
Engineer To Engineer Note EE-191

a

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Implementing a Glueless UART Using The SHARC® DSP SPORTs
Contributed by Dan Ledger May 6, 2003

Introduction
Using the synchronous serial ports (SPORTS) on
the SHARC® DSP, it is possible to implement a
full-duplex, asynchronous serial port to
communicate with UARTs, EIA-232 (RS-232)
devices and MIDI interfaces with minimal
software overhead (less than 1 MIP for full-
duplex, 115,200 bps operation).

This application note presents both the software
and hardware to implement a full UART or RS-
232 interface which has been extensively tested
in hardware up to 115,200 bits per second.
Because the serial ports on SHARC DSP operate
well into the tens of megabits/second, the
asynchronous interface can operate well beyond
115,200 bps.

Introduction to Asynchronous
Serial Communications
The primary difference between synchronous and
asynchronous serial communication is the
presence of a clock signal, and possibly a frame
sync signal. A synchronous serial port has both a
clock signal and an optional frame sync signal
while an asynchronous port does not.

In the absence of a clock signal, asynchronous
ports must communicate at a predetermined data
rate typically referred to as the bit rate,
specifying the bits per second (bps).

In the absence of a frame sync, word framing
information is embedded in the data stream. A
start-bit and stop-bit typically mark the

beginning and end of a transmission. The word
length is predetermined between the receiver and
transmitter.

For more information on asynchronous serial
communications, visit this website:
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/serial-uart/

The Asynchronous SPORT Transmitter

The UART transmitter on the SHARC DSP
serial port is quite simple. The transmit side of
the serial port must be configured with a clock
rate equal to the desired bit rate of the UART.
This is done by setting the transmit portion of the
clock divider register (DIVx) for that serial port.
The formula for calculating the divider value can
be found below or in the Serial Port chapter of
the appropriate SHARC Hardware Reference
Manual.

1
2

−
×

=
ratebit

FrequencyClockCoreDSPDivisor

The clock is only used to synchronize the serial
port to desired bit rate but the actual clock signal
(TCLKx) does not connect to anything. The
frame sync signal is also left floating.

The configuration of the transmit side of the
SPORT and associated DSP software is
presented in detail in the Software Overview
portion of this document.

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

a
The Asynchronous SPORT Receiver

The receive portion is slightly more complicated
than the transmit portion as the serial port needs
to determine where a new work is beginning
without the presence of frame sync signal. To
accomplish this, the transmit pin of the UART
connects to both the Data Receive pin (DRx) and
the Receive Frame Sync (RFSx) on the SHARC
DSP SPORT. The RFS pin is polled on the
active edge of the internal RCLKx signal by the
DSP. When RFS is asserted, the DSP begins
receiving a new word and will not check the RFS
line until all N (N is programmable in the
SPORT control register) bits have been received.
The SPORT will thus use the start bit as a frame
sync to kick of the reception. As the SPORT has
no way of guaranteeing any phase
synchronization with the incoming bit stream, it
is necessary to over-sample the incoming
asynchronous data stream. To accomplish this,
the receive clock on the SPORT must be set to
three times the desired bit rate. So, for example,
if the DSP is communicating with a UART
device at 9,600 bits/second, the transmit clock on
the SPORT needs to be set at 9,600 bits/second
and the receive clock on the SPORT needs to be
set at 3 * 9600, or 28,800 bits/second. Again,
this is accomplished by calculating the
appropriate divisors and programming the DIVx
register.

The timing diagram below demonstrates how the
SHARC DSP SPORT receives an 8-bit
transmission from a UART device. The arrow
indicates where the SPORT polls the RFS signal
indicating the beginning of a new word.

Figure 1: Over-sampling the incoming asynchronous
data

The configuration of the receive side of the
SPORT and associated DSP software is

presented in detail in the Software Overview
portion of this document.

Hardware Overview: UART
The diagram below shows the connection
between a SHARC DSP serial port and the TX
(transmit) and RX (receive) pins of a basic
UART port on another device.

TCLKx

TFSx

DTx

DRx

RFSx

RCLKx

RX

TX

Figure 2:SHARC DSP to UART Interface

No additional logic is required in this interface;
however, the SHARC DSP with 3.3V I/O are not
5V tolerant. To connect a SHARC DSP device
with 3.3V I/O to a 5V UART is often fairly
simple. The DTx pin of the SPORT can often
connect directly to the RX pin of the UART if it
is a CMOS device as 3.3V is greater than the
minimum high level signal in 5V CMOS. In the
other direction (TX to DRx and RFSx), a series
resistor or diode can be used to drop the voltage
from 5V to 3.3V. The resistor value can be
calculated using the high and low level input
currents listed in the data sheet for both the
UART device and the SHARC DSP.

Hardware Overview: EIA-232
(RS-232) Device
Connecting the DSP to an RS-232 port is very
similar to a basic UART interface except an RS-
232 interface will require an RS-232 interface
device to boost the RX and TX signals up to 9V
as well as provide the necessary RS-232
hardware handshake signals like CTS and RTS.
The ADM3202 from Analog Devices is an RS-

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 2 of 21

a
232 interface device which provides a 3.3V
interface to the DSP. It is shown in the
schematics below.

Two flag pins can be optionally connected to the
ADM3202 to manage the CTS and RTS control
signals.

Figure 3 : SHARC DSP to RS-232 Interface

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 3 of 21

a

Software Overview
The software required to manage the
asynchronous data moving in and out of the
SPORT is minimal. A full set of C-callable,
hand-coded assembly functions is available at the
end of this application note and included in the
associated .zip file. All code examples in this
section are included within the driver code.

On the transmit side, a start and stop bit must be
placed into the N bit word to be transmitted.
Thanks to the efficiency of the SHARC DSP
architecture, this can be performed in 6 cycles
per transmitted word.

R0 = dm(VALUE_TO_TRANSMIT);
R2 = b#01111111100;
R4 = b#10000000001;
R1 = lshift R0 by 2;
R1 = R1 and R2;
R1 = R1 OR R4;

Listing 1: UART Transmit Byte

The receive side is slightly more complex as the
SPORT is receiving over-sampled data. As the
data is over-sampled by a factor of 3, the serial
port must be programmed to receive 29 bit
words. The first two bits received will be the
second and third bits of the frame sync and the
remaining 27 bits will represent 9 bits of data (8
bit-word and 1 stop bit) over-sampled by a factor
of 3.

To extract the actual data from our over-sampled
word, the fext function can be used to process
this data efficiently. The following function

recovers an 8-bit word from the over-sampled
data in 16 cycles.

R0 = dm(RX3B); // Word from DR
R4 = fext R0 by 25:1; // bit 0
R1 = fext R0 by 22:1; // bit 1
R4 = R4 or fdep R1 by 1:1;
R1 = fext R0 by 19:1; // bit 2
R4 = R4 or fdep R1 by 2:1;
R1 = fext R0 by 16:1; // bit 3
R4 = R4 or fdep R1 by 3:1;
R1 = fext R0 by 13:1; // bit 4
R4 = R4 or fdep R1 by 4:1;
R1 = fext R0 by 10:1; // bit 5
R4 = R4 or fdep R1 by 5:1;
R1 = fext R0 by 7:1; // bit 6
R4 = R4 or fdep R1 by 6:1;
R1 = fext R0 by 4:1; // bit 7
R4 = R4 or fdep R1 by 7:1;

// r4 contains received word

Listing 2: UART Receive Byte

The software to support the UART functionality
of the SPORT is very light weight. In fact,
sustaining full-duplex transfers at 115200 bps
requires only 0.4% of the available MIPS on an
ADSP-21161N SHARC DSP clocked with
100MHz. The C-callable UART drivers
included with this application note include buffer
management functionality and context-save and
restore within interrupts requiring about 1% of
the available MIPS on an ADSP-21161N.

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 4 of 21

a

Driver Function Prototypes
The following functions have been written for the ADSP-21161N SHARC DSP, however, are
fundamentally compatible with all devices in the SHARC DSP family. By default, these functions are
designed to work on 8-bit asynchronous data but can easily be changed to support other data widths.
Note : This code uses label.end: notations to terminate assembly functions and thus may generate errors when assembled
under tools versions prior to VisualDSP++™ 3.0. Simply remove these declarations at the end of the assembly functions to
assemble under earlier releases of the tools.

Function Prototype

float Setup_UART(float DSP_Frequency, float BAUD)

Description

Setup_UART is used to configure SPORT1 and SPORT3 for UART emulation. DSP_Frequency
is the internal clock frequency (In Hz, not Mhz) of the DSP. For most ADSP-21161N
applications, this value will be 100000000.0. BAUD is the desired bit rate of the serial port. As
the clock rate of the serial port is derived from the core clock frequency using a clock divider, it is
not always possible to achieve an exact match to the baud rate; however, is most conditions the
error is low enough that it should not impact the functionality of the UART. Only at very high
operating frequencies (500kbits/second and up) will this pose a problem. This function returns a
floating point value representing the deviation (desired bit rate – actual bit rate).

In addition, Setup_UART contains self-modifying code which will overwrite the SPORT transmit
vector to point to a function called UartTx_Service. This function manages asynchronous buffer
transfers in the background so the processor is not held up when transmitting a block of data.

Example

#include “UART_driver.h”

 float err;

 err = Setup_UART(100000000.0,115200.0);

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 5 of 21

a
Function Prototype

char UartRx();

Description

UartRx returns the value received from the UART device. This function should be placed within a
SPORT receive interrupt service routine.

Example

 #include <signal.h>

#include “UART_driver.h”

…

 void UART_RX_ISR(int sig_int)

 {

 RX_Buffer[Rx_Indx++] = UartRx();

 }

 main()

{

 interruptf(UART_RX_INTERRUPT, UART_RX_ISR);

}

note : UART_RX_INTERRUPT and UART_TX_INTERRUPT are defined within UART_Driver.h and can
be used to replace the interrupt definitions in the stock signal.h as seen in the example above.

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 6 of 21

a
Function Prototype

void UartTx_Word(char word);

Description

UartTx_Word copies the value, word into the UART transmit buffer. If the transmit buffer is
empty, this function enables the transmit interrupt. The transmit buffer, which is setup as a
software circular buffer, facilitates data transmission and is managed by the UartTx_Service
function. This function is automatically attached to the transmit interrupt during the UART_Setup
function.

Example

#include “UART_driver.h”

 UartTx_Word(12); // clear terminal screen

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 7 of 21

a
Function Prototype

void UartTx_Buffer(char * buf, int size);

Description

UartTx_Buffer copies an entire buffer pointed to by buf with length size into the UART transmit
buffer. If the transmit buffer is empty, this function enables the transmit interrupt. The transmit
buffer, which is setup as a software circular buffer, facilitates data transmission and is managed by
the UartTx_Service function.

Example

#include “UART_driver.h”

#include “stdio.h”

char out_string[256];

sprintf(out_string,"ADSP-21161N UART Driver\r\n\r\n");

UartTx_Buffer(out_string, strlen(out_string));

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 8 of 21

a
Function Prototype

void UartTx_Service(void);

Description

The UartTx_Service routine is automatically setup by the Setup_UART function. This function is
responsible for managing the transmit buffer and the transmit interrupt. This function should not
be explicitly called in an application.

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 9 of 21

a

Preprocessor Variables

The following pre-processor variables are defined within UART_Driver.h:

These variables are used to replace the standard interrupt defines when setting up the UART transmit and
receive interrupts.

#define UART_RX_INTERRUPT 13

#define UART_TX_INTERRUPT 11

These variables are used to setup the lengths of the transmit buffers.

#define UART_TX_BUFFER_LEN 128

By defining this preprocessor variable, the UART_Setup function will set the receive bit rate to 31250 for
MIDI data.

MIDI_RX

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 10 of 21

a

Code Listing for UART_Driver_.asm

#include <def21161.h>

#include <asm_sprt.h>

#include "UART_Driver.h"

.section /dm seg_dmda;

.var _UART_Error = 0;

.global _UART_Error;

/***

 EZ-UART/MIDI Driver

 written by Dan Ledger

 last modified 1/2003

 Note : This driver is currently configured to transmit on SPORT1 and receive on SPORT3.

 Rev 1.4

 Revision History

 1.0 - original driver

 1.1 - added push sts to interrupt routines

 1.2 - added automatic setup of interrupt vectors

 1.3 - changed length of receive SPORT to 29

 1.4 - corrected bug in UARTTX_Service - as this routine is no longer called from

 C but rather is automatically called from the ISR, the return should be an

 RTI, not leaf_exit;

**/

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 11 of 21

a
/***

 Setup_UART

 Input:

 r4 = DSP operating frequency

 r8 = desired BAUD rate

 Output:

 f0 = divisor error. this is the fractional portion resulting from the truncation

 to fixed point of the sport clock divisor

 C Prototype:

 float Setup_UART(float DSP_Frequency, float BAUD);

**/

.section /pm seg_pmco;

_Setup_UART:

.global _Setup_UART;

 r0=0x00000000; // initially clear SPORT control register

 dm(SPCTL1)=r0; // tx on sport 1

 dm(SPCTL3)=r0; // rx on sport 3

 dm(SP13MCTL) = R0;

 ustat1=r0;

 // Setup SPORT1 - Transmit

 bit set ustat1 DDIR | SENDN | LAFS | LFS | IFS | FSR | ICLK | SLEN11 | SPEN_A;

 dm(SPCTL1) = ustat1;

 // Setup SPORT3 - Receive

 ustat1 = 0;

 bit set ustat1 LAFS | LFS | FSR | ICLK | SLEN29 | SPEN_B | CKRE;

 dm(SPCTL3) = ustat1;

 // Calculate divisors based on DSP clock frequency and BAUD rate

 r2=1086324736;

 F2=F2*F8;

 F1=recips F2;

 r8=1073741824;

 F12=F1*F2;

 F4=F1*F4, F2=F8-F12;

 F12=F2*F12;

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 12 of 21

a
 F4=F2*F4, F2=F8-F12;

 F12=F2*F12;

 F4=F2*F4, F2=F8-F12;

 r8=pass r2;

 F2=F2*F4, F12=F8-F12;

 F12=F12*F2;

 F0=F12+F2;

 R4 = FIX F0;

 F8 = FLOAT R4;

 F0 = F0-F8;

 R8 = 3;

 R12 = R4 * R8 (uui);

 // Setup Transmit

 R1 = 11<<16; // 32 bits per frame

 R2 = R1 + R12;

 dm(DIV1) = R2;

 // Setup Receive

 // To enable MIDI RX with UART transmit, hardwire RX clock to 31250

#ifdef MIDI_RX

 R4 = 533;

#endif

 dm(DIV3) = R4;

 // setup SPORT1 and SPORT3 ISRs

 // UART Transmit

 r0 = _UartTx_Service;

 r1 = lshift r0 by 16;

 px1 = r1;

 r1 = b#000001100011111;

 r0 = lshift r0 by -16;

 r1 = lshift r1 by 17;

 r1 = r1 OR r0;

 px2 = r1;

 pm(0x4002C) = px;

 px2 = 0x0b3e0000;

 px1 = 0;

 pm(0x4002D) = px;

 pm(0x4002E) = px;

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 13 of 21

a
 pm(0x4002F) = px;

 bit set imask SP1I | SP3I;

 leaf_exit;

_Setup_UART.end:

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 14 of 21

a
/***

 UartTX_Service

 Description:

 This function handles the TX interrupt and moving data from the
UART_Transmit_Buffer

 out to the serial port. This function should be placed in the SPORT 1 ISR.

**/

.section /dm seg_dmda;

.var UART_Transmit_Buffer[UART_TX_BUFFER_LEN];

.var UART_Transmit_Buffer_Read_Ptr=0;

.var UART_Transmit_Buffer_Write_Ptr=0;

.section /pm seg_pmco;

_UartTx_Service:

.global _UartTx_Service;

 push sts;

 // * BACKUP VARIABLES

 puts = r0;

 puts = r1;

 // * END BACKUP VARIABLES

 r0 = dm(UART_Transmit_Buffer_Read_Ptr);

 r1 = dm(UART_Transmit_Buffer_Write_Ptr);

 comp(r0,r1);

 if eq jump UART_Nothing_To_Transmit;

 // BACKUP MORE VARIABLES

 r1 = i4; puts = r1;

 r1 = m4; puts = r1;

 puts = r4;

 i4 = UART_Transmit_Buffer;

 m4 = dm(UART_Transmit_Buffer_Read_Ptr);

 r4 = dm(m4,i4);

 // increment pointer

 r0 = m4; r0 = r0 + 1;

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 15 of 21

a

 // See if pointer has wrapped

 r1 = UART_TX_BUFFER_LEN;

 comp(r1,r0);

 if EQ r0 = r0 - r1;

 dm(UART_Transmit_Buffer_Read_Ptr) = r0;

 dm(TX1A) = r4;

 // * RESTORE VARIABLES

 r4 = gets(1);

 r1 = gets(2); m4 = r1;

 r1 = gets(3); i4 = r1;

 r1 = gets(4);

 r0 = gets(5);

 alter(5);

 pop sts;

 rti;

 // * END RESTORE VARIABLES

// If there is nothing more to transmit, disable the transmit interrupt

UART_Nothing_To_Transmit:

 bit clr IMASK SP1I;

 // * RESTORE VARIABLES

 r1 = gets(1);

 r0 = gets(2);

 alter(2);

 pop sts;

 rti;

 // * END RESTORE VARIABLES

_UartTx_Service.end:

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 16 of 21

a
/***

 Uart_TX_Word

 Description:

 This function writes a value to the SPORT1 transmit register. It first takes

 the 8-bit value and creates a 30-bit value for transmitting.

**/

.section /pm seg_pmco;

_UartTx_Word:

.global _UartTx_Word;

 r0 = r4;

 r2 = b#01111111100;

 r4 = b#10000000001;

 r1 = lshift r0 by 2;

 r1 = r1 and r2;

 r1 = r1 OR r4;

 r0 = dm(UART_Transmit_Buffer_Read_Ptr);

 r2 = dm(UART_Transmit_Buffer_Write_Ptr);

 r0 = r0 - 1;

 comp(r0,r2);

 if eq jump UART_TX_Full;

 i4 = UART_Transmit_Buffer;

 m4 = dm(UART_Transmit_Buffer_Write_Ptr);

 dm(m4,i4) = r1;

 // increment pointer

 r0 = m4; r0 = r0 + 1;

 // See if pointer has wrapped

 r1 = UART_TX_BUFFER_LEN;

 comp(r1,r0);

 if EQ r0 = r0 - r1;

 dm(UART_Transmit_Buffer_Write_Ptr) = r0;

 // if the transmit interrupt had been disabled, re-enable it to transmit this new data

 bit clr IRPTL SP1I;

 bit set IMASK SP1I;

 leaf_exit;

_UartTx_Word.end:

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 17 of 21

a
/***

 UartTx_Buffer

 Description:

 This function writes a buffer of data to the SPORT1 transmit register. It first
takes

 the 8-bit value and creates an 11-bit value for transmitting.

**/

.section /dm seg_dmda;

.var UART_i3_store;

.section /pm seg_pmco;

_UartTx_Buffer:

.global _UartTx_Buffer;

 i4 = r4;

 LCNTR = r8, do (PC,UART_Transmit_Loop-1) until LCE;

 r4=dm(i4,m6);

 r0 = r4;

 r2 = b#01111111100; // binary 111 (a 'one' at 3 x baud rate)

 r4 = b#10000000001;

 r1 = lshift r0 by 2;

 r1 = r1 and r2;

 r1 = r1 OR r4;

 r0 = dm(UART_Transmit_Buffer_Read_Ptr);

 r2 = dm(UART_Transmit_Buffer_Write_Ptr);

 r0 = r0 - 1;

 comp(r0,r2);

 if eq jump UART_TX_Full (la);

 dm(UART_i3_store) = i3;

 i3 = UART_Transmit_Buffer;

 m4 = dm(UART_Transmit_Buffer_Write_Ptr);

 dm(m4,i3) = r1;

 i3 = dm(UART_i3_store);

 // increment pointer

 r0 = m4; r0 = r0 + 1;

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 18 of 21

a

 // See if pointer has wrapped

 r1 = UART_TX_BUFFER_LEN;

 comp(r1,r0);

 if EQ r0 = r0 - r1;

 dm(UART_Transmit_Buffer_Write_Ptr) = r0;

UART_Transmit_Loop:

 // if the transmit interrupt had been disabled, re-enable it to transmit this new data

 bit clr IRPTL SP1I;

 bit set IMASK SP1I;

 leaf_exit;

UART_TX_Full:

 r0 = TX_BUFFER_OVERFLOW;

 dm(_UART_Error) = r0;

 bit set imask SFT3I; // raise software interrupt 3 when UART error detected.

 bit clr IRPTL SP1I;

 bit set IMASK SP1I;

 leaf_exit;

_UartTx_Buffer.end:

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 19 of 21

a
/***

 Uart_Rx

 Description:

 Once a SPORT3 receive interrupt occurs, this function should be called (from C)

 to retrieve the and interpret the value. This routine captures the input from
RX3A,

 a derives the 8-bit value.

 int UartRx();

**/

.section /pm seg_pmco;

_UartRx:

.global _UartRx;

 // receive in a 30 bit transmission, generate rx interrupt

 // start bit triggers frame sync (rfs and dr tied together

 r0 = dm(RX3B);

 r4 = fext r0 by 25:1; // bit 0

 r1 = fext r0 by 22:1; // bit 1

 r4 = r4 or fdep r1 by 1:1;

 r1 = fext r0 by 19:1; // bit 2

 r4 = r4 or fdep r1 by 2:1;

 r1 = fext r0 by 16:1; // bit 3

 r4 = r4 or fdep r1 by 3:1;

 r1 = fext r0 by 13:1; // bit 4

 r4 = r4 or fdep r1 by 4:1;

 r1 = fext r0 by 10:1; // bit 5

 r4 = r4 or fdep r1 by 5:1;

 r1 = fext r0 by 7:1; // bit 6

 r4 = r4 or fdep r1 by 6:1;

 r1 = fext r0 by 4:1; // bit 7

 r4 = r4 or fdep r1 by 7:1;

 // r4 contains received word

 r0 = r4;

 leaf_exit;

_UartRx.end:

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 20 of 21

a

References
Thanks to Greg Geerling for coming up with this innovative emulation method and authoring the core
transmit and receive functions.

Document History

Version Description

May 6, 2003 by D.Ledger Initial Release

Implementing a Glueless UART Using The SHARC® DSP SPORTs (EE-191) Page 21 of 21

	Introduction
	Introduction to Asynchronous Serial Communications
	The Asynchronous SPORT Transmitter

	�
	The Asynchronous SPORT Receiver

	Hardware Overview: UART
	Hardware Overview: EIA-232 (RS-232) Device
	Software Overview
	Driver Function Prototypes
	
	Function Prototype
	Description
	Example
	Function Prototype
	Description
	Example
	Function Prototype
	Description
	Example
	Function Prototype
	Description
	Example
	Function Prototype
	Description

	Preprocessor Variables
	Code Listing for UART_Driver_.asm
	References
	Document History

