
Engineer-to-Engineer Note EE-329

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Running FAT16 File Systems and DOS Commands on SHARC®
Processors
Contributed by Mitesh Moonat, Jagadeesh Rayala and Aseem Vasudev Rev 1 – September 28, 2007

Copyright 2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
File Allocation Table 16 (FAT16) is a widely used file format implemented on mid-size memory devices
(up to 2GB) such as NAND flash, Multi-Media Card (MMC), and Secure Digital (SD) cards. These
memory devices are used mainly to store multimedia content and data. Therefore, it is necessary for media
processing software applications to interpret the FAT16 file format in order to access and/or manipulate
the content stored on such memory devices.

This EE-Note discusses the implementation of various commands similar to Disk Operating System
(DOS) commands to access and modify the FAT16 file system on an MMC interfaced to an ADSP-21369
SHARC® processor. This document includes details about dealing with the files stored on MMC. The
source code for this interface has been developed and validated on an ADSP-21369 EZ-KIT Lite®
evaluation board and is provided with this application note.

Although, this document refers to the ADSP-21369 SHARC processor, the same concepts
presented here apply to ADSP-21367, ADSP-21368, and ADSP-2137x SHARC processors.

The implementation of basic DOS commands that list files and folders in current directory, create a
directory, copy a file, read a file, search a file, navigate through sub-folders in current directory, or delete
a file or directory are discussed in detail. The code supports long file names (up to 255 bytes). Other file
systems such as FAT12 and FAT32 are briefly discussed and are compared to FAT16 file system.

FAT Overview
FAT is a partially patented file system developed by Microsoft® for MS-DOS®. It involves the use of a
table that centralizes the information about the areas belonging to files. This information helps to identify
which areas are free or usable, and where each file is stored on the disk. It also identifies the areas that are
unusable. To reduce the management complexity, disk space is allocated to files in contiguous groups of
hardware sectors called as clusters. The maximum number of clusters possible that can be addressed by a
file system depends on the number of bits being used to identify a cluster in FAT.

Currently, there are three types of FAT file systems: FAT12, FAT16, and FAT32. The basic difference
between them is the number of bits in the FAT entries on a disk. FAT12 uses 12-bit entries, FAT16 uses
16-bit entries, and FAT32 uses 28-bit entries. The FAT standard has also evolved in several ways,

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 2 of 24

preserving backward compatibility with existing software. Table 1 shows basic differences between the
different FAT file systems.

FAT is still a normal file system for removable media (with the exception of CDs and DVDs), with
FAT12 used on floppies and FAT16 used on most other removable media (such as flash memory cards for
digital cameras, mobile phones, and USB flash drives). Most removable media are not yet large enough to
benefit from FAT32, although some larger flash drives such as Secure Digital High-Capacity (SDHC)
cards use it. FAT16 is used on these drives for reasons of compatibility and size overhead.

 FAT12 FAT16 FAT32

Uses Floppies and small hard
disk volumes

Small to large hard disk
volumes

Medium to very large hard
disk volumes

Size of each FAT entry 12 bits 16 bits 28 bits

Volume size (maximum) 16 Mbytes 2 Gbytes about 2^41

Table 1. Comparison between various FAT versions

FAT16 on a Disk
Figure 1 shows the order of structures on a disk or a FAT partition.

Boot
sector

More reserved
sectors
(optional)

File
Allocation
Table 1

File
Allocation
Table 2

Root
Directory

Data Region (for files and directories)
(To end of partition or disk)

Figure 1. Sections of a disk or partition

Reserved Sectors

The beginning sectors are reserved sectors. The first sector (sector 0), which is called the Boot Sector
(or Partition Boot Record), is mandatory; the others are optional. The boot sector includes an area
called the BIOS parameter block that includes the basic file system information (in particular, the FAT
type and pointers to the location of the other sections). The total count of reserved sectors is indicated by a
field inside the Boot Sector.

FAT Region

The FAT region contains two copies of FAT. Though rarely used, the second copy is helpful when the
default copy gets corrupted. This region contains the mapping details of the data, region indicating the
clusters are used and the clusters that are not used.

Root Directory Region

The root directory region contains a Directory Table that stores information about the files and
directories located in the root directory region. This region has a fixed maximum size that is pre-allocated
at the time that the volume is formatted. This region is only used for FAT12 and FAT16; FAT32 stores
the root directory entries in the data region just as any other sub-directories.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 3 of 24

Data Region

The data region is the actual region where all files and directories are stored. This region occupies the
majority of the partition space. Files and directories stored in this region can be made arbitrarily long
simply by adding more clusters in the clusters chain of the FAT.

Details of FAT16 Structure
The following sections describe the entire FAT16 structure in detail.

Boot Sector

Table 2 lists the fields in the boot sector.

Offset Description Size (bytes)

0x00 Jump code + NOP 3

0x03 OEM name 8

0x0B Bytes per sector 2

0x0D Sectors per cluster 1

0x0E Reserved sectors 2

0x10 Number of copies of FAT 1

0x11 Maximum root directory entries 2

0x13 Number of sectors in partition smaller than 32 Mbytes 2

0x15 Media descriptor (F8H for hard disks) 1

0x16 Sectors per FAT 2

0x18 Sectors per track 2

0x1A Number of heads 2

0x1C Number of hidden sectors in partition 4

0x20 Number of sectors in partition 4

0x24 Logical drive number of partition 2

0x26 Extended signature (29H) 1

0x27 Serial number of partition 4

0x2B Volume name of partition 11

0x36 FAT name (FAT16) 8

0x3E Executable code 448

0xFE Executable marker (0x55 0xAA) 2

l TOTAL 512

Table 2. Boot sector fields

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 4 of 24

Based on information from the boot sector, the offset locations for all the other regions are calculated as
shown in Table 3.

Offset Description

Start of partition Boot sector

Start + number of reserved sectors Fat tables

Start + number of reserved sectors+ (number of sectors per FAT * 2) Root directory

Start + number of reserved sectors+ (number of sectors per FAT * 2) +
((maximum root directory entries * 32) / bytes per sector)

Data area (starts with cluster number 2)

Table 3. Offset calculation for various regions of the disk

File Allocation Table

A partition is divided into identically sized clusters, small blocks of contiguous space. Cluster size may
vary, depending upon the size of the partition. Typically, cluster size is between 2 Kbytes and 32 Kbytes.
Each file may occupy one or more of these clusters, depending on its size. A file is represented by a chain
of these clusters. The clusters in these chains are not necessarily adjacent to one another on the disk's
surface and may be fragmented throughout the data region.

FAT is a list of entries that map to each cluster on the partition. Each entry records one of the following
information listed in Table 4.

Sector Number FAT entry Description

1 0x0002 - 0xFFEF Address of the next cluster in a chain.

2 0xFFF8 - 0xFFFF Last cluster of the file (EOF).

3 0xFFF7 Bad cluster

4 0x0001 Reserved cluster

5 0x0000 Unused/Free cluster

Table 4. FAT entries

Figure 2 shows the mapping of three files using FAT entries.

Figure 2. File allocation table

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 5 of 24

Directory Table

A directory table is a special type of file that represents a directory (commonly called a folder). The
parameters related to any file or sub-directory are represented by a 32-byte entry in the directory table,
corresponding to the parent directory. Each entry records the name, extension, attributes, date and time of
creation, address of the first cluster, and the size of the file or directory. The directory table for the root
directory is stored in the root directory region location; the directory tables for directories other than the
root directory are stored in the data region. Entries with the sub-directory flag set should have a size of 0.
The number of entries for any directory of data region can be increased by allocating a new free cluster
and updating the FAT accordingly. Table 5 shows various entries of a directory table.

Byte
Offset

Length
in Bytes

Description

0x00 8 DOS file name (padded with spaces)

The first byte can have the following special values:

Valu
e

Description

0x00 Entry is available, and no subsequent entry is in use

0x05 Initial character is actually 0xE5

0x2E 'Dot' entry; either '.' or '..'

0xE5 Entry has been previously erased and is not available
0x08 3 DOS file extension (padded with spaces)
0x0B 1 File attributes

The first byte can have the following special values:

Bit Mask Description

0 0x01 Read only

1 0x02 Hidden

2 0x04 System

3 0x08 Volume label

4 0x10 Sub-directory

5 0x20 Archive

6 0x40 Device (internal use only, never found on disk)

7 0x80 Unused

An attribute value of 0x0F is used to designate a long file name entry.

0x0C 1 Reserved
0x0D 1 Creation time, fine resolution: 10 ms units, values from 0 to 199.

http://en.wikipedia.org/wiki/Archive_bit

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 6 of 24

0x0E 2 Creation time. The hour, minute, and second are encoded according to the following bitmap:

Bits Description

15-11 Hours (0-23)

10-5 Minutes (0-59)

4-0 Seconds/2 (0-29)

Note: Seconds are recorded only to a 2-second resolution. Finer resolution for file creation is found
at offset 0x0D.

0x10 2 Creation date. The year, month, and day are encoded according to the following bitmap:

Bits Description

15-9 Year (0 = 1980, 127 = 2107)

8-5 Month (1 = January, 12 = December)

4-0 Day (1 - 31)
0x12 2 Last access date; see offset 0x10 for description.
0x14 2 EA-index (used by OS/2 and NT)
0x16 2 Last modified time; see offset 0x0E for description.
0x18 2 Last modified date; see offset 0x10 for description.
0x1A 2 First cluster
0x1C 4 File size

Table 5. Various fields of a 32-byte entry in the directory table

Long File Name (LFN) Entries

FAT file systems use a trick to store long file names so that they are compatible with the older operating
systems that do not support long file names. It is done by using entries of a special attribute, as follows:
ATTR_READ_ONLY|ATTR_HIDDEN |ATTR_SYSTEM |ATTR_VOLUME_ID = 0x0F

Thus, the entries are marked with a volume label attribute, which is impossible for a regular file. Because
of this, they are ignored by most old MS-DOS programs. A checksum also allows verification of a long
file name. A mismatch can occur if a file was deleted and re-created using DOS in the same directory
position. The checksum is calculated using the code shown in Listing 1. Long file names are limited to
255 characters, not including the trailing NULL character. The format of an LFN entry is shown in Table 6.

unsigned char checksum(const unsigned char *shortname)
{
 int i;
 unsigned char sum=0;
 for (i=11; i; i--)
 sum = ((sum & 1) ? 0x80 : 0) + (sum >> 1) + *shortname++;
 return sum;
}

Listing 1. Checksum calculation for long file entries

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 7 of 24

LFN entries use the format shown in Table 6.

Byte Offset Lengt
h

Description

0x00 1 Sequence number (if masked with 0x40, indicates that the entry is the last long directory entry in a
set of long directory entries. All valid sets of long directory entries must begin with an entry with
this mask.

0x01 10 Name characters (five UTF-16 characters)
0x0B 1 Attributes (always 0x0F)
0x0C 1 Reserved (always 0x00)
0x0D 1 Checksum of DOS file name
0x0E 12 Name characters (six UTF-16 characters)
0x1A 2 First cluster (always 0x0000)
0x1C 4 Name characters (two UTF-16 characters)

Table 6. Fields of a long file entry

DOS Command Implementation for FAT16
The code for FAT16 uses drivers supplied with Interfacing MultiMediaCard with ADSP-2126x SHARC
Processors (EE-264)[1] to perform read or write accesses to MMC. First, the software reads the first 512
bytes (boot sector of the MMC) to gather the basic information about the file system. This information,
which is copied to internal memory, includes bytes per sector, sectors per cluster, number of reserved
sectors, number of FAT tables, number of root entries, total number of sectors on a disk, number of
sectors occupied by each FAT table, and so on. These entries are collectively called the BIOS parameter
block.

Using this information, offsets such as the starting sector of FAT table, the starting sector for root the
directory table, the starting sector of first data cluster (cluster number 2), and the total clusters available in
the data region are calculated. An error in calculating these offsets may lead to file system crash.

Table 7 lists various commands that are implemented; these commands are described in the sections that
follow. Figure 3 shows the interface between MMC and the ADSP-21369 SHARC processor. For details
about this interface and the implementation of low level drivers for an MMC card, refer to EE-264[1].

http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-16

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 8 of 24

Figure 3. SHARC processor to MMC interface

Command Description

dir Lists the folders and files of the current directory

cd dir_name Changes the current directory to the dir_name sub-directory of the current directory

cd.. Changes the current directory to the parent directory

root Changes the current directory to the root directory

pwd Prints the current working directory path

find file_name Searches for all the instances of files named file_name and prints all the paths of
those files

mkdir dir_name Creates a new directory named dir_name in the current working directory

copy source_file destination_file Copies destination_file from the PC and places it in the current working directory of
the MMC naming it as source_file

read source_file destination_file Reads source_file on the MMC and copies it to destination_file on the hard disk of
the PC

del file_name
del dir_name

Deletes file/directory with name file_name/dir_name from the current working
directory

exit Exits the command prompt

Table 7. List of commands

Listing Files and Directories of the Current Directory – the “dir” Command

A list of file pointers must be initialized to list the files and folders in the current directory. Each file
pointer holds the information about a file or folder in the current directory. Figure 4 shows a flowchart for
implementing this command. The “detect directory” function (Figure 5) detects the number of files and
folders in the current directory. Once the list is initialized, it can be displayed.

The dir command uses the fnListDirectory(WORD startcluster) function. The start cluster number
for the current directory is passed as an argument to this function.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 9 of 24

For the root directory, the argument passed is 0. Note that all the flowcharts are generalized for root
directory and directories in the data region. The root directory does not come under the data region, and
number of root directory entries is fixed; therefore, it must be treated differently than the directories in the
data region. A variable keeps track of the start cluster for the current directory. It is updated each time the
current directory is changed. Initially, the current cluster is set to the start cluster. All the sectors of the
current cluster are read one by one. Sequential 32-byte entries are read from each sector. The attribute
field of each entry is checked to determine the length of file name entry. The entry can be either a short
file name entry or a long file name entry. The short file name entry can either correspond to a short file
name or a long file name. The current file pointer of the list is updated with the corresponding short file
name (for short file name entries) or long file name (for long file name entries) and other attributes such
as size, creation time, creation date. Once all the sectors of the current cluster have been read, the FAT
table is traversed to identify the next cluster. If there are more unread clusters, the current cluster is set to
the next unread cluster and the entire process is repeated. The process ends when an EOF (end of file) is
identified.

Figure 4. Listing a directory

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 10 of 24

Figure 5. Detecting the number of files (or directories) in a directory

Searching a File– the “find” Command

File searching is performed recursively. An array of strings stores the path (starting from the root
directory) and is updated each time the current directory changes. This is performed for a deeper level
search. The recursive function gets the list of the files and folders in the current directory. The attribute of
each file pointer of the list is then checked. If it is a directory, the search function is called recursively to
perform a deeper level search. If it is a file, its name is compared against the name of the file to be
searched. If a match occurs, the current path is printed. Recursion starts with the current directory (as the
root directory) and stops when all the file pointers of the current directory have been checked. The
flowchart is shown in Figure 6.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 11 of 24

Figure 6. Searching a file in the MMC

Creating a Directory – the “mkdir” command

To create a sub-directory in the current directory, first the FAT is traversed to identify the next available
cluster. It is necessary to clear this cluster to make all the 32-byte entries as available entries and also to
remove any invalid entries due to undefined or junk data. The next step is to find one or more (in case of
long file name entries) empty labels to accommodate the information about the newly created directory.
Allocate a new cluster to the current directory if sufficient labels are not available and make the
corresponding entry in the FAT. Initialize the first two 32-byte entries of a newly created directory with
the corresponding “.” and “..” entries. Figure 7 shows the flowchart for the mkdir command.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 12 of 24

Figure 7. Creating a sub-directory in the current directory

Copying a File to MMC – the “copy” Command

Figure 8 shows the flowchart for copying a file from the PC to the current directory of the MMC. The
basic functions used include creating a file in the current directory of MMC and appending a file with a
buffer of known length (in bytes). File creation uses the same sequence as creating a directory, except that
the cluster allocated need not be cleared and there are no “.” and “..” entries.

It is necessary to check whether the destination file name already exists in the current directory of the
MMC. The source file on the PC is read into a buffer using the file I/O function until the EOF is reached.
Each time the buffer contains a specified number of bytes, the content of the buffer is appended to the
destination file.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 13 of 24

Figure 8. Copying a file “source” from a PC to a file “destination” on the MMC

Figure 9 shows the flowchart for appending a known length buffer “x” to a destination file. The sector
offset of the file and the byte offset of the sector from where the write has to be started is calculated. This
can be obtained from the current file size attribute of the file pointer. The file size attribute of that file
pointer must be updated with a new size. The current sector is then read into an internal buffer “y”. A
variable “remain_write” tracks the number of bytes left to be written and is initially set to the total
number of bytes to be written. If the number of bytes left to be written is more than the number of
available bytes in the current sector, a variable “length” is set to the number of bytes available in the
current sector. If not, “length” is set to “remain_write” and “remain_ write” is set to 0 as there are
no bytes left to be written. The number of bytes indicated by “length” is copied from buffer “x” to buffer
“y”. Buffer “y” is then written back to the MMC at an appropriate sector location. The process is repeated
for the next available sectors of the current cluster until all the bytes have been written. If all the sectors of
the current cluster are written, the next free cluster is allocated to the file and the FAT is updated
accordingly.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 14 of 24

Figure 9. Writing/appending a file on the MMC

Reading a File from an MMC – the “read” Command

Figure 10 shows the flowchart for reading a source file from the current directory of the MMC and
copying it to a destination file on the PC. The main function used in the process is to read a fixed number
of bytes from a particular location of a file on the MMC (Figure 6). The list of files and folders in the
current directory is initialized using the list directory function. A source file pointer is used to read
1 Kbytes each time from the file on the MMC and to copy them to the destination file.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 15 of 24

Figure 10. Reading a source file from the MMC and copying it to the destination file

Figure 11 shows the sequence for reading a known number of bytes into a buffer “x” from a file on the
MMC. The sector offset and byte offset for that sector from where the read of the file has to be started is
calculated. A variable “remain_read” is initialized with the number of bytes to be read. It tracks the
number of remaining bytes. The current sector is read into buffer “y”. If the total number of bytes
remaining to be read is greater than the number of bytes left to be read in the current sector, a variable
“length” is initialized to the number of bytes left to be read from the current sector. “remain_read” is
reduced by an equal amount. If not, “length” is set to the total number of bytes to be read. The bytes
indicated by “length” are copied from the appropriate offset of buffer “y” to buffer “x”. If the number of
remaining bytes is zero, the process stops. Otherwise, the process continues for the next sector of the
current cluster. When all the sectors of the current cluster have been read, the current cluster is set to the
next cluster.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 16 of 24

Figure 11. Reading a file from an MMC

Erasing a File or Directory – the “del” Command

Figure 12 shows the sequence to erase a file or directory from the current directory. A list of file pointers
is initialized with the files and folders of the current directory. Deleting a file requires freeing up all the
clusters allocated to the file by updating the corresponding entries in the FAT. The label corresponding to
the file in the directory table of the current directory is made available to be used for a new entry. Deleting
a directory is a recursive process as the delete function has to be called for each file or folder of that
directory. The recursion is started setting the current directory as the directory to be deleted. The list is
initialized with the files/folders in the current directory. Each file pointer is checked for its attribute. If it
is a file, it is deleted by the method discussed above. If it is a directory, the same function is called
recursively. The recursion stops when all the files/folders of the current directory are deleted and the label
corresponding to the current directory is updated to “available”.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 17 of 24

Figure 12. Erasing a file or directory

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 18 of 24

Using a Command Window
The following figures show the output of various commands listed in Table 7. An MMC formatted on a
PC is interfaced with an ADSP-21369 SHARC processor. The “stdin” window shows the command
entered; the VisualDSP++® Output window displayed below each “stdin” window shows the
corresponding output.

Figure 13. “dir” command

The cd command in Figure 14 changes the current directory from ROOT to ROOT\images. The dir
command also in Figure 14 displays a list of the files in the current directory (e.g., images).

Figure 14. “cd” command and directory list for current directory

The cd.. command in Figure 15 changes the current directory from ROOT\images back to the parent
directory (e.g., ROOT). Note that you can also change the current directory directly to ROOT by using the
root command as shown in Figure 15.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 19 of 24

Figure 15. “cd..” command and “root” command

Figure 16 shows the pwd command, which displays the current working directory. The example in
Figure 16 also shows how to use the find command to obtain the number of instances and the paths
where the file test.doc exists on the MMC.

Figure 16. Sample output for “pwd” command and sample output for “find” command

The example mkdir command in Figure 17 creates a new directory (named misc) in the root directory.
Figure 17 also shows how the dir command lists the content of the ROOT directory, including the newly
created misc directory.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 20 of 24

Figure 17. “mkdir” command, and “dir” command showing ROOT directory with newly created directory

The example copy command in Figure 18 copies the example.doc file from a PC to a folder named data
on the MMC. Note that the file has the same name. Figure 18 also lists the contents of the data directory.

Figure 18. “copy” command and current directory showing the copied file

Figure 19 demonstrates a read command. In this example, the example.doc file located in the data folder
of the MMC is copied to the PC where it is named example_read.doc. The top-right portion of Figure 19
shows the contents of the original file example.doc. In this series of examples, this file was copied from
the PC to the MMC and then copied back to the PC. The bottom-right left portion of Figure 19 shows the
example_read.doc file, which was read back.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 21 of 24

Figure 19. “read” command, and comparing original file to file on the MMC

Figure 20 illustrates the use of del command to delete the images directory. The second part of Figure 20,
which displays the list of folders in the root directory, no longer contains the images directory.

Figure 20. “del” command and the ROOT directory after deleting images directory

Figure 21 shows the use of del command to delete the example.doc file from the data folder. Figure 21
also shows the list of files in the data folder after deleting example.doc.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 22 of 24

Figure 21. “del” command and the resulting data directory after deleting example.doc

Using the FAT16 Plug-In
This section explains how to use the FAT16 VisualDSP++ plug-in. The FAT16 plug-in provides a
graphical user interface (GUI) that you use to input commands. The FAT16 plug-in associated with this
EE-Note can be used with VisualDSP++ 4.5 (or higher).

To install the FAT16 plug-in in the VisualDSP++ environment:

1. Extract the FAT16.dll file from the associated .ZIP file (EE329v01.zip) and place it in the
VisualDSP++ System directory. If VisualDSP++ 4.5 is installed on your C drive, copy the attached
file into the following directory:
C:\Program Files\Analog Devices\VisualDSP 4.5\System

2. Register the FAT16.dll file by typing the following command line:
regsvr32.exe FAT16.dll

Run regvr32.exe from the <install_path>\System directory, not from the root directory.

The FAT16 plug-in now appears on the Plugins page of the Preferences dialog box (Settings ->
Preferences). You can access the FAT16 plug-in from the Tools menu (Tools -> Plugins). Figure 22
shows the default state of the FAT16 window.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 23 of 24

Figure 22. FAT16 GUI

Commands are grouped into two categories: commands that do not take an input, and commands that
require one input (i.e., a file name or directory name, based on the command). Before clicking any of the
command buttons, FAT16_GUI.dxe must be loaded using the Load button. Clicking Load opens a file
browser window so you can navigate to the folder where FAT16_GUI.dxe is copied and can select it. After
loading the .dxe file, execute the FAT16 application code by clicking the Run button. After clicking Run,
the processor will wait for you to press any of the command buttons. The results of all the command
buttons display on the Console page for the VisualDSP++ Output window. Table 8 briefly describes each
command button.

Command Button Description

List Files/Directories Displays the list of files and directories present in the current working directory

Current Working Directory Displays the path of the current working directory

Traverse Up Changes the current working directory to the parent directory of the current working
directory. This command has no effect when the current working directory is ROOT.

Go to Root Directory Changes the current working directory to ROOT. This command has no effect when the
current working directory is ROOT.

Change Directory Changes the current working directory to the user-specified directory. An error message
displays when the directory is not found within the current working directory.

Create Directory Creates a directory with the user-specified name. An error message displays when the
directory already exists within the current working directory.

Copy from PC to MMC Creates the destination file in the MMC (with the user-specified name) using the content of
the source file on the PC. Clicking this button opens a file browser window allowing you to
browse through the files on the PC and to select a source file. An error message displays
when the destination file name already exists within the current working directory.

Copy from MMC to PC Copies the user-specified file from the MMC to the PC. Clicking this button opens a file
browser window allowing you to select the path and the name of the destination file.
Windows will prompt you for further action should the destination file already exists on the
PC. An error message displays when the source file is not found within the current working
directory.

 a

Running FAT16 File Systems and DOS Commands on SHARC® Processors (EE-329) Page 24 of 24

Erase Erases the user-specified file or directory. An error message displays when the file/directory
is not found within the current working directory.

Search Searches the entire MMC for the exact file name specified by the user and display the paths
for all the matching entries found

Table 8. Command descriptions

Summary
FAT16 is a commonly used file system on various memory devices that store multimedia content.
Software applications should be able to manage this file system. This EE-Note presented an overview of
FAT16 and the implementation of various DOS commands using an ADSP-21369 SHARC processor. The
provided source code was tested for an MMC interfaced to an ADSP-21369 SHARC processor. The
source code can be used with any other FAT16-formatted memory device connected to the ADSP-21369
processor by using drivers to access it.

References
[1] Interfacing MultiMediaCard™ with ADSP-2126x SHARC Processors (EE-264). Rev 1, March 11, 2005.

Analog Devices, Inc.

[2] Implementing FAT32 File Systems on ADSP-BF533 Blackfin Processors (EE-289). Rev 1, February 24, 2006.
Analog Devices, Inc.

[3] Microsoft Extensible Firmware Initiative FAT32 File System Specification, Version 1.03, December 2000.
Microsoft Corporation.

[4] http://en.wikipedia.org/wiki/Fat

Document History

Revision Description

Rev 1 – September 28, 2007
by Mitesh Moonat, Jagadeesh Rayala
and Aseem Vasudev

Initial Release

http://en.wikipedia.org/wiki/Fat

	Introduction
	FAT Overview
	FAT16 on a Disk
	Reserved Sectors
	FAT Region
	Root Directory Region
	Data Region

	Details of FAT16 Structure
	Boot Sector
	File Allocation Table
	Directory Table
	Long File Name (LFN) Entries

	DOS Command Implementation for FAT16
	Listing Files and Directories of the Current Directory – the
	Searching a File– the “find” Command
	Creating a Directory – the “mkdir” command
	Copying a File to MMC – the “copy” Command
	Reading a File from an MMC – the “read” Command
	Erasing a File or Directory – the “del” Command

	Using a Command Window
	Using the FAT16 Plug-In
	Summary
	References
	Document History

