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Introduction 
The SHARC® processor family was designed to 
efficiently perform 32-bit and 40-bit floating-
point operations, and 32-bit fixed-point 
operations. There are times when it is desirable 
to perform arithmetic computations with greater 
precision. 

Since the second and third generation SHARC 
processors have two 64-bit buses, and four 80-bit 
accumulators, the SHARC processors can be 
used to perform extended-precision 64-bit 
arithmetic. 

This document describes how to implement 
extended-precision operations. It also discusses 
how the SHARC architecture performs long 
word (64-bit) accesses in SIMD mode. Lastly, it 
discusses the implementation of an extended-
precision FIR and IIR filter. Source files for the 
example filters are provided in a separate ZIP 
file. Note that this application note is an 
adaptation of the discussion found in Extended-
Precision Fixed-Point Arithmetic on the 
Blackfin® Processor Platform (EE-186) [4], and 
many of the same figures appear in this 
document. 

Background 
64-bit extended-precision arithmetic is a natural 
software extension of the native 32-bit fixed-
point operations provided by SHARC processors. 
Since SHARC processors have 32-bit register 
files, two registers are used to represent one 63-

bit or 64-bit fixed-point number. Second- and 
third-generation SHARC family have 64-bit 
buses, allowing the transfer of two whole 64-bit 
words per cycle. Before examining specific DSP 
algorithms, it is important to understand how to 
perform basic 64-bit (long-word) accesses, how 
long word accesses work in SIMD mode, how 
the VisualDSP++® tools work with 64-bit data, 
and how basic arithmetic operations can be 
implemented with extended precision. 

64-bit Data in VisualDSP++ Tools 

Before discussing the actual algorithms, it is 
helpful to understand how to initialize 64-bit data 
in the VisualDSP++ development tools. The 
VisualDSP++ linker provides two different 
section types to directly initialize 64-bit memory. 
Listing 1 shows both types of initialization. 
When a section is marked as PM or DM with a 
width of 64-bits (in the LDF file), the 
preprocessor packs two 32-bit words into a 
single 64-bit word. When a section is marked as 
DATA64, the preprocessor will take a single 64-bit 
word for each location to be initialized. 

.section/DATA64 seg_data64; 
// starting at 0x5C100 
.var coeffs1[]= 0x123456789ABCDEF0; 
 
.section/DM seg_dm64; 
// starting at 0x60000 
.var coeffs2[]= 0x55555555,0xAAAAAAAA; 

Listing 1. Initializing 64-bit Memory 

In VisualDSP++ 4.0 (and earlier), it is necessary 
to use only hexadecimal, octal, or binary 
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representation when initializing DATA64 memory, 
VisualDSP++ truncates any other format to 
32 bits. In addition, all initializers must be zero-
padded to contain exactly 16 hexadecimal 
numbers for reliable behavior.  

Long-Word Accesses 

Second-generation (and later) SHARC devices 
have two 64-bit buses, each of which can 
perform a single 64-bit transfer per cycle. First-
generation SHARC DSPs (ADSP-2106x) do not 
have 64-bit buses. Since all of the registers in the 
register file are 32 bits wide, a single long-word 
read or write accesses two neighbor registers — 
the register defined explicitly in the instruction 
and the register implicitly defined by the 
relationships shown in Table 1.  

 

Table 1. Long-Word Register Pairs 

When the address of an access is to long-word 
space (as defined by the processor being used), 
the processor places the lower 32 bits of the long 
word into the named (explicit) register and the 
upper 32 bits into the neighbor (implicit) register.  
r4=dm(coeffs1);  // neighbor r5 is accessed 
r8=pm(coeffs2);  // neighbor r9 is accessed 

It is also possible to perform a long-word access 
to a normal-word (32-bit) address using the (LW) 
modifier in the instruction. For these accesses, 
the data at the even normal-word address 
corresponds to the explicitly defined register, and 
the odd normal-word address corresponds to the 
implicitly defined neighbor register. The 

following fetch performs the same operation as 
the first example above. 
r4=dm(0xB8200)(LW);//implicit r5=dm(0xB8201) 
r8=pm(0xC0000)(LW);//implicit r9=pm(0xC0001) 

Dual-data accesses use both available buses to 
fetch data in a single cycle. Since both buses are 
64-bits wide, we will take advantage of dual-data 
accesses when implementing filter code. 
However, for dual-data accesses, it is not 
possible to use the LW modifier. The only way to 
perform a long-word transfer is to use the DAGs 
to access a long-word address. 
r4=dm(i0,m0),r8=pm(i8,m8);  
// neighbors r5 and r9 are accessed as well 

All example code in this application note will 
place the least significant 32-bits into the lower 
(even) neighbor register and the most significant 
32-bits into the higher (odd) neighbor register. 

SIMD Long-Word Accesses 

In order to use both processing elements in the 
SIMD SHARC processors, it is necessary to fill 
both the explicitly referenced register file in PEx, 
and the implicitly defined register set in PEy. For 
normal 32-bit word accesses, the SIMD 
capabilities of the SHARC architecture 
automatically use the 64-bit bus to fill both 
register files. However, for long-word accesses, 
there is no space on the bus for the processor to 
automatically perform this access. Instead, the 
SHARC processor performs only the explicit 
transfer to the neighbor pair, as defined by the 
use of an Rn register for PEx and an Sn register 
for PEy. 
r0=dm(coeffs1);  // neighbor r1 is accessed 
s6=pm(coeffs2);  // neighbor s7 is accessed 

Dual-data accesses take this one step further in 
SIMD mode. When both buses are being used for 
long-word accesses, the SIMD core transfers 
data on the DM bus to PEx, and data on the PM bus 
to PEy. The only exception to this is when 
broadcasting is enabled for I1 or I9 (BDCST1 or 
BDCST9 is set in MODE1). In this case, the same 
data is sent to both processing elements.  
r4=dm(i0,m0),r8=pm(i8,m8);  
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 r4 and r5 written with address in i0 

 s8 and s9 written with address in i8 

In broadcast mode: 
r4=dm(i1,m0),r8=pm(i9,m8);  

 r4, r5, s4, s5 written with address in i1 

 r8, r9, s8, s9 written with address in i8 

Now that we have explored the way SHARC 
processor permit interaction between registers 
and long-word memory, we can explore 
implementing the extended-precision algorithms. 

Addition/Subtraction 

The SHARC processor instruction set does not 
contain a single-cycle 64-bit addition. This 
addition must be implemented in two steps, using 
four registers from the data file and the Carry-In 
from the addition of the lower 32 bits of the 64-
bit words being added. 
r4=r4+r8; 
r5=r5+r9+CI; 

Subtraction of 64-bit numbers is also 
implemented in two steps, using the Borrow 
from the lower 32-bits of the 64-bits being 
added. 
r4=r4-r8; 
r5=r5-r9+CI-1; 

In these addition and subtraction instructions, 
note that any combination of data registers can 
be used. Refer to the discussion about long-word 
reads for an explanation of how to choose 
registers. To illustrate the high and low half of 
the 64-bit arithmetic shown above, the 64-bit 
values from the above sections would fall into 
the registers as follows: 
r4=0x9ABCDEF0  r8=0x55555555 
r5=0x12345678  r9=0xAAAAAAAA 

 10th’s place 100th’s place 1000th’s place 10000th’s place

     

 0.2 0.3   

x 0.9 0.8   

 ---------------------------------------  

{a} x 10-2 + 0.8 x 0.3 = 0.24 

{b} x 10-1                     

+
0.8 x 0.2 = 0.16 

{c} x 10-1                     

+
0.9 x 0.3 = 0.27 

{d}+ 0.9 x 0.2 = 0.18  

 ---------------------------------------------------------------------------------
{e} 0.18 x 100 + 0.27 x 10-1 + 0.16 x 10-1 + 0.24 x  10-2  = 0.2254

 
Figure 1. Decimal Multiplication in Detail 

More information on the native SHARC 
operations can be found in the ADSP-
21160 SHARC DSP Instruction Set 
Reference. [1] 

Multiplication 

In order to introduce the concept of extended-
precision multiplication, it is useful to review the 
already familiar decimal multiplication. 

Two-Digit Decimal Multiplication 
Let’s start by recalling how any decimal 
multiplication can be performed by knowing how 
to multiply single-digit numbers. As an example, 
consider this two-digit by two-digit decimal 
multiplication: 
0.23 x 0.98 = 0.2254 

Figure 1 illustrates how this particular operation 
can be broken down into smaller operations.  
This is basically multiplication “by hand”. To 
compute the final result, the following operations 
are necessary: 

 Four single-digit multiplications (lines {a}, 
{b}, {c}, and {d} in Figure 1) 
0.8 x 0.3 = 0.24, 0.8 x 0.2 = 0.16, 
0.9 x 0.3 = 0.27, 0.9 x 0.2 = 0.18 

 Three operations to shift the sub-products 
into the correct digit-significant slot (lines 
{b}, {c}, and {d} in Figure 1) 
0.24 x 10-2, 0.27 x 10-1, 0.16 x 10-1 
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 Three additions (line {e} in Figure 1) 
0.18x100 +0.27x10-1,  

0.16x10-1 +0.24x10-2, 
(0.18x100 +0.27x10-1)+(0.16x10-1 +0.24x10-2) 

Two-Digit Hexadecimal Multiplication 
Hexadecimal multiplication is not much different 
from its decimal counterpart. Let’s consider a 
multiplication of two 64-bit fractional numbers, 
where the operands are stored in the 32-bit data 
registers R4, R5, R8, and R9. 

64-Bit Accuracy with 32-Bit Multiplications 
One can use elementary arithmetic to achieve a 
64-bit multiplication result with single-cycle 32-
bit multiplications. 

Each of the two 64-bit operands are split into two 
32-bit halves (R4 and R5 for the first operand, R8 
and R9 for the second), as shown in Figure 2. 

From this figure, it is easy to see the operations 
required to emulate the 64-bit multiplication with 
a combination of instructions using 32-bit 
multiplies: 

 Four 32-bit multiplications to yield four 64-
bit results (lines {a}, {b}, {c}, and {d} in 
Figure 2) 
R8 x R4, R8 x R5, R9 x R4, R9 x R5 

 Three operations to shift the sub-products 
into the correct digit-significant slot (lines 
{a}, {b}, and {c} in Figure 2). Since we are 
performing fractional arithmetic, the result is 
1.127 (1.63 x 1.63 = 2.126 with a redundant 
sign bit). Most of the time, the result can be 
truncated to 1.63 to fit a native 64-bit data 
register. Therefore, the result of the 
multiplication should be in reference to the 
sign bit (or the most significant bit). This 
way, the rightmost least significant bits can 
be safely discarded by truncation. 

(R8 x R4)>>64, (R8 x R5)>>32,  
(R9 x R4)>>32 

bits 127:96 95:64 63:32 31:0 

     

 R5 R4   

x R9 R8   

 ----------------------------------------- 

{a} x 2-6 + R8 x R4 

{b} x 2-5             + R8 x R5 

{c} x 2-5             + R9 x R4 

{d}+ R9 x R5  

 ---------------------------------------------------------------------------------
----

{e} 
(R9 x R5) + (R8 x R5) >> 32 +  

(R9 x R4) >> 32 + (R8 x R4) >> 64 
 

Figure 2. Hexadecimal Multiplication in Detail 

 Three operations to preserve bit place in the 
final answer (line {e} in Figure 2): 
(R8 x R4)>>64 + (R8 x R5)>>32, 
(R9 x R4)>>32 + R9 x R5,  
((R8 x R4)>>64 + (R8 x R5)>>32) +  
((R9 x R4)>>32 + R9 x R5) 

The final expression for a 32-bit multiplication 
is:  
((R8 x R4)>>64 + (R8 x R5)>>32)  
+ ((R9 x R4)>>32 + R9 x R5) 

63-Bit Accuracy with 32-Bit Multiplication 
From Figure 2, it is easy to see that the 
multiplication of the least significant half-word 
(R8 x R4) does not contribute much to the final 
result. In fact, if the final result is ultimately 
truncated to 1.63, this multiplication can affect 
only the least significant bit of the 1.63 result. 
For many applications, the loss of accuracy due 
losing to this bit is offset by the performance 
increase over the 64-bit multiplication. Three 
operations (one 32-bit multiplication, one shift, 
and one addition) can be eliminated if 63-bit 
accuracy is acceptable in the final design: 
((R8 x R4)>>64 + (R8 x R5)>>32)  
+ ((R9 x R4)>>32 + R9 x R5) 

The remaining instructions necessary to obtain a 
63-bit-accurate 1.63 answer are three 32-bit 
multiplications, two additions, and a shift: 
((R8 x R5)>>32) + ((R9 x R4)>>32 + R9 x R5) 
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Further rearrangement of terms yields the final 
form of 63-bit-accurate multiplication: 
((R8 x R5) + R9 x R4)>>32 + (R9 x R5) 

Filter Implementation 
The following example filters apply the 64-bit 
precision multiplications. For ease of reading, 
only the kernels of the SISD examples are 
shown. However, more efficient SIMD 
implementations are included in the attached file 
and are briefly discussed below. 

Double-Precision FIR Filter Implementation 

If we consider R0/R1 to be the data value and 
R2/R3 to be a coefficient value, then each 
multiplication in the FIR will be of the form 
described earlier: 
((R0 x R2)>>64 + (R0 x R3)>>32)  
+ ((R1 x R2)>>32 + R1 x R3) 

The kernel for a 64-bit-accurate FIR 
implementation is shown in Listing 2. The 
number of cycles needed to execute the 
implementation is N*(4*(T-1)+20), where N is 
the size of the input buffer and T is the number of 
filter taps. 

SIMD FIR Filter Implementation 

Since there are two sets of multipliers available 
in SHARC processors, it is worth the effort to 
take advantage of both sets in an efficient 
implementation.  

There are two ways to take advantage of the 
second processing element. The most obvious is 
to operate on two sets of data at the same time 
and have each processing element deal 
exclusively with a single channel. However, for 
an FIR filter, it is possible to split the input into 
two halves and treat the halves as two channels 
of data that use the same filter taps (i.e., 
broadcast mode).  

For an extended-precision implementation, the 
limitations (e.g., placement of data in different 
memory blocks, and interleaving the input data 
and coefficients) imposed by normal-precision 
(32-bit) SIMD operations do not exist, since the 
long-word reads fill all available bandwidth. In 
fact, the only restriction on the placement of the 
data in these examples is that the coefficients 
mustto be in a different block of memory than 
the delay line and input data; this is necessary to 
avoid block conflicts when fetching and writing 
back data. 

This allows the algorithm to access two different 
points in the input without sacrificing 
performance or rearranging the data. The 
example SIMD code is set up for the split-input 
method, but it can be changed easily to handle 
two separate channels of data by modifying the 
input pointer and increasing the loop count to 
cover an entire block rather than half. 

The 64-bit buses will allow the transfer of only 
one data value and one coefficient value per 
cycle. In order to use SIMD, it is necessary to 
fetch at least two data values and one coefficient 
per multiply. Therefore, it is necessary to 
perform two sets of reads per MAC instruction 
(i.e., a 64-bit MAC consists of two instructions). 
mrb=mrb+r3*r0(suf), r0=dm(i0,m7),  
 r2=pm(i9,m14); 

r2=dm(i1,m6),r0=pm(i8,m15); 

Since SIMD long-word dual-data accesses are 
split between the processing elements, the 
second read in the SIMD MAC uses the same 
registers accessed by the opposite bus, as can be 
seen in the example above. This sequence of 
instructions is found frequently in both the SIMD 
FIR and SIMD IIR code that is attached. 

Complete source code for 64-bit-accurate 
FIR and IIR filters is contained in the 
accompanying compressed package. 

fir64 
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fir64_start: 
    //Multiply least significant halves with taps in MRF 
    mrf=r0*r2 (uuf), r0=dm(i0,m7), r2=pm(i9,m14); 
    lcntr=NUM_COEFFS-1, do m_st until lce; 
    m_st: mrf=mrf+r0*r2 (uuf), r0=dm(i0,m7), r2=pm(i9,m14); 
 
    //Copy from most significant 32-bits of the low half multiplication 
    //Store Output from last pass through the loop 
    r6=mr1f, dm(i5,m6)=r4; 
    mr0b=r6; 
    r7=0; 
    mr1b=r7; 
 
    //Cross multiply upper and lower halves in MRB 
    //Multiply upper halves in MRF 
    mrf=r1*r3(ssf); 
    mrb=mrb+r1*r2(suf); 
 
    lcntr=NUM_COEFFS-1, do MAC until lce; 
        mrb=mrb+r3*r0(suf),r0=dm(i0,m7), r2=pm(i9,m14); 
        mrb=mrb+r1*r2(suf); 
    MAC:    mrf=mrf+r1*r3(ssf); 
    mrb=mrb+r3*r0(suf),r2=dm(i0,m6); 
 
    //Collect MRB and MRF into registers for final addition 
    //Read next input 
    r4=mr0f,r0=dm(i4,m6); 
    r5=mr1f; 
    r6=mr0b; 
    r7=mr1b; 
 
    //Shift result of mixed multiplies by 31 bits (don't need sign bit) 
    r6=lshift r6 by -31; 
    r6=r6 OR lshift r7 by 1; 
    r7=lshift r7 by -31; 
 
    //Final 64-bit addition of MRB and MRF 
    //Store input to DL, Read first tap 
    r4=r4+r6,dm(i0,m7)=r0, r2=pm(i9,m14); 
fir64_end:  r5=r5+r7+CI; 

Listing 2. 64-bit FIR 

64-Bit-Accurate IIR Filter 

Again, we consider R0/R1 to be the data value 
and R4/R5 to be a coefficient value; each 
multiplication in the IIR will be of the form 
described earlier: 
((R0 x R4)>>64 + (R0 x R5)>>32)  
+ ((R1 x R4)>>32 + R1 x R5) 

The kernel for a 64-bit-accurate IIR 
implementation (a single biquad) is shown in 
Listing 3. The number of cycles needed to 

execute the implementation is N*33, where N is 
the size of the input buffer. 

The SIMD considerations for this algorithm are 
similar to those mentioned for the FIR 
implementation. For this algorithm, however, it 
is not possible to split the input into two halves. 
Therefore, the included SIMD code can only be 
used to filter two channels of data 
simultaneously. Again, the only restriction on the 
placement of the data in this example is that the 
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coefficients need to be in a different block of memory than the delay-line and input data. 

iir64 

iir64_start: 
    //Multiply lower halves in MRF 
    //Read X-2, B2 
    mrf=mrf + r0*r4 (uuf), r0=dm(i0,m6), r4=pm(i9,m14); 
    //Read A1, Adjust DL pointer 
    mrf=mrf + r0*r4 (uuf), r0=dm(i0,m6), r4=pm(i9,m14); 
    //Read Y-1, A2 
    mrf=mrf - r12*r4 (uuf), r0=dm(i0,m7), r4=pm(i9,m14); 
    //Read Y-2, B0 
    mrf=mrf - r0*r4 (uuf), r0=dm(i0,m7), r4=pm(i9,m14); 
 
    //Copy from most significant 32-bits of the low half multiplication 
    r7=0; 
    r6=mr1f; 
    mr1b=r7; 
    mr0b=r6; 
 
    //Cross multiply upper and lower halves in MRB 
    //Multiply upper halves in MRF 
    //Read Y-1 
    mrf=r3*r5 (ssf); 
    mrb=mrb+r3*r4 (suf),r0=dm(i0,m7); 
    //Read X-1, B1 
    mrb=mrb+r5*r2 (suf),r0=dm(i0,m5),r4=pm(i9,m14); 
    //Update X-1 
    mrf=mrf+r1*r5 (ssf); 
    mrb=mrb+r1*r4 (suf), dm(i0,m6)=r2; 
    //Read X-2, B2 
    mrb=mrb+r5*r0 (suf), r2=dm(i0,m5),r4=pm(i9,m14); 
    //Update X-2 
    mrf=mrf+r3*r5 (ssf); 
    mrb=mrb+r3*r4 (suf), dm(i0,m6)=r0; 
    //Read Y-1, A1 
    mrb=mrb+r5*r2 (suf), r0=dm(i0,m6),r4=pm(i9,m14); 
    //Store output 
    mrf=mrf-r1*r5 (ssf), dm(i5,m6)=r12; 
    //Read Y-2 
    mrb=mrb-r1*r4 (suf), r2=dm(i0,m5); 
    //Update Y-2, read A2 
    mrb=mrb-r5*r0 (suf), dm(i0,m7)=r0, r4=pm(i9,m14); 
    //Modify DL Pointer 
    mrf=mrf-r3*r5 (ssf), modify(i0,m7); 
    //Modify DL Pointer 
    mrb=mrb-r3*r4 (suf), modify(i0,m7); 
    //Read X-1 
    mrb=mrb-r5*r2 (suf), r0=dm(i0,m6); 
 
    //Collect MRB and MRF into registers for final addition 
    //Modify DL Pointer 
    r12=mr0f,modify(i0,m6); 
    r13=mr1f; 
    r6=mr0b; 
    r7=mr1b; 
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    //Shift result of mixed multiplies by 31 bits 
    r6=lshift r6 by -31; 
    r6=r6 OR lshift r7 by 1; 
    r7=lshift r7 by -31; 
 
    //Final 64-bit addition of MRB and MRF 
    //Read next input, B0 
    r12=r12+r6,r2=dm(i4,m6), r4=pm(i9,m14); 
    r13=r13+r7+CI; 
 
    //Update Y-1, read B1 
iir64_end: mrf=r2*r4 (uuf), dm(i0,m7)=r12, r4=pm(i9,m14); 

Listing 3. 64-bit Biquad (IIR) 

Summary 
This application note describes an effective 
method for implementing extended-precision 
arithmetic on SHARC processors. The arithmetic 
itself is not the only issue that must be 
considered when implementing these algorithms. 
In addition to the arithmetic computation, it is 
necessary to consider how long-word accesses 
and SIMD operations work on the extended data. 
After introducing extended-precision addition, 
subtraction, and multiplication, this document 
discussed the use of these operations to 
implement FIR and IIR filters. Table 2 

summarizes the performance of the FIR and IIR 
filters found in the compressed package supplied 
with this document.  

Specifically, this note applies to any of the 
SHARC devices in the ADSP-2116x, ADSP-
2126x, and ADSP-2136x families. While the 
projects and cycle counts provided are specific to 
the ADSP-2136x family, the filter code does not 
need to be changed to be ported to another SIMD 
SHARC processor. The only required changes 
are to the .LDF file, since all of these processors 
are code compatible and have identical internal 
memory bus structures. 

 
 64-bit Accuracy SIMD 64-bit Accuracy 

FIR N*(4*(T-1)+20) cycles° (N/2 + T/2)*(6*(T-1)+22) cycles° 

N*(6*(T-1)+22) cycles°° 

IIR 33*N cycles° 43*N cycles°° 

°Cycles for one N-point channel of data 

°°Cycles for two N-point channels of data 

Table 2. Computation Time for 64-bit Filter Implementations
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