
Engineer-to-Engineer Note EE-340

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Connecting SHARC® and Blackfin® Processors over SPI
Contributed by Jeyanthi Jegadeesan and Andreas Pellkofer Rev 1 – July 8, 2008

Copyright 2008, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note describes how to connect Analog
Devices Blackfin®

 processors to SHARC®
processors over the Serial Peripheral Interface
(SPI).

This document includes:

 SPI description

 Description of the physical layer setup

 Configuration of the SPI

 Programming model for the Blackfin
processor SPI interface

 Programming model for the SHARC
processor SPI interface

 Code examples as separate files

Motivation
Today’s embedded systems often require
multiple processors, each for a special
application range. A typical system using both
Analog Devices Blackfin and SHARC processors
could involve an audio environment.

For SHARC processors, a typical application
might involve high-dynamic/high-performance,
floating-point audio processing. Blackfin
processors, which combine both a DSP and a
microcontroller, can act as a host to control
SHARC processors, for example:

 Booting SHARC processors (SPI slave
booting)

 Sending messages (e.g., bass, treble, volume,
fader)

Figure 1 shows an example signal flow diagram
for a multiprocessor system.

Head Unit

Audio Control:
Blackfin® Processor

Floating Point
Audio Processing:
SHARC® Processor

CAN

SPI

Codec:
AD1835

I2S

LR RR

LF RF

C

LFE

Mic

Display
PPI

Figure 1. System setup

SPI Description
SPI® is an industry-standard synchronous serial
data link named by Motorola. The standard is not
fully specified. The specification includes the
hardware, but not the software protocol.

It supports communication with multiple SPI-
compatible devices. Unlike other serial interfaces
like I2C, the SPI peripheral is a four-wire
interface – I2C uses two lines – consisting of two

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 2 of 12

data pins (MOSI and MISO), one device select pin
(/SPISS), and a gated clock pin (SCK). The two
data pins allow full-duplex operation to other
SPI-compatible devices. SPI also includes
programmable baud rates, clock phase, and clock
polarity. The devices communicate in
master/slave mode, where the master device
initiates the data frame. Multiple slave devices
are allowed with individual slave/chip select
lines.

A restricted subset of SPI is Microwire™
(µWire) from National Semiconductor, which is
based on SPI and is compatible to it. In this EE-
Note, SPI refers to Motorola SPI.

Typical SPI-compatible peripheral devices
include:

 Microcontrollers

 Codecs

 A/D and D/A converters

 Sensors

 Flash memory devices

 SP/DIF and AES/EBU digital audio
transmitters and receivers

 LCD displays

The SPI interface on Blackfin processors and
SHARC processors provide the following
features:

 Full-duplex synchronous serial interface

 8- or 16-bit word sizes (Blackfin processors)

 32-bit word sizes (SHARC processors)

 Little endian or big endian formats

 Programmable baud rates, clock polarities,
and phases

 Master, slave, and multi-master modes

 Open drain outputs to avoid possible driver
conflict due to data contention and to
support multi-master scenarios

 Master or slave booting from an SPI device

 DMA capability to allow data transfers
without core overhead

Figure 2 and Figure 3 show SPI block diagrams.

Figure 2. Blackfin SPI block diagram

TXSR shift register
8/16/32 bits

TXSPI register
1 deep

RXSPI register
1 deep

DMA FIFO
4 deep

MOSI MISO

SPI Control/Status

SPICLK /SPIDS FLAGx

Core DMD, PMD
buses

IOD
Bus

SPI

RXSR shift register
8/16/32 bits

Figure 3. SHARC SPI block diagram

For details, refer to the SPI chapter in the
Hardware Reference manual (HRM) of your
Blackfin processor derivative and SHARC
processor derivative, respectively.

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 3 of 12

Setting Up the Physical Layer
Figure 4 shows the connection and direction of
the signals for a SHARC SPI slave device and a
Blackfin SPI master device.

SHARC® processor
SPI slave device

SPICLK

/SPIDS

MOSI

MISO

Blackfin® processor
SPI master device

SCK

/SSEL

MOSI

MISO

3.3V

Figure 4. Master-slave connection

An SPI master device always drives both the
clock and slave select line signals. An SPI slave
device is active only when two signals are
present: a clock and an active slave select line.

For both processors, the difference between an
SPI master device and an SPI slave device is one
bit (MSTR) in the SPI control register.

For a master SPI device, the /SPISS pin can act
as an error signal input in a multi-master
environment. A pull-up resistor is recommended.

The SPI slave select enable output signals
(/SSEL) are always active low in the SPI
protocol. Since the respective pins are not driven
during reset, it is recommended to pull them up
by a resistor.

Blackfin processors require a pull-up
resistor for the SCK line. The SHARC
processor’s DPI provide an internal
pull-up for the SPICLK pin, so no
external pull-up is required here.

Programming Model for Blackfin
Processors
The programming model of the Blackfin
processor’s SPI interface is described in the
Hardware Reference manual of your Blackfin
derivative. The SPI flowcharts provided in the

ADSP-BF537 HRM provide a good reference for
setting up an SPI transfer.

This section describes specific details of the
programming model and is provided as an
addendum and a brief summary of the current
documentation.

This EE-Note focuses on a single
master/single slave environment, where
the ADSP-BF537 processor acts as an
SPI master and the ADSP-21369
processor acts as an SPI slave device.
The provided examples cover other set-
ups based on these two processors.

Preparation

Most Blackfin processors use pin multiplexing to
reduce pin count. On the ADSP-BF537
propcessor, most of the SPI signals are accessible
through Port F. The five most important signals
(SCK, MISO, MOSI, /SPISS, and SPISSEL1) are
not multiplexed with other peripherals.

For ADSP-BF537 processors, you must write to
PORTF_FER to enable these SPI signals. By
default, GPIO functionality is enabled.

For using SPISSEL2 – SPISSEL7, refer to the SPI
chapter and the General-Purpose PORT chapter
of the HRM. These signals – if required – must
also be enabled.

Interrupts are used to signal the end of a transfer
from/to a peripheral. Otherwise, status bits must
be polled periodically by the processor to detect
the end of a transfer. If the clock ratio between
the core and the system/peripheral is high (e.g.,
SPI clock = 1 MHz, and core clock = 500 MHz),
polling is probably not an issue. This allows
other operations to be performed in the
meantime.

Both the Core Event Controller and the System
Interrupt Controller (SIC) must be configured as
well. Refer to the “Program Sequencer” chapter
in the Blackfin Processor Programming
Reference manual (PRM) and the “System
Interrupts” chapter of the HRM for details.

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 4 of 12

SPI Initialization

The SPI interface consists of a set (SPI_FLG,
SPI_BAUD, and SPI_CTL) of system memory-
mapped registers (MMRs) for configuration.

SPI status can be read from the SPI_STAT
register.

For core-driven transfers, the SPI
transmit/receive data buffer registers
(SPI_TDBR/SPI_RDBR) and SPI_SHADOW are also
required.

SPI_FLG Register
For an SPI master device, a slave is selected by
writing to SPI_FLG to set the appropriate slave
select enable (FLSx) bits.

The slave select value (FLGx) bits determine the
value driven onto the slave select line.

If CPHA = 1 (CPHA bit set in SPI_CTL), the output
value is set by software control of the FLGx bits.

If CPHA = 0, the SPI hardware sets the output
value, and the FLGx bits are ignored. This means
hardware selects and deselects the slave (/SSEL)
every single word (see Figure 5 and Figure 7).

The following figures show a transfer of 16-bit
words over SPI. The first two words are
illustrated. The Blackfin processor is the master
and drives the SPI clock and slave select line.
The SHARC processor acts as a slave, receiving
data from the master SPI device.

Additionally, Figure 7 and Figure 8 show an
active low SCK version of the transmission; clock
polarity is inverted in this case.

Figure 5. CPHA = 0, active high SCK (CPOL = 0)

Figure 6. CPHA = 1, active high SCK (CPOL = 0)

Figure 7. CPHA = 0, active low SCK (CPOL = 1)

Figure 8. CPHA = 1, active low SCK (CPOL = 1)

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 5 of 12

SPI_BAUD
The SPI_BAUD register allows you to set the SPI
clock frequency. It is derived from the Blackfin
processor’s system clock (SCK). If SCK is
maximized to 133 MHz, this translates to an SPI
frequency limitation of ~33 MHz (SCK/4). If
higher frequencies are required, the Blackfin
processor’s SPORT interface can be used to
emulate SPI. Serial clock speeds of up to
~66 MHz can be achieved, as the maximum
SPORT clock frequency is SCK/2. Refer to EE-
304[4].

SPI_CTL
The SPI_CTL register is described in the
processor’s HRM.

As mentioned in “SPI Description”, Motorola
did not specify a (timing) protocol for SPI, and
four different modes are typically used. These
modes are set with the two bits: CPOL (clock
polarity) and CPHA (clock phase).

The SPI interface of current Blackfin processors
– compared to the SHARC SPI interface – does
not support 32-bit data words.

SPI_STAT
The SPI status register (SPI_STAT) can be
divided in two groups of bits. The first group is
for detecting errors, such as buffer under-run,
buffer overflow, and conflicts in multi-master
environments. The other group of bits shows the
status of the transmit buffer or the receive buffer
and the SPI status (SPI finished).

For details, see “SPI DMA Transfer and Interrupt
Servicing”, which shows how to use these status
bits.

SPI DMA Initialization

The SPI has a single dedicated DMA channel for
doing one transmit or one receive operation at
the same time.

Refer to the Direct Memory Access chapter in
the HRM for details.

SPI Transfer Start

For an SPI master device, select a slave by
writing to SPI_FLG to set the appropriate slave
select enable (FLSx) bits.

In SPI DMA mode, the SPI interface and the
DMA should not be enabled during initialization.
If both are configured properly, first start the
DMA (DMAEN = 1) and then the SPI (SPEN = 1).

In SPI core mode, we can enable the SPI during
initialization, if we are running in TIMOD = 00. In
TIMOD = 01, the SPI starts immediately when the
SPI bit is set. Either fill SPI_TDBR first and then
enable the SPI, or use also TIMOD = 00 for SPI
transmit operations. For the last case, a dummy
read access to SPI_RDBR starts the transfer.

SPI DMA Transfer and Interrupt Servicing

 DMA Tx DMA Rx Core Tx Core Rx

DMA_RUN 1x - - -

TXS 2x - 1x -

RXS - - - ≥1x

SPIF 1x - 1x 1x

Table 1. Status bits to be polled

For an SPI DMA operation, you must wait for
the DMA interrupt to occur. That’s when the
DMA_DONE bit is set in the DMAx_IRQ_STATUS
register.

The DMA_DONE interrupt is asserted when
the last memory access (read or write)
has completed. To transmit to a
peripheral (memory read), there may be
up to four data words in the channel’s
DMA FIFO when the interrupt occurs.

The service routine for an SPI receive or SPI
transmit must first clear the interrupt source.
Write a 1 to the DMA_DONE bit (W1C – write-1-to-
clear). Otherwise, an interrupt will be latched
again.

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 6 of 12

If, however, the application needs to
know when the final data item is
actually transferred to the peripheral, the
application can test or poll the DMA_RUN
bit. As long as there is pending data in
the FIFO, the DMA_RUN bit is 1.

Poll the DMA_RUN bit (DMA_RUN = 1) in the
DMAx_IRQ_STATUS register until it goes low
(DMA_RUN = 0).

When using DMA for SPI transmit, the
DMA_DONE interrupt signifies that the
DMA FIFO is empty. However, at this
point there may still be data in the
PERIPHERAL (SPI) DMA FIFO
waiting to be transmitted. Therefore,
software needs to poll TXS in the
SPI_STAT register until it goes low for
two successive reads, at which point the
SPI DMA FIFO will be empty.

The TXS bit defines when the transmit buffer can
be filled, but the data might be still in the SPI
shift register.

The SPIF bit is set one-half the SCK period after
the last SCK edge. That’s when the last bit of the
word is shifted out, and the SPI transfer is
finished.

The RXS bit defines when the receive buffer can
be read. The end of a single word transfer occurs
when the RXS bit is set, indicating that a new
word has just been received and latched into the
receive buffer, SPI_RDBR. For a master SPI, RXS
is set shortly after the last sampling edge of SCK.
For a slave SPI, RXS is set shortly after the last
SCK edge, regardless of CPHA or CPOL. The
latency is typically a few SCLK cycles and is
independent of TIMOD and the baud rate. If
configured to generate an interrupt when
SPI_RDBR is full (TIMOD = 00), the interrupt goes
active one SCLK cycle after RXS is set. When not
relying on this interrupt, the end of a transfer can
be detected by polling the RXS bit.

Polling is not required for a DMA receive
operation as the interrupt occurs after the last

memory write operation of the DMA. For a
DMA transmit operation, you need to take care
of the data latency between the DMA FIFOs and
SPI DMA FIFOs.

SPI Core Transfer

For an SPI core transfer, you can also use
interrupts. But that’s not very meaningful if the
SPI clock to core clock ratio is close to one. You
would have an interrupt for every single word,
and the MIPS performance would be reduced
dramatically.

Therefore, it is good practice to set up a
hardware loop (a feature of the Blackfin
Sequencer) for data transfer. Inside this loop, the
appropriate status bits must be polled every
single word between every single transfer.

SPI Transfer Stop

Stopping the SPI is similar to the start procedure.
For SPI DMA transfer, stop the components in
the reversed order. Deselect the slave by clearing
the appropriate slave select enable (FLSx) bit.
Then stop the DMA, and at least disable the SPI.

Additionally, you can reset the SPI_STATUS
register by clearing error bits (W1C).To clear the
RXS bit, do a dummy read from SPI_RDBR.

Summary: DMA and Core SPI Transfer

The Blackfin SPI Controller provides two ways
to perform a transfer. You can set up a DMA-
based transfer or use the processor core to access
the SPI_TDBR or SPI_RDBR registers, driving the
transfer, set up with the two TIMOD (transfer
initiation mode) bits.

A DMA-based transfer reduces the processor’s
load – other computations or tasks can be done in
parallel. If you need an acknowledgement that
the transfer (the DMA) has finished, enable
interrupts; otherwise, DMA status bits must be
polled by the processor.

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 7 of 12

DMA-based transfer is preferred, especially for
large transfers.

There is one disadvantage regarding a DMA-
based transfer when the Blackfin processor is
both in DMA receive mode (TIMOD = 10) and a
master (MSTR = 1). In this case, the SPI still
drives the SPI clock and slave select line even
when the last word is received and the transfer
should be completed; the value in the current
inner loop count register is zero
(DMAx_CURR_X_XOUNT = 0). This is because the
SPI and DMA are not synchronized with regard
to word count. Every read access to SPI_RDBR
(never mind if DMA or core is doing this) drives
the SPI to fetch new data on the MISO line until
the SPI is stopped (SPE = 0).

If the connected slave has no clue about the
number of words to be transmitted and/or no
counter is running to stop the slave at the right
time, the slave might accidentally be driven to
transfer more words than required.

In receive mode with DMA
(TIMOD = 10), as long as there is data in
the SPI DMA FIFO (i.e., the FIFO is not
empty), the SPI continues to request a
DMA write to memory. The DMA
engine continues to read a word from
the SPI DMA FIFO and writes to
memory until the SPI DMA word count
register transitions from 1 to 0. The SPI
continues receiving words until SPI
DMA mode is disabled.

The whole FIFO depth for SPI DMA
transfers is 6: DMA peripheral (SPI)
FIFO (4 16/8 bit words) + SPI_TDBR /
SPI_RDBR + SPI interface shift register.
Refer to Figure 10.

Figure 9. SPI core FIFO / bus structure

In this case, or if only a few data words (e.g.
short control messages) have to be send, a core-
driven transfer is the preferred method. There are
two transfer initiation modes: one mode starts the
transfer with a read of SPI_RDBR (TIMOD = 00),
and the other mode starts with a write to
SPI_TDBR (TIMOD = 01). The second mode
should not be used as the transfer starts
immediately when the SPI is enabled (SPE = 1).

This means a core-based SPI master transmit and
receive should be done with TIMOD bits set to 00.
For an SPI receive, simply read the SPI_RDBR
data buffer. For an SPI transmit, first fill up the
SPI_TDBR data buffer followed by a read access
to SPI_RDBR which starts the transfer.

With regard to debugging, a core SPI transfer
can be monitored more easily than an SPI DMA
transfer. For example, every single word can be
transferred in single-step mode. A running DMA
cannot be stopped. If the core is in “halt” status,
the DMA is running in the background.

Figure 10. SPI DMA FIFO / bus structure

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 8 of 12

The very first access to SPI_RDBR is a
dummy access; the first word is invalid.
Every access to SPI_RDBR drives the SPI
interface to fetch the next data word.

After the last transfer, the final word
should be read out of the SPI_SHADOW
data buffer (which does not drive
another read transfer), or disable first
SPI (SPE = 0) before accessing
SPI_RDBR the last time. Only an access
to SPI_RDBR will clear RXS (read data
buffer full) bit.

Blackfin Processor SPI Examples

The examples provided in the associated .ZIP
file are for an SPI master and an SPI slave
implementation for ADSP-BF537 Blackfin
processors. For more details, refer to the
‘README.txt’ file.

Programming Model for SHARC
Processors

The SPI port is available on ADSP-21161N,
ADSP-2126x, ADSP-2136x, and ADSP-2137x
SHARC processors. The programming model
discussed below applies mainly to ADSP-2126x,
ADSP-2136x, and ADSP-2137x processors. For
ADSP-21161N processors, the SPI programming
model is different. This section describes some
specific details of the programming model.
It serves as an addendum and brief summary of
the current documentation in the HRM.

Preparation

Each SPI port on SHARC processors has the
following signals:

 SPICLK

 SPIDS#

 MOSI

 MISO

 SPI slave select signals (SPIFLG3–0)

ADSP-2116x and ADSP-2126x processors have
one SPI port, and the SPI signals are available on
the dedicated hardware pins. The Flag 3 – 0 pins
are used as the slave select signals when the SPI
is the master.

ADSP-21362/3/4/5/6 processors have two SPI
ports in which the primary SPI signals are
available on the dedicated hardware pins and the
secondary SPI can be routed through the Signal
Routing Unit (SRU) to the Digital Application
Interface (DAI) pins of the processors. The
primary SPI port uses the Flag 3-0 pins as the
slave select signals where as the secondary SPI
port has 4 dedicated SPIFLGB3-0 signals which
can be routed to any of the DAI pins.

For ADSP-21367/8/9 and ADSP-2137x
processors, both SPI ports can be routed through
the Signal Routing Unit 2 (SRU2) to the Digital
Peripheral Interface (DPI) pins of the processors.
Both the SPI ports on the ADSP-21367/8/9 and
ADSP-2137x processors have dedicated
SPIFLG3–0 signals as slave select signals when
the SPI is used as master.

The DAI pins and DPI pins on SHARC
processors have an internal pull-up resistor. By
default, this pull-up resistor is enabled and can
be disabled by writing into the corresponding
pull-up enable register. When the SPI signals are
routed to the DAI or DPI pins, adding the
external pull-up may not be needed.

For ADSP-21367/8/9 and ADSP-2137x
processors, when the SPI is used as the master
the following must be taken care of in the
application while routing the SPICLK signal using
SRU2. When CLKPL = 0, the pin enable signal of
the DPI pin to which the SPICLK is routed should
be configured as follows:
SRU(SPI_CLK_O,DPI_PB03_I);
SRU(HIGH,DPI_PBEN03_I);

When CLKPL = 1, the pin enable signal of the
DPI pin to which the SPICLK is routed should be
configured as follows:
SRU(SPI_CLK_O,DPI_PB03_I);
SRU(SPI_CLK_PBEN_O,DPI_PBEN03_I);

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 9 of 12

SPI Initialization

The SPI port of SHARC processors use the
following control and status registers to
configure the SPI:

 SPICTL

 SPIFLG

 SPIBAUD

 SPISTAT

SPICTL Register
The SPICTL register has control bits for selecting
the SPI configuration and enabling the SPI.
Some of the control bits include:

 Word length selection

 Master or slave operation

 Data format (little or big endian)

 Clock phase and polarity

 Open drain output for data pins

 Packing enable

Refer to the processor’s HRM for a complete
description of the SPICTL register.

SPIFLG Register
The SPIFLG register is used only when the SPI is
configured as the master. This register is not
used for slave mode operation. This register
allows you to select one or all of the SPIFLG3-0
signals as slave select signals. Setting the DSxEN
bit on the SPIFLG register selects the
corresponding SPIFLGx signal as the slave select
signal.

When CPHASE = 0, the slave select signal will be
generated by the hardware automatically. The
SPIFLGx signal will be asserted low before each
data transfer, and between successive transfers
this signal will be asserted high.

When CPHASE = 1, the slave select signal should
be generated manually by the user application.
The SPIFLGx bit of the SPIFLG register can be
used for this purpose. In this mode, setting or
clearing the SPIFLGx bit on the SPIFLG register
reflects on the SPIFLGx signal. Before SPI is

enabled, ensure that this pin is high by setting the
SPIFLGx bit of the SPIFLG register. As soon as
the transfer is started, clear the SPIFLGx bit of
the SPIFLG register before starting the transfer.

SPIBAUD Register
The SPIBAUD register is used only when the SPI
is configured as the master. This register is not
used for slave mode operation. This register
allows you to select the baud rate of the SPI
master. The BAUDR bits (15-1) can be used to
configure the SPI baud rate. The SPI baud rate is
derived from the core clock of the processor. For
ADSP-2136x and ADSP-2137x processors, the
SPI baud rate is calculated as follows:

SPI baud rate = CCLK / (8 *(BAUDR - 1))

For ADSP-2126x processors, the SPI baud rate is
calculated as follows:

SPI baud rate = CCLK / (4 *(BAUDR - 1))

SPISTAT Register
The SPISTAT register is the read-only register
that provides the status of transmit and receive
buffer FIFOs, and the current transfer
completion. It also has the bits to indicate the
transmission/reception errors and multi-master
errors. The bits on this register are write-1-to-
clear bits.

SPI DMA Initialization

The SPI has the following registers for
initializing the DMA mode of operation:

 SPIDMAC

 IISPI

 IMSPI

 CSPI

 CPSPI

The IISPI, IMSPI, CSPI, and CPSPI registers are
the DMA parameter registers. The IISPI, IMSPI,
and CSPI registers hold the value of the internal
memory address from/to which the data needs to
be transferred, modifier value, and the count
value, respectively. The CPSPI register holds the

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 10 of 12

value of the next DMA sequence when the DMA
chaining is enabled.

The SPIDMAC register has the control bits to
configure the transmit or receive DMA, enable
the interrupt, enable the DMA, and DMA
chaining. It also has the status bits which show
the current DMA transfer status and some error
conditions. SPI DMA is initialized by setting the
SPIDEN bit of the SPIDMAC register.

SPI Transfer Start

SPI transfer can be in core mode or in DMA
mode. The TIMOD1-0 bits on the SPI control
register select the mode of data transfer. In core
mode, the transmit buffer (TXSPI) and receive
buffer (RXSPI) registers are accessed by the core
directly. In DMA mode, the DMA controller
accesses the receive buffer or the transmit buffer
and does the data transfer.

When the TIMOD1-0 bits are configured as ‘00’,
reading the RXSPI buffer after enabling the SPI
master initiates a data transfer. When these bits
are configured as ‘01’, writing to the TXSPI
buffer after enabling the SPI master initiates a
data transfer. The TIMOD1-0 bits are configured
as ‘10’ for DMA mode of operation. Depending
upon the direction of the DMA (transmit or
receive), the DMA controller initiates a data
transfer by writing into the transmit buffer or
reading from the receive buffer.

The DMA controller has 4-deep FIFO,
which is used for the DMA data
transfer. The internal DMA request is
generated for a group of 4 data words on
the FIFO. If DMA count is not a
multiple of 4, the requests are generated
for each group of 4 words, and finally
one request is generated for the rest of
the words. For example, if the DMA
count is 7, the DMA controller
generates two DMA requests (one for
the DMA count of 4, and the other for
the rest of the data words).

For all the cases, the master generates the SPI
clock to the slave device. The slave select signals
are generated automatically or manually,
depending on the CPHASE bit configuration.

SPI Transfer and Interrupt Servicing

Core-driven transfers can be in interrupt driven
mode or in polling mode. In polling mode, the
user application must continuously poll for the
status of the transmit buffer or receive buffer by
reading the SPISTAT register. When the transmit
buffer is empty or the receive buffer has data, the
application can write data to the transmit buffer
or read data from the receive buffer.

In interrupt-driven mode, an interrupt is
generated automatically when the transmit buffer
is empty or the receive buffer has one complete
word, depending on the TIMOD1-0 bits
configuration. Inside the interrupt service
routine, the user application must write to the
transmit buffer or read from the receive buffer.

In general, the user application can use the
combination of the polling and interrupt-driven
modes where full-duplex communication is
needed.

For DMA-driven transfers, an interrupt is
generated at the end of a block transfer. For
DMA chaining mode, the interrupt can be
generated at the end of each sequence or at the
end of all the sequences. The DMA interrupt can
be to process the block of data received over the
SPI or it can be used to start a new transfer.

When the SPI master is configured for
initiating a data transfer by reading the
receive buffer in core mode, initially the
master must do a dummy read. This
dummy read generates the clock for the
slave device to transmit the first data. To
receive N words of data, the master
must do N+1 data transfers in core
mode. For an SPI receive DMA
operation, the DMA controller takes
care of this dummy read.

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 11 of 12

SPI Transfer Stop

SPI transfers are stopped when the SPI is
disabled. The SPI can be disabled inside the
interrupt service routine. For core mode
operation, after transmitting or receiving the
required number of words, the SPI can be
disabled by clearing the SPICTL register
contents. The SPIFE bit of the SPISTAT register
bit must be polled before disabling the SPI. This
bit indicates whether the current transfer is
completed. Ensure that the current data transfer
is completed before the SPI is disabled.

For DMA mode operation, inside the ISR, the
SPIDMAS bit of the SPIDMAC register must be
polled. This bit indicates the DMA completion
status and is set when the DMA transfer is in
progress (and cleared once it is completed). The
SPIFE bit of the SPISTAT register must be polled
to ensure that the last data transfer is completed.
Then the SPI and the SPIDMA register can be
disabled by clearing the contents of the SPICTL
and SPIDMAC registers.

For DMA chaining mode, SPI transfers can be
stopped by writing a zero to the chain pointer
register. After writing a zero, poll for the
SPIDMAS bit of the SPIDMAC register and the
SPIFE bit of the SPICTL register. Once the
current data transfer is completed, the SPI and
the SPIDMA register can be disabled by clearing
the contents of the SPICTL and SPIDMAC
registers.

SHARC Processor SPI Examples

The examples provided with this EE-Note are
implemented for ADSP-21369 processors. The
SPI master code configures the primary SPI of
the ADSP-21369 processor as a master in DMA
mode. The divisor value for the SPIBAUD register
is calculated during runtime, based on the core
clock and the selected SPI baud rate. The SPI
slave code configures the primary SPI of the
ADSP-21369 processor as a slave in DMA
mode. For both code examples, the direction of
the DMA transfer can be selected using the
macros. Macros are also available for selecting
the clock phase and polarity configuration.

The code can be used for ADSP-21367/8 and
ADSP-2137x processors without modification.
For ADSP-21362/3/4/5/6 and ADSP-2126x
processors, the SPI configuration code can be
used as is, but the InitSRU function need not be
called. The calculation of the SPIBAUD rate must
be changed for ADSP-2126x processors.

Conclusion
This EE-Note discusses the SPI programming
model on SHARC and Blackfin processors. It
also provides example code for serial
communication over SPI between SHARC and
Blackfin processors. The examples provided with
this EE-Note are tested between the SPI ports of
the ADSP-21369 SHARC processors and ADSP-
BF537 Blackfin processors.

 a

Connecting SHARC® and Blackfin® Processors over SPI (EE-340) Page 12 of 12

Appendix
The .ZIP file associated with this document contains the following code examples:
[1] Example code for a Blackfin processor SPI master device

[2] Example code for a Blackfin processor SPI slave device

[3] Example code for a SHARC processor SPI master device

[4] Example code for a SHARC processor SPI slave device

References
[1] ADSP-BF53x/BF56x Blackfin Processor Programming Reference. Rev. 1.0, June 2005. Analog Devices, Inc.

[2] ADSP-BF537 Blackfin Processor Hardware Reference. Rev. 2.0, December 2005. Analog Devices, Inc.

[3] ADSP-BF534/ADSP-BF536/ADSP-BF537 Blackfin Embedded Processor Data Sheet. Rev. C, February 2007.
Analog Devices, Inc.

[4] Using the Blackfin Processor SPORT to Emulate a SPI Interface (EE-304). Rev. 1, November 10, 2006.
Analog Devices, Inc.

[5] ADSP-21368 SHARC Processor Hardware Reference. Rev. 1.0, September 2006. Analog Devices, Inc.

[6] ADSP-2136x SHARC Processor Hardware Reference for ADSP-21362/3/4/5/6 Processors. Rev. 1.0, October 2005.
Analog Devices, Inc.

[7] ADSP-2126x SHARC Processor Peripherals Manual. Rev 3.0, December 2005. Analog Devices, Inc.

[8] ADSP-21371: SHARC Processor Data Sheet. Rev. 0, July 2007 .Analog Devices, Inc.

[9] ADSP-21375: 266 MHz High Performance SHARC Processor Preliminary Data Sheet. Rev. PrB, December 2005.
Analog Devices, Inc.

[10] ADSP-21367/ADSP-21368/ADSP-21369 SHARC Processors Data Sheet. Rev. A, August 2006. Analog Devices, Inc.

[11] ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 SHARC Processors Data Sheet. Rev. B, June 2007.
Analog Devices, Inc.

[12] ADSP-21261: 3rd Generation, Low-Cost, 150 MHz SHARC Processor Data Sheet. Rev 0, April 2006.
Analog Devices, Inc.

[13] ADSP-21262: 3rd Generation Low Cost 32-Bit Floating-Point SHARC Processor Data Sheet. Rev. B, October 2005.
Analog Devices, Inc.

[14] ADSP-21266: High Performance SHARC Audio Processor Data Sheet. Rev. B, May 2005. Analog Devices, Inc.

[15] SHARC SPI Slave Booting (EE-177). Rev. 3, January 19, 2007. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – July 8, 2008
by Jeyanthi Jegadeesan and
Andreas Pellkofer

Initial release.

http://www.analog.com/UploadedFiles/Data_Sheets/ADSP-21371.pdf
http://www.analog.com/UploadedFiles/Data_Sheets/ADSP-21375.pdf
http://www.analog.com/UploadedFiles/Data_Sheets/ADSP-21261.pdf
http://www.analog.com/UploadedFiles/Data_Sheets/ADSP-21262.pdf
http://www.analog.com/UploadedFiles/Data_Sheets/ADSP-21266.pdf

	Introduction
	Motivation
	SPI Description
	Setting Up the Physical Layer
	Programming Model for Blackfin Processors
	Preparation
	SPI Initialization
	SPI_FLG Register
	SPI_BAUD
	SPI_CTL
	SPI_STAT

	SPI DMA Initialization
	SPI Transfer Start
	SPI DMA Transfer and Interrupt Servicing
	SPI Core Transfer
	SPI Transfer Stop
	Summary: DMA and Core SPI Transfer
	Blackfin Processor SPI Examples

	Programming Model for SHARC Processors
	Preparation
	SPI Initialization
	SPICTL Register
	SPIFLG Register
	SPIBAUD Register
	SPISTAT Register

	SPI DMA Initialization
	SPI Transfer Start
	SPI Transfer and Interrupt Servicing
	SPI Transfer Stop
	SHARC Processor SPI Examples

	Conclusion
	Appendix
	References
	Document History

