

Engineer-to-Engineer Note EE-383

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough

Contributed by Eric Gregori Rev 1 – December 17, 2015

Copyright 2015, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

The efficiency of a multi-core design is dependent on the quality of the Inter-Core Communication (ICC)

system, as moving data between cores efficiently defines the overall system performance. This EE-note

describes a method of Inter-Core Communication made possible by the unique DMA subsystem in the

ADSP-SC58x heterogeneous multi-core SHARC+TM processor (Figure 1).

Figure 1. ADSP-SC58x SHARC+ Processor Block Diagram

The ADSP-SC58x processor contains one or two SHARC+ cores, SHARC0 (and optionally SHARC1),

each with 640 KB of L1 SRAM (S0L1 and S1L1), an ARM Cortex-A5 processor, 256 KB of L2 SRAM,

and a powerful Direct Memory Access (DMA) subsystem supporting Memory-to-Memory DMA (MDMA)

operation with signaling.

http://www.analog.com/processors

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 2 of 10

This EE-note describes a dual-SHARC+ core quad-channel audio talkthrough example (in the Associated

ZIP File[1]) which takes quad-channel audio from an ADC and filters two channels on each of the SHARC+

cores. The filtering is done in parallel to demonstrate the advantage of a multi-core system. After each

SHARC+ core filters its channels, the filtered results are sent to a DAC for audio playback. Though the

example is a simple audio talkthrough application, hooks are in place for readers to add their own audio

processing algorithms.

Memory-to-Memory DMA (MDMA)

Each SHARC+ core in the ADSP-SC58x processor has 640 KB of single-cycle L1 memory, and the core

executes at maximum efficiency when accessing data in its L1 memory. Distributing an algorithm across

cores depends on an efficient method of copying data from the SHARC0 core’s L1 space (S0L1) to the

SHARC1 core’s L1 space (S1L1). Using MDMA, data can be moved between these two spaces without

core intervention (entirely in the background) at up to 1500 MB/s. The ADSP-SC58x processor contains

four independent MDMA streams, coupled into source/destination (S/D) DMA channels, as shown in

Figure 2.

MDMA

Stream

Channel

(S/D)

FIFO

Depth

Speed Performance

S0L1 to S1L1

0 8, 9 128, 64 Low 450 MB/s

1 18, 19 128, 64 Low 450 MB/s

2 39, 40 128, 64 Medium 900 MB/s

3 43, 44 128, 64 High 1500 MB/s

Figure 2. ADSP-SC58x Processor Memory-to-Memory DMA Channel Description

In addition to copying data, an ICC system requires a signaling method. A unique feature of the ADSP-

SC58x processor’s MDMA engine is the ability to generate an interrupt on the processor receiving the data

transfer. The SHARC0 core can initiate a MDMA transfer that raises an interrupt on the SHARC1 core. The

interrupt acts as a signal between cores that a transfer has completed. As shown in Figure 3, the MDMA

stream is comprised of two DMA channels, a source channel (SRC) and a destination channel (DST), each

with a unique interrupt source ID (SID), and each core can request to be interrupted by any SID. In the

example, the MDMA0 stream is configured to raise an interrupt on the SHARC0 core when the source

DMA channel has completed the transfer from S0L1 to the FIFO, and another interrupt is raised on the

SHARC1 core when the destination DMA channel has completed the transfer from the FIFO to the S1L1

space. The code executing on the SHARC1 core uses the interrupt for synchronization between cores.

The example uses two MDMA streams, each with a unique interrupt handler on the SHARC1 core. The

MDMA0 stream is used to move raw audio from S0L1 to S1L1, and the MDMA1 stream is used to move

filtered audio from S0L1 to S1L1.

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 3 of 10

Figure 3. ICC MDMA Mapping and Signaling

Each SHARC+ core’s L1 memory is broken up into four blocks, each having multiple private and public

addresses depending on the access width (long word, normal word, short word, or byte). Figure 4 shows the

local and global address ranges for byte accesses.

Figure 4. ADSP-SC58x SHARC+ Processor L1 Memory Address Ranges for Byte Accesses

Source

DMA

FIFO

FIFO

Destination

DMA

64bit

64bit

1500

MB/

Sec

640KB L1
SRAM/cache
with parity

Floating-point DSP

450MHz SHARC+

640KB L1
SRAM/cache
with parity

Floating-point DSP

450MHz SHARC+

System Interrupt Controller

DMA SOURCE

INTERRUPT

DMA

DESTINATION

INTERRUPT

SHARC0 SHARC1

MDMAx STREAM

(DMA Channel)

SID

0 SRC(8) 172

0 DST(9) 173

1 SRC(18) 174

1 DST(19) 175

2 SRC(39) 168

2 DST(40) 169

3 SRC(43) 166

3 DST(44) 167

Port Block Local Byte Address Space Global Byte Address Space

SHARC0

L1

Slave

1

0 0x00240000 – 0x0026FFFF 0x28240000–0x2826FFFF

1 0x002C0000 – 0x002EFFFF 0x282C0000–0x282EFFFF

2 0x00300000 – 0x0031FFFF 0x28300000–0x2831FFFF

3 0x00380000 – 0x0039FFFF 0x28380000–0x2839FFFF

Slave

2

0 0x00240000 – 0x0026FFFF 0x28640000–0x2866FFFF

1 0x002C0000 – 0x002EFFFF 0x286C0000–0x286EFFFF

2 0x00300000 – 0x0031FFFF 0x28700000–0x2871FFFF

3 0x00380000 – 0x0039FFFF 0x28780000–0x2879FFFF

SHARC1

L1

Slave

1

0 0x00240000 – 0x0026FFFF 0x28A40000–0x28A6FFFF

1 0x002C0000 – 0x002EFFFF 0x28AC0000–0x28AEFFFF

2 0x00300000 – 0x0031FFFF 0x28B00000–0x28B1FFFF

3 0x00380000 – 0x0039FFFF 0x28B80000–0x28B9FFFF

Slave

2

0 0x00240000 – 0x0026FFFF 0x28E40000–0x28E6FFFF

1 0x002C0000 – 0x002EFFFF 0x28EC0000–0x28EEFFFF

2 0x00300000 – 0x0031FFFF 0x28F00000–0x28F1FFFF

3 0x00380000 – 0x0039FFFF 0x28F80000–0x28FBFFFF

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 4 of 10

Each SHARC+ core uses the local address range to access its own L1 memory, while the Cortex-A5 ARM

core and the DMA engine use the global address range. In the example, MDMA is used to transfer data

from S0L1 to S1L1 block1. The SHARC0 core configures the MDMA destination address to be

0x28AC0000. After the transfer completes, the SHARC1 core can read the transferred data at address

0x002C0000.

Walkthrough of Audio Talkthrough Example

A block diagram of the audio talkthrough example is shown in Figure 5.

Figure 5. Block Diagram of Audio Talkthrough Example

 In the CrossCore® Embedded Studio (CCES) Integrated Development Environment

(IDE), the ARM Cortex-A5 core is Core0 on the ADSP-SC58x processor. The

SHARC+ cores are Core1 and Core2; however, as the System Event Controller (SEC)

does not handle ARM events, the SHARC+ cores themselves are enumerated as

SHARC0 (SHARC+ core 0, which is Core1 in the IDE) and SHARC1 (The SHARC0

core, which is Core2 in the IDE).

Starting from the upper left of Figure 5, four audio channels enter the ADAU1979 ADC and are digitized

into a serial stream. The serial stream enters the ADSP-SC58x processor via the Digital Audio Interface

(DAI) and is transferred to S0L1 via the synchronous serial port (SPORT) receive (RX) Peripheral DMA

(PDMA) channel. The SHARC0 core receives an interrupt after the audio frame is received into the SPORT

RX PDMA destination buffer in S0L1 (ping-pong buffers A or B). The interrupt service routine (ISR) then

executes, where the SHARC0 core starts the MDMA0 stream to transfer the raw audio from the source

buffer (ping-pong buffer A or B) in S0L1 to the destination buffer D in S1L1. At that point, the two

Audio Pipeline

PDMA1
4ch-RX

ADAU1962A
4 audio
channels

ARM Cortex-A5 (Core0)

DAI

S

P

O

R

T

S

PDMA2
4ch-TX

FH G

SHARC1 (Core2) L1

SHARC0 (Core1) L1

A B
Fp(x)
0,2 C

Insert
code
here

4 audio
channels

MDMA start

MDMA interrupt

ADAU1979

MDMA1
4ch

Fp(x)
1,3

Merge
channels

D E

MDMA0
4ch

MDMA start

MDMA

interrupt

Key:

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 5 of 10

SHARC+ cores start filtering the audio frame in parallel, with the SHARC0 core handling channels 0 and

2, storing the results to output buffer C in S0L1, while the SHARC1 core handles channels 1 and 3, storing

the results to output buffer E in S1L1.

After the SHARC0 core fills buffer C, it starts the MDMA1 stream to transfer the filtered audio from source

buffer C in S0L1 to destination buffer F in S1L1. Upon completion, the SHARC1 core gets an interrupt and

interleaves the data from channels 0 and 2 from buffer F (from the SHARC0 core’s processing) with the

data from channels 1 and 3 in buffer E (from its own processing), storing the merged results to the SPORT

transmit (TX) DMA ping-pong buffer (G or H). At this point, the 4-channel audio frame is sent via SPORT

TX PDMA through the DAI to the ADAU1962A DAC to be output.

Audio Data Path vs Time

Figure 6 shows the path of an audio frame through the system relative to time. Notice how the SHARC0

and SHARC1 cores run their signal processing algorithms in parallel. The MDMA0 stream transfer occurs

while the SHARC1 core is merging the audio channels from the previous frame. Also note that the MDMA0

stream’s interrupt is used to synchronize the ADAU1979 ADC and the ADAU1962 DAC.

Figure 6. Audio Frame Data Path Relative to Time

Initializing MDMA for ICC

As MDMA configuration is only done during initialization, the penalty for accessing L2 has no effect on

algorithm run-time. Configuring the MDMA for ICC requires a specific sequence of events. Sequencing

these events between cores requires shared memory, and the example uses a 32-bit variable stored in L2 to

facilitate this.

T0

SPORT to A

Tframe1 Tframe2 Tframe3 Tframe4

M
D

M
A

0

A to

Fp(0,1)

to C

SPORT to ASPORT to B SPORT to B SPORT to A

Tframe5

G to SPORT H to SPORT

S
H

A
R

C
0

S
H

A
R

C
1

Buffers

A, B, C

are in

SHARC0

L1

Buffers

D, E, F,

G, H are

in

SHARC1

L1

M
D

M
A

1
E

+
F

->
G

D to

Fp(1,3)

to E

G to SPORT

M
D

M
A

0

D to

Fp(1,3)

to E

B to

Fp(0,1)

to C

M
D

M
A

1

M
D

M
A

0

M
D

M
A

1

M
D

M
A

0

M
D

M
A

1

A to

Fp(0,1)

to C

B to

Fp(0,1)

to C

E
+

F
->

H

D F D F D

D to

Fp(1,3)

to E

E
+

F
->

G

F D

D to

Fp(1,3)

to E

F

SHARC0

runs Fp

on channels

0 and 1

SHARC1

runs Fp

on channels

1 and 3

SPORT

DMAs

frame into

buffer A.

SHARC0

starts MDMA0

to copy A to D.

SHARC0 and

SHARC1

process frame

in parallel.

SHARC0

starts MDMA1

to copy C to F.

SHARC1

merges E and

F. Sends F to

SPORT.

MDMA

transfers

occur in

background

as SHARC’s

run filter.

SHARC0 filters

channels 0 and 1 at

the same time that

SHARC1 filters

channels 1 and 3.

Parallel filtering

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 6 of 10

Figure 7 shows the events required to initialize the MDMA for ICC. T0 through T6 comprise the

initialization sequence. The SHARC0 core is the master, and the SHARC1 core is the slave. Out of reset,

all three cores start executing. The SHARC+ cores’ pre-initialization code pends on a signal from the ARM.

The ARM initializes power, general-purpose input/output (GPIO), and the System protection Unit (SPU)

before sending a signal to the SHARC+ cores to release and start running their main() functions (T0).

Figure 7. Processor Initialization Sequence at Startup

After the SHARC0 core initializes the ADAU1979 ADC (T1), it configures the MDMA channels for ICC

operation (T2). Meanwhile, the SHARC1 core initializes the ADAU1962A DAC (T1), then waits for the

SHARC0 core to complete the MDMA initialization (T2). When the SHARC0 core completes the MDMA

initialization, it signals the SHARC1 core using the 32-bit variable in L2 and waits for an acknowledge

(T3). After getting the signal, the SHARC1 core installs the interrupt handlers for the MDMA channels and

sends a signal back to the SHARC0 core using the 32-bit L2 variable (T3). The SHARC1 core then waits

for an audio frame from the SHARC0 core (T4-T5). Upon receiving the signal from the SHARC1 core, the

SHARC0 core enables the ADAU1979 ADC (T4) and waits for an audio frame to arrive via the SPORT

(T5). At this point during the initialization, the SHARC1 core is waiting for a raw audio frame (MDMA0)

from the SHARC0 core (T5). When the SHARC0 core gets the audio frame from the ADAU1979 ADC, it

immediately sends the frame to the SHARC1 core using MDMA0 (T5) and starts filtering channels 0 and 2

(T6). When the SHARC1 core gets the first MDMA0 transfer complete interrupt, it enables the

ADAU1962A DAC (T6). From that point on, the application continues receiving audio frames and

processing them using this ICC implementation, as shown in T(n) through T(n+3).

Configuring the MDMA engine for ICC is easy using the MDMA device driver furnished with CCES.

Listing 1 is a code snippet from the accompanying example code that shows how to use the device driver to

Time ARM Cortex-A5 (Core0) SHARC0 (SHARC+ Core1) SHARC1 (SHARC+ Core2)

T0 DAI, Power, GPIO, SPU

init

Waiting Waiting

T1 Waiting Initialize ADAU1979 Initialize ADAU1962A

T2 Waiting MDMA Init Waiting

T3 Waiting Waiting Install Interrupt Handlers

T4 Waiting ADAU1979 Enable Waiting

T5 Waiting Frame from ADAU1979

Send frame using MDMA0

Waiting

T6 Waiting Filter channels 0,2 MDMA0 Interrupt – Enable

ADAU1962A

T(n) Waiting Filter channels 0,2 Filter channels 1,3

T(n+1) Waiting Send filtered audio frame using

MDMA1

Filter channels 1,3

T(n+2) Waiting Frame from ADAU1979

Send frame using MDMA0

MDMA1 Interrupt

Merge channels 0,1,2,3

Send frame to ADAU1962

T(n+3) Waiting Filter channels 0,2 MDMA0 Interrupt

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 7 of 10

open a MDMA stream and configure it for ICC. MDMA_STREAM_ID_RAW is the DMA stream ID. The

driver translates the stream ID to the required pair of source/destination DMA channel IDs. As the raw data

is sent using the MDMA0, the source DMA channel 8 (SID 172) and destination DMA channel 9 (SID 173)

are used, as previously described in Figure 3.

//***
// Open MDMA streams
//***
//
// RAW stream
//
DEBUGMSG(stdout, "Core1: Opening MDMA RAW stream\n");
eResult = adi_mdma_Open (MDMA_STREAM_ID_RAW,
 &MemDmaStreamMem_raw[0],
 &hMemDmaStream_raw,
 &hSrcDmaChannel_raw,
 &hDestDmaChannel_raw,
 NULL,
 NULL);
if (eResult != ADI_DMA_SUCCESS)
{
 DEBUGMSG(stdout,"Failed to open MDMA RAW stream, Error Code: 0x%08X\n", eResult);
 return SHARC_LINK_ERROR;
}

//***
// Configure MDMA streams
//***
//
// RAW stream
//

// Disable the MDMA destination transfer complete interrupt
adi_mdma_EnableChannelInterrupt(hDestDmaChannel_raw,false,false);
// Get the channel SID for the MDMA destination complete interrupt
adi_mdma_GetChannelSID(hDestDmaChannel_raw,&nSid);
// Set interrupt to occur on Core 2 (unfortunate enumeration name in driver, see note)
adi_sec_SetCoreID(nSid, ADI_SEC_CORE_1);
// Enable and register the MDMA source transfer complete interrupt
adi_mdma_EnableChannelInterrupt(hSrcDmaChannel_raw,true,true);
eResult = adi_dma_UpdateCallback (hSrcDmaChannel_raw,
 RawMemDmaCallback,
 hMemDmaStream_raw);
if (eResult != ADI_DMA_SUCCESS)
{
 DEBUGMSG("Failed to set DMA RAW stream callback, Error Code: 0x%08X\n", eResult);
 return SHARC_LINK_ERROR;
}

Listing 1. Initializing MDMA Using the MDMA Device Driver

 As described in the previous note, the enumeration scheme leveraged by the CCES

drivers and services uses the _0 suffix for the SHARC0 core (which is Core1 in the

IDE) and the _1 suffix for the SHARC1 core (which is Core2 in the IDE).

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 8 of 10

After the SHARC0 core configures the ADAU1979 ADC, a callback function is invoked each time the

SPORT fills one of the ping-pong buffers with an audio frame. This function is shown in Listing 2. All the

SHARC0 core run-time processing is done in the callback function under the context of the SPORT ISR,

thus leaving the non-ISR cycles (main thread) available for idle tasks. The callback sends the raw audio

frame to the SHARC1 core using the MDMA0 stream, filters channels 0 and 2, and sends the filtered results

to the SHARC1 core using the MDMA1 stream.

//***
// ADC callback - Called after each audio frame is filled
// Audio Format (32 bits/sample) - interleaved (CH0, CH1, CH2, Ch3, ...)
//***
void AdcCallback(void *pCBParam, uint32_t nEvent, void *pArg)
{
 switch(nEvent)
 {
 case ADI_SPORT_EVENT_RX_BUFFER_PROCESSED:
 //***
 // Send RAW audio to slave SHARC
 //***
 if(SHARC_linkSend(MDMA_STREAM_ID_RAW, // MDMA A0

(void *)pArg,
DMASlaveDestinationAddress,
1, AUDIO_BUFFER_SIZE) != 0)

 {
 // If we get here, there is an error
 }

 // Filter the data
 SHARC0Filter(pArg, FilteredData, AUDIO_BUFFER_SIZE);

 //***
 // Send RAW audio to slave SHARC
 //***
 if(SHARC_linkSend(MDMA_STREAM_ID_FILTERED, // MDMA A1

(void *)FilteredData,
(DMASlaveDestinationAddress+AUDIO_BUFFER_SIZE),
1, AUDIO_BUFFER_SIZE) != 0)

 {
 // If we get here, there is an error
 }

 *sharc_flag_in_L2 = *sharc_flag_in_L2 + 1;

 //***
 // Return buffer to pool
 //***
 Adau1979DoneWithBuffer(pArg);
 AdcCount++;
 break;
 default:
 break;
 }
}

Listing 2. SPORT RX DMA ISR Callback Function

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 9 of 10

The SHARC1 core also does all its processing under the context of callback functions. Audio channels 1

and 3 are filtered under the context of the raw (MDMA0 stream) transfer complete callback function.

Filtered audio channels 1 and 3 from the SHARC1 core are merged with filtered audio channels 0 and 2

from the SHARC0 core under the context of the filtered (MDMA1 stream) transfer complete callback

function. After the filter channels are merged, the resulting audio frame is copied into a SPORT TX DMA

ping-pong buffer for output to the ADAU1962A DAC. The MDMA0 and MDMA1 stream callback

functions are shown in Listing 3.

//***
// Interrupt handler for MDMA RAW data transfer complete
// Runs on SHARC1 (Core2)
//***
static void RawDataTransferFromMasterComplete(uint32_t SID, void *pCBParam)
{
 SHARC1Filter((int8_t *)MDMA_LOCAL_ADDR,

FilteredData, AUDIO_BUFFER_SIZE);
 ++RAWBuffersReceived;
}

//***
// Interrupt handler for MDMA FILTERED data transfer complete
// Runs on SHARC1 (Core2)
//***
static void FilteredDataTransferFromMasterComplete(uint32_t SID, void *pCBParam)
{
 ++FILTEREDBuffersReceived;
 // Merge the FilteredData buffer with the audio frame just received from the
 // Master SHARC.
 if(pSportOutputBuffer != 0)
 {
 MergeAudioChannels((void *)(MDMA_LOCAL_ADDR+AUDIO_BUFFER_SIZE),
 FilteredData,

 pSportOutputBuffer,
 AUDIO_BUFFER_SIZE);

 }
}

Listing 3. MDMA Complete Interrupt Callback Functions

Conclusion

In a multi-core design, the efficiency of the ICC is paramount. Filters running on the SHARC+ cores execute

at peak efficiency when acting on data in their on-chip L1 memory space. The ADSP-SC58x contains a

powerful DMA subsystem supporting MDMA with signaling, providing the capability to copy data from

one SHARC’s L1 to the other SHARC’s L1 at up to 1500MB/s. In addition, the MDMA engine can do ICC

signaling by creating a transfer complete interrupt on both the source and destination SHARC+ cores. The

example explained in this EE-note demonstrates how to use the MDMA engine for ICC in a quad-channel

parallel pipeline audio talkthrough. The talkthrough splits the filtering load across both SHARC+ cores with

the SHARC0 core filtering channels 0 and 2 while the SHARC1 core filters channels 1 and 3 in parallel.

MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383) Page 10 of 10

References

[1] Associated ZIP File (EE383v01.zip) for MDMA-Based Dual-SHARC+ Parallel Pipeline Audio Talkthrough (EE-383).

December 2015. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – December 17, 2015

by Eric Gregori

Initial Release

	Introduction
	Memory-to-Memory DMA (MDMA)
	Walkthrough of Audio Talkthrough Example
	Audio Data Path vs Time
	Initializing MDMA for ICC

	Conclusion
	References
	Document History

