
Engineer-to-Engineer Note EE-56

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Tips and Tricks on SHARC® EPROM and Host Boot Loader
Contributed by Stefan Hacker and Jeyanthi Jegadeesan Rev 3 – March 6, 2007

Copyright 1999-2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
After creating SHARC® processor application
code and verifying it in simulation or emulation,
a final task is to create a boot image for an
EPROM or host processor. Though this is easy
using the VisualDSP++® tools, some users want
to add specific functionality to the boot loader or
create their own boot loader. This document
discusses the output of the elfloader tool and the
arrangement of the data in the boot image. It
shows where to add changes to modify boot
loaders to adapt to different host processor
widths or types.

Boot Loading
After reset, SHARC processors are configured,
by default, to load 256 words of 48-bit width
(instruction size) by DMA. DMA is configured,
based on the boot mode selected during reset.

ADSP-2106x, ADSP-2116x, ADSP-21367,
ADSP-21368, ADSP-21369, and ADSP-2137x
processors support booting through
EPROM/flash connected to the external port of
the processor.

ADSP-2126x, ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365, and ADSP-21366
processors do not have an external port. The
parallel port on these processors supports
booting from EPROM/flash.

Hereafter, we will representatively refer
to the ADSP-21367, ADSP-21368, and
ADSP-21369 processors as ADSP-
21368 processors. Similarly, we will
refer to the ADSP-21362, ADSP-21363,
ADSP-21364, ADSP-21365, and ADSP-
21366 as ADSP-21362 processors

Table 1 shows the DMA channels and
corresponding interrupt sources used by different
SHARC processors for EPROM/PROM boot
loading.

Processor DMA IVT
location

ADSP-2106x DMA channel 6 0x40

ADSP-21065L DMA channel 8 0x40

ADSP-2116x DMA channel 10 0x50

ADSP-2126x Parallel port DMA 0x50

ADSP-21362 Parallel port DMA 0x50

ADSP-21368
ADSP-2137x

External port DMA
channel 0

0x50

Table 1. DMA channels for EPROM/flash booting

Differences between external port and parallel
port include:

 In parallel port, the address bus and data bus
are multiplexed. In external port, the data bus
and address bus are separate.

 The parallel port (unlike external ports)
cannot have direct core access. Data must be
read through DMA controller.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 2 of 15

Table 2, Table 3, Table 4, and Table 5 show
DMA settings for EPROM booting. Numbers
printed in italics are not initialized but are
assumed by the DMA engine.

Since user application code is far larger than 256
words, a boot kernel ensures that the complete
user application code and data is loaded into the
internal memory spaces of the SHARC
processor. Additionally, external memories and
data ports are initialized by the kernel.

 ADSP-21060/1/2 ADSP-21065L

DMAC Register DMAC6=0x2A1 DMAC0=0x2A
1

II6 IIEP0 0x20000 0x8000

IM6 IMEP0 0x1 0x1

C6 CEP0 0x100 0x100

EI6* EIEP0* 0x40 0000 0x80 0000

EM6 EMEP0 0x1 0x1

EC6 ECEP0 0x600 0x600

IVT Location 0x20040 0x8040

Table 2. EPROM boot setting with BSO bit set for
ADSP-2106x processors

 ADSP-21160 ADSP-21161

DMAC Register DMAC10=

0x4A1

DMAC10=

0x4A1

II10 IIEP0 0x40000 0x40000

IM10 IMEP0 0x1 0x1

C10 CEP0 0x100 0x100

EI10* EIEP0* 0x80 0000 0x80 0000

EM10 EMEP0 0x1 0x1

EC10 ECEP0 0x600 0x600

IVT Location 0x40050 0x40050
* BMS space

Table 3. EPROM boot setting with BSO bit set for
ADSP-2116x processors

 ADSP-2126x ADSP-21362

PPCTL
Register

PPCTL=0x16F PPCTL=0x412F

IIPP 0x0 (offset from
normal word start
address 0x80000)

0x0 (offset from
normal word start
address 0x90000)

IMPP 0x1 0x1

ICPP 0x180 0x180

EIPP 0x0 0x0

EMPP 0x1 0x1

ECPP 0x600 0x600

IVT Location 0x80050 0x90050

Table 4. PROM boot setting for ADSP-2126x and
ADSP-21362 processors

 ADSP-21368 ADSP-2137x

DMAC
Register

AMICTL0=0x5C1 AMICTL0=0x5C1

IIEP0 0x90000 0x90000

IMEP0 0x1 0x1

ICEP0 0x180 0x180

EIEP0 0x40 00000 0x40 00000

EMEP0 0x1 0x1

CPEP0 0x180 0x180

IVT
Location

0x90050 0x90050

Table 5. EPROM boot setting for ADSP-21368 and
ADSP-2137x processors

Boot Loader Names
060_prom.asm and 065l_prom.asm are the
source files for ADSP-2106x PROM-based
loaders.
16x_prom.asm, 26x_prom.asm, 36x_prom.asm,
369_prom.asm, and 37x_prom.asm are the
source files that correspond to the ADSP-2116x,
ADSP-2126x, ADSP-21362, ADSP-21368, and
ADSP-2137x processors, respectively.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 3 of 15

060_host.asm and 065l_host.asm are the
source files for the ADSP-2106x host-based boot
loader.

160_host.asm and 161_host.asm are the source
files that correspond to the ADSP-2116x
processors.

Depending on the selected processor and the
boot loading type, the corresponding boot kernel
is loaded into seg_ldr at reset. The
corresponding Linker Description File is named
with the processor name, such as x6x_ldr.ldf.
These source files are located in the
<install_path>\21K\LDR subdirectory within the
VisualDSP++ tools.

Boot Kernel Structure
Each kernel begins by defining macros for the
various IOP registers used in the code and is
followed by a table containing the interrupt
vectors (up to and including the DMA interrupt
aligned to the external port buffer 0 (EP0I) or
parallel port interrupt). Most of these high-
priority interrupts are not necessary for the
operation of the boot loader and are filled with
NOP or RTI instructions. The only interrupts used
by the kernel are the reset interrupt and the
external port or parallel port interrupt. The EP0I
___lib_RSTI interrupt is available at the offset
0x04-0x07 for all processors. The EP0I interrupt
___lib_EP0I is available at offset 0x40-0x43 for
ADSP-2106x and ADSP-2116x processors. The
parallel port interrupt ___lib_PPI is available at
offset 0x50-0x53 for ADSP-2126x and ADSP-
21362 processors. For ADSP-21368 and ADSP-
2137x processors, the external port interrupt
___lib_EP0I is available at offset 0x50-0x53.

ADSP-2106x and ADSP-2116x Boot Kernel
Structure

Beginning from the start_loader label, the
kernel code can be divided into four main
sections:

Start_loader
Initializes some required registers. For EPROM
booting, determines the processor ID of the
processor in a multiprocessor environment.

Load_memory
Starts to parse the information from the boot
source and copies it into the required memory
location or clears not pre placed memory
segments.

final_init
Swaps out the boot kernel and replaces it with
the user application code.

read_PROM_word
Sets up the new DMA transfer to collect a new
48-bit word

The PROM and host boot kernels for ADSP-
2106x and ADSP-2116x processors include the
four sections listed above. For ADSP-21161N
and ADSP-21065L processors, the initialization
of the SDRAM should be enabled when the user
application uses SDRAM to store code and data.

ADSP-2126x and ADSP-21362 Boot Kernel
Structure

Host booting is not supported on ADSP-2126x
and ADSP-21362 processors.

The boot kernel begins by initializing the control
registers required for downloading the boot
image into the internal memory. The boot kernel
starts by doing the following initializations:

 Enables the global interrupts.

 Initializes the parallel port control and
SYSCTL registers.

 Initialize the DAG registers.

 Enable parallel port interrupt.

The boot kernel available for the PROM boot on
these processors has the following sections.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 4 of 15

READ_BOOT_INFO
The section reads three normal words using
parallel port DMA. It checks the tag and jumps
to respective section to initialize the boot data.

USER_INIT
The user can initialize parallel port control and
other registers in this section.

READ_THREEx32
This section reads three normal words and stores
them in scratch locations 0x80003/0x98003,
0x80004/0x98004, and 0x80005/0x98005.

READ_ONEx32
This section reads one normal word and stores it
at location 0x80003/0x98003.

final_init
After the application has been downloaded
completely, the boot kernel replaces itself with
interrupt vectors in this section.

ADSP-21368 and ADSP-2137x Processors

The boot loader does the following:

 Calls the user_init section, in which the
user initialization code exists.

 Clears all interrupt registers, initializes
external port0 interrupt, and enables global
interrupts.

 Initializes DAG registers and saves initial
settings of the SYSCTL register.

The boot kernel is divided into the following
sections:

READ_BOOT_INFO
This section:

 Reads three or one normal words using
external port DMA and places them in
scratch location starting at 0x98003. This
data is later used to initialize the boot data at
the required address.

 Checks the tag and jumps to the respective
section to initialize the boot data.

USER_INIT
You can initialize external port control and other
registers in this section. You can add code in this
section. Ensure that the size of the boot kernel
does not exceed 256 instructions.

final_init
After the application is downloaded completely,
the boot kernel replaces itself with interrupt
vectors in this section

READ_THREEx32
This section reads three normal words and stores
them in scratch locations 0x98003, 0x98004, and
0x98005

READ_ONEx32
This section reads one normal word and stores it
at location 0x98003

x50_EP0I_ISR
External port interrupt vector

MULTI_PROC
This section reads the processor ID from SYSTAT
and changes the offset address to the application
code, based on the processor ID. This section is
useful in a multiprocessor system where multiple
applications can be downloaded from a single
flash memory across all the processors in the
multiprocessor system. This section applies only
to ADSP-21368 processors.

If external SDRAM is connected,
uncomment #define SDRAM in the
user_init section. Failure to do so may
not copy correct values during boot to
SDRAM. Also, if the SDRAM used is
different from the SDRAM on the EZ-
KIT Lite® board, the initialization
values must be changed accordingly in
the user_init section.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 5 of 15

EPROM Boot Kernel Operation
The following sections describe EPROM boot
kernel operation for various SHARC processors.

ADSP-2106x, ADSP-21065L, and ADSP-2116x
Processors

After reset, the core processor is held in an IDLE
mode until the first 256 words (each 48 bits
wide), have been loaded by DMA into internal
memory. The External Port DMA interrupt for
EP0I is activated upon the completion of the
DMA transfer. The core processor starts
execution of the just-loaded boot kernel by
branching to the vector interrupt location for
EP0I.

In ___lib_EP0I, the DMA control register
setting is stored in R2 for later restoration, and
the DMA channel is disabled temporarily by
clearing the DMA enable bit in the control
register. Having completed the IRQ service, the
core processor starts up the loader program.

Beginning from the start of execution, some
required registers are initialized. This is a good
place to start up external memories like SDRAM
on ADSP-21065L processors or to set wait states
and wait modes. If there is a user_init section
in the boot kernel, the SDRAM and
asynchronous memory interface (AMI) control
initializations can be done in the user_init
section.

/BMS is deactivated, and normal external memory
selects are activated by clearing the BSO bit in the
SYSCON register. Three copies of SYSCON are used
in the program: one that contains the original
value of SYSCON, one that contains SYSCON with
the BSO bit set so that an ADSP-2106x processor
can gain access to the boot EPROM, and a third
with the BSO bit cleared. When BSO=1, the
EPROM packing mode bits in the DMACx control
register are ignored and 8-to-48-bit packing is
forced. For ADSP-21065L processors, a 32-bit-
wide system bus is assumed.

Note that 8-to-48-bit packing is
available only on ADSP-2106x
processors during DMA reads from
/BMS space with the BSO bit set.

When one of the external port DMA channels is
being used in conjunction with the BSO bit, none
of the other three channels may be used. When
BSO=1, /BMS is not asserted by a core processor
access, only during a DMA transfer. This allows
your bootstrap program (run by the ADSP-2106x
core) to perform other external accesses to non-
boot memory.

The IMASK register is set finally to allow the
EP0I interrupt and the MODE1 register is set to
enable interrupts and nesting.

Having completed the setup, the DMA engine on
ADSP-2106x processors is used to collect 48-bit
words from the EPROM. As an external boot
EPROM allows starting a complete
multiprocessor cluster, the proper section in the
EPROM must be determined by checking the
processor ID in the SYSTAT register. The code
beginning from the get_addr label will parse a
seven-entry 48-bit table stored in the EPROM
(hex offset 0x600 = 6*0x100 = 256 instruction
words) to find the start address of the boot
section for this processor. Every entry of the
table is formatted as address (32-bit) and
processor ID (16-bit).

For example, the readback 0x8002062A0001 for
an ADSP-21065L processor translates into an
EPROM offset of 0x8002062A and processor ID
of 0x0001.

Having determined the offset, the DMAC6/DMAC0
control register is set to 0x2A1, DMAC6 is set to
0x4A1 (ADSP-2116x processors), and DMA
parameters are set up to read data word-by-word
beginning from the starting address of the boot
section corresponding to the processor ID in the
boot EPROM. Each 48-bit word is transferred
into address 0x20004 (ADSP-2106x processors),
0x8004 (ADSP-21065L processors), or 0x40004
(ADSP-2116x processors) for dispatching.
Because the image in the EPROM contains

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 6 of 15

program memory code sections and data memory
sections with different sizes, a preamble is stored
before each boot block. The preamble with the
attached boot block is formatted as shown in
Table 6.

0x0000 0000 DDDD D (data type tag)

0xAAAA AAAA LLLL A (address), L (length)

0xBOOT BOOT BOOT Boot data

: :

0xBOOT BOOT BOOT Boot data

Table 6. Boot section header

Each initialization block is identified by a 16-bit
tag (Table 7) placed before the block. Each type
of initialization has a unique tag number.

Tag Number Initialization Type

0 0x0 FINAL_INIT

1 0x1 ZERO_DM16

2 0x2 ZERO_DM32

3 0x3 ZERO_DM40

4 0x4 INIT_DM16

5 0x5 INIT_DM32

6 0x6 INIT_DM40

7 0x7 ZERO_PM16

8 0x8 ZERO_PM32

9 0x9 ZERO_PM40

10 0xA ZERO_PM48

11 0xB INIT_PM16

12 0xC INIT_PM32

13 0xD INIT_PM40

14 0xE INIT_PM48

Table 7. Section header types

The boot kernel initializes internal and external
memories by reading the data from EPROM
using a routine called Read_Prom_Word and
writing it to a specific location of memory
0x20004 (ADSP-2106x processors), 0x8004

(ADSP-21065L processors), or 0x40004 (ADSP-
2116x processors). For a zero-valued format data
block whose tag is 1, 2, 3, 7, 8, 9, or 10, an
initialization of 16- or 32-bit memory is done in
a loop, which writes a zero value to memory,
reducing the required space in the EPROM.

Any initialization of 40- or 48-bit PM memory
uses a write with the PX register set to zero. For
a non-zero format data block whose tag is 4, 5, 6,
11, 12, 13, or 14, the kernel enters a loop which
reads one 48-bit word from EPROM and writes
the appropriate width value to memory. This
loop is repeated once for each word being
initialized.

When the boot loader has completed parsing a
boot block, it continues with the next tag and
executes the appropriate initialization routine
until the kernel reaches the FINAL_INIT (0x0)
boot tag.

In the final initialization stage, the kernel loads
the first 256 words of the target executable file
and overwrites itself. When the loader detects the
tag, it reads the next 48-bit word. This word
indicates the instruction to be located at 0x20004
(ADSP-2106x processors), 0x8004 (ADSP-
21065L processors), or 0x40004 (ADSP-2116x
processors) when the loading is close to being
completed. This instruction is saved into the 48-
bit PX register so that the boot loader can now
finish initializing internal memory. The kernel
requires an RTI instruction at address 0x20004
(ADSP-2106x processors), 0x8004 (ADSP-
21065L processors), or 0x40004 (ADSP-2116x
processors), which is temporarily placed,
because an EP0 interrupt is generated when the
initialization is completed. The R9 register is
loaded with 0xBDB0000, which contains the
encoded instruction PM(0,I8)=PX. This writes
the desired customer instruction over the RTI
used by the boot kernel with I8 pointing to
0x20004 (ADSP-2106x processors), 0x8004
(ADSP-21065 processors), or 0x40004 (ADSP-
2116x processors).

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 7 of 15

Before the DMA sequence is initiated, the core
processor is trapped in a pseudo loop by issuing:

DO ___lib_RSTI UNTIL EQ;
FLUSH CACHE;
R0=0x20004; /* 0x8004 on ‘65l
0x40004 on ADSP-2116x*/
PCSTK=R0;
<DMA init> /* some code here */
IDLE;

and manually adding the return address 0x20004,
0x8004, or 0x40004 onto the stack. The loop
terminates on an equal condition. Because the
code will be overwritten by the DMA sequence,
it is necessary to invalidate the cache with a
FLUSH CACHE instruction.

The last 256 48-bit words are loaded into
memory over the boot loader while the core
processor is idling. Upon completion, the RTI is
executed at address 0x20040, 0x8040, or
0x40040, returning the core processor to address
(0x20004, 0x8004, or 0x40004) so that the next
instruction to be carried out is filled with
following instruction line:

R0=R0-R0,DM(I4,M5)=R9,PM(I12,M13)=R11

which is read from the EPROM. This instruction
clears the loop condition (r0=r0-r0), puts
PM(0,I8)=PX (held in R9) into 0x20004, 0x8004,
or 0x40004, and sets SYSCON back to the original
value. At loop termination of the loop, the
program sequencer is set back to 0x20004,
0x8004, or 0x40004. The PX write exchanges the
previously placed RTI at 0x20004, 0x8004, or
0x40004 with the user instruction and then
proceeds to program location 0x20004, 0x8004,
or 0x40004, which should be the beginning of
user application code.

For more information about data placement in
the EPROM, its image is parsed and is included
in this document.

ADSP-2126x and ADSP-21362 Processors

ADSP-2126x and ADSP-21362 processors do
not have an external port. They boot through a
parallel port. In the parallel port, the address and
data lines are multiplexed.

After reset, the instruction at 0x80004 or
0x90004 is executed until the core downloads the
first 256 instructions. The instruction at 0x80004
or 0x90004 must be a valid instruction as this
instruction is executed by the core while
downloading the first 256 instructions. The first
256 instructions downloaded must be the boot
kernel. The boot kernel has an RTI instruction at
the parallel port interrupt vector.

After completing the download of the boot
kernel, the RTI instruction at the parallel port
vector is executed and the core starts executing
the just-loaded boot kernel from reset vector
0x80005 or 0x90005.

To start, the boot kernel calls the user_init
section. You can add code related to configuring
your system. Usually a user configures parallel
port registers in this section, based on the system
design.

The boot kernel follows by performing the
following initializations:

 Clears all the interrupt registers and enables
the global interrupt bit IRPTEN in the MODE1
register. The boot kernel uses only the
parallel port interrupt apart from the reset
interrupt.

 Disables the parallel port. The parallel port is
enabled by the boot kernel whenever data
from the boot image must be downloaded.

 Initializes the DAG registers for use.

 Saves the current value of the SYSCTL
registers for restoration in final_init.

 Enables the parallel port interrupt.

After doing the necessary initializations, the boot
kernel follows by reading the tag, count, and

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 8 of 15

destination address using the READ_THREEx32
function.

The READ_THREEx32 function sets up the parallel
port DMA to read the tag, count and destination
address into locations starting from 0x80003 or
0x98003.

The boot kernel reads the tag at location 0x80003
or 0x98003 to determine the data type of the boot
image to be copied.

Each initialization block is identified by a 16-bit
tag (Table 8) placed before the block. Each type
of initialization has a unique tag number.

Tag Number Initialization Type

0 0x0 FINAL_INIT

1 0x1 ZERO_LDATA (initialize 16/32/64
DM data to zero)

2 0x2 ZERO_L48 (initialize 48/40 bit data
in internal memory to zero)

3 0x3 INIT_L16 (initialize internal short-
word (16-bit) memory)

4 0x4 INIT_L32 (initialize 32-bit internal
memory)

5 0x5 INIT_L48 (initialize instructions
and 40-bit data)

6 0x6 INIT_L64

7 0x7 ZERO_EXT8 (use core to initialize
external buffers to zero)

8 0x8 ZERO_EXT16 (use core to
initialize external buffers to zero)

9 0x9 INIT_EXT8 (initialize external
memory)

10 0xA INIT_EXT16 (initialize external
memory)

Table 8. Section header types

The boot kernel initializes internal and external
memories by reading the data from EPROM
using a routine called READ_THREEx32 and
writing it to a specific location of memory
(0x80003 or 0x98003). For a zero-valued format
data block whose tag is 1, 2, 3, 7, 8, 9, or 10, an
initialization of 16- or 32-bit memory is done in

a loop, which writes a zero value to memory,
reducing the required space in the EPROM. Any
initialization of 40- or 48-bit PM memory uses a
write with the PX register set to zero.

Because the image in the EPROM contains
program memory code sections and data memory
sections with different sizes, a preamble is stored
before each boot block. The preamble with the
attached boot block is formatted as shown in
Table 9.

0x0000 0000 DDDD D (data type tag)

0xAAAA AAAA LLLL A (address), L (length)

0xBOOT BOOT BOOT Boot data

: :

0xBOOT BOOT BOOT Boot data

Table 9. Boot section header

To download 48-bit data, the boot kernel uses
three reads of 32 bits to fetch two 48 bits of
data. The READ_THREEx32 subroutine is used to
fetch and store three 32 bit data at locations
starting at 0x80003 or 0x98003. PX registers are
used to handle initialization of data greater then
32 bits. To initialize data types of size 32 bits
and less, the READ_ONEx32 subroutine is used to
fetch and store one 32-bit data at location
0x80003 or 0x98003. The values at these
locations are copied into the destination memory
address in the internal memory.

To initialize external memory, the boot kernel
uses the PP_DMA_WRITE subroutine. If
initialization of external SRAM is required, the
boot initializes the parallel port control and
DMA registers to perform writes to external
SRAM. The boot kernel waits until the external
writes are completed by testing the busy bit
(PPBS) in the parallel port control register.

When the boot loader has completed parsing a
boot block, it continues with the next tag and
executes the appropriate initialization routine
until the kernel reaches the FINAL_INIT (0x0)
boot tag.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 9 of 15

ADSP-21368 and ADSP-2137x Processors

ADSP-21368 and ADSP-2137x processors use
the external port to boot from EEPROM/flash.

After reset, the instruction at 0x90004 is
executed until the core downloads the first 256
instructions. The instruction at 0x90004 must be
a valid instruction as this instruction is executed
by the core while downloading the first 256
instructions. The first 256 instructions
downloaded must be the boot kernel. The boot
kernel has an RTI instruction at the external
port0 interrupt vector.

After completing the download of the boot
kernel, the RTI instruction at the external port
vector is executed and the core starts executing
the just-loaded boot kernel from the reset vector
(0x90005).

To start, the boot kernel calls the user_init
section. You can add code related to configuring
your system. Usually a user configures the
external port, SDRAM, asynchronous memory
interface (AMI), and SYSCON registers in this
section, based on system design.

The boot kernel follows by performing the
following initializations:

 Clears all the interrupt registers and enables
the global interrupt bit (IRPTEN) in the MODE1
register. The boot kernel uses only the
external port 0 interrupt apart from the reset
interrupt.

 Disables the external port DMA. The
external port is enabled when by the boot
kernel whenever data from the boot image
must be downloaded.

 Initializes the DAG registers for use.

 Saves the current value of the SYSCTL
registers for restoration in final_init.

 Enables the external port 0 interrupt.

After doing the necessary initializations, the
boot kernel follows by reading the tag, count,

and destination address using the
READ_THREEx32 function.

The READ_THREEx32 function sets up the
external port DMA to read the tag, count, and
destination address into locations, starting from
0x98003.

The boot kernel reads the tag at location
0x98003 to decide the data type of the boot
image to be copied.

Each initialization block is identified by a 16-bit
tag (Table 10) placed before the block. Each type
of initialization has a unique tag number.

Tag Number Initialization Type

0 0x0 FINAL_INIT

1 0x1 ZERO_LDATA (initialize 16/32/64
DM data to zero)

2 0x2 ZERO_L48 (initialize 48/40 bit data
in internal memory to zero)

3 0x3 INIT_L16 (initialize internal short-
word (16-bit) memory)

4 0x4 INIT_L32 (initialize 32-bit internal
memory)

5 0x5 INIT_L48 (initialize instructions
and 40-bit data)

6 0x6 INIT_L64

7 0x7 ZERO_EXT8 (use core to initialize
external buffers to zero)

8 0x8 ZERO_EXT16 (use core to
initialize external buffers to zero)

9 0x9 INIT_EXT8 (initialize external
memory)

10 0xA INIT_EXT16 (initialize external
memory)

11 0xB

MULTI_PROC (check the
SYSTAT register to identify the
processor ID and download the
appropriate application)

Table 10. Section header types

Having completed the setup, the DMA engine on
the ADSP-21368 or ADSP-2137x processor is
used to collect 48-bit words from the EPROM.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 10 of 15

As an external boot EPROM allows starting a
complete multiprocessor cluster, the proper
section in the EPROM must be determined by
checking the processor ID in the SYSTAT register.
The code beginning from MULTI_PROC label will
parse a seven-entry 48-bit table stored in the
EPROM (hex offset 0x600 = 6*0x100 = 256
instruction words) to find start address of boot
section for this processor. Every entry of the
table is formatted as address (32-bit) and
processor ID (16-bit).

For example, the readback 0x4002062A0001 for
an ADSP-2137x processor translates into an
EPROM offset of 0x4002062A and processor ID
of 0x0001.

The boot kernel initializes internal and external
memories by reading the data from EPROM
using a routine called READ_THREEx32 and
writing it to a specific location of memory
(0x98003). For a zero-valued format data block
whose tag is 1, 2, 3, 7, 8, 9, or 10, an
initialization of 16- or 32-bit memory is done in
a loop, which writes a zero value to memory,
reducing the required space in the EPROM. Any
initialization of 40- or 48-bit PM memory uses a
write with the PX register set to zero.

Because the image in the EPROM contains
program memory code sections and data memory
sections with different sizes, a preamble is stored
before each boot block. The preamble with the
attached boot block is formatted as shown in
Table 11.

0x0000 0000 DDDD D (data type tag)

0xAAAA AAAA LLLL A (address), L (length)

0xBOOT BOOT BOOT Boot data

: :

0xBOOT BOOT BOOT Boot data

Table 11. Boot section header

To download 48-bit data, the boot kernel uses
three reads of 32 bits to fetch two 48 bits of data.
The READ_THREEx32 subroutine is used to fetch

and store three 32 bits of data at locations
starting at 0x98003. PX registers are used to
handle initialization of data greater than 32 bits.
To initialize data types of size 32 bits and less,
the READ_ONEx32 subroutine is used to fetch and
store one 32-bit data at location 0x98003. The
values at these locations are copied into the
destination memory address in the internal
memory.

To initialize external memory, the boot kernel
uses the subroutine that was used to initialize the
internal memory.

When the boot loader has completed parsing a
boot block, it continues with the next tag and
executes the appropriate initialization routine

The ADSP-21368 or ADSP-2137x boot kernel
supports multiprocessor shared memory booting.
It is possible to boot multiple processors using a
common EEPROM/flash memory. The boot
kernel identifies the processor ID by reading the
SYSTAT register. Based on the processor ID, the
boot kernel adds an offset and modifies the
external address appropriately to boot.
VisualDSP++ provides an option to generate a
single loader file using multiple executables.
Refer to Managing Multiple Applications in a
Single EPROM for SHARC Processors (EE-
108)[9] for more details.

Host Boot Kernel Operation
The following sections describe host boot kernel
operation for various SHARC processors.

ADSP-2106x and ADSP-21065L Processors

In many ways, the host boot kernel works like
the EPROM boot kernel. This section focuses on
the differences between them.

Unlike PROM booting, which uses master DMA,
host booting uses slave DMA.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 11 of 15

 ADSP-21060/1/2 ADSP-21065L

Host Timing Synchr./Asynchr. Asynchr.

SYSCON 0x10 0x20

DMAC Register DMAC6=0xA1 DMAC0=0xA1

II6 IIEP0 0x20000 0x8000

IM6 IMEP0 0x1 0x1

C6 CEP0 0x100 0x100

IRQ Vector 0x20040 0x8040

Table 12. Host boot setting

At first, it is important to verify that the packing
HPM bits in SYSCON and DMAC6 support the 16-48
packing mode (HBW bits and DMAC0 8-48 packing
for ADSP-21065L processors) as this is the
default mode. If this not selected, the first write
of the host processor must change the settings of
SYSCON; otherwise, the generic boot loader will
not work.

As soon as this first adaptation has been made or
is verified, the host starts writing the first 256
instruction words as packed data to the external
port buffer 0 of the I/O processor at offset
location 0x4. This may be done in one host bus
request cycle, where the /HBR pin (synchronous)
or /HBR and /CS pins (asynchronous) of the
selected processor must be driven low. The host
interface of the slave responds with /HBG and
ACK pins (synchronous) or /HBG and REDY pins
(asynchronous) to recombine the data words to
instructions and places them beginning in
0x20000 or 0x8000 in internal memory.

Having written the first 256 instruction words,
the slave’s DMA internal Cx register elapses and
the processor wakes up and starts executing the
boot kernel beginning from ___lib_EP0I, (DMA
interrupt vector), immediately turning off the
DMA channel by setting DEN=0 and locking the
external bus with BUSLK bit in MODE2. If
data/code is to be placed externally, the host
processor must give up bus mastership or a
deadlock will occur. ADSP-2106x processors

cannot drive external signals and cannot parse
new data presented by the host processor.

Beginning from this point, timing of the host
processor is essential. ADSP-2106x processors
now expect single-instruction word size slave
DMA sequences in which the user is presenting
three 16-bit-wide (six 8-bit-wide for ADSP-
21065L processors) data chunks on EPB0 (0x04).
These words form a 48-bit-wide instruction word
which is placed into 0x20004 or 0x8004 and is
then parsed. So the user just continues writing
data to EPB0. A change in the IOP destination
address is not necessary.

If the host continues writing data to buffer 0, the
EPB0 FIFO and slave write FIFO will fill up and
REDY (asynchronous) will be de-asserted. This is
the handshake signal to the host processor to
extend further accesses.

The structure of the boot image is quite similar to
the EPROM boot structure; the only difference is
the missing multiprocessor boot table after the
boot kernel. A host may boot a multiprocessor
system by selecting multiple /CS pins
asynchronously or directly in multiprocessor
memory space (MMS) synchronously.

If large arrays must be initialized in
external memory, a lot of time may be
required until ADSP-2106x processor
return bus control back to the host
processor. If such waiting periods result
in time-out on the host, you can specify
the time-out switch of the elfloader tool
to break these initializations into smaller
pieces, allowing the host processor to
obtain bus control earlier.

Having downloaded the initialization data, the
last 256 instruction words may be written again
in a single access to EPB0, as this only replaces
code which is placed internally. The host boot
loader swapping mechanism is identical to the
EPROM boot loading sequence.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 12 of 15

ADSP-2116x Processors

Table 13 shows host boot setting for ADSP-
2116x processors.

 ADSP-21160 ADSP-21161

Host Timing Synchr./Asynchr
.

Synchr./Asynchr
.

SYSCON 0x10 0x20

DMAC Register DMAC10=0x81 DMAC0=0x161

II10 IIEP0 0x40000 0x40000

IM10 IMEP0 0x1 0x1

C10 CEP0 0x100 0x100

IRQ Vector 0x40050 0x40050

Table 13. Host boot setting

At first, it is important to verify that the packing
HPM bits in SYSCON and DMAC10 support the 16-48
packing mode (HBW bits and DMAC0 8-48 packing
for ADSP-21161 processors) as this is the default
mode. If this not selected, the first write of the
host processor must change the settings of
SYSCON; otherwise, the generic boot loader will
not work.

ADSP-2116x processors host interface differs
from ADSP-2106x processors in that this
interface can take advantage of the 64-bit data
bus width. Though ADSP-2116x processors
support the ADSP-2106x processor’s
asynchronous host interface protocols, ADSP-
2116x processors also provide new synchronous
interface protocols for maximum throughput.

The host/local bus deadlock resolution function
on ADSP-2116x processors is extended to the
DMA controller. The function allows the host (or
bridge) logic to force the local bus to back off
and allow the host to complete its operation first.

As soon as this first adaptation has been made or
is verified, the host starts writing the first 256
instruction words as packed data to the external
port buffer 0 of the I/O processor at offset
location 0x4. This may be done in one host bus
request cycle, where the /HBR pin (synchronous)

or /HBR and /CS pins (asynchronous) of the
selected processor must be driven low. The host
interface of the slave responds with /HBG and
ACK pins (synchronous) or /HBG and REDY pins
(asynchronous) to recombine the data words to
instructions and places them beginning in
0x40000 in internal memory.

Having written the first 256 instruction words,
the slave’s DMA internal Cx register elapses and
the processor wakes up and starts executing the
boot kernel beginning from ___lib_EP0I, (DMA
interrupt vector), immediately turning off the
DMA channel by setting DEN=0 and locking the
external bus with the BUSLK bit in MODE2. If data
or code is to be placed externally, the host
processor must give up bus mastership or a
deadlock will occur. ADSP-2116x processors
cannot drive external signals and cannot parse
new data presented by the host processor.

Beginning from this point, timing of the host
processor is essential. ADSP-2116x processors
now expects single-instruction word size slave
DMA sequences in which the user is presenting
three 16-bit-wide (six 8-bit-wide for ADSP-
21161 processors) data chunks on EPB0 (0x04).
These words form a 48-bit-wide instruction word
which is placed into 0x40004 and is then parsed.
So the user just continues writing data to EPB0. A
change in the IOP destination address is not
necessary.

If the host continues writing data to buffer 0, the
EPB0 FIFO and slave write FIFO will fill up and
REDY (asynchronous) will be de-asserted. This is
the handshake signal to the host processor to
extend further accesses.

The structure of the boot image is quite similar to
the EPROM boot structure; the only difference is
the missing multiprocessor boot table after the
boot kernel. A host may boot a multiprocessor
system by selecting multiple /CS pins
asynchronously or directly in multiprocessor
memory space (MMS) synchronously.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 13 of 15

If large arrays must be initialized in
external memory, a lot of time may be
required until ADSP-2116x processors
return bus control back to the host
processor. If such waiting periods result
in time-out on the host, you can specify
the time-out switch of the elfloader tool
to break these initializations into smaller
pieces, allowing the host processor to
obtain bus control earlier.

Having downloaded the initialization data, the
last 256 instruction words may be written again
in a single access to EPB0, as this only replaces
code which is placed internally. The host boot
loader swapping mechanism is identical to the
EPROM boot loading sequence.

Boot Kernel Caveats
The kernel assumes that IMDW is 0 during the
booting process before it is set to 1 in the final
boot stage of the kernel. Also remember that
when using any of the power-up booting modes,
location 0x20004 or 0x8004 must not contain a
valid instruction since it is not executable during
the booting sequence. Place a NOP or IDLE
instruction at this location.

If the kernel is going to initialize external
memory, ensure that the appropriate values are
set in SYSCON and WAIT register and that they are
correct; otherwise, the processor may hang.

Note that the SDRAM on ADSP-21065L, ADSP-
21161N, ADSP-21368, and ADSP-2137x
processors requires a power-up routine before it
is accessible. This is reached by placing the init
code into the loader kernel.

Be aware that the value in DMACx is non-
zero and that IMASK is set to allow
DMACx interrupts. Because the EP0I
interrupt remains enabled in IMASK, it
must be cleared before this DMA
channel may be used again; otherwise,
unintended interrupts may occur.
Additionally, reset DMACx to 0x0 before
reinitializing or a new DMA sequence
may not start.

User Changes to Boot Loader
Sources
For ADSP-2106x and ADSP-2116x processors,
the EPROM boot loader does not allow too many
changes, as during the first 256 words instruction
load a packing mode of 8-to-48 is forced with the
BSO bit. So, if a user uses a 16-bit-wide EPROM,
the first 256 instructions must be spread across
the first 0x600 addresses of the EPROM,
showing only the lowest eight-bits populated.

For these processors, changing the DMA channel
to a higher number and its initialization sequence
allows the use of different packaging modes. The
BSO bit is required; otherwise, no /BMS memory
strobe is generated. With these modifications, the
user could boot from a 16-bit-wide EPROM
instead of an 8-bit-wide EPROM.

The host boot loader offers more options: the
packing mode in SYSCON and DMACx can be
changed so that different bus widths (16 or 32
bits) are possible. You must ensure proper
ordering of the data words to be written over
EPB0, or the initialization of the processor will
fail.

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 14 of 15

Appendix

EPROM Boot Image Example

EPROM boot image decoded and partitioned, outlining important parts, broken into 48-bit words:

:020000

04

0000
 boot record start

FA

:200000

:200020
:200040
..
:2005E0

00

00
00
..
00

000000000000 000000000000 000000000000 000000000000 000000008000 4480
 +- start of boot kernel

00043E06 000000000000 000000000000 000000000000 000000000000 00000000
0000 000000000000 000000003E0B 000000003E0B 000000003E0B 000000003E0B
..
0000 000000000000 000000000000 000000000000 000000000000 000000000000
 end of boot kernel -+

9C

78
7C
..
FB

:200600

:0A0620

00

00

00002A060080 010000000000 020000000000 030000000000 040000000000 0500
 +- 8000062A0000 = offset of 0x8000062A in EPROM for processor ID=0

00000000 060000000000

1B

CA

:20062A

:20064A
:20066A
:20068A

:2006AA

:2006CA
:2006EA
..
:200C6A
:0C0C8A

00

00
00
00

00

00
00
..
00
00

0E0000000000 0E0000810000 00000000790F 000000000000 008007000A14 0000
 ! ! +- start of program code
 ! +- start address 0x8100, length 0x0E = 14dez
 +- section tag INIT_PM48

38002C14 000040000C14 001BB700DF0F 001BB700DE0F 200000000A14 00100000
0B14 100000000D14 000000008000 0A8100003E06 000060004C14 000000003E0B
000000000000 000000003E0B 000000000000 000000000000 000000000000 0000
 ! ! +- start of user RTH
 ! +- instruction to be placed at 0x8040
 +- section tag FINAL_INIT

00000000 0020802D7339 008100003E06 000000003E0B 000000003E0B 00000000
 ! +- „jump 0x8100“
 +- R0=R0-R0, DM(I4,M5)=R9, PM(I12,M13)=R11

0000 000000000000 000000000000 000000000000 000000003E0B 000000003E0B
000000003E0B 000000003E0B 0C8100003E06 000000003E0B 000000003E0B 0000
..
0000 000000000000 000000000000 000000000000 000000000000 000000000000
000000000000 000000000000
 +- end of user code

E6

EB
C8
07

60

7E
FB
..
6A
5E

:000000

01

End of EPROM image

FF

Table 4. Boot image for ADSP-21065L processors

 a

Tips and Tricks on SHARC® EPROM and Host Boot Loader (EE-56) Page 15 of 15

References
[1] ADSP-2106x SHARC Processor User’s Manual. Rev 2.1, March 2004. Analog Devices, Inc.

[2] ADSP-21065L SHARC Processor User’s Manual. Rev 2.0, July 2003. Analog Devices, Inc.

[3] ADSP-21160 SHARC Processor Hardware Reference. Rev 3.0, November 2003. Analog Devices, Inc.

[4] ADSP-21161 SHARC Processor Hardware Reference. Rev 4.0, February 2005. Analog Devices, Inc.

[5] ADSP-2126x SHARC Processor Peripherals Manual. Rev 3.0, December 2005. Analog Devices, Inc.

[6] ADSP-2136x SHARC Processor Hardware Reference for the ADSP-21362/3/4/5/6 Processors. Rev 1.0, October 2005.
Analog Devices, Inc.

[7] ADSP-21368 SHARC Processor Hardware Reference. Rev 1.0, September 2006. Analog Devices, Inc.

[8] VisualDSP++ 4.5 Loader and Utilities Manual. Rev. 2.0, April 2006. Analog Devices, Inc.

[9] Managing Multiple Applications in a Single EPROM for SHARC Processors (EE-108). Rev 2, March 2007,
Analog Devices Inc.

Document History

Revision Description

Rev 3 – March 6, 2007
by P Mallikarjun Reddy
and Jeyanthi Jegadeesan

Updated the document for ADSP-2116x, ADSP-2126x, ADSP-2136x, and ADSP-
2137x processors. Changed title from Tips & Tricks on the ADSP-2106x SHARC
EPROM and Host Bootloader.

Rev 2 – March 24, 2004
by Robert Hoffmann

Updated PROM and host booting section, include a boot table for host booting.

Rev 1 – July 20, 1999
by Stefan Hacker

Initial release.

	Introduction
	Boot Loading
	Boot Loader Names
	Boot Kernel Structure
	ADSP-2106x and ADSP-2116x Boot Kernel Structure
	Start_loader
	Load_memory
	final_init
	read_PROM_word

	ADSP-2126x and ADSP-21362 Boot Kernel Structure
	READ_BOOT_INFO
	USER_INIT
	READ_THREEx32
	READ_ONEx32
	final_init

	ADSP-21368 and ADSP-2137x Processors
	READ_BOOT_INFO
	USER_INIT
	final_init
	READ_THREEx32
	READ_ONEx32
	x50_EP0I_ISR
	MULTI_PROC

	EPROM Boot Kernel Operation
	ADSP-2106x, ADSP-21065L, and ADSP-2116x Processors
	ADSP-2126x and ADSP-21362 Processors
	ADSP-21368 and ADSP-2137x Processors

	Host Boot Kernel Operation
	ADSP-2106x and ADSP-21065L Processors
	ADSP-2116x Processors

	Boot Kernel Caveats
	User Changes to Boot Loader Sources
	Appendix
	EPROM Boot Image Example

	References
	Document History

