Engineer-to-Engineer Note EE-322

ANALOG Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
DEVICES e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Expert Code Generator for SHARC® Processors

Contributed by Mitesh Moonat Rev 5 — January 17, 2012

Introduction

The Expert Code Generator (ECG) can be used to generate code for initializing specific SHARC®
processor blocks to the system’s requirements. The ADSP-214xx family of SHARC processors includes
new modules and enhanced features compared to older SHARC processors. Some important new blocks
include the Double Data Rate 2 (DDR2) controller (ADSP-2146x processors only), the Finite Impulse
Response (FIR), Infinite Impulse Response (1IR), and Fast Fourier Transform (FFT) hardware accelerators.
In addition, the ECG also produces initialization code for the Phase-Locked Loop (PLL), SDRAM, and
Asynchronous Memory Interface (AMI) controllers both for new and the older SHARC processors
(ADSP-2126x and ADSP-213xx processors). The Expert Code Generator consists of two utilities that can
be directly integrated as plug-ins to VisualDSP++® development tools:

m Code generator for initializing PLL, DDR2/SDRAM, and AMI controllers
m Code generator for FIR, IR, and FFT accelerators

To generate the code, you enter high-level system parameters without needing to know the processor-
specific details. This saves software developers a lot of time and effort. This application note discusses, in
detail, how to use these utilities to generate the required code.

Expert Code Generator Uses

Managing Limitations and Restrictions Automatically

Restrictions/limitations may need to be addressed when programming certain modules. One typical example
is the maximum Voltage-Controlled Oscillator (VCO) frequency limitation for the PLL. This limitation
implies that not all combinations of PLLM and PLLD of the PMCTL register can be used. You should ensure
that the VCO frequency does not cross its maximum limit. Expert Code Generator eases the programmer’s
task by taking care of these types of restrictions.

Translating DDR2/SDRAM Device Specifications Taken Directly from the Device Data Sheet to the
Code

Initializing the DDR2/SDRAM controller for a particular DDR2/SDRAM device requires a number of
control registers to be configured. Each timing specification needs to be programmed in terms of
DDR2CLK/SDCLK cycles. Converting these timing specifications in terms of DDR2CLK/SDCLK cycles

Copyright 2009-2012, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

http://www.analog.com/processors�

ANALOG
DEVICES

requires significant effort and is prone to errors. Using Expert Code Generator, you need only to enter the
required specification from the DDR2/SDRAM device data sheet; the tool takes care of everything else.

Following the Recommended Programming Sequence and Other Guidelines

To be able to program some modules, the programmer is expected to follow a specific sequence of
instructions; e.g., programming the PLL must follow a set of recommended steps (refer to EE-290 ™),
which if not followed, may result in unexpected results. With a number of modules being used in the
system, it becomes difficult for the software developer to keep track each of such small recommendations
and guidelines. Expert Code Generator takes care of these recommendations. Thus, it helps to reduce both
the software development time and the chance of a system failure.

Handling IC Anomalies
IC anomalies requiring a software work around can be handled by the code generated by the tool itself.

Generating Code in Both “C” and “Assembly”

Expert Code Generator provides flexibility to the user to be able to generate code either in “C” or
“assembly” language based on the application requirements.

Code Generator for PLL, DDR2/SDRAM, and AMI Controllers

Overview

“Code Generator for PLL, DDR2/SDRAM, and AMI Controllers” helps to generate a source file with
subroutine for initializing PLL, DDR2/SDRAM, and AMI controllers. The plug-in has options to select the
processor and the corresponding speed grade for which the code has to be generated. It shows only those
sections out of PLL, DDR2, SDRAM, and AMI controllers which are supported by the processor selected.
E.g Figure 1 shows the snapshot of the plug-in for the ADSP-21262 processor. It consists of single section
for initializing the PLL. Figure 2 shows a snapshot of the plug-in for the ADSP-21369 processor. It
consists of three sections corresponding to the PLL, SDRAM, and AMI controllers. Figure 3 shows
snapshot of the plug-in for ADSP-21469 processor. It consists of three sections corresponding to PLL,
DDR2, and AMI controllers. Each section allows you to enter/select values for a set of parameters needed
to initialize the corresponding module. Appropriate error messages display when you enter an out-of-range
value or if an entered value may indirectly cause an invalid result. Furthermore, it provides the option to
save the current system configuration in a .CFG file, which can be used later to restore the same
configuration. One can as well bring all the settings back to the default values by clicking on the Reset
button.

Expert Code Generator for SHARC® Processors (EE-322) Page 2 of 23

ANALOG
DEVICES

PLL, DDRZ/SDRAM, and AMI In ation Code Generato... [X]

FLL Initislization

ZLHIM 25 S mE S00

CCLR 200
b CCLK | 200
PAlIR O

[

Actual Walues that will be generated

CCLR 200 000000 rHzZ

Error Messacge

Code Fenerstion
Language Select Module

&) sssembly (O C CdrLL

Processor Speed grade
Fenerate Code| | apsp-21262 ~| | 200 ~|

Swystem Configuration

[seve | [[osa | [Reset |

Figure 1. Code generator for PLL of the ADSP-21262 processor

PLL, DDR2/SDRAM, and AMI Initialization Code Generator {Rev 5)
PLL Intialization SDRAM Controller Inttialization Al Controller Intialization

CLKIN 24576 WCOma

tRAS (ns) ‘Which Bank? Ms2

Select Bank (=]

MaX COLK S Rawy 2 3 [Enable &M Bank
ne,
Wit States
tRCD (ns) | 18 .
e - Optimize Reads (v @ Packing Order | |SBF «

Actual Yalues that wil be generated =T 4096 Pawer Up Mode | REF, MR Wite Hold Cycles | o v
CCLK 393 216003 MHz Bus Width |32 3 Idle Cycles i v

PGSI1287

SDCLK 157 286401 MHz P ETC e Bus Wicth
Buurst Stop
Dizable 7 |:| Enable ACK Signal
Include Subroutines to
[0 Erter Self Refresh [Disabile Precictive Reads
Eiiesaaog] Exi Self Refresh
|:| Dizable Packing
Code Generation
LEmENEER Ecletiioctlc Detault values selected for MT4BLCAM32-5 SDRAM device on
@ tssembly (OC [dre [Ospram Clam the ADSP-21369 EZ-Kit

Processar Speed grade
Gerersts Code| | apsP-21388 v | | 400 |

System Configuration

[seve] [toea] [Fooet |

Figure 2. Code generator for PLL, SDRAM, and AMI controllers of the ADSP-21369 processor

Expert Code Generator for SHARC® Processors (EE-322) Page 3 of 23

ANALOG
DEVICES

PLL, DDRZ/SDRAM, and AMI Initialization Code Generator {Rev 5)

PLL Inttialization DOR2 Controller Initialization Abdl Cortraller Inttialization
CLKIM 25 SCOmax 00 tRAS (ns) 40 Which Bank? | cs0 R Select Bank M0 3
COLK 450 DOCLKCCLK 2 b 1RP (=) 15 Banks g b
M&X CCLK | 450 MLBCLK.CCLK CAN 10 3 [ClEnable &l Bank
PATR (ns) 75 _
. : Wait States i
WM COLK | 0 LPCLK:CCLK 1:3 L R 13 Z R
tRCD(ns) |15 -
First Time programming COCL 4 Z Packing Order | LSBF
X tRTP (ns 75 Read Hold Cycles | 0 w
CLK CFGx 181 %) [tycocurrent | 800 (n=) (kAL o v _
Actual Values that will be generated tRRO(ns) | 10 QDT (Rit) Disabled v Wiite Hold Cycles | o
CCLK 450.000000 MHz DOS Ensble | Enabled Idle Cycles 0
tFAWY (ns) a0 e B
DDR2CLK 225000000 MHz OptimizeReads)y (OIN us
v (ns) 15 -
MLBCLE 11:2.500000 MHz Read Moddifi
Fac Modttier |1 b [JEnable ACK Signal
LPCLK 150.000000 MHz tREFI(Us) | 7.8 Include Subroutines to _ o
e — O Enter Self Refresh [bisable Predictive Reads
tRFCns) | 1275 [0 ExitSelf Refresh [issile Packn
]
max tCK (ns) | 8 |:| Enter Powver Dovwn

|:| Exit Powver Diowvn
Code Generation

LEnEREE3 SRR Default values selected far the MT47HEAM1E DDR2 DRAM
® Assembly Oc O Coorz [CJam device on ADSP-21463 EZ-Kit

Processzar Speed grade
Generate Code| | | ancp21468 v 450 ~

System Configuration

(o] (o]]

Figure 3. Code generator for PLL, DDR2, and AMI controllers of the 21469 processor

Registering and Accessing the Plug-In
To integrate the plug-in with the VisualDSP++ environment, perform the following steps:
1. Copy the PLL_DDR2_SDRAM_AMI_Init.dl1 file to the <install_path>\VisualDSP 5.0\System folder.

2. Copy the regsvr32.exe file from C:\WINDOWS\System32 to the folder mentioned above if this file is
already not available.

3. From a CMD prompt, go to the above folder and register the .diIl file as shown below:
<install_path>\VisualDSP 5.0\System> regsvr32.exe PLL_DDR2_SDRAM_AMI_Init.dll

BEE
B

Microsoft Windows XP [Uersion 5.1.26801
{C> Copyright 1985-2801 Microsoft Corp.

IC:\Documents and Settings“mmoonat>cd..
IC:\Documents and Settings?cd..
IC:n>ed "Program FilessAnaloyg Devices\UisualDSP 5.8%System”

IC:\Program Files™inalog Devices\UisualDSP 5.@\System>regsurd2.exe PLL_DDR2_SDRAM
| AMI _Init.d11

IC:“Program Files“Analog Devices“UisualDSP 5.6~\System>

RegSvr32 @

.
\]\:) DIRegisterServer in PLL_DDR2_SDRAM_AMI_Init.dll succeeded.

Figure 4. Registering "Code Generator for PLL, DDR2/SDRAM, and AMI Controllers”

Expert Code Generator for SHARC® Processors (EE-322) Page 4 of 23

ANALOG
DEVICES

For Windows Vista® and Windows 7® operating system, the command prompt should be opened
in administrator mode as shown in Figure 5.

4 Accessories
a Bluetooth File Transfer Wizard
[7 calculator

‘J Favorites
B Command Preseast | Recent ltems

22 Connecttoa Open
E Motepad r@ Run as administrator

‘| Paint Open file location

:l_.‘ Remote Deskt] 9 WinZip "
i3] Run

(%: Snipping Too

Pin to Start Menu

L Stiund Recoid Add to Quick Launch
@ Sync Center Restore previous versions

W Welcome Cen
M Windows Expl Send To 2
@ Windows Mol Cut

k! Windows Sideg
g; WordPad i

; Ease of Acces: Delete

. System Tools Rename

. Tablet PC

. Windows Pow Properties

Figure 5. Accessing command prompt as administrator in Windows Vista OS

4. Once the registration is completed, the plug-in can be accessed via: Tools->Plugins->PLL, DDR2/SDRAM,
and AMI Initialization Code Generator asshown in Figure 6.

[»] Analog Devices VisualDSP++ - [Target: ADSP-21479 ADSP-214xx Simulator]

File Edit Session View Project Register Memory Debug Settings RGGEEN Window Help

®iDs &9 = g N
g Linear Profiling L =
E Cr Expert Linker v P
=| :.; iq,} e LE @ é Flash Programmer...
PGO g

| Plugins Accelerators
| PLL, DDR2/SDRAM, and AMI Initialization Code Generator |

Figure 6. Accessing “Code Generator for PLL, DDR2, and AMI Controllers”

Processor and Speed Grade Selection

The first step to be able to generate the code using this plug-in is to select the processor and the
corresponding speed grade. As discussed above, depending upon the processor selection, one or more
sections out of PLL, DDR2, SDRAM, AMI controllers shall be activated. These sections will again show
only the fields supported by the selected processor. E.g. in the PLL Initialization section for

Expert Code Generator for SHARC® Processors (EE-322) Page 5 of 23

ANALOG

DEVICES
ADSP-21262 processors, the fields corresponding to DDR2CLK, MLBCLK, and LPCLK are not shown
unlike for ADSP-21469 processors.

PLL Initialization
Perform the following steps to include PLL initialization code:

1. In CLKIN, enter a value in MHz. By default, this field is initialized with the CLKIN frequency used in
the EZ-KIT® evaluation board corresponding to the selected SHARC processor. E.g. default CLKIN
value for ADSP-2147x processors is 16.625 MHz as used in the ADSP-21479 EZ-KIT board.

2. In CcCLK, enter the required value in MHz. By default, this value will be equal to the maximum value
supported by the processor of a particular speed grade. The exact value of the required CCLK may not
be achieved in some cases. For such cases, enter the minimum (MIN CCLK) and maximum (MAX CCLK)
CCLK range in MHz. The tool will generate the closest possible CCLK to the CCLK entry within the
given range. By default, MIN CCLK = 0, and MAX CCLK = maximum supported CCLK.

3. The field VCOmax shows the maximum supported VCO frequency by the combination of selected
processor and speed grade.

4. Depending upon the processor selected, select various ratios such as DDR2CLK/SDCLK:CCLK,
LPCLK:CCLK etc.

5. For 214xx processors, check/uncheck “First Time programming” depending upon whether the PLL
programming macros will be used for programming the PLL first time after reset or not. If this option is
unchecked, another option “INDIV before programming” will appear. Check “0” or “1” depending
upon whether INDIV is set or cleared before the PLL programming. These options are required to take
care of the PLL anomaly#15000020.

6. Under Select Module, select the PLL check box.

The Actual Vvalues that will be generated group box displays the actual CCLK value that is the
closest possible value to the required CCLK value to be generated by the tool. It also displays the resulting
DDR2CLK/SDCLK, MLBCLK, and LPCLK values based on this actual CCLK value and the
corresponding selected ratios. “Error!”” will be displayed for all the clocks if there is an error in CCLK
generation. When there is no error in CCLK generation but one or more of DDR2CCLK/SDCLK,
MLBCLK, or LPCLK are out of the supported range, “Error!” will be displayed in front of that clock.
View the text displayed in the Error Message box to see the message that corresponds to a particular
error. No text will be displayed if there is no error. Figure 7 shows examples of error conditions.

Expert Code Generator for SHARC® Processors (EE-322) Page 6 of 23

ANALOG
DEVICES

PLL, DDR2/SDRAM, and AMI Initialization Code Generator | pLL, DDR2/SDRAM, and AMI Initialization Code Generator

PLL Initialization PLL Initialization

ckw [25 [wvcomax cLkin |25 VCOmax
COLK _ DDCLK:CCLK coik | 4so DDCLK:CCLK
450

r.mxccu(MLECLK:CCLK M coLk | 450 MLBCLK:CCLK
l-|INCCLK LPCLK:CCLK MIN CCLK | 0 LPCLK:CCLK | 1:3

Actual Values that will be generated Actual Values that will be generated
o oz e [o
DDRZCLK WHz DDR2CLK 112.500000 —=Error MHz
WLBCLK Error IHz MLBELK 112.500000 MHz
LPCLK Error WMHz LPCLK 150.000000 MHz
Error Meszage Error Message
CCLK more than the maximum supported DDR2ZCLK <« minimum specified \.-alue|
Code Generation Code Generation
Language Select Module Language Select Module
@assemoy Oc e [Coore [JAM ®assemsy Oc el [oorz [JAM
Processzor Speed grade Processor Speed grade
Generate Code] | apsp-21469 s | [450 | Generate Code] [ApsP21#69 |w| | [450 v]
System Configuration System Cenfiguration
’ Save] ’ Load] ’ Reset] Save] ’ Load] ’ Reset]

Figure 7. Various error conditions

The plug-in does not include the workaround for anomaly number “15000014” on ADSP-214xx
SHARC processors as it is applicable only for the DMA mode. If the system uses MLB in DMA
mode, the workaround has to be added explicitly. Please refer to the corresponding anomaly
sheet for more details % (*410121,

Initializing the DDR2 Controller

Perform the following steps to include DDR2 controller initialization code:
1. Enter the following specifications from the DDR2 device data sheet:
tRAS

tRP

tWTR

tRCD

tRTP

tRRD

tFAW

tWR

tREFI

tRFC

tCK max (minimum DDR2 clock frequency supported by the device)

O 0 O O O 0o 0o o o o o O

Banks (number of banks)

Expert Code Generator for SHARC® Processors (EE-322) Page 7 of 23

ANALOG
DEVICES

CAW (column address width)
RAW (row address width)
DDCL (CAS latency)

DDAL (additive latency)

2. In ODT (Rtt), Select Disabled to disable on-die termination, or select the corresponding value for
Ritt.

O O O o

InDQS Enable, select Enabled or Disabled according to the system’s requirements.

4. In Optimize Reads and Read Modifier, select Yes if predictive reads are needed, and select the
corresponding modifier value.

5. InWhich Bank, select the external port bank to which the DDR2 device should be mapped.

6. In Include Subroutines to, select options to generate separate subroutines for entering and exiting
Self Refresh and Power Down modes. Corresponding options should be checked to generate these
subroutines along with the PLL_DDR2_AMI subroutine.

7. Under Select Module, select the DDR2 check box.

Initializing the SDRAM Controller

1. Enter the following specifications from the SDRAM device data sheet:
tRAS

tRP

tWR

tRCD

tREF(SDRAM refresh period)
NRA (number of row addresses)
CAW (column address width)
RAW (row address width)
SDCL (CAS latency)

2. For ADSP-2137x, ADSP-2147x, and ADSP-2148x processors, select Yes for PGSz 128 to set column
width to 7 bits.

For ADSP-2137x processors, select Yes for Burst Stop Disable to disable burst stop.

O O O o o o o o o

4. In Optimize Reads and Read Modifier, select Yes if predictive reads are needed, and select the
corresponding modifier value.

5. In Power Up Mode, select REF, MR Set for the power up mode “Precharge, mode reg set, 8CBR
refresh cycles” else select MR Set, REF for the power up mode “Precharge, 8CBR refresh cycles,
mode reg set”.

6. InBus Width, select the bus width to be either 32 or 16 bits as per system requirements.

Expert Code Generator for SHARC® Processors (EE-322) Page 8 of 23

ANALOG
DEVICES

7. Inwhich Bank, select the external port bank to which the SDRAM should be mapped.

8. For ADSP-2147x and ADSP-2148x processors, in ADDRMODE, select the addressing mode to be page
or bank interleaved.

9. In Include Subroutines to, select options to generate separate subroutines for entering and exiting
Self Refresh mode.

10. Under Select Module, select the SDRAM check box.

Initializing the AMI Controller

The AMI Controller Initialization section of the GUI allows you to enable and configure one or more of the
four AMI banks individually. To configure any AMI bank and include the AMI initialization code, perform
the following steps:

1. InsSelect Bank, select the bank to be configured.
2. Select Enable AMI Bank, to enable this AMI bank.
3. Select the following parameters for this bank:

Wait States

Packing Order

Read Hold Cycles

Write Hold Cycles

Idle Cycles

Bus Width

Enable/Disable Packing

Enable/Disable Predictive Reads

Enable/Disable ACK Signal usage

4. Click Apply to save the settings for the current AMI bank selected.

O O O o o o o o o

Under Select Module, select the AMI check box.

Generating the Code
Once all the settings are entered and the required modules are selected, perform the following steps:

1. Under Language, select the Assembly button to generate the code in assembly, or select the C button
to generate the code in C.

2. Click the Generate Code button to save the generated file in the required project folder. The default
file name would be PLL_Init/PLL_SDRAM_AMI_Init/PLL_DDR2_AMI_Init.asm (or C) depending
upon the processor selected.

Expert Code Generator for SHARC® Processors (EE-322) Page 9 of 23

ANALOG
DEVICES

Using the Generated Source File
Perform the following steps to use the generated source file in a VisualDSP++ project:
1. Add the generated file to the project.

2. In Assembly, declare the function _Init_PLL/ Init_PLL _DDR2_AMI/_Init_PLL_SDRAM_AMI .asm
external using the _extern directive. Call the function whenever needed in the main code.

3. In C, declare the function Init_PLLQ/Init_PLL_SDRAM_AMI()/Init_PLL_DDR2_AMI()external
using the extern directive; Call the function whenever needed in the main code.

Figure 8 shows PLL_DDR2_AMI_Init.asm generated for the default settings for ADSP-21469 processor.
As shown, the code in the source files calls macros such as ADSP_2146x PLL_Init, ADSP-

2146x_DDR2_Init, and ADSP-2146x_AMI_Init. These macros are defined in the file cs_macros.h
supplied with this tool.

Ensure that the file cs_macros.h is copied to the <install path>\VvisualDSP
5.0\<212xx/213xx/214xx>\include folder.

Figure 9 shows an example VisualDSP++ project PLL_DDR2_AMI_Init in assembly language using the source
file PLL_DDR2_AMI_Init.asm.

[Analog Devices ¥isualDSP+~+ - [Target: ADSP-21-46% via HPPCI-ICE] - [Project: PLL_DDR2_AMI_Init] - [PLL_DDRZ_AMI_Init.asm]

File Edit Session Wiew Project Regisker Memory Debog Settings Tools wWindow Help

HE s | - = s P N2 P
= X b Bgn | s 35 PLL_DDRZ_AI_Imit ~ | Debug - Dz, Dy Day
PEM & | m k] s RBEE B M® e E

>

#Finclude<def2l469 hi

Praject Group (1 project) Finclude<o=2146x h>

=~ PLL_DDR2_AMI_Init

— ‘=3 Source Files
2T4B3_IMT asm .global _Init PLL_DDR2_AMT:

main asm

PLL_DDRZ_AMI_Init.asm
=i Linker Files))
ADSP-21469_ASM.LDF —Init FLL DDR2 AMT:
[Z3 Header Files

.sectlionspm =eg_pmco

ADSE_2146¥ _FPLL Init(185.1.0.2.3.4):;

ADSP _2146= DDR2_Tnit(
EBOSD .
DDRZPSS | DDRZRAWLIE |DDRZCAWLO |DDRZEBCE | DDRZWDTH=16 | 0 | DDRZHODIFYO

DDR2TRAS11 |DDR2TRP4 |[DDR2TWTRI | DDR2TRCD4 | DDR2TRTEPZ2 | DDR2TRRD2 | DDR2TFATS |
DDRZHR | DDR2TWR4 | DDR2ZCAS3 |DDR2BL4 .

DDRZEXTHR1 | DDRZALZ | DDRZCDTDIS | DDRZDLLEN | 0.

DDRZEXTHRZ .

DDRZEXTHRZ .,

OxEoo| (29<<21) .,

sooo

2.
O=200000
¥

ADSP 2146x AMI Init(
o,

ooo

¥

rt=:

_Init_PLI_DDRZ_AMI END:

Figure 8. PLL_DDR2_AMI_Init.asm

Expert Code Generator for SHARC® Processors (EE-322) Page 10 of 23

[Analog Devices WisualDSP++ - [Target: ADSP-214 6% wia HPPCI-ICE] - [Project: PLL_DDR2_ali_|

ANALOG
DEVICES

- [main.aso]

Fil= Edit Session Wiews Project Reagister

Mermory Debug Settings Tools Windowe Help

O = - B at G B 0= | e L 2 ®
=9 [gn | 2 | PLL_DDRZ_aAMI_{nit ~ | Debua ~| § =
& | M e B OO | R s BRI A B MR = [
<
- — Finclude<def 21469 h>
Proiect Group [1 prajectl
= [PLL_DDRZ_AMI_Init global _main:
=" Fil
= "";eas'geﬁVT e Lextern _Init PLL_DDR2_AMI:
main. asm =ectionspm =eg pmoo
PLL_DDR2Z_AMI_Init.asm |
= =3 Linker Files _msdin
[:.EajEDrSFFI;;"“BE'—ASM'LDF - ==ll _Init PLL_DDR2_AMI:
- rO=0Ozaaaaazas
dm(0=200001)=x0:
rl-dm{0=2000017 ;
o [dump{ps,. 03
_m=in.end:
Dataf{D = O = ade R)
O=200001 -~ [:] RO AxAxAAAA00 E2 O000EBEZ1EBSO00
Rl Aliiiaii00 R9 0000000000
[200001] Akiiaisis FEDFEEFE -~ RZ 0000000000 Ri0 GS5&83EF4300
[zoo003] EFFFFFFS DFCEFFEFE RE=Z 0000000300 R11l FEACA4SEOO
Sooons] FFFBFFFE SFFBEDEE R4 0000000100 R12 000SCS52a00
Ezuuuu?% FFEEREEE SFYERERD RS 0000001300 R13 0000001000
Ee Oooooooozoo FEl4 2192624200
fzoooos] FOEEFEFE FEEFEFEEE R7 0000000000 R1S 0000498000
[zZ0000EBE] FFFFFFFF 7FFEEFEFFEF
[200000] FFFF7FEF FFDFFEFE
[20000F] FFFFCPFE FFFEFFEE
[200011] D7FFFLD?7F FFFEFFFFFE -~

Figure 9. VisualDSP project using the GUI Generated source file "PLL_DDR2_AMI_Init.asm"

Figure 10 shows a snapshot of the PLL_DDR2_AMI .C file generated for the default settings.

Figure 11 shows an example VisualDSP++ project PLL_DDR2_AMI_Init_C in C language using the source
file PLL_DDR2_AMI_Init.C.

[»] Analog Devices VisualDSP+ + - [Target: ADSP-2146% via HPPCI-ICE] - [Project: PLL_DDR2_AMI_Init_C] - [PLL_DDR2_AMI_Init.C]

File Edit Session Wiew Project Register Memory Debug Settings Tools indow Help

iy P

Projeck: PLL_DDRZ_AMI_Init_C.dp...

x

& Qb FsE | e
[PLL_DDRZ_AMI_Init_C + |Debua -
VRPN RES DR T@

w0 N2

&

Project Group [1 project]

=3y PLL_DDR2_AMI_Init_C*
=2 Source Files
main.C
FLL_DDRZ_AMI_Init.C
3 Lirker Files

23 Header Files

pFinclude<def21469 he
#include<cs2l46x he

vwoid Init_PLL _DDRZ_AMI()
{

ADSFP_2146X PLL Tnait(18.1.0.2.3.43;

i

ADSFE_2146x DDR2_Init(
BOSD

DDRZPSS | DDRZRAW1Z | DDRZCAWLO0 |DDREZECS |DDRZWDTH=16 | 0 |DDREZHODIEYO .
DDRZTRAS11 | DDRZ2TRF4 |DDR2TUTRS | DDR2TRCDY | DDRZTRTFZ | DDR2TRRDZ | DDRZTFATS .
DDRZME |DDRZTWR4 | DDR2CASS | DDRZELY.

DDRZEXTHR1 |DDRZALZ | DDRZ0DTDIS | DDRZDLIEN | O,

DDRZEXTHRZ
DDRZEXETHRZ.
Oxboo | (29<<21).
sooo.

2.
0=z00000
)

ADSP_2146x AMI_Init(

oooo

Figure 10. PLL_DDR2_AMI_Init.C

Expert Code Generator for SHARC® Processors (EE-322)

Page 11 of 23

ANALOG
DEVICES

(™ Analog Devices VisualDSP++ - [Target: ADSP-21469 via HPPCI-ICE] - [Project: PLL_DDR2_AMI_Init_C] - [main.C]
Fil= Edit Session View Projeck Register Memory Debug Settings Tools wWindow Help

fBlio=d@s %9 i o o G FE 4 P ®
% +=] X B Dy s | gk @y PLL_DDRZ_AI_Init_C ~ | Debug il % e, Ungy Unde
£ =l U] g B AR B PP e RIEE I8 MR S ([
=
o = = w¥include<def21469 h>
Froject Group [1 project] #include<Cdef21469 he
= [PLL_DDR2_AMI_Init_C*
=-=3 Source Files =xtern wvwoid Init_ PLT DDRZ2_AMI):
main. . int temp writesOxasaassssaa:
PLL_DDRZ_AMI_Init.C int temp_read:
Z0 Linker Files
3 Header Files int*® temp={int*)0=200001:

wint maing)

-» Init_PLL _DDR2_AMIC):
*temp=temp_write

temp read=*temp;

=+ [return 0 1
Data{DM) Memory [Hexadecimal] [X] Data{DM) Memory [Hexadecimal] =
D=200001 B D tenp_write - Q

[Z00001] A&daddkddsd FEDFEEFF ~ temp_write ~
[200003] EFFFFFF3 DFCFFFFF [OBZ001] Adddhbid

[2O00005] FFFEFFFF SF7EBEDFF temnp

[2zO0007] FFFEEFFF 7?F7EFFFF [OEZO002] OO0zo00001

[200009] FDFEFEFF FFFFFFFF tenp_read

[20000E] FFFFFFFF FFEFFFF [OBZ2003] AbAAAAALA

[20000D] FFFF7FEF FFDFFFFF argv_string

[Z0000F] FFFFC?7FE FFFBYFEE [OEZ004] OoOO00OO0O0O0O0

[200011] D7FFFDYF FFFFFFFF - _errno et

Figure 11. VisualDSP++ project using the GUI-generated source file "PLL_DDR2_AMI_Init.C"

Code Generator for Accelerators

Introduction

“Code Generator for Accelerators™ generates code for using FIR, IR, and FFT hardware accelerators on
ADSP-214xx processors. Itgenerates a single file named FIR_IIR_FFT_Init.asm Or
FIR_IIR_FFT_Init.C, which includes TCB declarations and subroutines for configuring and initializing
FIR, IIR, and FFT accelerators. Appropriate error messages are displayed in response to an invalid value
entered by the user. It also shows the on-chip memory that will be used to store for input/output/coefficient
buffers and the TCBs. Furthermore, it provides an option to save the current system configuration in a
-CFG file, which can be used later to restore the same configuration. One can as well bring all the settings
back to the default values by clicking on the Reset button.

Expert Code Generator for SHARC® Processors (EE-322) Page 12 of 23

Code Generator for Accelerators

FIR Accelerator
Glebal Settings for all channels
Mo of Channelz | 1 + | Data Format Floating w
Auto terate 7 No ~ || Rounding Mode | Mearest{ever w
DA Interrupt Status Interrupt
Interrupt When All Channelz Complete vl
Channel Specific Settings
Buff
Select Channel urers
Select Buffer
Window Size g1z Baze FIR_IP_Buff1
Sample Rate Cenversion Index offest D
[Jenatle
R Medifier | 1
_ Length | 512
Ratio Cave Buffer Se
On Chip Memery Usage
TCB= 418 Bitz Output 16.000000 Kb
Input 16.000000 Kb Coefficient 16.000000 Kb
Error Meszage
System Configuration
[save | [Load | [Resst

IR Accelerator

Global Settings for all channels

Mo of Channels | 1 w Data Fermat 32 bit Floating |w

Auto terate 7 | No | || Rounding Mode | Nearestisver

None w || Status Interrupt

All Channelz Complete vl

DMA Interrupt

<

Interrupt when

Channel Specific Settings
Buffers

Select Buffer
Select Channel

Input |w

Baze IR_IP_buff1
No. of Biguads 1 ¥ e |
Vindow Size | 812 SITE ||
Length | 512
On Chip Memery Usage
TCBs 418 Bits Qutput 16.000000 Kb
Input 16.000000 Kb Coefficient 16.000000 Kb

Error Mezzage

Code Generation

@sssmy O

Include Code for

OJFR IR [JFFT

Processor

ANALOG
DEVICES

&

FFT Accelerator
General Settings

No. of Pointz | 18 L
Input Packing | ROR1.I10H..
Qutput Packing | RO,R1..10,1.. &

Repeat? (Dives (&) No
DMA Interrupt | Nene L
Status Interrupt| None L

Buffers

Name FFT_IP_buff
Length iz

Qn Chip Memery Usage

TCBs 576 Bits
Input 1.000000 Kb
Output 1.000000 Kb
Coefficientz 17.000000 Kb

Pointwise Twiddle NA

I Qutput HA

ADZP-214588 w

Figure 12. Code generator for Accelerators

Registering and Accessing the Plug-In

1. Copy the file ACC_Init.dl1 to the <install_path>\VisualDSP 5.0\System folder.

2. Copy regsvr32.exe file from C:\WINDOWS\System32 to the folder mentioned above (if it’s already

not available).

3. Froma CMD prompt, go to the above folder and register the _d11 file as shown below:

<install_path>\VisualDSP 5._0\System> regsvr32.exe ACC_Init._dll

®

For Windows Vista® and Windows 7® operating system, the command prompt should be opened
in administrator mode as shown in Figure 5.

Expert Code Generator for SHARC® Processors (EE-322)

Page 13 of 23

ANALOG
DEVICES

Microsoft Windows HP [Uersion 5.1_268681
CC> Copuright 19852001 Microsoft Corp.

C-z~Documents and Settings~mmoonat>cd ..

C=~Documents and Settings>cd..

C-~>cd "Program Files'

Cz-Program Files>cd ""Analog Devices'"

G z~Program Files~fAnalog Devices>cd ""UisualDSPF S.8"

C -~ Program Files~Analog Devices-~UisualDEFP 5 _8>cd Sustem

IC =~ Program Files~Analog Devices~UisualDSP 5 _8~Suystemlregsurd2_exe ACC_Init.d4dll

G z=~Program Files~Analog Devices~UisualDEPF S.@~System>

-
'“].:J DIIRegisterServer in ACC_Init. dll succeeded.

Figure 13. Registering "Code Generator for Accelerators”

4. After registration is completed, the plug-in can be accessed via: Tools->Plugins->Accelerators as
shown in Figure 14.

[»] Analog Devices ¥isualDSP++ - [Target: ADSP-21479 ADSP-214xx Simulator]

File Edit Session View Project Register Memory Debug Settings QEGIEE Window Help

% % 0= $ 53 % Trace 4 % " [
g Linear Profiing L
: —’é’ Expert Linker 3 E L3S
=l \fb Tl} o LE ﬁ & Flash Programmer...
PGO 3

Plugins Accelerators

PLL, DDR2/SDRAM, and AMI Initialization Code Generator

Figure 14. Accessing "Code Generator for Accelerators”

FIR Accelerator

This section describes how to generate TCBs and the initialization code for the FIR accelerator. You are
responsible for selecting both the global and channel-specific parameters. For multichannel processing,
configure multiple sets of input, output, and coefficient buffers and individual channel-specific parameters
for each channel separately. Perform the following steps to generate code for FIR accelerator:

1. Specify the following global settings applicable to all channels:
o No. of channels. Number of channels chained to be processed one after the other.

o Data Format. Type of data that is to be processed: 32 bit Signed/Unsigned Fixed Point, or 32 bit
Floating Point.

o Auto Iterate. Specifies whether the processing should stop after all channels are processed.

O Rounding Mode: For floating-point operation. Various rounding modes can be selected, e.g.,
IEEE round to nearest, IEEE round to zero, Round away from zero, etc.

Expert Code Generator for SHARC® Processors (EE-322) Page 14 of 23

m]

ANALOG

DEVICES
Interrupt when. Interrupt can be generated either when processing of all channels or each
channel is complete.

DMA Interrupt. “None” indicates that the DMA interrupt is not being used in the application.
Select any of the 19 programmable interrupts from “POI” to “P181” to which this interrupt should
be mapped.

Status Interrupt. “None” indicates that the DMA interrupt is not being used in the application.
Select any of the 19 programmable interrupts from “P0OI” to “P181” to which this interrupt should
be mapped.

2. Configure channel-specific settings:

m]

m]

m]

m]

Select Channel. Select the channel to be configured.

Tap Length. Enter the tap length for the FIR filter (<= 4096).

Window Size. Enter the number of output samples to be generated for one iteration (<= 1024).
Sample Rate Conversion.

Select Enable if sample rate conversion is required.

Select whether Decimation or Interpolation is required.

Select the decimation/interpolation ratio.

3. Buffers: Configure following settings for the input/output/coefficient buffers:

m]

m]

Select Buffer. Select input/output/coefficient buffer for which setting is required.

Base.” Default name is FIR_IP_Buffx/ FIR_OP_Buffx/ FIR_CF_Buffx (x = channel number). Enter
a new name if the name of the buffer is different.

Index Offset. Enter the offset from where the processing needs to be started with regard to the
base address.

Enter Modifier and Length.

Changing any field under Buffers enables the Save Buffer Settings button. Click this button to
save the new settings. The button will be disabled automatically after it is clicked.

Changing any field under Channel Specific Settings (except Buffers) enables the Save
Channel Settings button. Click this button to save the new settings. The button will be disabled
automatically after it is clicked.

Under Include Code for, select the FIR check box.

Expert Code Generator for SHARC® Processors (EE-322) Page 15 of 23

ANALOG
DEVICES

IR Accelerator

This section describes how to generate TCBs and the initialization code for the IIR accelerator. You are
responsible for selecting both the global and channel-specific parameters. For multichannel processing,
configure multiple sets of input, output, and coefficient buffers and individual channel-specific parameters
for each channel separately. Perform the following steps to generate code for IR accelerator:

1. Select following global settings applicable to all channels:

m]

a
a
a

No. of channels. Number of channels chained to be processed one after the other.
Data Format. Type of data to be processed: 32/40 bit Floating Point.
Auto lIterate. Specifies whether the processing should stop after all channels are processed.

Rounding Mode: For floating-point operation. Various rounding modes can be selected, e.g.,
IEEE round to nearest, IEEE round to zero, Round away from zero, etc.

Interrupt when. Specifies whether an interrupt is generated when processing all channels or when
each channel is complete.

DMA Interrupt. “None” indicates that the DMA interrupt is not being used in the application.
Select any of the 19 programmable interrupts from “POI” to “P181” to which this interrupt should
be mapped.

Status Interrupt. “None ” indicates that the status interrupt is not being used in the application.
Select any of the 19 programmable interrupts from “P0OI” to “P18I1” to which this interrupt should
be mapped.

2. Configure channel-specific settings:

m]

m]

m]

m]

Select Channel. Specifies the channel to be configured. The total number of channels that needs
to be configured will depend on the No. of channels value selected in the global settings. The
total number of channels in the Select Channel option will be dynamically updated based on the
No. of channels setting.

No of Biquads. Enter number of biquads for the IR filter (<= 12).

Window Size. Enter the number of output samples to be generated for one iteration (<= 1024).
Buffers. Configure following settings for the input/output/coefficient buffers.

Select Buffer: Select Input/Output/Coefficient buffer for which setting is required.

Base: The default name is IIR_IP_Buffx/ IIR_OP_Buffx/ 1IR_CF_Buffx (x = channel number).
Enter a new name if the name of the buffer is different.

Index Offset: Enter the offset from where the processing needs to be started with regard to the
base address.

Enter a Modifier and a Length.

Changing any field under Buffers enables the Save Buffer Settings button. Click this button to
save the new settings. The button will be disabled automatically after it is clicked.

Expert Code Generator for SHARC® Processors (EE-322) Page 16 of 23

ANALOG

DEVICES
Changing any field under Channel Specific Settings (except Buffers) enables the Save
Channel Settings button. Click this button to save the new settings. The button will be disabled
automatically after it is clicked.

3. Under Include Code for, select the 11R check box.

FFT Accelerator

This section describes how to include TCBs and initialization code for FFT accelerator. Perform the
following steps to include the FFT accelerator code:

1. General Settings:

o No. of Points. Specify the number of FFT points required (2"k, 4<=k<=13).

o Input Packing and Output Packing. Select the input and output packing format.

Select “R0O, R1...10 ,11..”” when input/output data is required in “first all real, then all imaginary”
format.

Select “RO, 10, R1, 11..” when input/output data is required in “alternate real and imaginary”
format.

NOTE: For FFT points>256, the packing format setting is ignored (i.e., input and output both use
“alternate real and imaginary” format).

o Repeat. Specify whether the processing needs to be repeated when done.

NOTE: You may have to add extra part of the code based on the application requirements when
repeat mode is selected.

o DMA Interrupt. Select “None” to indicate that the DMA interrupt is not being used in the
application, or select any of the 19 programmable interrupts from “P0/” to “P18/” to which this
interrupt should be mapped.

o Status Interrupt. Select “None” to indicate that the status interrupt is not being used in the
application, or select any of the 19 programmable interrupts from “P0/” to “P18/” to which this
interrupt should be mapped.

2. Buffers:

Case 1: FFT Points (N) <=256: Following three buffers are required:

Input Buffer of size 2*N
Output Buffer of size 2*N
Coefficient Buffer of size 2*N

Case 2: FFT Points (N)>256: For points > 256, the FFT is calculated in three steps:

Compute V Point FFT. Store this result in an intermediate output buffer.

Multiply each of the elements of this output buffer with its corresponding special twiddle
coefficients.

Compute H Point FFT of the resulting output buffer. This will give the final output buffer.

Expert Code Generator for SHARC® Processors (EE-322) Page 17 of 23

ANALOG
DEVICES

Because of this, following buffers are required:
i. Input Buffer of size 2*N.
ii. Output Buffer of size 2*N.

iii. Twiddle Coefficient Buffer for V Point FFT of size 2*V. (Value of V for a particular value
of N will be displayed in the GUI itself.)

iv. Twiddle Coefficient Buffer for V Point FFT of size 2*H. (Value of V for a particular value
of N will be displayed in the GUI itself.)

v. Intermediate output buffer to store the intermediate results of size 2*N.
vi. Special coefficient buffer of size 4*N.

o Select Buffer. Select the buffer to be configured.

o Name. Enter the name of the base of the buffer.

o Length. The size of the buffers is fixed and not user-configurable. Thus, this field is read-only. You
can view this field to see how much size to reserve for each buffer.

NOTE: To get the expected output, ensure that all the elements (2*N) of the input buffer are
initialized.

o Changing any field under Buffers enables the Save Buffer Settings button. Click this button to
save the new settings. The button will be disabled automatically after it is clicked.

3. Under Include Code for, select the FFT check box.

Code Generation

Once all the settings are entered and the required modules are selected, perform the following steps to
generate the code:

1. To generate the code in assembly, select the Assembly button under Language.
To generate the code in C, select the C button under Language.

2. Click Generate Code button to save the generated file in the required project folder.

Using the Generated Source File

Perform the following steps to use the generated source file FIR_IIR_FFT Init.asm or
FIR_IIR_FFT_Init.C in a VisualDSP++ project:

1. Add the file FIR_IIR_FFT_Init.asmor FIR_IIR_FFT_Init.C to the project.
2. Assembly language

o Declare the buffers to be used by the file FIR_IR_FFT_Init.asm as global in the main source file,
for example: global FIR_IP_buffi;

o Declare the subroutine to be called from FIR_FFT Init.asm as external, for example:
.extern _Init FIR;

Expert Code Generator for SHARC® Processors (EE-322) Page 18 of 23

ANALOG

DEVICES
o Define and initialize all the buffers, and then call the _Init_FIR, _Init_IIR, Or _Init_FFT
function.

3. C language

o Declare the buffers to be used by the file FIR_IR_FFT_Init.C in global memory space in the main
source file, for example: global FIR_IP_buff1[S1ZE]={ #include “input.dat” };

o Declare the subroutine to be called from FIR_FFT_Init.C as external, for example:
-extern void_Init_FIRQ);

o

Once all the buffers are initialized, call the Init_FIRQ, Init_IIRQ), or Init_FFT() function.

Figure 15 shows the FIR_IIR_FFT_Init._asnm file for a particular configuration of the FIR accelerator.

P analog Devices VisualDSP++ - [Target: ADSP-21469 wia HPPCI-ICE] - [Project: FLOAT _SCSI_125] - [FIR_IIR_FFT_Init.asm]

File Edit Session Wiew Projeck Register Memory Debug Settings Tools Window Help
B iD=l @s vy B 6 & o s FaE e

« | Debug

Eoa 2 ?
fE x| O

~| § by by O

FLOAT_SCSI_125
S0 & |l gm [T @M Ty e DR B M E

x
- - - % This file includes the initialization codes for FIR., IIR and FFT Accelerators =
Project Group (1 project)
-y FLOAT_SCSI_125 #include<def21469 hx
= #23 Source Files .
21489 VT, asm .global _Init_FIR:
FIR_IIR_FFT_Init.asm % Declaring the sxternsl buffers nesded for FIR Accelerstor*s
FLOAT_SCSI_125.asm .extern FIR_IP_buffl:
+-I_0 Linker Files .extern FIR_OP_buffl:
L0 Header Files

emtern FIR_CF_buffl.

~#4dding the TCE for FIE channelsss

section<dm =eg_dmda:

.war FIR _TCE_CH1[13]={

o

125,

1.
FIE_CF_buffl.
FIE_OF_buffl.
lo24.

1

FIR_OF_buffl+0.
FIR_IP buffl.
1143,

1

FIR_IF buffl+0,

1247¢1023<<14)
¥

% Adding the FIR Initialization Code How
LEectlionspn =Sg_pnoo;

| Init_FIR:

~<Happing the FIR DHA interrupt

ustat3I=dmn{PICED}:

bit clr ustatd POIO|POIL|POIZ2|POI3|POI4:
bit ==t ustat3 POIO|POIL|POIZ|POI4:
dm{FICRED) =ustat3:

bit ==t IMASK FOI:

ustatl=dm{PMCTL_EXT):
Taa b 1 + o+l DTT 1 leTT 1

Figure 15. “FIR_FFT_Init.asm” for FIR Accelerator

Figure 16 shows an example VisualDSP++ project using FIR_IIR_FFT.asm.

Expert Code Generator for SHARC® Processors (EE-322)

Page 19 of 23

ANALOG
DEVICES

1469 via HPPC CE] [Project: FLOAT CLFLOAT.
whtindou

Memory Debug Setbings Tools Help

dh g ab (e 5 =3 | e
|[FLOAT_scsi_12s ~ | Debug

3 o =l TR &1 = m 2 = =1

~®Thi= i= to te=t the working of the GUI generated code £ ox

Wi

Project Register

Flosting FPoint. Single Channel. Single Ilteration mode. Tap Length
= FLOAT_SCSI_125
= =1 Source Files #include<def 21469 h>
1 AT T amm Finclude<o=s2146:= . k>
FIR_IIR_FFT_Init. asm #de=fine TaP 125
FLOAT _SCSI_125 asm Hd=fine WIHDOW 1024
[C Linker Files R IR TE buaffd1
Floba " b :
O Header Files oloba 1l FIR_OF_bwaff 1

Slobal FIR_CF_buffl:
_m=dimn
.glob=l _FIR_DMaA ISE:
extern _Init _FIR:
=ection-dm =e=g_dmds:
Lwar FIR_IFP _Fuffl[TAP+WINDOW—1]1={
¥
.wor FIR_OF _Lbuffl[WINDOW]:
Lwar FIR_CF _buffl[TaPl1-=1
x:

#Hinclude “dinput . dat”

#Hinclude "co=ffs. dat”

Section-pm Seg_pmoo:

maoin
- bit ==t MODEL IRPTEN:
nom
=21l _Init FIR:

L madin . end

| FIR_DHMa ISR

== [noo
nop

i

| FIR_DMa& ISR EHD:

Figure 16. VisualDSP++ Project using the "FIR_IIR_FFT_Init.asm" file

Figure 17 shows the FIR_IIR_FFT_Init_C file for a particular configuration of the FFT accelerator.

Edit Session Views Projeck Register Memory Debug Setktings Tools Window Help

O = =] s ol e S g
| 54_Paints ~ | Debug
co Eel B &0 = M =2 =

3% Thi= file includes the initialization codes for FIR., ITR and FEFT

FProject Group (1 projectl
= [} 64_Points
==l Source Files

Finclude<def 21469 h>
Hinclude«Cdef 21469 h>

E4_FPoints.c woid Init FETC Y-
FIR_IIR_FFT_Init.C —
inker Files e =eclaring the sexterns 1 =2rs nesdes o1 coeleratores
£ Linker Fil D=cl i T 1 buff ded £ FFT & 1
3 Header Files extern int EFT_IF buff[]:
=xtern int FFT_OF bBuff[]:

=xtern int FEFT_CF _buff[]:

~adding the TCE for FFT Acceleratorss
int FFT_IP TCBL&]1={

Cimtao.
(int 3FFT_IF_buff .
izg.
1z8.
1,
(int)FFT_IF_buff
i |

int FFT_OF_TCE[&]={
Cintio
(intIFFT_OF_buff .
izg.
1z8_
1,
(int }FFT_OF_buff

¥

int FFT_CF_TCEB[E]=
(int}FFT_IP TCE+5—0x280000.
{int3FFT_CF_buff -
izs.
1z89.
1,
(int3}FFT_CF_buff

¥

2 Adding the FFT ITnitialization Code How =
woid Init FET()
£

Figure 17. FIR_FFT_Init.C for FFT Accelerator

Expert Code Generator for SHARC® Processors (EE-322) Page 20 of 23

Figure 18 shows an example VisualDSP++ project using FIR_IIR_FFT.C.

ANALOG
DEVICES

]| analog Devices VisualDSP++ - [Target: ADSP-2146% via HPPCI-ICE] - [Project: 64 Points] - [64_Points.c]

File Edit Session
H |
He | =M

gn | == @5
o

>

oiect Group [1 project]
64_Foints
= “=H Source Files
B4_Faoints.c
FIR_INFR_FFT_Init.C
[Linker Files
Header Files

Wiews Projeck Register

54_Faints

Memory Debug Setktings Tools wWindows Help
dh o T e =

~ | Debug ~

Eo = = e N = |

Eaa NT

: D D

[This i= to test working of the G001 Gensrated

Finclude<d=£f21469 . h>
Finclude<CTd=£f21469 >

Fincludes<signsl . h>
Finclude<stdico. k>
=xterm ol ITwnit FFTC(D:
woid FEFT _DHMA ISR)
Hd=~Ffinm= H &4

flo=st FFT_TIF _buff[ZH]={

Finclud=

.

flost FEFT_OF buff[ZH]:
£flo=st

.

count

FFT_ _CF_ _buff[2H]={
Finclud=

medingl

dmt ==

interrupt (SIS FPO.FFT _DHMA TITSRDY
Tmit FFTC(D:

while=(1l2

<L

==0:

>

returmn 0O

>

“dnput . dst ™

"twiddle &4 .d=t "

Code £fox

Figure 18. VisualDSP++ project using the "FIR_IIR_FFT_Init.C"

Example Code and Other Files

In addition to the Expert Code Generator, a number of assembly and C example projects are provided in
the associated .zIP file. Along with these code examples, all the twiddle coefficients needed for the FFT
accelerator are supplied in _dat files. Those are:

m twiddle_16.dat: Twiddle coefficients for 16 points FFT (buffer size = 32)

m twiddle_32.dat: Twiddle coefficients for 32 points FFT (buffer size = 64)

m twiddle_64.dat: Twiddle coefficients for 64 points FFT (buffer size = 128)

m twiddle_128.dat: Twiddle coefficients for 128 points FFT (buffer size = 256)
m twiddle_256.dat: Twiddle coefficients for 256 points FFT (buffer size = 512)

Special twiddle coefficients:

m pw_twiddle_512._dat: Special twiddle coefficients for 512 points FFT (buffer size = 2048)

m pw_twiddle_1024.dat: Special twiddle coefficients for 1024 points FFT (buffer size = 4096)

m pw_twiddle_2048.dat: Special twiddle coefficients for 2048 points FFT (buffer size = 8192)

m pw_twiddle_4096.dat: Special twiddle coefficients for 4096 points FFT (buffer size = 16384)

m pw_twiddle_8192.dat: Special twiddle coefficients for 8192 points FFT (buffer size = 32768). s

Expert Code Generator for SHARC® Processors (EE-322)

Page 21 of 23

ANALOG
DEVICES

References

[1]
[2]
[3]
[4]

[5]
6]
[7]
8]
(9]

Managing the Core PLL on SHARC Processors (EE-290). Rev 4, November. Analog Devices, Inc.
ADSP-2146x SHARC Processor Hardware Reference. Rev 0.3, July 2010. Analog Devices, Inc.
ADSP-21261/ADSP-21262/ADSP-21266 SHARC Processor Data Sheet. Rev F, August 2009. Analog Devices, Inc.

ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 SHARC Processor data sheet. Rev G, March 2011.
Analog Devices, Inc.

ADSP-21367/ADSP-21368/ADSP-21369 SHARC Processors Data Sheet. Rev E, July 2009. Analog Devices, Inc.
ADSP-21371/ADSP-21375 SHARC Processor Data Sheet. Rev C, September 2009. Analog Devices, Inc.
ADSP-21467/ADSP-21469 SHARC Processor Data Sheet. Rev A, December, 2011. Analog Devices, Inc.
ADSP-21478/ADSP-21479 SHARC Processor Data Sheet. Rev A, April 2011. Analog Devices, Inc.
ADSP-21483/21486/21487/21488/21489 SHARC Processor Data Sheet. Rev 0, January 2011. Analog Devices, Inc.

[10] ADSP-21467/ADSP-21469 SHARC Anomaly List for Revisions 0.0. Rev F, November 2011. Analog Devices, Inc.
[11] ADSP-21478/ADSP-21479 SHARC Anomaly List for Revisions 0.0, 0.1, 0.2. Rev C, September 2011.

Analog Devices, Inc.

[12] ADSP-21483/ADSP-21486/ADSP21487/ADSP-21488/ADSP-21489 SHARC Anomaly List for Revisions 0.1, 0.2. Rev F,

September 2011. Analog Devices, Inc.

[13] MT48LC4M32B2 Data Sheet. Rev E, October, 2002. Micron Technology, Inc.
[14] MT48LC8M16A2 Data Sheet. Rev N, January 2009. Micron Technology, Inc.

[15] MT48LC16M16A2 Data Sheet. Rev N, January 2010. Micron Technology, Inc.
[16] MT47H64M16 Data Sheet. Rev P, January 2009, Micron Technology, Inc.

Expert Code Generator for SHARC® Processors (EE-322) Page 22 of 23

Document History

ANALOG
DEVICES

Revision

Description

Rev 5 — January 17, 2012
by Mitesh Moonat

Updated the plug-in to add fix for the ADSP-214xx PLL anomaly 15000020.
Added minor fixes in “cs_macros.h” file. Verified the plug-in and example code
functionality under VisualDSP++ 5.0 Update 10.

Rev 4 - July 13, 2010
by Mitesh Moonat

Added support for ADSP-2126x, ADSP-213xx, ADSP-2147x, and ADSP-2148x
SHARC processors. Renamed “cs2146x.h” to “cs_macros.h”. Verified the plug-in
and example code functionality under VisualDSP++ 5.0 Update 8.

Rev 3 — December 17, 2009
by Mitesh Moonat

Updated the header file “cs2146x.h” and modified the plug-ins to address code
generation issues. Also, verified plug-ins and example code functionality under
VisualDSP++ 5.0 Update 7.

Furthermore, added information on registering the plug-ins under the Windows
Vista operating system.

Rev 2 — September 24, 2009
by Mitesh Moonat

Added Save/Load/Reset options; corrected DDR2CLK calculation, default DDR2
controller settings, and MLBCLK:CCLK supported ratios. Also, updated the
def21469.h, Cdef21469.h, and cs2146x.h files. In addition, the updated plug-in
takes now care of the extended PMCTL register’s effect latency.

Rev 1 - May 29, 2009
by Mitesh Moonat

Initial release.

Expert Code Generator for SHARC® Processors (EE-322)

Page 23 of 23

	Introduction
	Expert Code Generator Uses
	Managing Limitations and Restrictions Automatically
	Translating DDR2/SDRAM Device Specifications Taken Directly from the Device Data Sheet to the Code
	Following the Recommended Programming Sequence and Other Guidelines
	Handling IC Anomalies
	Generating Code in Both “C” and “Assembly”

	Code Generator for PLL, DDR2/SDRAM, and AMI Controllers
	Overview
	Registering and Accessing the Plug-In
	Processor and Speed Grade Selection
	PLL Initialization
	Initializing the DDR2 Controller
	Initializing the SDRAM Controller
	Initializing the AMI Controller
	Generating the Code
	Using the Generated Source File

	Code Generator for Accelerators
	Introduction
	Registering and Accessing the Plug-In
	FIR Accelerator
	IIR Accelerator
	FFT Accelerator
	Code Generation
	Using the Generated Source File

	Example Code and Other Files
	References
	Document History

