OUT))
{
 output_filled = output_filled - (PAGE_SIZE_OUT);
 fill_count++;

 if(init_sport == 0)
 {
 init_sport = 1;
 InitSPORT();
 }

 if(xmit_count < fill_count)
 {
 while(xmit_done == 0)
 wait_count++;

 xmit_done = 0;
 }
}

Listing 7. Code logic to wait for the previous SPORT DMA completion

With these modifications, the code worked in real-time.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 11 of 24

VisualDSP++ Features

LDF Programming
Linker Description File (.ldf) programming is used for efficient placement of the data and code to
internal memory blocks. The default .ldf file is modified to allocate the memory to use the processor
architecture effectively. When the application is built with the default .ldf file, the generated memory
map provides the details of the used memory and free memory on each block. Based on the size of the
code and data memory used by a .doj file, the code and data can be placed in the free memory blocks.

The VisualDSP++ Expert Linker utility has a GUI that allows you to drag and drop an .obj file from one
memory block onto another memory block. This way you can view the memory blocks and place the code
and data accordingly. The .ldf file can also be edited using the VisualDSP++ editor. The .ldf file is re-
programmed so that the data is placed in multiple memory locations to use the dual-fetch feature of the
core and to allow the core and DMA to access different memory blocks at the same time. The processor
core also executes instructions in parallel. There are many source files in the application. Due to internal
memory block size constraints, the sizes of the various memory sections (such as seg_init, seg_init_code,
seg_pmco, and seg_dmda) are changed.

Figure 4 shows the ADSP-21369 decoder .ldf file viewed from the Expert Linker utility.

Figure 4. Memory organization of an .ldf file with multiple heaps

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 12 of 24

Multiple Heaps and Heap Management
The SHARC C/C++ run-time library supports the standard heap management functions calloc, free,
malloc, and realloc. By default, these functions access the default heap, which is defined in the standard
Linker Description File (.ldf) and the run-time header. We can define any number of additional heaps,
which can be located in any SHARC processor memory block. These additional heaps can be accessed
either by the standard calloc, free, malloc, and realloc functions, or via the Analog Devices
extensions (heap_calloc, heap_free, heap_malloc, and heap_realloc). The primary use of alternate
heaps is to allow dynamic memory allocation from more than one memory block. This feature is used by
the ADSP-21369 decoder implementation.

Declaring a Heap
Each heap must be declared with a .VAR directive in the seg_init.asm file, and the .ldf file must
declare memory and section placement for the heaps. The default seg_init.asm file declares one heap
(seg_heap). To use a custom seg_init.asm, assemble it using the easm21k.exe application and use it to
replace the default seg_init.doj in the libc.dlb archive using the VisualDSP++ elfar.exe
application. Alternatively, add the seg_init.asm file to the project by copying it to the project folder.

Listing 4 provides a simple example to create a secondary heap. The following changes (Listing 8) have to
be made to seg_init.asm (default path: C:\Program Files\Analog Devices\VisualDSP
5.0\213xx\lib\src\libc_src) to include a second heap called “seg_heaq”.

.global ___lib_heaq_space;

.var ___lib_heaq_space[5] =
 0x7365675F6865, // 'seg_he'
 0x6171FFFFFFFF, // 'aq'
 0, // 0
 ldf_heaq_space,
 ldf_heaq_length;
___lib_heaq_space.end:

Listing 8. Multiple-heap declaration

The .ldf file is modified to incorporate the following changes for memory space allocation for second
heap ‘seg_heaq’.

In memory section:
seg_heaq { TYPE(DM RAM) START(0x000b8000) END(0x000bdfff) WIDTH(32) }

In processor section:

/* section placement for additional custom heap */
heaq
{
// allocate a heap for the application
 ldf_heaq_space = .;
 ldf_heaq_length = MEMORY_SIZEOF(seg_heaq);
 ldf_heaq_end = ldf_heaq_space + ldf_heaq_length - 1;
} > seg_heaq

Listing 9. Programming an .ldf file for multiple heaps

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 13 of 24

Using Alternate Heaps
Alternate heaps can be accessed by the standard functions (calloc, free, malloc, and realloc). The
run-time library keeps track of a current heap, which initially is the default heap. The current heap can be
changed any number of times at runtime by calling the set_alloc_type function with the new heap name
as a parameter, or by calling heap_switch with the heap ID as a parameter.

In the current implementation, the default heap is accessed using the malloc, calloc, and realloc
functions. The secondary heap is accessed using the heap_malloc, heap_calloc, and heap_realloc
functions with the heapID value of 1. The secondary heap is used mainly for placing the decoded code
books, vectors decoded by the floor 0 and mapping functions. The data used by the decoder function is
also placed in this heap.

Flash Programming Utility

The flash programmer utility available with the VisualDSP++ tools cannot be used to program the .ogg
file on the flash. But the flash programmer driver files can be used for this purpose. For the ADSP-21364
processor, the flash programmer driver uses parallel port DMA to send the data to the flash. For the
ADSP-21369 processor, the flash programmer driver uses external port DMA for the same purpose. The
adi_am29lv081b.c file available with the VisualDSP++ tools has the driver functions for erasing the
flash, reading the flash, and programming the flash.

The AMD Flash Programmer source code included in the .ZIP file associated with this EE-Note uses the
driver functions provided by the VisualDSP++ tools. This application uses the following flash
programmer driver functions:

 Allocate AFP_Buffer using AllocateAFPBuffer()

 Get sector map using GetSectorMap()

 Set up the device so the DSP can access it using SetupForFlash()

 Get flash manufacturer & device codes, title & description using GetFlashInfo()

 Erase flash

 Reset flash

 WriteData

The application works as follows:

 Initialize the processor to access the flash

 Erases the flash

 Opens the .ogg file using file I/O operation

 Reads 4 kBytes of data from the .ogg file into a buffer. The 32-bit word read from the file is split into
8-bit words and copied into another buffer.

 This data is programmed in the flash using WriteData() driver function

 The above two steps are repeated up to the size of the flash (1 MB)

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 14 of 24

Code Optimization

The code is optimized further in order to improve performance. Code profiling was implemented to
understand how different parts of the code consume the processor computing speed (core clock cycles).
This percentage break-up of the processing time (MIPS) indicates which functions are to be optimized for
better performance. After identifying the functions, they were worked upon and optimization techniques
were applied.

Figure 5. A screen capture of code-profiling

Figure 5 provides the profile created for the decoder application. It shows the percentage distribution of
the core time among all the executed functions.

After using the VisualDSP++ profiler to identify the part of the code that takes more time, the following
optimization techniques are used in the application:

Built-in optimization
The VisualDSP++ compiler has an internal built-in optimizer. This can optimize the code for speed or
size. The optimization mode for generating the code for high speed is used. This helped reduce the
processor MIPS consumption.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 15 of 24

Parallel data fetch
The code is modified to add the PM keyword to enable the parallel data fetch operation. Whenever the
compiler sees this keyword, it generates code to use the dual data access instructions. The memory
management ensures that both data arrays accessed by the code are placed in two different internal
memory banks.

SIMD mode
The project settings are modified to allow the compiler to enable SIMD mode whenever possible. This
way the compiler generates code that uses SIMD mode. When SIMD mode is enabled, the number of
times taken by a loop is reduced by one half.

Using built-in functions
The VisualDSP++ compiler supports intrinsic (built-in) functions that enable efficient use of hardware
resources. These functions provide a means to use the processor’s hardware efficiently. In the Ogg Vorbis
decoder, the circ_buf and circ_ptr built-in functions are used. This instructs the compiler to use
circular buffer indexing for these buffers. Circular buffer indexing is used by the decoder to access the
input and output ping-pong DMA buffers.

Inline functions
The C run-time manager must save/restore context information across function calls. The context
information is pushed onto the stack while calling a new function and is popped from the stack when
returning from the function call. If frequent function calls are made to a relatively small function, large
overheads are required. These overheads can be eliminated by replacing such function calls with inline
code.

The VisualDSP++ 5.0 compiler also provides built-in versions of some C library functions. The compiler
immediately recognizes them and replaces them with inline assembly code instead of a function call.
Inline assembly code is faster than an average library routine, and it does not incur the calling overhead.

MIPS Calculation

The MIPS calculation was done taking into account the following features:

 The input and output buffer sizes

 The data transfer rate from the parallel port to the input buffers

 The time (core clock cycles) it takes for the core to apply the decoding algorithm on the input buffer
and write the result into output buffer

 The output data transfer rate is fixed as the DAC is programmed with frame-sync frequency of
48 kHz. The buffer management is implemented to meet this criterion so as to make the decoding
algorithm realtime.

For the ADSP-21364 implementation, on the input side, two buffers of 1024 bytes were chosen into which
the data from the flash is to be written. Here the parallel port DMA speed is 55 MBytes/sec for PPDUR = 3
and a core clock speed = 333 MHz. So on the input side, there is no timing constraint. Here the necessary
condition is:

Input data transfer rate + Core processing cycles < Time to transfer output buffer

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 16 of 24

On the output side, the timing requirement is that the output buffer should be written before it is sent out.
With a 48-kHz frame sync, it takes around 11 ms for the SPORT to send out a data buffer of 1024 bytes.
So the next output buffer should be written within this time limit. To meet this criterion, core clock cycles
were calculated for the processor to write 1024 bytes of output data, and it was found to be well within
this range. The current ADSP-21364 implementation takes approximately 65 MIPS.

For the ADSP-21369 implementation, the input side has two buffers of 1024 bytes. The output side also
uses the buffers of 1024 bytes. With a 48-kHz frame sync, it takes around 11 ms for the SPORT to send
out a data buffer of 1024 bytes. It is verified that the time taken by the input DMA and the decoder core
operation is less than the time taken by the SPORT. The current ADSP-21369 implementation takes
approximately 100 MIPS.

The EMUCLK method was used to calculate the MIPS. The number of core clock cycles taken by the
decoder is calculated by reading the EMUCLK register for different number of samples.
asm("r15=EMUCLK;");

Based on this number, the MIPS consumed by the processor can be calculated.

Summary
Ogg Vorbis is a highly competitive codec and due to its extremely flexible nature, it is on the verge of
becoming one of the leading audio codecs in the near future. This EE-Note implements this codec on the
SHARC architecture.

The following areas were explored:

 Porting and real-time implementation of the Vorbis decoder was achieved using the SHARC
architectural features and VisualDSP++ tools

 The codec used DSP concepts such as MDCT and vector quantization, and the implementation of this
codec is provided as a practical application of DSP used to develop embedded systems. This provides
a complete system-level demonstration, showcasing processor capabilities.

 Interfacing the DSP with other peripherals like parallel flash and AD1835 codec was achieved. The
song programmed in the flash was read at varying speeds.

The source code provided with the EE-Note demonstrates the real-time implementation of the Ogg Vorbis
decoder on SHARC processors. This is not completely optimized code; it can be further optimized to
reduce the MIPS taken.

Software Code
The source code for the Ogg Vorbis decoder on ADSP-21364 and ADSP-21369 processors is provided in
the .ZIP file associated with this EE-Note. The AMD flash programmer code, which is used for
programming the flash on the EZ-KIT Lite boards, is also provided. The source code has been tested using
VisualDSP++ release 5.0.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 17 of 24

Appendix A ⎯ Ogg Details
The Ogg transport bitstream is designed to provide framing (logical bitstreams), error protection and
seeking structure for higher-level codec streams that consist of raw, un-encapsulated data packets, such as
the Vorbis audio codec or Theora video codec. It does not know any specifics about the codec data that it
encapsulates and is thus independent of any media codec.

Design Constraints

 Streaming capability (no seeking is needed to build a 100% complete bitstream)

 Small overhead (using no more than approximately 1-2% of bitstream bandwidth for packet boundary
marking, high-level framing, sync, and seeking)

 Simplicity to enable fast parsing and concatenation mechanism of several physical bitstreams

Logical and Physical Bitstream

Raw packets are grouped and encoded into contiguous pages of structured bitstream data called logical
bitstreams. A logical bitstream consists of pages, in order, belonging to a single codec instance. Each page
is a self-contained entity (although it is possible that a packet may be split and encoded across one or more
pages); that is, the page decode mechanism is designed to recognize, verify, and handle single pages at a
time from the overall bitstream.

Multiple logical bitstreams can be combined (with restrictions) into a single physical bitstream. A
physical bitstream consists of multiple logical bitstreams multiplexed at the page level and may include a
'meta-header' at the beginning of the multiplexed logical stream that serves as identification magic. The
decoder reconstructs the original logical bitstreams from the physical bitstream by taking the pages in
order from the physical bitstream and redirecting them into the appropriate logical decoding entity.

Bitstream Structure

An Ogg stream is structured by dividing incoming packets into segments of up to 255 bytes and then
wrapping a group of contiguous packet segments into a variable-length page preceded by a page header.
Both the header size and page size are variable; the page header contains sizing information and checksum
data to determine header/page size and data integrity.

The bitstream is captured (or recaptured) by looking for the beginning of a page, specifically the capture
pattern. Once the capture pattern is found, the decoder verifies page sync and integrity by computing and
comparing the checksum. At that point, the decoder can extract the packets themselves.

Packet Segmentation

Packets are logically divided into multiple segments before encoding into a page. The segmentation and
fragmentation process is a logical one; it’s used to compute page header values and the original page data
need not be disturbed, even when a packet spans page boundaries.

The raw packet is logically divided into 255-byte segments and a last fractional segment of less than
255 bytes. A packet size may well consist only of the trailing fractional segment, and a fractional segment
may be zero length. These values, called lacing values, are then saved and placed into the header segment
table.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 18 of 24

Ogg Encapsulation

 The first Vorbis packet (the identification header), which uniquely identifies the stream as Vorbis
audio, is placed alone in the first page of the logical Ogg stream. This results in a first Ogg page of
exactly 58 bytes at the very beginning of the logical stream.

 This first page is marked “beginning of stream” in the page flags.

 The second and third Vorbis packets (comment and setup headers) may span one or more pages
beginning on the second page of the logical stream. However many pages they span, the third header
packet finishes the page on which it ends. The next (first audio) packet must begin on a fresh page

Figure 6. Ogg bitstream

Ogg Decoding

This decoding is based around the Ogg synchronization layer. We read data into the synchronization layer,
submit the data to the stream, and output raw packets to the decoder. The bitstream is captured (or
recaptured) by looking for the beginning of a page, specifically the capture pattern. Once the capture
pattern is found, the decoder verifies page sync and integrity by computing and comparing the checksum.
At that point, the decoder can extract the packets themselves. Decoding through the Ogg layer follows a
specific logical sequence (Figure 7). The steps to be followed are as follows:

 Expose a buffer from the synchronization layer in order to read data.

 Read data into the buffer, using fread() or a similar function.

 Call a function to tell the synchronization layer how many bytes you wrote into the buffer.

 Write out the data by outputting a page from the synchronization layer.

 Submit the completed page to the streaming layer (using appropriate function).

 Output a packet of data to the codec-specific decoding engine.

 Ogg also must handle headers, incomplete or dropped pages, and other errors in input.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 19 of 24

 The buffer exposure is performed by ogg_sync_buffer().

 The data reading is done using fread() or a similar function.

 ogg_sync_wrote() tells the synchronization layer how many bytes you wrote into the buffer.

 ogg_sync_pageout() writes out the data by outputting a page from the synchronization layer.

 ogg_stream_pagein() submits the completed page to the streaming layer.

 ogg_stream_packetout() outputs a packet of data to the codec-specific decoding engine.

Figure 7. Ogg decoding

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 20 of 24

Appendix B – Vorbis Details

General Overview

Vorbis
 A general-purpose perceptual audio codec

 Allows maximum encoder flexibility

 Can be scaled over exceptionally wide range of bit rates both lower and high bit rates

 Is of the same league as MPEG-2 and MPC

Classification
 Vorbis I – A forward adaptive monolithic transform codec based on Modified Discrete Cosine

Transform (MDCT)

 Vorbis II – A codec structured to allow addition hybrid wavelet filter banks to offer better transient
response and reproduction using a transform better suited to localized time events

Figure 8. Vorbis overview

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 21 of 24

Vorbis Encoding Overview

Figure 9. Vorbis encoder

The Vorbis encoder involves the following stages:

1. Analysis Stage

 Block switching

 MDCT

 Psychoacoustic model

2. Coding

 Floor generation

 Channel coupling/ residue generation

 Encoding (vector quantization)

3. 3) Streaming

 Pack to Ogg stream

Vorbis Decoding

Decoder Setup
Before decoding can begin, a decoder must initialize using the bitstream headers matching the stream to
be decoded. Vorbis uses three header packets; all are required, in-order, by this specification. Once set up,
decode may begin at any audio packet belonging to the Vorbis stream. In Vorbis I, all packets after the
three initial headers are audio packets. The header packets are, in the order, as follows:

 Identification Header: Used to identify the bitstream, Vorbis version, sample rate, and number of
channels

 Comment Header: Includes user text comments (tags) and a vendor string for the application/library
that produced the bit stream

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 22 of 24

 Setup Header: Includes extensive codec setup information as well as the complete VQ and Huffman
codebooks needed for decode

Decode Procedure
Decoding and synthesis procedure for all audio packets is essentially the same and are shown in Figure 10.
With the advantage of the symmetry of MDCT and store right-hand transform data of a partial 50% inter-
frame buffer space savings, we can complete the transform later before overlap/add with the next frame.

Packet Decode Process
Vorbis I has 4 packets – first three types are header packets and are as described above, and the fourth

type

is an audio packet. All other types are marked as reserved and must be ignored.

Figure 10. Vorbis packet decode process

Mode Decode
Vorbis allows multiple, numbered packet (modes).

Window Shape Decode (Long Windows Only)
Vorbis uses an overlapping transform, namely the MDCT, to blend one frame into the next, avoiding most
inter-frame block boundary artifacts. The MDCT output of one frame is windowed according to MDCT
requirements overlapped 50% with the output of the previous frame and added. The window shape assures
seamless reconstruction.

Figure 11. Overlapping windows

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 23 of 24

In un-equal sized overlap, window shape must be modified for seamless lapping. Vorbis also codes two
flag bits to specify pre- and post-window shape.

Floor Decode
Each floor is encoded/decoded in channel order; however, each floor belongs to a sub-map that specifies
which floor configuration to use. All floors are decoded before residue decode begins.

Residue Decode
Although the number of residue vectors equals the number of channels, channel coupling may mean that
the raw residue vectors extracted during decode do not map directly to specific channels. When channel
coupling is in use, some vectors will correspond to the coupled magnitude or angle. The coupling relationships
are described in the codec setup and may differ from frame to frame, due to different mode numbers. Vorbis
codes residue vectors in groups by sub-map; the coding is done in sub-map order from sub-map 0 to n-1. This
differs from floors which are coded using a configuration provided by a sub-map number, but are coded
individually in channel order.

Inverse Channel Coupling
Vorbis coupling applies to pairs of residue vectors at a time; decoupling is done in-place, a pair at a time
in the order and using the vectors specified in the current mapping configuration. The decoupling
operation is the same for all pairs, converting square polar representation (where one vector is magnitude,
and the second is angle) back to Cartesian representation. After decoupling, in order, each pair of vectors
on the coupling list, the resulting residue vectors represent the fine spectral detail of each output channel.

Compute Floor/Residue dot Product
The decoder multiplies the floor curve and residue vectors element by element, producing the finished
audio spectrum of each channel.

Inverse Monolithic Transform (MDCT)
The audio spectrum is converted back into the time domain PCM audio via an inverse Modified Discrete
Cosine Transform (MDCT). Note that the PCM produced directly from the MDCT is not yet finished
audio; it must be lapped with surrounding frames using an appropriate window (such as the Vorbis
window) before the MDCT can be considered orthogonal.

 a

Implementing an Ogg Vorbis Decoder on SHARC® Processors (EE-320) Page 24 of 24

References
[1] ADSP-2136x SHARC Processor Hardware Reference (includes ADSP-21362/3/4/5/6), Revision 1.0, October 2005,

Analog Devices, Inc.

[2] ADSP-21368 SHARC Processor Hardware Reference (includes ADSP-21367, ADSP-21369, ADSP-21371 and ADSP-
21375), Revision 1.0, September 2006, Analog Devices, Inc.

[3] VisualDSP++ 5.0 Linker and Utilities Manual, Revision 3.0, August 2007, Analog Devices, Inc.

[4] VisualDSP++5.0 C/C++ Compiler Manual for SHARC Processors, Revision 1.0, August 2007, Analog Devices, Inc.

[5] ADSP-21364 EZ-KIT Lite Evaluation System Manual, Revision 3.2, July 2007, Analog Devices, Inc.

[6] ADSP-21369 EZ-KIT Lite Manual, Revision 2.1, August 2006, Analog Devices, Inc.

[7] http://xiph.org/vorbis/ : Ogg-Vorbis documentation, code, and other details.

[8] Final year Project Report at NITK (07-08).

Document History

Revision Description

Rev 1 – June 10, 2008
by Kulin Seth and Jeyanthi Jegadeesan

Initial release

http://xiph.org/vorbis/

	Introduction
	Ogg Vorbis Codecs
	Real-Time Implementation
	Using Visual C++ as a Reference Platform
	Architectural Advantages of SHARC Processors
	High Speed
	I/O Processor
	On-chip Memory Blocks
	External Port on the ADSP-21369 Processor
	Parallel Port on the ADSP-21364 Processor
	Serial Ports (SPORTs)
	Digital Application Interface (DAI)

	Development Tools
	Parallel Flash
	AD1835A Codec

	Dataflow of the Decoder
	Implementation on SHARC Processors
	VisualDSP++ File I/O
	Modifications to the Real-Time Code
	Input/Output
	DMA Controller
	Memory Management on ADSP-21369 Processors
	Memory Management on ADSP-21364 Processors
	Buffer Management

	VisualDSP++ Features
	LDF Programming
	Multiple Heaps and Heap Management
	Declaring a Heap
	Using Alternate Heaps

	Flash Programming Utility
	Code Optimization
	Built-in optimization
	Parallel data fetch
	SIMD mode
	Using built-in functions
	Inline functions

	MIPS Calculation

	Summary
	Software Code
	Appendix A (Ogg Details
	Design Constraints
	Logical and Physical Bitstream
	Bitstream Structure
	Packet Segmentation
	Ogg Encapsulation
	Ogg Decoding

	Appendix B – Vorbis Details
	General Overview
	Vorbis
	Classification

	Vorbis Encoding Overview
	Vorbis Decoding
	Decoder Setup
	Decode Procedure
	Packet Decode Process
	Mode Decode
	Window Shape Decode (Long Windows Only)
	Floor Decode
	Residue Decode
	Inverse Channel Coupling
	Compute Floor/Residue dot Product
	Inverse Monolithic Transform (MDCT)

	References
	Document History

