

Engineer-to-Engineer Note EE-357

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Static Voltage Scaling for ADSP-2148x SHARC® Processors
Contributed by Ramdas C. and Chirag P. Rev 1 – March 22, 2013

Copyright 2013, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
Typically, for Analog Devices DSPs and
processors, minimum and maximum core
operating voltage specifications provided in the
datasheet (VDD_INT) are fixed voltage values.

These traditional fixed datasheet voltage
specifications need to be strictly adhered to, in
order to ensure correct and reliable operation of
the processor under all operating conditions
including temperature and frequency.

There is an alternate voltage specification
technique known as Static Voltage Scaling (SVS)
that can provide significant performance benefits
including higher frequency operation without a
major increase in power consumption. That said,
Static Voltage Scaling is only available on parts
specifically designed for SVS operation. This
includes certain ADSP-2148x SHARC®
processor variants. For more details on supported
devices and corresponding power consumption
figures, please refer to the ADSP-2148x SHARC
processor datasheet[1].

This EE-note details the requirements to
implement a SVS power supply system for
ADSP-2148x devices specifically designed to
support this feature, enabling core clock speeds
of up to 450 MHz.

Implementing SVS on ADSP-2148x processors
is enabled by:

1. The optimum VDD_INT voltage for each
device is factory programmed into a non-
volatile processor register. This unique

voltage value can be read by software at first
execution of code to set the external voltage
regulator to the appropriate VDD_INT voltage
level for each system/device.

2. For reliable operation, the voltage regulator
supplying VDD_INT to the processor must be
programmable to the exact voltage level
required by the device. The recommended
design is detailed in the Programmable
Regulator Implementation section.

Note that most existing switching regulator
designs that use a resistor divider feedback
mechanism to set VDD_INT can be converted to
the required programmable regulator by utilizing
a programmable resistor (Digipot) device as
described next.

SVS Implementation
ADSP-2148x processors that support SVS
include a 256-bit SVS_DAT register that contains
the unique binary bit pattern corresponding to the
value of VDD_INT for each device.

As shown in Figure 1, only a portion of the
SVS_DAT register is used for storing the VDD_INT
specific information. The rest of this register is
reserved.

Firstly, bit positions SVS_DAT[191-128] and
SVS_DAT[255-192] are mirror duplicates of each
other. This redundancy is implemented to ensure
programmed data integrity and error correction.

http://www.analog.com/processors�

Static Voltage Scaling for ADSP-2148x SHARC® Processors (EE-357) Page 2 of 2

The 256-bit serial register SVS_DAT can be treated
as a sequence of 8 32-bit registers SVS_DATn
(n=0, 1, 2, 3, 4, 5, 6 and 7).The register contents
must be read using a specific sequence, as
described in the accompanying example code.

As indicated in Figure 1, SVS_DAT4 and
SVS_DAT5 (and duplicated SVS_DAT6 and

SVS_DAT7 respectively) contain the VDD_INT bits
of interest. The register pair SVS_DAT5:4
correspond to SVS_DAT[191-128] and the
register pair SVS_DAT7:6 correspond to
SVS_DAT[255-192].

Figure 1. Positioning of VDD_INT information within SVS_DAT register

Built-in Redundancy for SVS_DAT bits

Two levels of redundancy/error checking are
implemented in the process of storing the
VDD_INT information within the SVS_DAT
register. This is done to ensure that in the
unlikely, but rare possibility that a bit within the
VDD_INT field might be corrupted, it can be
corrected for the vast majority of parts.

The first stage of error checking is to ensure that
SVS_DAT5:4 contents are identical to the

SVS_DAT7:6 contents, and that VDD_INT
contained in SVS_DAT4 is identical to the copy in
SVS_DAT5, as well as SVS_DAT6 and SVS_DAT7.

The second stage of error checking is a parity
check of each the VDD_INT value.

The software example code contained in the
associated .ZIP file reads the contents of the four
registers SVS_DAT7:4, performs the redundancy
checks and implements a correction algorithm if
any mismatches are detected.

Static Voltage Scaling for ADSP-2148x SHARC® Processors (EE-357) Page 3 of 3

Translating VDD_INT bit pattern values into
nominal VDD_INT value

The VDD_INT values can range in value from a
minimum of 0.65 Volts to a maximum value of
1.4375 Volts in step sizes of 0.0125 Volts. The
following table (Table 1) shows the linear
relationship between the voltage and
corresponding binary value mapping.

VDD_INT value (Volts) Bit Pattern (binary value)

0.6500 000000

0.6625 000001

0.6750 000010

…. ….

…. ….

1.4375 V 111111

Table 1. Translation of Bit pattern to corresponding
VDD_INT value

Programmable Regulator
Implementation
In order to implement an ADSP-2148x specific
SVS, the system must be designed with a
programmable VDD_INT voltage regulator. In
addition, the system initialization code must
incorporate the code provided in the associated
.ZIP file (adapted to specific system needs, if
any) in order to set the programmable voltage
regulator to the required VDD_INT value.

Hardware

The attached ADSP-21489 schematics and
reference design database contain the details for
the required modifications in order to implement
Static Voltage Scaling.

Figure 2 shows the power supply circuitry for a
conventional fixed voltage regulator power
supply. Note that Figure 2 includes both a 5V to
3.3V step-down regulator as well as a 1.1V
switching regulator.

Figure 2 Power Supply portion of traditional EZ-Kit schematic that does not implement SVS

Static Voltage Scaling for ADSP-2148x SHARC® Processors (EE-357) Page 4 of 4

Figure 3 shows the required implementation for
an SVS compliant programmable power supply.
This reference implementation includes a
AD5258BRMZ10 (PN:AD80/009Z-0)[2] digipot
and its associated resistor-divider circuitry,
providing the feedback voltage to the
ADP2114[3] switching regulator that supplies
VDD_INT.

For proper ADSP-2148x Static Voltage
Scaling implementation, it’s strongly
recommended to use a ±1% accuracy
voltage regulator, as per the attached
reference design.

That said, customers may design their own
programmable voltage regulator circuitry, as long
as the required specifications are met. Additional
guard-banding to the SVS_DAT value might be
required, if an alternate regulator design is
implemented. Please contact Analog Devices,
Technical Support for specific programmable
regulator design guidance including the use of an
ADI digipot in the feedback path of other
regulators.

Figure 3. Required Power Supply portion of adjustable regulator for SVS VDD_INT operation

Static Voltage Scaling for ADSP-2148x SHARC® Processors (EE-357) Page 5 of 5

Software

The example code provided in the associated
.ZIP file shows the steps involved in accessing
and reading the contents of the SVS_DAT register
of the device into the eight SVS_DATn 32-bit
registers, the algorithm used for testing the
checksums and arriving at the unique VDD_INT

for the part, as well as how to program the
digipot step via the Two Wire Interface (TWI).

The flow-chart for the implemented algorithm to
extract and calculate the VDD_INT bit information
from the SVS_DAT register is shown in Figure 4.

Figure 4. Algorithm for extracting and error-checking of SVS_DAT bits

Static Voltage Scaling for ADSP-2148x SHARC® Processors (EE-357) Page 6 of 6

The step value for programming the digipot, so
that it can provide the appropriate VDD_INT
voltage to the ADP2114[3] voltage regulator, is
determined by Equation 1:

)*55.1(
))*0.143(72.180(

_

_

INTDD

INTDD

V
VX −

=

Equation 1. Digipot step value calculation

where X is the digipot step value and, which is an
integer number that can range from 0 to 64.

Equation 1 is only valid for the digipot
and resistor-divider network provided in
the required SVS reference design.
Specifically, Equation 1 is true for the
64-bit AD5258BRMZ10[2] with the
following resistor values: R6=59 Ώ,
R8=143 Ώ and R9=100 Ώ.

For a different digipot or different
resistors values, please refer to the
corresponding device datasheet.

Also, note that in the provided example code, the
step value that is programmed into the digipot is
guardbanded by two step values less than what is
determined by Equation 1. This results in a
higher guardbanded voltage applied to the part.

For example, if the equation results in a step
value of 11, the value programmed into the
digipot is 9. This is regulator and board design
specific in order to guarantee correct voltage at
the processor under all possible operating and
load transient conditions.

Alternatively, a look-up table containing the
nominal VDD_INT voltage and corresponding
digipot step value can be used to arrive at the
value that needs to be programmed into the
digipot.

Incorporating SVS Init-code into
System-level Application Code
Figure 5 shows the initialization code necessary
to set the programmable regulator SVS VDD_INT
value. Note that the non-volatile memory
contained within the AD5258BRMZ10[2] digipot
retains the step value programmed the first time.
This is a benefit of using the digipot to control
the switching regulator that results in a faster
start-up time.

Static Voltage Scaling for ADSP-2148x SHARC® Processors (EE-357) Page 7 of 7

Figure 5 Incorporation of SVS code into System-level Application Code

Observed Load Transient
Response
Figure 6 shows the VDD_INT voltage transient
response between full-load and no-load VDD_INT
measured at a test-point close to the processor.
The test-code being executed by the DSP in the
example shown alternates between the processor

executing a peak power consumption test vector,
and executing NOP (no-operation) instructions.
The purpose of this exercise is to measure the
voltage transient response of the regulator
between full-load and no-load conditions. As
shown in Figure 6, the swing between the
programmed VDD_INT value and the peak offset
is less than 2% even in the worst-case.

Static Voltage Scaling for ADSP-2148x SHARC® Processors (EE-357) Page 8 of 8

Figure 6 VDD_INT rise-and-drop between full-load, no-load, full-load for the ADP2114 regulator design

Static Voltage Scaling for ADSP-2148x SHARC® Processors (EE-357) Page 9 of 9

References
[1] ADSP-21483/21486/21487/21488/21489 SHARC Processor Data Sheet. Rev B, March 2013. Analog Devices, Inc.

[2] AD5258 Nonvolatile, I2C®-Compatible 64-Position, Digital Potentiometer Data Sheet. Rev C, May 2010. Analog
Devices, Inc. (NOTE: when ordering, reference specific ADI PN AD80/009Z-0)

[3] ADP2114: Configurable, Dual 2 A/Single 4 A, Synchronous Step-Down DC-to-DC Regulator Data Sheet. Rev 0, July
2009. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – March 22, 2013
by Ramdas C. and Chirag P.

Initial Release

	Introduction
	SVS Implementation
	Built-in Redundancy for SVS_DAT bits
	Translating VDD_INT bit pattern values into nominal VDD_INT value

	Programmable Regulator Implementation
	Hardware
	Software

	Incorporating SVS Init-code into System-level Application Code
	Observed Load Transient Response
	References
	Document History

