
Engineer To Engineer Note EE-188

a
Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Using C To Implement Interrupt-Driven Systems On ADSP-219x DSPs
Contributed by Joe B March 19, 2003

Introduction
This Engineer-to-Engineer note will

describe the process for implementing a timer
routine for the ADSP-219x family of DSPs using
the C programming language. Please refer to
chapter 12 of the “ADSP-219x DSP Hardware
Reference” for further details regarding the
timers.

The referenced code in this application
note was verified using VisualDSP++™ 3.0 for
ADSP-21xx DSPs and revision 2.0 of the
ADDS-2191-EZLITE development board.

ADSP-219x Family Timers
Contrary to the ADSP-218x family of

Digital Signal Processors (DSPs), the ADSP-
219x family has three timers, each of which can
be configured in any of three modes. On the
assembly level, configuration of the timers and
use of interrupts is fairly straightforward.
However, in C, using interrupts and accessing
the timer registers requires knowledge of some of
the system header files and an understanding of
how the C run-time environment works with
embedded DSP programs. The process
explained herein describes how to implement an
interrupt-driven timer routine in C but the
methods used can be applied to any C-coded
interrupt routines.

The ADSP-218x C libraries defined three
C-callable functions for timer management

(timer_on, timer_off, and timer_set), which were
created to make life for the C developer a little
easier. In an ADSP-219x-based project, these
functions no longer apply because now there are
THREE possible sets of timer registers to
associate these functions to, the registers for
programming the timers are different, and the
register memory space is also changed
significantly from the ADSP-218x family of
DSPs. Additionally, the 32-bit period, width,
and count timer registers are now broken into
low and high words, giving the ADSP-219x
timers 65536 times the duration that the ADSP-
218x timer had.

Using Features In VisualDSP++
VisualDSP++ 3.0 comes equipped with

several built-in, or intrinsic, functions designed
to make programming a DSP in a C environment
even more user-friendly.

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are
property of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and
reliable, however no responsibility is assumed by Analog Devices regarding the technical accuracy and topicality of the content provided in all Analog Devices’
Engineer-to-Engineer Notes.

Formerly, memory-mapped registers
were accessed by a referencing-dereferencing
scheme using casted pointers (*(int *)). Access
to non-memory-mapped registers in C was a
tedious task, requiring embedded assembly
source code. Now, the intrinsic functions
sysreg_read and sysreg_write are available for
manipulating these registers. In addition to these
system register functions, the ADSP-219x tools
feature two other intrinsic functions,
io_space_read and io_space_write, which
provides access to all the memory-mapped I/O
space registers as well.

a
These four functions are defined in the

header file sysreg.h. In this header, there is also
an enumerated type, listing the system registers
that can be accessed using sysreg_read and
sysreg_write. One will also find all the bit
manipulation instructions here as well
(sysreg_bit_clr, sysreg_bit_set, sysreg_bit_tgl).

The io_space_read and io_space_write
intrinsic functions require the architecture
definition header file, def2191.h, be included
also. This header details the addresses for all of
the I/O space registers. It should be noted that
the addressing scheme utilized in this header
assumes that the user has already set the IO Page
(IOPG) register appropriately, which is one of
the system registers detailed in the enumerated
type in sysreg.h (sysreg_IOPG). The IO Pages
are also given convenient names in def2191.h.

For example, if the user wanted to
configure their ADSP-2191 EZ-KIT to have
LEDs 8-11 as outputs, this routine would do the
trick:
#include <sysreg.h>

#include <def2191.h>

main()

{

 sysreg_write (sysreg_IOPG, General_Purpose_IO);

 io_space_write (DIRS, 0x000F);

}

LEDs 8-11 map to the Programmable Flag Pins
0-3. Therefore, we want to configure PF0-3 to
be outputs. This information is contained in the
DIRS register, where a 1 means that the PFx pin
is an output. The first thing we need to do is to
make sure that we are on the correct IO Page for
accessing the DIRS register. Because IOPG is a
system register, this is accomplished using the
sysreg_write intrinsic with the correct arguments.
The first argument is the register to be written to,
sysreg_IOPG (as defined in the enumeration in
sysreg.h). The second argument is the value to
be written to the IOPG register,
General_Purpose_IO, which is #defined in

def2191.h to be 0x06 (the page offset required to
access the GPIO register set).

Now that the IOPG register is set
appropriately to access the GPIO registers, we
have access to the DIRS register. The second
line of code uses the io_space_write intrinsic
because DIRS is an IO space register. Here, the
arguments are the address to be written to, DIRS,
which is #defined in def2191.h to be 0x001 (the
physical I/O address on IO page 6 of the DIRS
register) and the value to be written to that
address, 0x000F, where bits 0-3 are set to 1 to
enable the corresponding PF pins 0-3 to be
outputs.

Accessing the Timer0 registers is done in
the same fashion, as you will see in the attached
code. First, you must set the IOPG register using
the sysreg_write intrinsic to have the offset for
the Timer_Page. Then you’ll have access to the
timer register addresses and must use the
io_space_write intrinsic to configure the
associated registers as appropriate (see lines 27-
34 of the attached source).

Interrupt Handling In C
The interrupt handling in C is unchanged

from the ADSP-218x family tools from a coding
perspective. Users still utilize the header-defined
interrupt(signal, subroutine) module to take care
of everything. First and foremost, this function
associates a specific ISR module to be run for
any given signal that could be received during
run-time. The list of possible signals is detailed
in the signal.h header file. This function also
sets the correct bit in IMASK to enable servicing
for that interrupt. In addition to this interrupt-
registering scheme, the user will have to globally
enable interrupts by using the intrinsic function
enable_interrupts().

Prior to version 6.1.1 of the ADSP-219x
Compiler, global enabling of interrupts
was automatically performed by the
interrupt(signal, subroutine) module.
From version 6.1.1 on, explicit use of the

Using C To Implement Interrupt-Driven Systems On ADSP-219x DSPs (EE-188) Page 2 of 5

a
enable_interrupts() module is required.

One new feature of the ADSP-219x
family of DSPs is that the interrupts are now
optionally configurable. There is a set of
interrupt priority registers, namely IPR0, IPR1,
IPR2, and IPR3, that can be configured prior to
using the interrupt module in C to tell the
hardware which interrupts have higher priority
(i.e., which IMASK bit needs to be set to enable
interrupt servicing). In this example, we will not
touch these registers and will go with the default
priority settings. Please refer to page C-3 of the
“ADSP-219x Hardware Reference” for more
information regarding interrupt priority.

In table C-2, the reader will see the
“Peripheral Interrupts and Priority at Reset”,
where it is depicted that the Timer0 interrupt has
an ID of 9. However, it should be noted that this
ID is actually an offset from the four non-
configurable highest-priority interrupts (Reset,
Power-Down, Loop and PC Stack, and
Emulation Kernel), which use interrupt vectors 0,
1, 2, and 3, respectively. Therefore, the actual
signal used for the default Timer0 interrupt is
SIG_INT13, not SIG_INT9. Because of this, the
line of code for configuring the interrupt in C
(line 36) reads as follows:

interrupt (SIG_INT13, Timer0_ISR);

As was already explained, SIG_INT13 is the
default signal number for the Timer0 interrupt.
If you chose to utilize the option to prioritize
your interrupts, just know that you will need to
use a different SIG_INT value in this line of code
based upon the priority value you gave to the
Timer0 interrupt. For example, if you gave it an
ID of 0 (highest priority after the four non-
configurable interrupts), you’d be using
SIG_INT4. Conversely, if you gave it an ID of
11 (lowest priority), you’d use SIG_INT15. In
this example, Timer0_ISR() is the function that is
called to service the Timer0 interrupt once it has
been latched in the interrupt latch (IRPTL)
register.

The interrupt gets latched into IRPTL
based on the contents of the peripheral’s
status register. Since the timers’ status
bits are “sticky”, they require a write-1-
to-clear operation to be performed a few
cycles before the RTI occurs. This will
allow the status write to take effect before
the RTI is executed, which will ensure
that the same interrupt is not latched
immediately by IRPTL.

The Code Example Itself
The following example code has been

referenced throughout this application note. This
example is the C equivalent to the assembly
example provided in the Timer Chapter of the
“ADSP-219x/2191 DSP Hardware Reference”
on pages 12-15 through 12-18. This module sets
up the timer initialization and interrupt routines
for a timer in Pulsewidth Modulation
(PWMOUT) Mode. The main module re-maps
the Interrupt Vector Table (IVT) to internal
memory, configures the appropriate LEDs to be
outputs, sets up the timer registers, associates the
ISR to the timer signal, and starts the timer. The
ISR checks the polarity of the output PF pins 0-3
to check the status of LEDs 8-11 and toggles
them upon each instance of a timer expiration.

Physically, on the ADDS-2191-EZ-KIT-
LITE, LEDs 8, 9, 10, and 11 will alternately
light/extinguish for roughly 1 second, assuming a
160 MHz clock.

Main Code
/* C-interrupts Example for ADSP-2191 EZ-KIT

 Created 10/12/2001 - JB

 Modified 3/14/2003 - JB */

#include <signal.h> /* Interrupts */

#include <def2191.h> /* MMRs */

#include <sysreg.h> /* Intrinsics */

void Timer0_ISR(); /* ISR Prototype */

Using C To Implement Interrupt-Driven Systems On ADSP-219x DSPs (EE-188) Page 3 of 5

a
main()

{

 int temp;

 sysreg_write(sysreg_IOPG,

 Clock_and_System_Control_Page);

 temp = io_space_read(SYSCR);

 temp |= 0x0010; /* Map IVT To Page 0 */

 io_space_write (SYSCR, temp);

// Clear/Reset All Interrupts

 sysreg_write(sysreg_IRPTL, 0x0000);

 sysreg_write(sysreg_ICNTL, 0x0000);

 sysreg_write(sysreg_IMASK, 0x0000);

 sysreg_write(sysreg_IOPG,

 General_Purpose_IO);

 io_space_write(DIR, 0x000F); // set outputs

/* Go To Timer Page – Initialize Timer0 */

 sysreg_write(sysreg_IOPG, Timer_Page);

/* SET: PWM_OUT Mode, Positive Active Pulse,

* Count To End Of Period, Int Request Enable,

* Timer_Pin Select */

 io_space_write(T_CFGR0, 0x001D);

/* Timer0 Period Register (High Word) */

 io_space_write(T_PRDH0, 0x0410);

/* Timer0 Period Register (Low Word) */

 io_space_write(T_PRDL0, 0x5A00);

/* Timer0 Width Register (High Word) */

 io_space_write(T_WHR0, 0x0410);

/* Timer0 Width Register (Low Word) */

 io_space_write(T_WLR0, 0x2D00);

/* Enable Timer0 */

 io_space_write(T_GSR0, 0x0100);

/* INT13 Is Default Timer0 Interrupt */

 interrupt(SIG_INT13, Timer0_ISR);

/* Globally Enable Interrupts */

 enable_interrupts();

 while(1); /* wait for interrupts */

} /* end of main */

ISR Code

void Timer0_ISR()

{

 int Timer__Flag_Polarity; /* Check Flags */

/* Go To Timer I/O Page */

 sysreg_write(sysreg_IOPG, Timer_Page);

/* Clear TMR0 Interrupt Latch Bit */

 io_space_write(T_GSR0, 0x1);

/* Go To GPIO I/O Page */

 sysreg_write(sysreg_IOPG, General_Purpose_IO);

/* Get Values Of PF Flags */

 Timer__Flag_Polarity = io_space_read(FLAGS);

 if ((Timer__Flag_Polarity & 0x000F) == 0)
 /* If The LEDs Aren't On */

 io_space_write(FLAGS, 0x000F);
 /* turn EZ-KIT LEDs ON */

 else /* otherwise they are ON */

 io_space_write(FLAGC, 0x000F);
 /* turn EZ-KIT LEDs OFF */

} // end Timer0_ISR

Using C To Implement Interrupt-Driven Systems On ADSP-219x DSPs (EE-188) Page 4 of 5

a

References
[1] ADSP-219x/2191 DSP Hardware Reference Manual, First Edition, July 2001

Document History

Version Description

March 19, 2003 by Joe B Initial Release

Using C To Implement Interrupt-Driven Systems On ADSP-219x DSPs (EE-188) Page 5 of 5

	Introduction
	ADSP-219x Family Timers
	Using Features In VisualDSP++
	Interrupt Handling In C
	The Code Example Itself
	Main Code
	ISR Code
	References
	Document History

