
Engineer-to-Engineer Note EE-270

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at processor.support@analog.com and dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors
Contributed by Brian M. Rev 1 – July 7, 2005

Copyright 2005, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The SHARC® processor family was designed to
efficiently perform 32-bit and 40-bit floating-
point operations, and 32-bit fixed-point
operations. There are times when it is desirable
to perform arithmetic computations with greater
precision.

Since the second and third generation SHARC
processors have two 64-bit buses, and four 80-bit
accumulators, the SHARC processors can be
used to perform extended-precision 64-bit
arithmetic.

This document describes how to implement
extended-precision operations. It also discusses
how the SHARC architecture performs long
word (64-bit) accesses in SIMD mode. Lastly, it
discusses the implementation of an extended-
precision FIR and IIR filter. Source files for the
example filters are provided in a separate ZIP
file. Note that this application note is an
adaptation of the discussion found in Extended-
Precision Fixed-Point Arithmetic on the
Blackfin® Processor Platform (EE-186) [4], and
many of the same figures appear in this
document.

Background
64-bit extended-precision arithmetic is a natural
software extension of the native 32-bit fixed-
point operations provided by SHARC processors.
Since SHARC processors have 32-bit register
files, two registers are used to represent one 63-

bit or 64-bit fixed-point number. Second- and
third-generation SHARC family have 64-bit
buses, allowing the transfer of two whole 64-bit
words per cycle. Before examining specific DSP
algorithms, it is important to understand how to
perform basic 64-bit (long-word) accesses, how
long word accesses work in SIMD mode, how
the VisualDSP++® tools work with 64-bit data,
and how basic arithmetic operations can be
implemented with extended precision.

64-bit Data in VisualDSP++ Tools

Before discussing the actual algorithms, it is
helpful to understand how to initialize 64-bit data
in the VisualDSP++ development tools. The
VisualDSP++ linker provides two different
section types to directly initialize 64-bit memory.
Listing 1 shows both types of initialization.
When a section is marked as PM or DM with a
width of 64-bits (in the LDF file), the
preprocessor packs two 32-bit words into a
single 64-bit word. When a section is marked as
DATA64, the preprocessor will take a single 64-bit
word for each location to be initialized.

.section/DATA64 seg_data64;
// starting at 0x5C100
.var coeffs1[]= 0x123456789ABCDEF0;

.section/DM seg_dm64;
// starting at 0x60000
.var coeffs2[]= 0x55555555,0xAAAAAAAA;

Listing 1. Initializing 64-bit Memory

In VisualDSP++ 4.0 (and earlier), it is necessary
to use only hexadecimal, octal, or binary

 a

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors (EE-270) Page 2 of 9

representation when initializing DATA64 memory,
VisualDSP++ truncates any other format to
32 bits. In addition, all initializers must be zero-
padded to contain exactly 16 hexadecimal
numbers for reliable behavior.

Long-Word Accesses

Second-generation (and later) SHARC devices
have two 64-bit buses, each of which can
perform a single 64-bit transfer per cycle. First-
generation SHARC DSPs (ADSP-2106x) do not
have 64-bit buses. Since all of the registers in the
register file are 32 bits wide, a single long-word
read or write accesses two neighbor registers —
the register defined explicitly in the instruction
and the register implicitly defined by the
relationships shown in Table 1.

Table 1. Long-Word Register Pairs

When the address of an access is to long-word
space (as defined by the processor being used),
the processor places the lower 32 bits of the long
word into the named (explicit) register and the
upper 32 bits into the neighbor (implicit) register.
r4=dm(coeffs1); // neighbor r5 is accessed
r8=pm(coeffs2); // neighbor r9 is accessed

It is also possible to perform a long-word access
to a normal-word (32-bit) address using the (LW)
modifier in the instruction. For these accesses,
the data at the even normal-word address
corresponds to the explicitly defined register, and
the odd normal-word address corresponds to the
implicitly defined neighbor register. The

following fetch performs the same operation as
the first example above.
r4=dm(0xB8200)(LW);//implicit r5=dm(0xB8201)
r8=pm(0xC0000)(LW);//implicit r9=pm(0xC0001)

Dual-data accesses use both available buses to
fetch data in a single cycle. Since both buses are
64-bits wide, we will take advantage of dual-data
accesses when implementing filter code.
However, for dual-data accesses, it is not
possible to use the LW modifier. The only way to
perform a long-word transfer is to use the DAGs
to access a long-word address.
r4=dm(i0,m0),r8=pm(i8,m8);
// neighbors r5 and r9 are accessed as well

All example code in this application note will
place the least significant 32-bits into the lower
(even) neighbor register and the most significant
32-bits into the higher (odd) neighbor register.

SIMD Long-Word Accesses

In order to use both processing elements in the
SIMD SHARC processors, it is necessary to fill
both the explicitly referenced register file in PEx,
and the implicitly defined register set in PEy. For
normal 32-bit word accesses, the SIMD
capabilities of the SHARC architecture
automatically use the 64-bit bus to fill both
register files. However, for long-word accesses,
there is no space on the bus for the processor to
automatically perform this access. Instead, the
SHARC processor performs only the explicit
transfer to the neighbor pair, as defined by the
use of an Rn register for PEx and an Sn register
for PEy.
r0=dm(coeffs1); // neighbor r1 is accessed
s6=pm(coeffs2); // neighbor s7 is accessed

Dual-data accesses take this one step further in
SIMD mode. When both buses are being used for
long-word accesses, the SIMD core transfers
data on the DM bus to PEx, and data on the PM bus
to PEy. The only exception to this is when
broadcasting is enabled for I1 or I9 (BDCST1 or
BDCST9 is set in MODE1). In this case, the same
data is sent to both processing elements.
r4=dm(i0,m0),r8=pm(i8,m8);

 a

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors (EE-270) Page 3 of 9

 r4 and r5 written with address in i0

 s8 and s9 written with address in i8

In broadcast mode:
r4=dm(i1,m0),r8=pm(i9,m8);

 r4, r5, s4, s5 written with address in i1

 r8, r9, s8, s9 written with address in i8

Now that we have explored the way SHARC
processor permit interaction between registers
and long-word memory, we can explore
implementing the extended-precision algorithms.

Addition/Subtraction

The SHARC processor instruction set does not
contain a single-cycle 64-bit addition. This
addition must be implemented in two steps, using
four registers from the data file and the Carry-In
from the addition of the lower 32 bits of the 64-
bit words being added.
r4=r4+r8;
r5=r5+r9+CI;

Subtraction of 64-bit numbers is also
implemented in two steps, using the Borrow
from the lower 32-bits of the 64-bits being
added.
r4=r4-r8;
r5=r5-r9+CI-1;

In these addition and subtraction instructions,
note that any combination of data registers can
be used. Refer to the discussion about long-word
reads for an explanation of how to choose
registers. To illustrate the high and low half of
the 64-bit arithmetic shown above, the 64-bit
values from the above sections would fall into
the registers as follows:
r4=0x9ABCDEF0 r8=0x55555555
r5=0x12345678 r9=0xAAAAAAAA

 10th’s place 100th’s place 1000th’s place 10000th’s place

 0.2 0.3

x 0.9 0.8

{a} x 10-2 + 0.8 x 0.3 = 0.24

{b} x 10-1

+
0.8 x 0.2 = 0.16

{c} x 10-1

+
0.9 x 0.3 = 0.27

{d}+ 0.9 x 0.2 = 0.18

{e} 0.18 x 100 + 0.27 x 10-1 + 0.16 x 10-1 + 0.24 x 10-2 = 0.2254

Figure 1. Decimal Multiplication in Detail

More information on the native SHARC
operations can be found in the ADSP-
21160 SHARC DSP Instruction Set
Reference. [1]

Multiplication

In order to introduce the concept of extended-
precision multiplication, it is useful to review the
already familiar decimal multiplication.

Two-Digit Decimal Multiplication
Let’s start by recalling how any decimal
multiplication can be performed by knowing how
to multiply single-digit numbers. As an example,
consider this two-digit by two-digit decimal
multiplication:
0.23 x 0.98 = 0.2254

Figure 1 illustrates how this particular operation
can be broken down into smaller operations.
This is basically multiplication “by hand”. To
compute the final result, the following operations
are necessary:

 Four single-digit multiplications (lines {a},
{b}, {c}, and {d} in Figure 1)
0.8 x 0.3 = 0.24, 0.8 x 0.2 = 0.16,
0.9 x 0.3 = 0.27, 0.9 x 0.2 = 0.18

 Three operations to shift the sub-products
into the correct digit-significant slot (lines
{b}, {c}, and {d} in Figure 1)
0.24 x 10-2, 0.27 x 10-1, 0.16 x 10-1

 a

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors (EE-270) Page 4 of 9

 Three additions (line {e} in Figure 1)
0.18x100 +0.27x10-1,

0.16x10-1 +0.24x10-2,
(0.18x100 +0.27x10-1)+(0.16x10-1 +0.24x10-2)

Two-Digit Hexadecimal Multiplication
Hexadecimal multiplication is not much different
from its decimal counterpart. Let’s consider a
multiplication of two 64-bit fractional numbers,
where the operands are stored in the 32-bit data
registers R4, R5, R8, and R9.

64-Bit Accuracy with 32-Bit Multiplications
One can use elementary arithmetic to achieve a
64-bit multiplication result with single-cycle 32-
bit multiplications.

Each of the two 64-bit operands are split into two
32-bit halves (R4 and R5 for the first operand, R8
and R9 for the second), as shown in Figure 2.

From this figure, it is easy to see the operations
required to emulate the 64-bit multiplication with
a combination of instructions using 32-bit
multiplies:

 Four 32-bit multiplications to yield four 64-
bit results (lines {a}, {b}, {c}, and {d} in
Figure 2)
R8 x R4, R8 x R5, R9 x R4, R9 x R5

 Three operations to shift the sub-products
into the correct digit-significant slot (lines
{a}, {b}, and {c} in Figure 2). Since we are
performing fractional arithmetic, the result is
1.127 (1.63 x 1.63 = 2.126 with a redundant
sign bit). Most of the time, the result can be
truncated to 1.63 to fit a native 64-bit data
register. Therefore, the result of the
multiplication should be in reference to the
sign bit (or the most significant bit). This
way, the rightmost least significant bits can
be safely discarded by truncation.

(R8 x R4)>>64, (R8 x R5)>>32,
(R9 x R4)>>32

bits 127:96 95:64 63:32 31:0

 R5 R4

x R9 R8

{a} x 2-6 + R8 x R4

{b} x 2-5 + R8 x R5

{c} x 2-5 + R9 x R4

{d}+ R9 x R5

{e}
(R9 x R5) + (R8 x R5) >> 32 +

(R9 x R4) >> 32 + (R8 x R4) >> 64

Figure 2. Hexadecimal Multiplication in Detail

 Three operations to preserve bit place in the
final answer (line {e} in Figure 2):
(R8 x R4)>>64 + (R8 x R5)>>32,
(R9 x R4)>>32 + R9 x R5,
((R8 x R4)>>64 + (R8 x R5)>>32) +
((R9 x R4)>>32 + R9 x R5)

The final expression for a 32-bit multiplication
is:
((R8 x R4)>>64 + (R8 x R5)>>32)
+ ((R9 x R4)>>32 + R9 x R5)

63-Bit Accuracy with 32-Bit Multiplication
From Figure 2, it is easy to see that the
multiplication of the least significant half-word
(R8 x R4) does not contribute much to the final
result. In fact, if the final result is ultimately
truncated to 1.63, this multiplication can affect
only the least significant bit of the 1.63 result.
For many applications, the loss of accuracy due
losing to this bit is offset by the performance
increase over the 64-bit multiplication. Three
operations (one 32-bit multiplication, one shift,
and one addition) can be eliminated if 63-bit
accuracy is acceptable in the final design:
((R8 x R4)>>64 + (R8 x R5)>>32)
+ ((R9 x R4)>>32 + R9 x R5)

The remaining instructions necessary to obtain a
63-bit-accurate 1.63 answer are three 32-bit
multiplications, two additions, and a shift:
((R8 x R5)>>32) + ((R9 x R4)>>32 + R9 x R5)

 a

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors (EE-270) Page 5 of 9

Further rearrangement of terms yields the final
form of 63-bit-accurate multiplication:
((R8 x R5) + R9 x R4)>>32 + (R9 x R5)

Filter Implementation
The following example filters apply the 64-bit
precision multiplications. For ease of reading,
only the kernels of the SISD examples are
shown. However, more efficient SIMD
implementations are included in the attached file
and are briefly discussed below.

Double-Precision FIR Filter Implementation

If we consider R0/R1 to be the data value and
R2/R3 to be a coefficient value, then each
multiplication in the FIR will be of the form
described earlier:
((R0 x R2)>>64 + (R0 x R3)>>32)
+ ((R1 x R2)>>32 + R1 x R3)

The kernel for a 64-bit-accurate FIR
implementation is shown in Listing 2. The
number of cycles needed to execute the
implementation is N*(4*(T-1)+20), where N is
the size of the input buffer and T is the number of
filter taps.

SIMD FIR Filter Implementation

Since there are two sets of multipliers available
in SHARC processors, it is worth the effort to
take advantage of both sets in an efficient
implementation.

There are two ways to take advantage of the
second processing element. The most obvious is
to operate on two sets of data at the same time
and have each processing element deal
exclusively with a single channel. However, for
an FIR filter, it is possible to split the input into
two halves and treat the halves as two channels
of data that use the same filter taps (i.e.,
broadcast mode).

For an extended-precision implementation, the
limitations (e.g., placement of data in different
memory blocks, and interleaving the input data
and coefficients) imposed by normal-precision
(32-bit) SIMD operations do not exist, since the
long-word reads fill all available bandwidth. In
fact, the only restriction on the placement of the
data in these examples is that the coefficients
mustto be in a different block of memory than
the delay line and input data; this is necessary to
avoid block conflicts when fetching and writing
back data.

This allows the algorithm to access two different
points in the input without sacrificing
performance or rearranging the data. The
example SIMD code is set up for the split-input
method, but it can be changed easily to handle
two separate channels of data by modifying the
input pointer and increasing the loop count to
cover an entire block rather than half.

The 64-bit buses will allow the transfer of only
one data value and one coefficient value per
cycle. In order to use SIMD, it is necessary to
fetch at least two data values and one coefficient
per multiply. Therefore, it is necessary to
perform two sets of reads per MAC instruction
(i.e., a 64-bit MAC consists of two instructions).
mrb=mrb+r3*r0(suf), r0=dm(i0,m7),
 r2=pm(i9,m14);

r2=dm(i1,m6),r0=pm(i8,m15);

Since SIMD long-word dual-data accesses are
split between the processing elements, the
second read in the SIMD MAC uses the same
registers accessed by the opposite bus, as can be
seen in the example above. This sequence of
instructions is found frequently in both the SIMD
FIR and SIMD IIR code that is attached.

Complete source code for 64-bit-accurate
FIR and IIR filters is contained in the
accompanying compressed package.

fir64

 a

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors (EE-270) Page 6 of 9

fir64_start:
 //Multiply least significant halves with taps in MRF
 mrf=r0*r2 (uuf), r0=dm(i0,m7), r2=pm(i9,m14);
 lcntr=NUM_COEFFS-1, do m_st until lce;
 m_st: mrf=mrf+r0*r2 (uuf), r0=dm(i0,m7), r2=pm(i9,m14);

 //Copy from most significant 32-bits of the low half multiplication
 //Store Output from last pass through the loop
 r6=mr1f, dm(i5,m6)=r4;
 mr0b=r6;
 r7=0;
 mr1b=r7;

 //Cross multiply upper and lower halves in MRB
 //Multiply upper halves in MRF
 mrf=r1*r3(ssf);
 mrb=mrb+r1*r2(suf);

 lcntr=NUM_COEFFS-1, do MAC until lce;
 mrb=mrb+r3*r0(suf),r0=dm(i0,m7), r2=pm(i9,m14);
 mrb=mrb+r1*r2(suf);
 MAC: mrf=mrf+r1*r3(ssf);
 mrb=mrb+r3*r0(suf),r2=dm(i0,m6);

 //Collect MRB and MRF into registers for final addition
 //Read next input
 r4=mr0f,r0=dm(i4,m6);
 r5=mr1f;
 r6=mr0b;
 r7=mr1b;

 //Shift result of mixed multiplies by 31 bits (don't need sign bit)
 r6=lshift r6 by -31;
 r6=r6 OR lshift r7 by 1;
 r7=lshift r7 by -31;

 //Final 64-bit addition of MRB and MRF
 //Store input to DL, Read first tap
 r4=r4+r6,dm(i0,m7)=r0, r2=pm(i9,m14);
fir64_end: r5=r5+r7+CI;

Listing 2. 64-bit FIR

64-Bit-Accurate IIR Filter

Again, we consider R0/R1 to be the data value
and R4/R5 to be a coefficient value; each
multiplication in the IIR will be of the form
described earlier:
((R0 x R4)>>64 + (R0 x R5)>>32)
+ ((R1 x R4)>>32 + R1 x R5)

The kernel for a 64-bit-accurate IIR
implementation (a single biquad) is shown in
Listing 3. The number of cycles needed to

execute the implementation is N*33, where N is
the size of the input buffer.

The SIMD considerations for this algorithm are
similar to those mentioned for the FIR
implementation. For this algorithm, however, it
is not possible to split the input into two halves.
Therefore, the included SIMD code can only be
used to filter two channels of data
simultaneously. Again, the only restriction on the
placement of the data in this example is that the

 a

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors (EE-270) Page 7 of 9

coefficients need to be in a different block of memory than the delay-line and input data.

iir64

iir64_start:
 //Multiply lower halves in MRF
 //Read X-2, B2
 mrf=mrf + r0*r4 (uuf), r0=dm(i0,m6), r4=pm(i9,m14);
 //Read A1, Adjust DL pointer
 mrf=mrf + r0*r4 (uuf), r0=dm(i0,m6), r4=pm(i9,m14);
 //Read Y-1, A2
 mrf=mrf - r12*r4 (uuf), r0=dm(i0,m7), r4=pm(i9,m14);
 //Read Y-2, B0
 mrf=mrf - r0*r4 (uuf), r0=dm(i0,m7), r4=pm(i9,m14);

 //Copy from most significant 32-bits of the low half multiplication
 r7=0;
 r6=mr1f;
 mr1b=r7;
 mr0b=r6;

 //Cross multiply upper and lower halves in MRB
 //Multiply upper halves in MRF
 //Read Y-1
 mrf=r3*r5 (ssf);
 mrb=mrb+r3*r4 (suf),r0=dm(i0,m7);
 //Read X-1, B1
 mrb=mrb+r5*r2 (suf),r0=dm(i0,m5),r4=pm(i9,m14);
 //Update X-1
 mrf=mrf+r1*r5 (ssf);
 mrb=mrb+r1*r4 (suf), dm(i0,m6)=r2;
 //Read X-2, B2
 mrb=mrb+r5*r0 (suf), r2=dm(i0,m5),r4=pm(i9,m14);
 //Update X-2
 mrf=mrf+r3*r5 (ssf);
 mrb=mrb+r3*r4 (suf), dm(i0,m6)=r0;
 //Read Y-1, A1
 mrb=mrb+r5*r2 (suf), r0=dm(i0,m6),r4=pm(i9,m14);
 //Store output
 mrf=mrf-r1*r5 (ssf), dm(i5,m6)=r12;
 //Read Y-2
 mrb=mrb-r1*r4 (suf), r2=dm(i0,m5);
 //Update Y-2, read A2
 mrb=mrb-r5*r0 (suf), dm(i0,m7)=r0, r4=pm(i9,m14);
 //Modify DL Pointer
 mrf=mrf-r3*r5 (ssf), modify(i0,m7);
 //Modify DL Pointer
 mrb=mrb-r3*r4 (suf), modify(i0,m7);
 //Read X-1
 mrb=mrb-r5*r2 (suf), r0=dm(i0,m6);

 //Collect MRB and MRF into registers for final addition
 //Modify DL Pointer
 r12=mr0f,modify(i0,m6);
 r13=mr1f;
 r6=mr0b;
 r7=mr1b;

 a

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors (EE-270) Page 8 of 9

 //Shift result of mixed multiplies by 31 bits
 r6=lshift r6 by -31;
 r6=r6 OR lshift r7 by 1;
 r7=lshift r7 by -31;

 //Final 64-bit addition of MRB and MRF
 //Read next input, B0
 r12=r12+r6,r2=dm(i4,m6), r4=pm(i9,m14);
 r13=r13+r7+CI;

 //Update Y-1, read B1
iir64_end: mrf=r2*r4 (uuf), dm(i0,m7)=r12, r4=pm(i9,m14);

Listing 3. 64-bit Biquad (IIR)

Summary
This application note describes an effective
method for implementing extended-precision
arithmetic on SHARC processors. The arithmetic
itself is not the only issue that must be
considered when implementing these algorithms.
In addition to the arithmetic computation, it is
necessary to consider how long-word accesses
and SIMD operations work on the extended data.
After introducing extended-precision addition,
subtraction, and multiplication, this document
discussed the use of these operations to
implement FIR and IIR filters. Table 2

summarizes the performance of the FIR and IIR
filters found in the compressed package supplied
with this document.

Specifically, this note applies to any of the
SHARC devices in the ADSP-2116x, ADSP-
2126x, and ADSP-2136x families. While the
projects and cycle counts provided are specific to
the ADSP-2136x family, the filter code does not
need to be changed to be ported to another SIMD
SHARC processor. The only required changes
are to the .LDF file, since all of these processors
are code compatible and have identical internal
memory bus structures.

 64-bit Accuracy SIMD 64-bit Accuracy

FIR N*(4*(T-1)+20) cycles° (N/2 + T/2)*(6*(T-1)+22) cycles°

N*(6*(T-1)+22) cycles°°

IIR 33*N cycles° 43*N cycles°°

°Cycles for one N-point channel of data

°°Cycles for two N-point channels of data

Table 2. Computation Time for 64-bit Filter Implementations

 a

Extended-Precision Fixed-Point Arithmetic on SIMD SHARC® Processors (EE-270) Page 9 of 9

References
[1] ADSP-21160 SHARC DSP Instruction Set Reference. Rev 2.0, November 2003. Analog Devices, Inc.

[2] ADSP-2136x SHARC Processor Programming Reference. Rev 0.3, February 2005. Analog Devices, Inc.

[3] ADSP-21161 SHARC Processor Hardware Reference. Rev 4.0, February 2005. Analog Devices, Inc.

[4] Extended-Precision Fixed-Point Arithmetic on the Blackfin Processor Platform (EE-186). Rev 3. May 2003.
Analog Devices, Inc.

Document History

Revision Description

Rev 1 – July 07, 2005
by Brian M.

Initial Release

	Introduction
	Background
	64-bit Data in VisualDSP++ Tools
	Long-Word Accesses
	SIMD Long-Word Accesses
	Addition/Subtraction
	Multiplication
	Two-Digit Decimal Multiplication
	Two-Digit Hexadecimal Multiplication
	64-Bit Accuracy with 32-Bit Multiplications
	63-Bit Accuracy with 32-Bit Multiplication

	Filter Implementation
	Double-Precision FIR Filter Implementation
	SIMD FIR Filter Implementation
	fir64
	64-Bit-Accurate IIR Filter
	iir64

	Summary
	References
	Document History

