
Engineer-to-Engineer Note EE-232

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Configuring the Signal Routing Unit of ADSP-2126x SHARC® DSPs
Contributed by K. Malsky Rev 1 – February 12, 2004

Copyright 2004, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property

Introduction
The ADSP-2126x family of SHARC® DSPs is
capable of interfacing with a wide variety of
peripherals. Much of this versatility comes from
the processor’s “soft” connections between the
I/O ports and the physical package pins. When
most processors are designed into real-world
systems, many device pins are tied high or low,
pulled up, pulled down, or left unconnected. A
complex system often has many input pins with
fixed or default values that must be hard-wired
and unused outputs pins. The Signal Routing
Unit (SRU) on an ADSP-2126x DSP is a
software-controlled matrix that can eliminate the
need for pins that do not serve any true I/O
purpose.

The SRU provides maximum flexibility by
allowing you to define the function of the 20 pins
of the digital audio interface (DAI). However,
this flexibility brings complexity that can be
overwhelming when beginning a new design.
This document provides guidance for engineers
who are starting their first project using the SRU
and the DAI pins. It offers helpful hints and
tricks that may assist experienced users.

Getting Started
The SRU, which is documented in the ADSP-
2126x SHARC DSP Peripherals Manual [1], can
be somewhat difficult to approach. By its nature,
any connection matrix requires a clear
understanding of what is being connected. The
naming convention for these endpoints is very

consistent, but frequently counterintuitive. In an
attempt to make the nomenclature more intuitive,
we’ll begin by using familiar terms and focusing
on the outside of the processor.

Step 1: Take Inventory of the Unique Signals

As mentioned above, only signals that actually
provide information to and from peripherals need
to be connected to the SHARC DSP. Since there
is a means of routing within the DSP, signals
need only to be connected to a single pin,
regardless of the number of internal places the
signal is used. You do not have to connect the
same signal to two or more DAI external pins.

Identify the peripherals that you are trying to
connect to the SHARC DSP, and count the
unique signals. If the same clock or frame sync is
connected to multiple devices, it counts as one
signal. When a serial data stream drives multiple
output devices, it also counts as a single signal.
List the unique I/O signals and look carefully to
see what else you may be able to eliminate.

For example, if you find two signals are
identical, but of opposite polarity (inverted),
count them as one signal, as the SRU can
generate either from the other. If a clock signal is
a phase-aligned, integer sub-multiple of another
clock signal, group them together. The Precision
Clock Generator (PCG) is a peripheral within the
DAI that may allow you to connect only the
fastest clock. For example, if there is a clock at
frequency f and another at f/8, it is likely that
only the faster clock needs a DAI pin. Read

of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

 a
about the PCG in the ADSP-2126x SHARC DSP
Peripherals Manual [1] for details.

Step 2: Note the Direction of Signal Flow

Next to each signal in your list, indicate whether
it should be an input to the pin buffer, an output
from the pin buffer, or bidirectional.

! The external connection to the SHARC
DSP DAI pins (the wire lead or ball) is
part of a peripheral known as a pin
buffer. Pin buffers will be explained in
detail in the next section. For now, just
think of them as I/O pins on the SHARC
with programmable behavior.

Most pin buffers are used only in one direction in
a given design. Note that many peripherals have
pins that are capable of being bidirectional, but
are only used in one direction in the system.
When a pin buffer is unidirectional,
programming the SRU is dramatically simplified.

In cases where the pin is bidirectional, determine
what causes the direction to change. Is it the state
of another pin? Is it the state of a processor-level
control register? Is it the software configuration
of a port? Think about what may be controlling
when the SHARC is driving a logic value onto
the bidirectional pin and when the pin is just
reading a logic input.

Step 3: Allocate the DAI Pins

At this point, it is likely that you will have
reduced your list to 20 or fewer signals. If you
have a few extra, don’t panic. There are
additional pins that may be designated as various
types of GPIO, including FLAGS, IRQ, and
device selects.

Build a “cheat sheet” that lists the DAI pin
numbers (1-20), the signal to which you are
connecting each pin, and whether it is an output,
input, or bi-directional (from the perspective of
the SHARC DSP). Even if the schematics are
easy to read, a clean version of this table will be
invaluable until your system is up and running.

Once the SRU is configured correctly (one or
more routing patterns depending on your
application), most of this will become
transparent.

Programming the SRU
Think of each physical DAI as a 3-terminal
peripheral with logical connections for an input,
an output, and an enable that activates the pin
buffer amplifier.

IN OUT

ENABLE

PBxx_I

PBxx_O

PBENxx_I

External
Package

Connection
Pin

Interface
to SRU

PBxx_OPIN
BUFFER

Figure 1. A Pin Buffer

A pin buffer is like a small buffer amplifier that
can source enough current to drive the pin and a
trace on the circuit board. When switched on
(i.e., when its enable input is logic high), the
logic value at the pin buffer input is driven onto
the pin buffer output. When switched off (i.e.,
when its enable input is logic low), the buffer
amplifier is high impedance, and the logic level
of the pin buffer output is easily controlled by an
external source. Pin buffers are the logical
gateway for the physical IC package leads
associated with the DAI.

Step 4: Program the Inputs to the SHARC DSP

Understanding the nomenclature is, arguably, the
most difficult part of using the SRU.
Programming is very simple. Ensure that you
understand the next paragraph before continuing.

Since a pin buffer is an on-chip peripheral, the
signal you connect to the physical package is

Configuring the Signal Routing Unit of ADSP-2126x SHARC® DSPs (EE-232) Page 2 of 6

 a
referred to as the pin buffer output. Although it
is an input to the SHARC, it is an output from
the pin buffer. Note that Figure 1 shows two
connections to the trace, which are labeled
PBxx_O (pin buffer output). One of them is part
of the SRU interface, and the other is the external
package connection pin. When the pin buffer is
used as an input, the signal follows this path.
Stated another way, a pin buffer output within
the SRU is always equal to the logic value on the
external pin.

All DAI pins that do not change signal flow
direction can be routed in the SRU relatively
simply. The signal follows the hard-wired path
mentioned above. For each DAI pin that is an
input to the SHARC DSP, tie the pin buffer
enable low to ensure that the pin does not drive
the line.

Next, connect the pin buffer output to the place
in the SRU where you want to connect the signal.
For example, the following macro instructions
connect DAI pin 7 to the frame sync input of
SPORT4:

SRU(LOW,PBEN07_I);
SRU(DAI_P07_O,SPORT4_FS_I);

Listing 1. Configuring a DAI Pin as an Input

Bit fields in SRU registers are always inputs and
therefore can have one value only. The name of
the node ends in “_I” to remind you that it is an
input. Only one output may be connected to each
input. The destination shown above may be any
input shown in the bitfields of the SRU registers
for Group A through Group D.

For example, an external frame sync is connected
to SPORT3 as follows:

SRU(LOW,PBEN07_I);
SRU(DAI_P07_O,SPORT3_FS_I);

Listing 2. DAI Pin Input to SPORT3 Frame Sync

An output signal is just an encoding – an
enumerated value entered into a bit field. Thus,

an output may connect to any number of inputs
within the same group.

The third SRU connection is not always
necessary, but it is recommended that you tie the
pin buffer input to low as follows:

SRU(LOW,DAI_P07_I);

Listing 3. Setting an Unused Pin Buffer Input Low

There are a couple of reasons for this. First, it
can make your code clearer. If the enable and
input of a pin buffer are tied low, that DAI pin is
obviously being used as an input (or not at all).
Also, preventing logic from unnecessary
switching saves power and reduces RF radiation.
For example, there is no reason to pass a high
frequency clock through the SRU if it will be
ignored. Last, all of the DAI pins are connected
to the serial ports when the processor comes out
of reset. The default value is not logic low. If
there is a mistake in your code that enables the
pin buffer, the output may be driven with a signal
that is difficult to identify. Again, this is not
strictly necessary, but it is recommended
practice.

Step 5: Program the Outputs from the SHARC

For each pin that is an output from the SHARC
DSP, tie the pin buffer enable high. This ensures
that the pin buffer does drive a signal onto the
external pin. More specifically, it ensures that the
logic value at the pin buffer’s input is driven
onto the pin buffer’s output.

Connect the (internal) source signal to the pin
buffer input. For example, use the following
macro instructions to connect the output of
Timer 0 to DAI pin 14:

SRU(HIGH,PBEN14_I);
SRU(TIMER0_O,DAI_P14_I);

Listing 4. Configuring a DAI Pin as an Output

Note that the source signal (TIMER0_O in this
example) must be an output listed in the Group
D Sources – Pin Signal Assignments table in the

Configuring the Signal Routing Unit of ADSP-2126x SHARC® DSPs (EE-232) Page 3 of 6

 a
ADSP-2126x SHARC DSP Peripherals Manual
[1], and will end in “_O” as a reminder that it is
an output.

! An input may be connected to only one
output, but an output may be connected
to multiple inputs.

An output signal may be connected to numerous
inputs. For example, connect the clock output of
SPORT2 to both DAI pin 7 and as a clock input
for SPORT1 as follows:

/* Make DAI pin 14 an output */
SRU(HIGH,PBEN14_I);

/* Send the clock out DAI pin 14 */
SRU(SPORT2_CLK_O,DAI_P14_I);

/* Use the SPORT1 clock for SPORT2 */
SRU(SPORT2_CLK_O,SPORT1_CLK_I);

Listing 5. Routing an Output to More than One Input

In Listing 5, instead of connecting clock output
to pin buffer input and then pin buffer output to
the other SPORT clock input, notice that both of
the inputs are connected directly to the clock
output. This is because the input and the output
of the pin buffer are not guaranteed to have the
same value. As long as the pin buffer enable,
PINEN14, is set to high (asserted), this daisy-
chaining is equivalent to the parallel connection
made above. However, if the pin enable is
deasserted, the pin acts as an input and the clock
input to SPORT1 is driven from off-chip.

Unless you specifically want the connection to
change based on the value of the pin buffer
enable, the best practice is to connect directly to
the source as shown in Listing 5.

! It is not necessary to route a pin buffer
output when it is not needed.

 Step 6: Program the Bi-directional DAI Pins

As mentioned in Step 2, a pin that serves as both
an input and an output must have a signal present
in the SRU that dictates the flow direction.
Several peripherals, which are explicitly

designed to be bidirectional, have input, output,
and enable nodes associated with a single signal.

For example, each of the serial port signals
(clock, frame sync, data channel A, and data
channel B) can be an input or an output. The
direction of these signals is controlled in the core
by writing to the SPCTLx registers. You can
connect the clock signal for SPORT0 to DAI
pin 6 as follows:

SRU(DAI_P06_O,SPORT0_CLK_I);
SRU(SPORT0_CLK_O,DAI_P07_I);
SRU(SPORT0_CLK_PBEN_O,PBEN07_I);

Listing 6. A Bidirectional DAI Pin

Refer to the discussion of bidirectional pins in
the ADSP-2126x SHARC DSP Peripherals
Manual [1] for more information. Also, the table
of valid sources for group F, located in the
manual's appendix, describes the I/O register and
includes all pin enable signals from all explicitly
bidirectional peripherals.

Step 7: Be Creative and Use of the Options

Any Group F source can control pin direction,
and you can perform tricks by taking advantage
of the MISC signals. You are not limited to using
these internally generated enable signals.

The code in Listing 7 may be a little hard to
follow at first, but it demonstrates very powerful
functionality. SPORT1 is always a clock master
and SPORT0 is always a clock slave.
Furthermore, the clock output from SPORT1 is
always being driven as an output on DAI pin 4.
The clock input to SPORT0 is always the same
as the external signal on DAI pin 7. DAI pin 1 is
always an input for control signal.

/* SPORT1 clock is an output */
SRU(SPORT1_CLK_O,DAI_P04_I);
SRU(HIGH,PBEN04_I);

/* Pin 7 direction is set by pin 1 */
SRU(MISCA0_O,PBEN07_I);
SRU(DAI_PIN01_O,MISCA0_I);

Configuring the Signal Routing Unit of ADSP-2126x SHARC® DSPs (EE-232) Page 4 of 6

 a
/* When pin 7 is an input, the off-
 chip signal drives SPORT0 clock */
SRU(DAI_P07_O,SPORT0_CLK_I);

/* When pin 7 is an output, SPORT1
 clock drives SPORT0 clock */
SRU(SPORT1_CLK_O,DAI_P07_I);

/* Pin 1 (dir control) is an input */
SRU(LOW,PBEN01_I);
SRU(LOW,DAI_P01_I);

Listing 7. DAI Pin Output

The tricky part is that DAI pin 7 (SPORT0 clock
in) is a bidirectional pin, and its direction is
controlled by DAI pin 1. When DAI pin 1 is low,
DAI pin 7 is an input and SPORT0 receives its
clock signal from off-chip. When DAI pin1 is
high, DAI pin 7 is an output (equal to the
SPORT1 clock output) and SPORT0 receives the
internally generated clock from SPORT1.

Step 8: Optimize the Initialization Code

Each macro command used in this document
expands to six SHARC DSP assembly language
instructions. However, each macro call modifies
a small bit field of a one SRU control register
only. In SHARC assembly, a register can be
loaded with a full 32-bit value in a single
instruction.

In a typical system, the SRU is primarily
configured at initialization, and modified
infrequently. Write and debug your application
using the macro as shown above. Create a
subroutine that encapsulates a large number of
these macro calls.

When you feel that the routing is correct and
your I/O is working smoothly, start your
application in the debugger and place a
breakpoint just after you have completely
configured the SRU. Open the debug windows
that show the values of the various SRU registers
and note their values. You can now comment out
all of the macro calls (leave them in place as
documentation), and replace them with a small

number of instructions that write the value of the
SRU control register completely.

For example, the following macro calls connect
the frame syncs inputs for all six SPORTs to DAI
pin 3:

SRU(DAI_P03_O,SPORT0_FS_I);
SRU(DAI_P03_O,SPORT1_FS_I);
SRU(DAI_P03_O,SPORT2_FS_I);
SRU(DAI_P03_O,SPORT3_FS_I);
SRU(DAI_P03_O,SPORT4_FS_I);
SRU(DAI_P03_O,SPORT5_FS_I);

Listing 8. Configuring Frame Syncs Using Macros

This will expand to 36 instructions, which will
set the value of the control register SRU_FS0.
The following in-line assembly instruction
performs the same function:

asm(“r0=0x00210842; dm(SRU_FS0)=r0;”);

Listing 9. Configuring Frame Syncs Using Inline asm

This reduces the initialization code size from 36
instructions to 2 and removes the overhead
penalty associated with the macro. You do not
have to calculate this value (or waste time
debugging it) because it displays directly in the
debugger window. Obviously, if you are writing
in assembly, you can ignore the wrapper. For a
typical system, you can save the code space and
execution time of a few hundred 48-bit
instructions.

Summary
The aggregate bandwidth of the DAI pins is
much higher than it may appear at first glance
because the SRU eliminates unnecessary pins.
An even less obvious benefit, however, is the
myriad ways in which one signal can be used to
manipulate another signal, such as gating,
triggering, masking, and re-clocking.

This application note scratches the surface in
describing the possibilities. DAI resources, such
as the Precision Clock Generators, versatile
timers, flags, interrupt sources, and pin buffer

Configuring the Signal Routing Unit of ADSP-2126x SHARC® DSPs (EE-232) Page 5 of 6

 a
inverters increase the number of “trick”
permutations dramatically. Be creative, and you

may be surprised at what the SRU has to offer.

References
[1] ADSP-2126x SHARC DSP Peripherals Manual. Revision 1.0, December 2003. Analog Devices, Inc.

Document History

Version Description

Rev 1 – February 12, 2004
by K. Malsky

Initial Release

Configuring the Signal Routing Unit of ADSP-2126x SHARC® DSPs (EE-232) Page 6 of 6

	Introduction
	Getting Started
	Step 1: Take Inventory of the Unique Signals
	Step 2: Note the Direction of Signal Flow
	Step 3: Allocate the DAI Pins

	Programming the SRU
	Figure 1. A Pin Buffer
	Step 4: Program the Inputs to the SHARC DSP
	Listing 1. Configuring a DAI Pin as an Input
	Listing 2. DAI Pin Input to SPORT3 Frame Sync
	Listing 3. Setting an Unused Pin Buffer Input Low

	Step 5: Program the Outputs from the SHARC
	Listing 4. Configuring a DAI Pin as an Output
	Listing 5. Routing an Output to More than One Input

	Step 6: Program the Bi-directional DAI Pins
	Listing 6. A Bidirectional DAI Pin

	Step 7: Be Creative and Use of the Options
	Listing 7. DAI Pin Output

	Step 8: Optimize the Initialization Code
	Listing 8. Configuring Frame Syncs Using Macros
	Listing 9. Configuring Frame Syncs Using Inline asm

	Summary
	References
	Document History

