
a

ABOUT ADSP-21369 SILICON ANOMALIES
These anomalies represent the currently known differences between revisions of the SHARC®ADSP-21369 product(s) and the
functionality specified in the ADSP-21369 data sheet(s) and the Hardware Reference book(s).

SILICON REVISIONS

A silicon revision number with the form "-x.x" is branded on all parts (see the data sheet for information on reading part branding). The
silicon revision can also be electronically read by reading the REVPID register either via JTAG or DSP code.

The following DSP code can be used to read the register:
<UREG> = REVPID;

Silicon REVISION REVPID[7:4]

0.2 0010

0.1 0001

0.0 0000

ANOMALY LIST REVISION HISTORY

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision.

Date Anomaly List Revision Data Sheet Revision Additions and Changes

04/08/2011 I E Added anomalies: 08000030 & 08000031

08/23/2010 H E Added anomaly: 08000029

06/16/2009 G D Modified anomalies: 08000001, Added common note on Tools action
for all the core related anomalies

01/20/2009 F D Added anomaly: 08000026

03/16/2007 E A Modified anomalies: 08000001, 08000014, 08000015, 08000016,
08000017, 08000018, 08000019, 08000020, 08000024

01/05/2007 D A Added anomaly: 08000024
Modified anomaly: 08000020

08/14/2006 C A Added anomalies: 08000018, 08000019, 08000020
Modified anomalies: 08000014, 08000017

03/21/2006 B PrB Added anomalies: 08000014, 08000015, 08000016, 08000017
Modified anomalies: 08000002, 08000006

08/10/2005 A PrB Initial release

SHARC Processor

 ADSP-21369Silicon Anomaly List

SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.

NR003114I
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.

One Technology Way, P.O.Box 9106, Norwood, MA 02062-9106 U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.

http://www.analog.com

SUMMARY OF SILICON ANOMALIES
The following table provides a summary of ADSP-21369 anomalies and the applicable silicon revision(s) for each anomaly.

No. ID Description 0.0 0.1 0.2

 1 08000001 Core Stall not executed properly x x x

 2 08000002 Memory write operations can fail under certain conditions while DMA to internal memory is in
progress

x . .

 3 08000006 tDCAD specification violated x . .

 4 08000014 Instruction fetch fails when there is a CORE-DMA conflict coupled with an external memory access x x .

 5 08000015 Elevated core voltage needed for operation above 266 MHz x x .

 6 08000016 SPI DMA issue when using SPIBAUD=2 x x x

 7 08000017 166MHz SDRAM operation violates tSSDAT specification x x .

 8 08000018 TCK can effect external PM bus accesses under certain circumstances x x .

 9 08000019 PDAP must use DAI pins, external port pins not available for PDAP data x x x

 10 08000020 Input Shift Register Anomaly in ASRCs (Asynchronous Sample Rate Converters) impacts Daisy-
Chained TDM mode

x x .

 11 08000024 Parallel EPROM/FLASH boot following a Hard (Hot) Reset may fail if issued in the middle of
external SDRAM reads

x x x

 12 08000026 Incorrect Popping of stacks possible when exiting IRQx/Timer Interrupts with DB modifiers x x x

 13 08000028 Conditional FLAG instructions involving DAG index registers must not be followed immediately
by an instruction that uses the same index register

x x x

 14 08000029 External port arbitration may not work as expected when the lower priority request is not
continuous

x x x

 15 08000030 VDSP Statistical profiler may provide incorrect profile information for idle instructions x x x

 16 08000031 After an emulator halt at the instruction before ‘idle' instruction, the Core Timer stops
decrementing even after code execution restarts

x x x

Key: x = anomaly exists in revision
 . = Not applicable

NR003114I | Page 2 of 15 | April 2011

 ADSP-21369 Silicon Anomaly List

DETAILED LIST OF SILICON ANOMALIES
The following list details all known silicon anomalies for the ADSP-21369 including a description, workaround, and identification of
applicable silicon revisions.

1. 08000001 - Core Stall not executed properly:

DESCRIPTION:
Under certain specific conditions outlined below, one type of core stall that is normally incurred does not get executed. In certain cases
this can cause unexpected code operation.

PCSTK load & RTS/RTI combination:
When PCSTK is loaded, and an RTS/RTI is executed immediately afterward, there is a stall as the return waits for a writeback of PCSTK
before the return.

 Example1:
 [1] PCSTK = DM(I0,M0);
 [2] RTS;

 Example2:
 [1] PCSTK = DM(I0,M0);
 [2] RTI;

Anomalous behavior:
If: The memory access in instruction 1 is to a memory-mapped IOP register.

-OR-
The memory access in instruction 1 is to External Memory.

-OR-
DMA is simultaneously accessing the same bank as the memory access in instruction 1.

Then: Stall does not occur, and this results in the RTS/RTI vectoring to some unknown location instead of the value from PCSTK.

WORKAROUND:
Add a nop between instructions 1 and 2.

Note: This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
Operating Systems supported by ADI, such as VisualDSP++ and VDK please consult the "Silicon Anomaly Tools Support" help page in the
applicable documentation and release notes for details.

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

NR003114I | Page 3 of 15 | April 2011

 ADSP-21369Silicon Anomaly List

2. 08000002 - Memory write operations can fail under certain conditions while DMA to internal memory is in
progress:

DESCRIPTION:
If an instruction modifies a register and the same register is the source to a memory write, and a DMA happens to same block as the
memory write in the next cycle, under the following conditions, the modified value of the register is written to memory instead of the old
one.

Examples of instructions that modify a register and the same register are written to memory are:

 1. R0 = R1-R2, DM(I0,M0) = R0; // The memory access can be either DM/PM
 2. DM(I0,M0) = R0, R0 = PM(I8,M8);

The conditions under which we see the issue are:
1. The failing instruction is the first instruction in a 1,2, or 4 instructions long loop.

Example:

 lcntr = 8, do (pc,1) until lce;
 DM(I0,M0) = R0, R0 = PM(I8,M8); //and DMA occurs in next cycle.
 // The new value of R0 (fetched through PM) is written into DM memory
 lcntr=0x7, do ST2_IN_BFLY_T2 until lce; //2 instr long loop
 f4=f2+f4, dm(i3,m6)=r0, r0=pm(i11,m11);
 ST2_IN_BFLY_T2: f4=pass f2, dm(i4,m6)=r4, r2=pm(i11,m11);

2. When the compute of the failing instruction generates both the operands of multiplier in the next instruction
Example:

 F0=F0+F4, F1=F0-F4, DM(I0,M0) = R1; // and DMA occurs in next cycle.
 // The new value of R1 (output of compute) is written into DM memory
 F4=F0*F1;

3. When the failing instruction is followed by a conditional branch and any of the following two happens
a. A compute in the failing instruction affects the condition of the branch
Example:

 F0=F0+F4, PM(I10,M10) = R0; // and DMA occurs in next cycle.
 //The new value of R0 (output of compute) is written into PM memory
 IF EQ JUMP(PC,0x12);

b. A compute in the instruction preceding the failing instruction affects the condition of branch
Example:

 F0=F0+F4;
 DM(I0,M0) = R0, R0 = PM(I8,M8); // and DMA occurs in next cycle.
 //The new value of R0 (fetched through PM) is written into DM memory
 IF EQ JUMP(PC,0x12);

4. When the failing instruction contains a floating point multiplication and is followed by compute operation involving any fixed point
operand register executing in ALU or shifter.

Example:

 F0=F0*F4, DM(I0,M0) = R0;
 F5=FLOAT R1;
 //The new value of R0 (output of multiply) is written into PM memory

WORKAROUND:
Move DMA to another block of memory OR,
1. For case1, unroll the loop to make the loop length more than 4.

NR003114I | Page 4 of 15 | April 2011

 ADSP-21369 Silicon Anomaly List

2. For case 2, 3a, 3b and 4 insert an unrelated instruction between the failing instruction and the instruction following it.

Note: This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
Operating Systems supported by ADI, such as VisualDSP++ and VDK please consult the "Silicon Anomaly Tools Support" help page in the
applicable documentation and release notes for details.

APPLIES TO REVISION(S):
0.0

3. 08000006 - tDCAD specification violated:

DESCRIPTION:
When using the SDRAM Controller with a 166 MHz SDCLK, the SDRAM Controller specification tDCAD (Data delay after SDCLK) is violated
on specific data pins for the first access only. It is specified as 4.0 ns max, and may increase to as much as 6.0 ns. This could cause a spec
violation for the SDRAM. This violation has not been seen to cause any SDRAM access failures.

WORKAROUND:
None.

APPLIES TO REVISION(S):
0.0

NR003114I | Page 5 of 15 | April 2011

 ADSP-21369Silicon Anomaly List

4. 08000014 - Instruction fetch fails when there is a CORE-DMA conflict coupled with an external memory
access:

DESCRIPTION:
Instruction fetch may fail under certain conditions:

An instruction fetch may fail if following combination of external accesses, instruction pipeline stall & DMA block conflict occurs. The
failure happens only if all three conditions mentioned below are met:

1. Two instructions executing consecutively make data accesses to/from external memory.

2. When the processor core is being stalled for the first access, there is another stall generated at the same time. The later stall can be any
of the stalls mentioned in "PROGRAM SEQUENCER" chapter of "ADSP-2136x SHARC Processor- Programming Reference" (pages 3-11
through 3-26 in Revision 1.0, November 2005), with two exceptions:

a) Stalls due to any of the DAG register (index, modifier etc.) dependencies.
b) Stalls generated by emulator.

An instruction making an external data access may get stalled when it is in "address" stage of the instruction pipeline, in order to wait
until the external memory device acknowledges the access completion. For details on other stalls, refer to the Programming Reference
mentioned above.

3. An internal memory block conflict happens between a DMA and instruction fetch of the 3rd instruction following the last external
access instruction. This instruction fetch fails, leading to corruption of the corresponding opcode and in turn producing unpredictable
results.

For example, consider following sequences of instructions:

a) Multiplier dependency stall:

 I1: r12=r5+r4, r0=dm(ext1);
 I2: r12=r12*r12, r1=dm(ext2);
 I3: <any_instruction>;
 I4: <any_instruction>;
 I5: <any_instruction>;

Here, I1 and I2 are consecutive instructions which perform external memory accesses. Both of them get stalled in their "address" stages in
the pipeline due to extra time required for external accesses. When I1 is being stalled, there is another core generated dependency stall
happening at the same time. This stall is due to both operands of multiplier in I2 (i.e. R12) depend upon execution of I1 where R12 is
getting written.When both these stalls vanish, the pipeline moves ahead where instruction fetch of I5 begins. While I5 is in "fetch1" stage,
if there happens to be a DMA to the same block of internal memory where the code is residing, then an internal memory block conflict
occurs. Therefore, due to this anomaly, the instruction fetch of I5 fails due to its opcode getting corrupted.

b) The above accesses inside a loop:

 lcntr = 100 , do (PC,3) until lce;
 I1: r12=r5+r4, r0=dm(ext1);
 I2: r12=r12*r12, r1=dm(ext2);
 I3: <any_instruction>;

Here too, the problem will occur as per the same reasoning. The difference is that instead of I5, I2 of the 2nd loop iteration fails.

c) Conditional branch dependency on compute:

 I1: R0=R5+R8,R2 = DM(I0,M0) ;
 I2: IF eq JUMP (pc, 3), ELSE R1=DM(I5,M5);
 I3: <any_instruction>;
 I4: <any_instruction>;
 I5: <any_instruction>;

In this case processor core creates a stall due to an another reason, i.e. conditional jump in I2 depending on compute in I1. Fetch of I5 will
fail.

Examples of DAG dependency stalls which will NOT have any problems:

NR003114I | Page 6 of 15 | April 2011

 ADSP-21369 Silicon Anomaly List

 a)
 I0: I5 = buffer1; // buffer1 in external memory.
 I1: r12=r5+r4, r0=DM(I0,M1);
 I2: R1 = DM(I5,M5);

 b)
 I0: R2=R3-R4
 I1: IF EQ DM(I1,M1) = R15;
 I2: R0 = DM(I1,M2);

WORKAROUND:
1. Place code and DMA data in different blocks of internal memory.

2. Separate two instructions making external memory accesses by adding a NOP instruction between them. Any other instructions which
do not access external memory can also be used instead of NOP. Note that using this workaround will result in degradation of data
throughput to/from external accesses, resulting in slower execution of the code.

APPLIES TO REVISION(S):
0.0, 0.1

5. 08000015 - Elevated core voltage needed for operation above 266 MHz:

DESCRIPTION:
A memory speed path in the internal memory of revision 0.0 and 0.1 material limits the speed at which the memory can be used at the
nominal core voltage. This results in a need to raise the core voltage supply. This issue only effects operation above 266 MHz in 0.0 and 0.1
revision silicon. The 266 MHz products in the MQFP package are not effected and should be operated at their datasheet-specified
voltages.

Functional testing of 0.2 revision material has shown that this issue has been fixed. While datasheet timing requirements and
characteristics for 0.2 silicon are currently being characterized at 1.2v nominal core voltage, revision 0.2 material may be operated at
Vddint of 1.2v +/-5% . Note that operation at 400 MHz in all revisions will still require a 1.3v +/-5% Vddint.

The ADSP-21367/8/9 datasheet will be revised to include the updated timing information at 1.2v nominal and 333 MHz core clock rate.

WORKAROUND:
1. If using revision 0.0 or 0.1 silicon at or above 333 MHz, adjust the vddINT voltage to 1.3 volts (+/-5%)

APPLIES TO REVISION(S):
0.0, 0.1

6. 08000016 - SPI DMA issue when using SPIBAUD=2:

DESCRIPTION:
When using the SPI peripheral in DMA master receive mode, when the SPI is programmed for back to back DMA access,and when the SPI
port is used without being disabled in between the accesses, the SPI can generate an extra clock for a 32bit word even after the FIFO and
the receive buffer are full. This extra clock can cause a receive buffer overflow error which will result in a 32bit word getting lost. This
occurs only with SPIBAUD=2 setting.

WORKAROUND:
1) Do not disable DMA between back to back DMA access.
-OR-
2) If DMA must be disabled between back to back access, diable SPI as well and before reenabling the SPI clear the FIFO and the receive
buffer and then enable SPI and then configure the DMA descriptors and enable the DMA.

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

NR003114I | Page 7 of 15 | April 2011

 ADSP-21369Silicon Anomaly List

7. 08000017 - 166MHz SDRAM operation violates tSSDAT specification:

DESCRIPTION:
While SDRAM operations up to a 133 MHz SDCLK rate work correctly, due to a timing issue, the SDRAM controller's tSSDAT timing
requirement does not adequately correlate with the SDRAM's setup time characteristic (tAC in many SDRAM vendor's specifications)
when used at a 166 MHz SDCLK rate. This issue only exists at the 166 MHz SDCLK rate. Using the SDRAM controller at a 166 MHz SDCLK
rate could result in incorrect data accesses.

WORKAROUND:
Use the SDRAM controller at the 133 MHz rate.

APPLIES TO REVISION(S):
0.0, 0.1

8. 08000018 - TCK can effect external PM bus accesses under certain circumstances:

DESCRIPTION:
In some processors, it is possible to experience an issue with External Memory accesses using the PM data bus while TCK is being driven.
In some cases the address value driven may change inappropriately. This issue effects PM bus accesses to external memory only, and is
dependent on the TCK jtag input being driven. No issues have been observed while TCK is inactive. TCK is typically only driven by an In-
Circuit-Emulator or a boundary-scan controller. During normal non-debug operation of the processor, TCK is not driven, and so this issue
can easily be avoided.

WORKAROUND:
During normal processor operation, without an emulator or boundary-scan controller in use, the TCK input is not driven, and this issue
will not appear. In scenarios where the processor application is being debugged with an emulator, or a boundary-scan controller is active
(driving TCK), and an PM bus write to external space is observed to be incorrect, use the DM bus to execute the external write. Note that
this is only necessary during debug, as this issue has not been observed while TCK is inactive.

APPLIES TO REVISION(S):
0.0, 0.1

9. 08000019 - PDAP must use DAI pins, external port pins not available for PDAP data:

DESCRIPTION:
The SHARC user has the choice of using the PDAP input by either routing the PDAP DATA signals over the External Port Data pins or using
the SRU to route these signals to DAI pins. Due to a silicon issue, the PDAP MUST have it's data signals routed to DAI pins via the SRU, and
CANNOT be used with it's data signals using the External Port Data pins. This issue does not effect other External Port or SDRAM usage. It
is a restriction on PDAP usage only.

WORKAROUND:
None.

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

NR003114I | Page 8 of 15 | April 2011

 ADSP-21369 Silicon Anomaly List

10. 08000020 - Input Shift Register Anomaly in ASRCs (Asynchronous Sample Rate Converters) impacts
Daisy-Chained TDM mode:

DESCRIPTION:
In the TDM Daisy chain mode the ASRCs can be connected as follows to achieve TDM mode:

Each ASRC has two 64-bit shift registers (one for the input side, and the other for the output side). When the ASRCs are daisy-chained,
these 64-bit registers can be thought of as a single long shift register, which holds an entire frame of data.

In TDM chaining mode:
 1. 64-bit shift register of each ASRC is divided into two 32-bit channels.
 2. TDM output of the one ASRC input is connected to the data input of the next ASRC in the chain.
 3. Data output of one ASRC is passed to the TDM input of the next ASRC in the chain.

The following diagram shows the channel allocation in the input and output side of the TDM Daisy chain.

When the ASRCs are used in TDM Daisy chain mode, the MSB of the input data is lost at the output of each ASRC in the chain. This
anomaly is applicable for the TDM mode in both the bypass and non-bypass modes. The following example provides the expected failure
pattern for the bypass mode, since in bypass mode the incoming data is not modified by the ASRC.

 For a TDM daisy chain with 8 channels in BYPASS mode, the output of the final ASRC in the chain will result in three-bit left shift for the
channels 1 and 2, two bit left shift for the channels 3 and 4 and one bit left shift for the channels 5 and 6. The channels 7 and 8 will not
have any data shift. At the output end, three MSBs will be lost for the channels 1 and 2, two MSBs will be lost for the channels 3 and 4 and
one MSB will be lost for the channels 5 and 6.

NR003114I | Page 9 of 15 | April 2011

 ADSP-21369Silicon Anomaly List

 For the set of the following 8-channel input data,

 0xF1111100 0xF1111100 // Channels 1 and 2
 0xF1111100 0xF1111100 // Channels 3 and 4
 0xF1111100 0xF1111100 // Channels 5 and 6
 0xF1111100 0xF1111100 // Channels 7 and 8

The output data will be as follows,

 0x888888FF 0x888888FF //3-bit left shift and 3 MSBs are lost
 0xC44444FF 0xC44444FF //2-bit left shift and 2 MSBs are lost
 0xE22222FF 0xE22222FF //1-bit left shift and one MSB is lost
 0xF11111FF 0xF11111FF

In the above output data the 8-LSBs of each word has the ratio information.

For a TDM daisy chain in NON-BYPASS mode, the output of the TDM Daisy chain will be corrupted completely because of the MSB bit loss
in each ASRC in the chain.

WORKAROUND:
The workaround for this anomaly must be carried out in software only on the device providing input data to the ASRCs in TDM daisy chain
mode. It can not be implemented on the output data from the ASRCs. The workaround implementation in software adds some core MIPS
to the application. For devices like ADCs/CODECs, the workaround may not be implemented directly. For such systems, two serial ports of
the SHARC should be dedicated for this purpose. One serial port should be used for receiving the data from the ADC/CODEC and the
other one should be used for transmitting the modified input data to the ASRC.

When the ASRCs are used in TDM daisy chain mode, only the 24-MSBs of the input 32-bit data is used and the 8-LSBs are not used by the
ASRC. The anomaly can be worked around by shifting the 24-MSBs of the data to the 8-LSBs as follows:

1. Right shift the input data for channels 1 and 2 by three bits. Now the 24-MSBs which has the data are placed in the bits from 28 - 5.
2. Right shift the input data for channels 3 and 4 by two bits. Now the 24-MSBs which has the data are placed in the bits from 29 - 6.
3. Right shift the input data for channels 5 and 6 by one bit. Now the 24-MSBs which has the data are placed in the bits from 30 - 7.
4. The input data for channels 7 and 8 need not be modified.

When the modified input data is provided to the TDM daisy chain, one MSB of the modified data will be lost at each ASRC in the chain due
to the anomaly. Since the 24-MSBs which has the data is shifted to the LSBs of the input, the actual MSB is not lost at each ASRC in the
chain. Because of the anomaly the data will be shifted left by the ASRC and received correctly at the output end.

This workaround is applicable for both the BYPASS and NON-BYPASS mode of the ASRC. In both the cases the 24-bit audio data will be
preserved and there will be no loss of resolution. The workaround also has no impact on the matched phase mode of the ASRC TDM daisy
chain mode, since the phase information lies only in the 8-LSBs of the output SRC shift registers which are not affected by this anomaly.

For the set of the following 8-channel actual input data,

 0xF1111100 0xF1111100 // Channels 1 and 2
 0xF1111100 0xF1111100 // Channels 3 and 4
 0xF1111100 0xF1111100 // Channels 5 and 6
 0xF1111100 0xF1111100 // Channels 7 and 8

The data modified according to the workaround will be as follows:

 0xFE222220 0xFE222220 // Channels 1 and 2 with three bit right shift
 0xFC444440 0xFC444440 // Channels 3 and 4 with two bit right shift
 0xF8888880 0xF8888880 // Channels 5 and 6 with one bit right shift
 0xF1111100 0xF1111100 // Channels 7 and 8

The data at the output end will be as follows for the BYPASS mode:

 0xF11111FF 0xF11111FF // Channels 1 and 2
 0xF11111FF 0xF11111FF // Channels 3 and 4
 0xF11111FF 0xF11111FF // Channels 5 and 6
 0xF11111FF 0xF11111FF // Channels 7 and 8

NR003114I | Page 10 of 15 | April 2011

 ADSP-21369 Silicon Anomaly List

APPLIES TO REVISION(S):
0.0, 0.1

11. 08000024 - Parallel EPROM/FLASH boot following a Hard (Hot) Reset may fail if issued in the middle of
external SDRAM reads:

DESCRIPTION:
If the SHARC processor is in the process of fetching data from external SDRAM memory, initiating a Hard (hot) reset during this process
may cause the SDRAM device to continue to drive the data bus during the entire duration of /RESET being asserted, and also failing to
relinquish the external data bus even when the DSP comes out of /RESET.

If the DSP had been configured to boot via parallel external FLASH or EPROM (which shares part of the same data bus with the external
SDRAM), the resulting bus contention on the external data bus between the DSP trying to boot from the FLASH memory and the SDRAM
continuing to drive the data bus causes incorrect boot data to be loaded in, and the booting operation fails.
Once the above state is hit, subsequent DSP Resets will not correct the situation. A power-cycling sequence is required to recover from
this state.

If a microcontroller or host processor controls the /RESET pin of the SHARC, a simple communication protocol between the
microcontroller/host processor and the DSP that ensures that any DMA transfer/external data fetch is completed before /RESET is asserted
will avoid this problem.

Note that the probability of encountering this problem is greatly reduced during normal mode of DSP operation, i.e.,
- when the cache is enabled (CADIS bit of the MODE2 register is not set)
- if Bit 31 of the SDCTL register (NO_BSTOP bit) is set to disable burst-mode accesses from the SDRAM.
The above conditions reduce the probability of encountering this problem, but are not suggested as workarounds. For this, please refer to
the techniques listed in the workaround section.

This anomaly is not observed during writes to SDRAM memory. It is only seen on reads from external SDRAM. The anomaly is also not
observed during other Reset scenarios such as Power-on Reset, or software Reset.

WORKAROUND:
Software:
Configure the DSP to boot via SPI port (master or slave) and perform the following sequence within the loader kernel:
- Initialize the SDCTL and SDRRC registers to the appropriate values
- Perform a dummy read access of external SDRAM memory.
This has the effect of resetting and re-initializing the states of the SDRAM controller as well as that of the external SDRAM memory, and
avoid hitting the problem state.

Hardware:
Providing an external delay of at least 3 SDCLK clock cycles between the SDRAM's DQM signal and the /RESET_IN to the DSP will also
cause the problem to be avoided (see attached Figure).

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

NR003114I | Page 11 of 15 | April 2011

 ADSP-21369Silicon Anomaly List

12. 08000026 - Incorrect Popping of stacks possible when exiting IRQx/Timer Interrupts with DB modifiers:

DESCRIPTION:
If a delayed branch modifier (DB) is used to return from the interrupt service routines of any of IRQx (hardware) or timer interrupts, the
automatic popping of ASTATx/ASTATy/MODE1 registers from the status stack may go wrong.

The specific instructions affected by this anomaly are "RTI (DB);" and "JUMP (CI) (DB);"

This anomaly affects only IRQx and Timer Interrupts as these are the only interrupts that cause the sequencer to push an entry onto the
status stack.

WORKAROUND:
Do not use (DB) modifiers in instructions exiting IRQx or Timer ISRs. Instructions in the delay slots should be moved to a location prior to
the branch.

 Note: This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
Operating Systems supported by ADI, such as VisualDSP++ and VDK please consult the "Silicon Anomaly Tools Support" help page in the
applicable documentation and release notes for details.

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

13. 08000028 - Conditional FLAG instructions involving DAG index registers must not be followed
immediately by an instruction that uses the same index register:

DESCRIPTION:
In the following instruction sequence shown below:

 INSTR1: Compute;
 INSTR2: If COND DM (Ia,Mb); //COND maybe based on the INSTR1, or any other condition
 INSTR3: DM (Ia,Mc);

The value of the DAG index register in INSTR3 will either be Ia or (Ia+Mb) depending on whether INSTR2 was aborted or executed.

If COND is based on an external FLAG condition (for example, say FLAG2_IN) which is set asynchronously by an external source or event,
the necessary internal stalls which would result in the DAG index register getting the correct value do not take effect, and consequently
the value of the DAG index register may not contain the correct and expected value.

WORKAROUND:
Separate the second and third instructions in the above sequence by a NOP.
Note: This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
Operating Systems supported by ADI, such as VisualDSP++ and VDK please consult the "Silicon Anomaly Tools Support" help page in the
applicable documentation and release notes for details.

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

NR003114I | Page 12 of 15 | April 2011

 ADSP-21369 Silicon Anomaly List

14. 08000029 - External port arbitration may not work as expected when the lower priority request is not
continuous:

DESCRIPTION:
The external port arbitration logic between core, EPDMA0, and EPDMA1 (configurable using EPBRx and DMAPRx bits of the EPCTL
register), may behave unexpectedly when the lower priority request is single/non-sequential. Some scenarios where the external port
request may be single/non-sequential are:

a) Single core external access

 Non-external access instruction..
 R0= dm (<external memory address>);
 Non-external access instruction..

b) Interrupted back to back core accesses

 r0=dm(<external memory address>);
 Interrupt occurs here....
 r1=dm(<external memory address>);

c) A DMA transfer with count =1

d) A DMA transfer with count greater than one, but the external port access requests not continuous because of some internal memory
conflicts.

 In general, the lower priority access should complete only when there is no pending higher priority request. But, because of the
anomalous behavior, the lower priority access may still be completed even if there is a pending higher priority request. This behavior is
applicable for both AMI and SDRAM accesses.

WORKAROUND:
There is no workaround for this anomaly.

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

NR003114I | Page 13 of 15 | April 2011

 ADSP-21369Silicon Anomaly List

15. 08000030 - VDSP Statistical profiler may provide incorrect profile information for idle instructions:

DESCRIPTION:
The VisualDSP++ statistical profiler may indicate incorrect processor time expenditure when idle instructions are used. This occurs if the
EMUPC register does not get updated when the program sequencer is executing the idle instruction.

In the example code below, the ISR_func1 is executed at the ISR's interrupt rate and most of the processor time is spent in executing the
idle instruction. However, the statistical profiler may show incorrectly that most of the processor time is spent executing instructions in
the ISR_func1. This occurs when the program sequencer branches to execute the IDLE instruction from the RTI instruction. When this
occurs, the EMUPC register may still retain the previously executed ISR_func1's Program Counter value.

 _main:
 ……
 Test:
 Idle;
 Jump Test;
 _main.end:

 ISR_func1:
 ……
 ……
 Instruction_x;
 Instruction_y;
 RTI;

Note: This issue impacts only the Statistical Profiling information.

WORKAROUND:
NOP instruction can be used instead of IDLE instruction wherever possible to get correct statistical profile information.

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

16. 08000031 - After an emulator halt at the instruction before ‘idle' instruction, the Core Timer stops
decrementing even after code execution restarts:

DESCRIPTION:
When the processor is halted at a breakpoint in an emulator session, the core timer correctly stops decrementing and restarts when code
execution is resumed. However, if the emulator breakpoint is placed at an instruction just before an idle instruction, the core timer
remains halted even after the code execution is resumed.

In the example code below, the core timer remains halted after code execution is resumed following the core halt at Instruction1. The
same behavior is seen if Instruction1 is executed by ‘single stepping'.

 Enable_Core_timer:
 ……
 Bit set MODE1 TIMEN;
 ……
 ……
 Instruction1; // Placing breakpoint here causes the anomaly
 Idle;
 Instruction2;
 Instruction3;

Note: This issue impacts only Emulator session debug.

WORKAROUND:
None

APPLIES TO REVISION(S):
0.0, 0.1, 0.2

NR003114I | Page 14 of 15 | April 2011

 ADSP-21369 Silicon Anomaly List

This page intentionally left blank.

NR003114I | Page 15 of 15 | April 2011

 ADSP-21369Silicon Anomaly List

©2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners. w w w . a n a l o g . c o ma

http://www.analog.com
http://www.analog.com
http://www.analog.com

	About ADSP-21369 Silicon Anomalies
	Summary of Silicon Anomalies
	Detailed List of Silicon Anomalies
	08000001 - Core Stall not executed properly
	08000002 - Memory write operations can fail under certain conditions while DMA to internal memory is in progress
	08000006 - tDCAD specification violated
	08000014 - Instruction fetch fails when there is a CORE-DMA conflict coupled with an external memory access
	08000015 - Elevated core voltage needed for operation above 266 MHz
	08000016 - SPI DMA issue when using SPIBAUD=2
	08000017 - 166MHz SDRAM operation violates tSSDAT specification
	08000018 - TCK can effect external PM bus accesses under certain circumstances
	08000019 - PDAP must use DAI pins, external port pins not available for PDAP data
	08000020 - Input Shift Register Anomaly in ASRCs (Asynchronous Sample Rate Converters) impacts Daisy-Chained TDM mode
	08000024 - Parallel EPROM/FLASH boot following a Hard (Hot) Reset may fail if issued in the middle of external SDRAM reads
	08000026 - Incorrect Popping of stacks possible when exiting IRQx/Timer Interrupts with DB modifiers
	08000028 - Conditional FLAG instructions involving DAG index registers must not be followed immediately by an instruction that uses the same index register
	08000029 - External port arbitration may not work as expected when the lower priority request is not continuous
	08000030 - VDSP Statistical profiler may provide incorrect profile information for idle instructions
	08000031 - After an emulator halt at the instruction before ‚idle' instruction, the Core Timer stops decrementing even after code execution restarts

