
Engineer-to-Engineer Note EE-332

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Cycle Counting and Profiling
Contributed by C. Gilchrist Rev 2 – March 27, 2008

Copyright 2008, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
VisualDSP++® development environment
provides utilities that can be used to profile an
application's performance. These utilities provide
a means to analyze your application, allowing
you to identify and eliminate performance
bottlenecks and to optimize code. By using
execution profiles, application developers can
hand-tune code memory layout to achieve better
system performance.

The provided tools include:

 Linear Profiler, a simulator-only utility

 Statistical Profiler, a utility for use with
emulator and EZ-KIT Lite® targets

 Embedded profiling via cycle count facilities

The Linear and Statistical Profiling tools, which
are non-intrusive, provide a profile of
the instruction execution time, the number of
clock cycles spent executing instructions,
number of instructions executed, and the number
of memory reads and writes an application takes
to execute.

The Linear Profiler samples every PC executed,
which provides a complete and accurate picture
of the performance of the code. The cost of this
accuracy, however, is a slow method of profiling
the application, which would not be feasible on a
hardware target.

The Statistical Profiler is faster, allowing you to
profile without affecting the real-time
characteristics of the application. The Statistical

Profiler achieves this by sampling the PC
periodically. It is not as accurate or consistent as
the Linear Profiler, but provides a means to
profile code execution on a hardware target.

The VisualDSP++ libraries also offer the ability
to obtain accurate cycle counts and measure
execution time by embedding code in your
application to calculate and return cycle count
information. This is facilitated by the cycle count
registers and macros provided in the libraries.

This document describes the functional behavior
of these tools, as well as their use, performance
benefits, features, and limitations.

Additionally, this document is accompanied by
example code for Blackfin, SHARC, and
TigerSHARC processors to demonstrate the
differences between profiling results returned
from the simulator and on hardware.

Profiler and Cycle Count User
Guide
The following instructions apply to all
architectures (Blackfin®, SHARC®, and
TigerSHARC®).

Statistical and Linear Profilers

Enabling and Configuring the Profiler
The Linear Profiler, which is available for
simulator sessions only, is enabled via Tools ->
Linear Profiling.

 a

Cycle Counting and Profiling (EE-332) Page 2 of 9

The Statistical Profiler, which is available for
emulator/EZ-KIT Lite sessions only, is enabled
via Tools -> Statistical Profiling.

You can configure a number of options within
the profilers to fine-tune the profile information
you require. These options are accessible by
right-clicking the Profiler window and choosing
Properties.

 The Display tab (Figure 1) allows you to
specify the memory type, and the associated
metrics you wish to profile. The available
memory types are specific to the target, and
the available metrics are specific to the
memory type. The optional metrics allow you
to include data such as the number of
reads/writes, cache hits/misses, execution
counts, and so on, within your profile data.

The optional metrics are available
within Blackfin and TigerSHARC
simulator sessions only. They are not
available on hardware or SHARC
simulator sessions.

Figure 1. Display tab

 The Filter tab (Figure 2) allows you to
specify what you wish to profile. You can
choose to profile the entire memory space,

selected C/C++ functions, or specific
memory ranges. Specifying these options
allows you to generate a more concise
profile, containing only the information you
require.

Figure 2. Filter tab

Upon specifying these options, you simply need
to run your project so that the profiler can collect
execution data samples.

Interpreting Results
Once the execution is complete, the profiler will
display the profile information for your
application. You can then view the profile in
terms of either sample count, or execution
percentage.

Clicking on an execution unit within the left pane
(Figure 3) of the Profiler window displays the
source for that execution unit in the right pane
(Figure 4) (or the Disassembly window in the
case of a library function). This allows you to
identify the specific lines of code within your
application that use the most processor time.

 a

Cycle Counting and Profiling (EE-332) Page 3 of 9

Figure 3 Left Pane of the Statistical Profiler showing
the execution percentage of several functions

Profile results can be saved to a .txt, .xml, or
.prf file, allowing them (.prf and .xml only) to
be loaded later to review results, or concatenated
(.prf and .xml only) with an open profile to
produce merged data, providing a clearer picture
of the performance of your application over
multiple runs. For concatenation, the profile must
have the same target and memory type as the
open profile, and it must use the same optional
profile metrics. All of these options are available
via the Tools -> Statistical Profiling or
Tools -> Linear Profiling menu.

Figure 4. Right Pane of the Statistical Profiler showing the source-level execution percentage

Cycle Counting Library Functions

The cycle count macros require the
-DDO_CYCLE_COUNTS compiler switch to
be asserted.

The cycle count macros offer three different
cycle count methods:

 Basic cycle count - Returns the number of
clock cycles taken to execute a section of
code.

 Cycle count with statistics - Returns the
average, minimum, and maximum number of
clock cycles taken to execute a repeated body
of code.

 Cycle count using time.h - Returns the
execution time of a section of code in
seconds.

Within VisualDSP++ releases prior to release
5.0, the parameterized macros that are defined in
the cycle_count.h and cycles.h header files
expanded into multiple statements. This
implementation led to unexpected side-effects, as
it was possible that the statements would not
result in the intended instructions.

Take the following as an example:

if (condition)
 STOP_CYCLE_COUNT(cnt2, cnt2);

 a

Cycle Counting and Profiling (EE-332) Page 4 of 9

As the STOP_CYCLE_COUNT macro expands into
multiple statements, only the first statement of
the expanded macro is executed conditionally.
The remaining statements are always executed
and therefore produce incorrect cycle counts.

To address this issue, the macros are now
implemented using a statement block. With the
previous cycle count macros being a sequence of
instructions, it was valid to use the macros
without a trailing semicolon; this is no longer the
case in VisualDSP++ 5.0.

To assist with porting existing code, the compile-
time __USE_CYCLE_MACRO_REL45__ macro can
be defined to enable legacy support and avoid
any modifications to the existing use of the cycle
count macros.

Cycle counting on all architectures is facilitated
by two 32-bit registers. On Blackfin processors,
these are CYCLES and CYCLES2; on TigerSHARC
processors, these are CCNT0 and CCNT1; on
SHARC processors, these are EMUCLK and
EMUCLK2. The first register increments for every
cycle and wraps around to zero after 0xffffffff.
When the first register wraps around, the second
register increments by one, as though they are
one 64-bit register. For Blackfin and
TigerSHARC processors, both registers are used
in the cycle counting macros. To save memory
and execution time, however, the SHARC
macros do not use the EMUCLK2 register. If the
code being measured executes for a long period
of time, EMUCLK may wrap around, and EMUCLK2
would need to be taken into account for an
accurate measurement.

Basic Cycle Count
This is done using three simple macros defined
within cycle_count.h. The functions are:

 PRINT_CYCLES(T)
 START_CYCLE_COUNT(S)
 STOP_CYCLE_COUNT(T,S)

The S parameter is initialized to the current value
of the cycle count register in
START_CYCLE_COUNT(S), and T is the total

cycles calculated by subtracting S from the
current value of the cycle count register when
STOP_CYCLE_COUNT(T,S) is performed. The
small number of cycles overhead from calling the
STOP_CYCLE_COUNT() macro is also removed to
give an accurate reading.

An example is given in Listing 1.

#include <cycle_count.h>
#include <stdio.h>
extern int main(void)
{
 cycle_t start_count;
 cycle_t final_count;
 START_CYCLE_COUNT(start_count);

Some_Function_Or_Code_To_Measure();

 STOP_CYCLE_COUNT(final_count,start
_count);
 PRINT_CYCLES("Number of cycles:
",final_count);
}

Listing 1. Basic cycle count example code

Cycle Count with Statistics
This cycle count technique offers five macros for
the cycle count:

 CYCLES_INIT(S)
 CYCLES_START(S)
 CYCLES_STOP(S)
 CYCLES_PRINT(S)
 CYCLES_RESET(S)

The S parameter is initialized to 0 by
CYCLES_INIT(S) and set to the current cycle
count register value by CYCLES_START(S).
CYCLES_STOP(S) extracts the current cycle count
register value and accumulates statistics in S,
based on the most recent call to
CYCLES_START(S). CYCLES_PRINT(S) prints out
the statistics for that run, providing details of the
average, minimum, and maximum cycles for the
measured code, and provides details about the
number of times the code section was executed.

An example is given in Listing 2.

 a

Cycle Counting and Profiling (EE-332) Page 5 of 9

#include <cycles.h>
#include <stdio.h>
extern int main(void)
{
 cycle_stats_t stats;
 int i;
 CYCLES_INIT(stats);
 for (i = 0; i < LIMIT; i++)
 {
 CYCLES_START(stats);

Some_Function_Or_Code_To_Measure();

 CYCLES_STOP(stats);
 }
 CYCLES_PRINT(stats);
 CYCLES_RESET(stats);
}

Listing 2. Cycle counting with statistics example code

Cycle Count Using time.h
This facility uses a data-type (clock_t) together
with the CLOCKS_PER_SEC macro to calculate the
amount of time spent in a function or block of
code. Two variables of type clock_t are used:
one is initialized using the cycle counter register
at the start of the block of code to be measured,
and the second is set to the cycle counter register
value when the block ends. The difference
between the two variables is divided by the clock
speed determined by the CLOCKS_PER_SEC
macro, providing an accurate value for the time
taken to execute the code.

An example is given in Listing 3.

#include <time.h>
#include <stdio.h>
extern int main(void)
{
 volatile clock_t clock_start;
 volatile clock_t clock_stop;
 double secs;
 clock_start = clock();

 Some_Function_Or_Code_To_Measure();

 clock_stop = clock();
 secs = ((double) (clock_stop –
clock_start)) / CLOCKS_PER_SEC;
 printf("Time taken is %e
seconds\n",secs);
}

Listing 3. Cycle count using time.h example code

Cycle Counting in Assembly
In order to measure cycle counts using code
within an assembly project, you can simply
access the cycle count registers directly. For
Blackfin, see Listing 4; for TigerSHARC
processors, see Listing 5; for SHARC processors,
see Listing 6.

R2 = 0;
CYCLES = R2;
CYCLES2 = R2;
R2 = SYSCFG;
BITSET(R2,1);
SYSCFG = R2;

/*Insert code to be benchmarked here*/

R2 = SYSCFG;
BITCLR(R2,1);
SYSCFG = R2;
R2 = CYCLES
R1 = CYCLES2

Listing 4. Cycle counting in Blackfin assembly

xr2 = CCNT0;;

/*Insert code to be benchmarked here*/

xr3 = CCNT0;;
xr4 = r3 - r2;;

Listing 5. Cycle counting in TigerSHARC assembly

R6 = EMUCLK;

/*Insert code to be benchmarked here*/

R7 = EMUCLK;
R8 = R7 – R6;

Listing 6. Cycle counting in SHARC assembly

Accuracy of Results
The following sections describe differences that
affect profile accuracy.

STDIO, Breakpoints, and Stepping Through Code
on Hardware

When running your application on a hardware
target, file I/O, STDIO, and stepping cause the
processor to halt, and on every halt the pipeline

 a

Cycle Counting and Profiling (EE-332) Page 6 of 9

is flushed. When single-stepping, the pipeline
flush occurs for every instruction that is stepped
over. For file I/O and STDIO operations,
pipeline flushes occur due to the run/halt that
primio uses to transfer information. A typical
example is the use of printf(), which performs
three operations when it is used: an open, a read,
and then a close. At each of these events, the
processor is halted by a hidden breakpoint, the
pipeline is flushed, the requested operation is
performed, and then the processor is run again.

The cycle count macros can produce values that
fluctuate greatly, depending on the manner in
which the application is being executed with
respect to the use of I/O functions and stepping;
whenever a pipeline flush occurs, additional
cycles are added to the cycle count registers.
This can produce vastly different cycle counts
versus the real performance of the application.

With respect to the profilers, the halts that occur
when using STDIO and stepping cause the
profile-gathered information to be discarded. If
the code being profiled relies heavily on STDIO
or is halted frequently (either by stepping or by
breakpoints), the profile will never gather
enough data samples to make a profile.

If the profile data is discarded, the
VisualDSP++ 5.0 IDDE will generate the
following warning message.
Statistical profiling information has
been discarded. For more details, see
online help topic: "Statistical
Profiling of Short Run Programs"

Comparing Linear and Statistical Profiling

Simulator vs. Hardware (ICE/EZ-KIT Lite)
It is often the case that the results within the
profilers differ between simulator and hardware
targets. Depending on the target you are using,
you may see different results from the profiler or
cycle count macros compared to other targets.
One possible reason for the differences between
the simulator cycle counts and the ICE/EZ-KIT

Lite cycle counts is the way that the simulator
initializes the model of the chip.

On the TigerSHARC simulators, this is done by
running the initialization part of the loader kernel
(see the Output window message “[Info:
si1108] Running Default Loader: {file
name}”). This code enables the cache and the
branch target buffer (BTB). When running on
TigerSHARC hardware, this does not happen.
So, in order to have comparable results, include
cache initialization and enable BTB in your code.

The Blackfin simulators configure a number of
architectural registers to reset values. Refer to
the processor's Hardware Reference manual.

The SHARC simulators initialize many of their
registers based on values defined in the .xml
files located within the System\Archdef folder
of the VisualDSP++ installation.

Hardware targets also initialize many of their
registers based on values defined in the .xml
files located within the System\Archdef folder
of the VisualDSP++ installation.

As the values in the .xml file may differ from
those used to initialize the Blackfin or
TigerSHARC simulator, hardware may come out
of reset in a different state to the simulators.
SHARC simulators differ, as they set their
registers the same as the hardware targets do.

If the code being benchmarked relies heavily on
bus activity and/or external memory, cycle
counts within the simulator and on hardware may
vary. Although the simulator does attempt to
model external memory latencies and delays
caused by external memory accesses such as
back to back load/store, this is not cycle-
accurate. The same is true of many peripheral
interactions.

Linear vs. Statistical Profiling
Sometimes, where the Linear Profiler returns a
full profile, a function is missing within the
Statistical Profiler or the Statistical Profiler
returns no profile at all. The reason for this

 a

Cycle Counting and Profiling (EE-332) Page 7 of 9

difference is the way in which the Linear Profiler
and the Statistical Profiler gather the profile data.

As the Linear Profiler samples every PC, all
functions are present and accurately represented
in the resultant profile. The Statistical Profiler,
on the other hand, samples the PC periodically,
which can result is smaller functions being
missed by the sampling and hence missed in the
final profile. Additionally, if the application
being profiled terminates in a short amount of
time, the Statistical Profiler may not gather
enough data points to profile the execution,
resulting in a blank profile.

Additionally, if the application being profiled
results in a huge number of samples at different
PC addresses, the sample rate of the Statistical
Profiler drops significantly, which can cause
unreliable results.

Hardware Effects
The hardware can also affect the likelihood of a
blank or incomplete profile. The results may vary
in relation to how fast the different emulators and
EZ-KIT Lite Debug Agent can collect profile
information. The HPPCI-ICE and HPUSB-ICE
collect profile samples quickly, while the USB-
ICE and EZ-KIT Lite Debug Agent collect
samples at a greatly reduced rate. If too few
profile samples are collected, the Profiling
window will not show any information, or the
execution will be inaccurately represented.

As a general rule when using the Statistical
Profiler, the program must be run continually for
a long enough time to (a) collect samples, and (b)
collect enough samples for the profile to become
stable.

Blackfin Simulators: Cycle-Accurate vs. Compiled

For Blackfin processors, there are two
simulators: the cycle-accurate simulator and the
compiled (or “fast functional”) simulator. Both
simulators are functionally correct; however,
each has separate applications. The cycle-
accurate simulator is the only simulator that can
approximate the latencies in your application and
obtain real-world cycle counts and performance
figures.

The fast functional simulator does not attempt to
be cycle-accurate. It is purely a super-fast
functional simulator. It does not model latencies
(beyond some basics ones related to sequencer
operations) and it does not account for them in
the cycle count.

The fast functional simulator still supports the
cycle counter because the register is present
architecturally; however, you can think of it as
an instruction counter, not a cycle counter in this
simulator.

Additionally, although the profiling API is
supported by both simulators, it is not cycle-
accurate on the fast functional simulator.

Appendix A – Profiling Example

Purpose

The example code that accompanies this EE-Note is for use with EZ-KIT Lite Debug Agent and simulator
sessions. It is intended to demonstrate the differences between profiling results returned from the
simulator and on hardware.

Expected Results

Functions a() and b() perform the same task as one another, while function c() performs half as many
operations, and d() half again. Within the simulator, the profiler should return results that closely match

 a

Cycle Counting and Profiling (EE-332) Page 8 of 9

the expected ratio for a:b:c:d of 4:4:2:1. You should also notice functions such as start and main()
listed in the final profile, in spite of their using very few cycles.

On the EZ-KIT Lite evaluation systems via Debug Agent, the results should differ from the simulator.
Running and profiling the project several times should show different percentages for the functions on
each run, and on occasion you should also see function d(), and possibly even others, missed from the
profile completely. This is due to the function simply not consuming enough processor time, and hence
not being sampled often enough by the periodic sampling technique employed by the Statistical Profiler to
be included as part of the profile. In addition, note that the functions such as start and main() do not
show up in the profile on the EZ-KIT Lite session.

If you have access to a high-performance ICE, such as the HPUSB-ICE or the HPPCI-ICE, running this
project will consistently return a profile that includes all four functions; however, the results will still not
be as consistent as those returned by the Linear Profiler within the simulator.

Appendix B – Cycle Counting Example

Purpose

The cycle counting code example that accompanies this EE-Note is for use with any appropriate Blackfin,
SHARC and TigerSHARC processor sessions, and demonstrates the usage of the different cycle counting
facilities provided in the libraries.

Expected Results

When the cycle counting examples are executed, they should print the results of each of the three cycle
counting methods to STDIO. Example output, taken from the ADSP-BF533 processor cycle counting
example, is given in Listing 7.

Cycle Counting Facilities

Basic Cycle Count:
Number of cycles:420036

Cycle Count With Statistics:
 AVG : 420036
 MIN : 420036
 MAX : 420036
 CALLS : 10

Cycle Count Using time.h:
Time taken was 7.071499e-04 seconds

Listing 7 - Example Cycle Count Output from the ADSP-BF533 processor

 a

Cycle Counting and Profiling (EE-332) Page 9 of 9

References
[1] VisualDSP++ 5.0 C/C++ Compiler and Libraries Manual for Blackfin Processors. Rev 5.0, August 2007.

Analog Devices Inc.

[2] VisualDSP++ 5.0 C/C++ Compiler Manual for SHARC Processors. Rev 1.0, August 2007. Analog Devices Inc.

[3] VisualDSP++ 5.0 C/C++ Compiler and Libraries Manual for TigerSHARC Processors. Rev 4.0, August 2007.
Analog Devices Inc.

[4] VisualDSP++ 5.0 User’s Guide. Rev 3.0, August 2007. Analog Devices Inc.

Readings
Information on profiling and cycle counts is available from VisualDSP++ Help at the following locations:
[5] Contents -> Manuals -> Software Tool Manuals -> User’s Guide -> VisualDSP++ 5.0 User’s Guide -> Debugging ->

Code Analysis Tools

[6] Contents -> Graphical Environment -> IDDE -> How To -> Debugging Tools and Techniques -> Statistical Profiles and
Linear Profiles

[7] [Blackfin]: Manuals -> Software Tool Manuals -> Blackfin C/C++ Compiler and Library Manual -> DSP Run-Time
Library -> DSP Run-Time Library Guide -> Measuring Cycle Counts

[8] [SHARC]: Manuals -> Software Tool Manuals -> SHARC C/C++ Compiler and Library Manual -> C/C++ Run-Time
Library -> C and C++ Run-Time Libraries Guide -> Measuring Cycle Counts

[9] [TigerSHARC]: Manuals -> Software Tool Manuals -> TigerSHARC C/C++ Compiler and Library Manual -> C/C++
Run-Time Library -> C and C++ Run-Time Libraries Guide -> Measuring Cycle Counts

Document History

Revision Description

Rev 2 – March 27th, 2008
by C. Gilchrist

Added Appendix B and associated example code. Updated Linear vs. Statistical
Profiling section.

Rev 1 – November 29th, 2007
by C. Gilchrist

Initial release

	Introduction
	Profiler and Cycle Count User Guide
	Statistical and Linear Profilers
	Enabling and Configuring the Profiler
	Interpreting Results

	Cycle Counting Library Functions
	Basic Cycle Count
	Cycle Count with Statistics
	Cycle Count Using time.h
	Cycle Counting in Assembly

	Accuracy of Results
	STDIO, Breakpoints, and Stepping Through Code on Hardware
	Comparing Linear and Statistical Profiling
	Simulator vs. Hardware (ICE/EZ-KIT Lite)
	Linear vs. Statistical Profiling
	Hardware Effects

	Blackfin Simulators: Cycle-Accurate vs. Compiled

	Appendix A – Profiling Example
	Purpose
	Expected Results

	Appendix B – Cycle Counting Example
	Purpose
	Expected Results

	References
	Readings
	Document History

