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Introduction 
EPROM or Flash devices are often used to boot 
ADSP-2191/95/96 DSPs, but after booting, the 
EPROM/Flash is not used anymore. 

The goal of this document is to demonstrate that 
EPROM/Flash is of use at run-time as well.  

It may store coefficient tables, overlays and, last 
but not least, the DSP may execute instructions 
directly from it. 

If you take advantage of the boot device this 
way, you may reduce the SRAM requirements of 
your application. Perhaps you can choose a 
derivative with less on-chip memory, perhaps 
you can save an additional external SRAM 
device. 

This document discusses various scenarios of 
advanced Boot EPROM usage. Besides ADSP-
2191 specific aspects it will explain how 
VisualDSP++TM 3.01 helps you to manage such 
applications.  

EPROM Booting Tools Chain 
Details of standard EPROM booting are 
discussed in application note EE-131 [1]. Just to 
complete the picture, this first section provides a 
brief overview about the related tool chain.  

If you build a VisualDSP++ project during the 
development cycle the linker will output a so-

called Executable File (.dxe) that meets the ELF / 
DWARF-2 standard. This file is passed to the 
debugging tools and contains application data as 
well as debugging information. 

                                                 
1  Some features discussed require latest patches installed. 
Download from: ftp://ftp.analog.com/pub/tools/ 

The DSP itself cannot access such a Executable File 
(.dxe). It simply expects properly formatted data 
in the EPROM/Flash. Before you can program 
the EPROM/Flash physically you need to 
convert the Executable File (.dxe) into any format 
known by the EPROM programming tool. 

A common file format for such purposes is the 
Enhanced Intel Hex File format. Therefore, 
VisualDSP++ provides another utility that post 
processes the Executable File (.dxe). It generates the 
boot stream and emits it to a so-called Loader File 
(.ldr) that meets these Intel Hex conventions. This 
post-processor is called Loader Utility (elfloader.exe).   

Figure 1 illustrates how to set up the Project 
Options in order to make VisualDSP++ invoke the 
Loader Utility. If you set the Type field in the Project 
Options Dialog to Loader file, VisualDSP++ 
invokes the Loader Utility during the project build 
to post-process the project’s Executable File (.dxe).  

To burn the Loader File (.ldr) into the 
EPROM/Flash device externally you may use a 
separate programming tool. Flash devices can 
also be programmed in circuit, alternatively. Use 
the VisualDSP++ plug-in Tools Flash Programmer 
to download and flash the Loader File (.ldr) through 
the JTAG emulator (or even the USB connection 
if you are working with the EZ-KIT Lite™).  
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Figure 1: VisualDSP++ 3.0 Project Options Figure 2: Load Property Page 

 

If the DSP detects EPROM boot configuration 
mode after reset, it starts executing the Loader 
Kernel. This is a program residing at the on-chip 
ROM address 0xFF.0000. It is responsible for 
the boot process. Initially, the Loader Kernel reads 
two control bytes from /BMS space to determine 
the BMSCTL and EMICTL register settings, such as 
Wait states, EMI Clock divider and EMI Bus width (8 or 
16 bit). 

Once the control registers of the External Memory 
Interface (EMI) are set up accordingly, the Loader 
Kernel parses the boot stream in the EPROM and 
completes the boot process without further user 
intervention. When the DSP is booted, the Loader 
Kernel executes a JUMP instruction to on-chip 
address 0x00.0000 and the user application gets 
control over the DSP.  

Loader Utility and Loader Kernel hide all the boot 
stream details from you. Application note EE-
131 [1] provides further explainations.  

Using the Load property page shown in Figure 2 
you can choose whether the boot device is 8-bit 
or 16-bit wide. Also, you have access to the Wait 
states and to the EMI Clock divider used for EPROM 
accesses. According to the speed-grade of the 
used EPROM/Flash device you may speed up the 
boot process by altering the default values. 

The Opmode field specifies the preferred 
hardware setting (SPI0 + SPI1 versus SPORT2) 
during booting only. The Start address box is 
useful if the DSP has to share the boot EPROM 
with other processors or if multiple boot images 
need to be stored in a single EPROM. 

The settings shown in Figure 2 make the loader 
utility generate Intel Hex Loader File (.ldr) for 8-bit 
EPROM booting. They result in the Loader Utility 
command line: 
elfloader -proc ADSP-2191  
          -f HEX -b PROM  
          -width 8 -opmode 0  
          -clkdivide 5 -waits 7  
          -o test test.dxe 
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Alternatively, one may set the Width field to 16 bit 
if the DSP is booted from a 16-bit EPROM or to 
8+8 bit if the DSP is booted from two 8-bit 
EPROMS in 16-bit mode. In the last case, the 
Loader Utility will output two Loader Files (.ldu,.ldl). 

Before burning/flashing the Loader File (.ldr) you 
may evaluate it in software. The VisualDSP++ 
3.0 simulator can read the image file from the 
tools command menu Settings  Simulator  Boot  
EPROM.Rx. The simulator interprets the Loader File 
(.ldr) in the same way as the Loader Kernel does. 

Once a file is loaded, the simulator boots the 
memory content every time a reset is issued until 
the menu setting Settings  Simulator  Boot  No 
Booting is checked again. 

ADSP-219x Memory 
Booting is nothing else than initializing RAM 
after power-up or system reset. In most of cases 
only on-chip SRAM of the ADSP-219x DSPs is 
initialized by the boot process. 

 

Figure 3: On-chip Memory Map 

Figure 3 illustrates the physical layout of the on-
chip memory. The ADSP-2191 has four 
independent memory blocks. Two are 24-bit 
wide and can store instructions, but may also 
store 16-bit data. The other two blocks can only 
store 16-bit data. In total, 32k words of 24-bit 
memory and 32k of 16-bit memory are integrated 
on-chip. These 64k address locations build the 
memory page 0. While accessing on-chip 
memory, always set the related page registers 
DMPG0, DMPG1 and IJPG to zero. 

In addition the ADSP-219x DSPs may access 
additional external SRAM through the EMI port. 
This parallel interface supports both, 8-bit and 
16-bit data width. 

The ADSP-219x DSPs may address 16M words, 
organized as 256 Memory Pages of 64k words size. 
Page 0 is reserved for on-chip memory. Page 255 
holds the on-chip boot ROM. All accesses to any 
of the pages 1 to 254 initiate an off-chip bus 
transfer. 

24 address line are required to access the 
complete 16M address space. To avoid the need 
of off-chip address decoders, ADSP-219x DSPs 
provide four memory strobes /MS0 to /MS3. Every 
strobe controls one Memory Bank, 4M words each. 
Consistently, the EMI features only 22 address 
lines.  

Every memory bank has its own control register 
MSxCTL. Access parameters such as wait-states 
can be controlled individually. Although the 
MEMPGx registers may redefine the start page of 
the individual memory banks, this application 
note always assume the default settings. 

16k x 24 bit

16k x 24 bit

16k x 16 bit

16k x 16 bit

16k x 24 bit

16k x 16 bit

8k x 24 bit

8k x 16 bit

ADSP-2191 ADSP-2195 ADSP-2196
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000000

007FFF

004000

00BFFF

008000

00FFFF

00C000

 
  Bank 0 (/MS0) 0x010000 – 0x3FFFFF 
  Bank 1 (/MS1) 0x400000 – 0x7FFFFF 
  Bank 2 (/MS2) 0x800000 – 0xBFFFFF 
  Bank 3 (/MS3) 0xC00000 – 0xEFFFFF 
 

Note that the address range of Bank 0 is 
overlapped by the on-chip memory page. 
Similarly, the boot ROM page overlaps Bank 3. 

If a 4MWord device is connected to /MS0, the 
lower 64k addresses cannot be access using this 
scheme. Typically, devices are much smaller, 
and all locations can be reached by address 
aliases. For example, device address 0x000000 
can be accessed through alias address 0x200000, 
if the connected device features less than 22 
address lines. 

Beside the /MSx strobes, the EMI features an 
additional Boot Memory Select (/BMS) pin. There are 
three bits in the E_STAT register, that may 
overwrite the normal /MSx functionality, for 
instruction fetch, DM bus access or PM access 
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operations. If set, the the EMI activates the /BMS 
strobe instead of the /MSx ones whenever the 
address range 0x010000 to 0xEFFFFF is 
accessed, by one of the three operations.  

The Boot Kernel typically reads the boot stream 
from the so-called Boot Memory Space by activating 
/BMS. If it is booting off-chip SRAM, the Boot 
Kernel manages the E_STAT bits properly. 

Finally, the ADSP-219x DSPs feature an I/O 
memory space. This one is typically not booted 
and is not described in this document, therefore. 

Logical versus Physical Addresses 
There is a need to distinguish between logical and 
physical parameters. Logical settings describe 
memory from the core’s perspective: logical data 
width is either 16 or 24 bit wide; logical 
addresses are the ones used by program coding. 

Physical addresses and memory width may differ 
from the logical parameters, especially when 
describing off-chip memories. 

The physical width of on-chip memory can be 
either 16 bit or 24 bit, according to the individual 
memory blocks shown in Figure 3. 16-bit 
operations to/from 24-bit on-chip memory access 
the upper 16-bits of the addressed memory 
locations only. 24-bit writes to on-chip 16-bit 
memory ignore the lower 8 bits stored in the PX 
register. 24-bit reads from on-chip memory zero 
the PX register.  

The E_BWS bit in the EMICTL register controls, 
whether the interface is 8-bit or 16-bit wide.  
 

Logical width Physical width Address 
Multiply 

16 bit  8 bit 2 

24 bit  8 bit 4 

16 bit  16 bit 1 

24 bit 16 bit 2 

Table 1: Physical Address Multiply Factor 

When physical data width does not match the 
logical one, multiple physical address locations 
are required to built one logical address location. 

Consistently, physical addresses are multiples of 
logical addresses. The multiply factor depends 
on logical to physical data width relationship 
(and EMI settings) as shown in Table 1.  

When multiplying logical addresses with the 
proper factor, the resulting address may be of 
theoretical nature. Often the result exceeds the 
address range supported by a given memory 
devices.  

If, for example, a 64kByte SRAM is connected 
to /MS0, and the program performs a 16-bit 
access to address 0x011000, the physical address 
is not 0x022000. It is 0x002000. 

In the general case, the logical to physical 
address calculation performs the multiplication 
and masks non-existing address bits out, 
afterwards. 

Whether off-chip data accesses are trade as 16-
bit or 24-bit operations is controlled by the 
E_DFS bit in the E_STAT register. At run-time this 
bit is usually cleared. If set, it helps to load 24-bit 
instructions into on-chip memory. 

Memory Segment Types 
When you are managing EPROM boot scenarios 
you need to be familiar with a few basic 
commands of the Linker Description File (.ldf).  

While processing the Executable File (.dxe) the 
Loader Utility evaluates the individual memory 
segments. Memory segments are defined within 
the memory layout of the Linker Description File 
(.ldf).  

Besides the logical address range, every segment 
specifies its physical width by the WIDTH() 
command. External memory segments set their 
physical width according to EMI port settings. It 
is possible that the invidual off-chip memory 
segments have different width settings. Then, 
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software must take care, that the E_BWS bit is 
managed propely at run-time. 

Also, every memory segment has a type. The 
dedicated TYPE() command accepts four different 
options: 
 
  TYPE(DM RAM) 
  TYPE(PM RAM) 
  TYPE(DM ROM) 
  TYPE(PM ROM) 
 

The Loader Utility ignores all segments declared by 
the TYPE(ROM) option and reads the TYPE(RAM) 
segments only. It generates 16-bit boot streams 
for TYPE(DM RAM) segments and 24-bit boot 
streams for TYPE(PM RAM) segments. 

Please note that this naming convention is of 
historical nature. TYPE(PM) segments are 24-bit 
wide and may contain data and program code. If 
a segment holds 16-bit data only, it can be 
defined by the TYPE(DM) command, regardless 
whether the containing data is accessed through 
the DM or the PM bus. 
 
MEMORY { 

  seg_code { 
    TYPE(PM RAM) WIDTH(24) 
    START(0x000000) END(0x007FFF) 
  } 

  seg_data1 { 
    TYPE(DM RAM) WIDTH(16) 
    START(0x008000) END(0x00BFFF) 
  } 

  seg_data2 { 
    TYPE(DM RAM) WIDTH(16) 
    START(0x00C000) END(0x00FFFF) 
  } 

} 

Listing 1: LDF Memory Layout Example 

Listing 1 illustrates a very basic example of an 
ADSP-2191 memory layout according to Figure 
3. It sets up on-chip memory for booting, 
because all segments are of TYPE(RAM).  

Note that the Linker Description File (.ldf) does not 
describe the boot memory itself. Use the Load 
property page in Figure 2 to define whether the 

DSP is booted from 8-bit or from 16-bit 
EPROM.  

Booting Off-chip SRAM 
So far we discussed booting to internal memory. 
If you have additional SRAM connected to the 
system bus you may want to initialize its content 
at boot-time, too.  

This section discusses an example scenario with 
an 8-bit boot EPROM connected to /BMS and an 
additional 8-bit SRAM that is connected to the 
memory strobe /MS1.  

Although the ADSP-2191 Loader Kernel
can boot on-chip and off-chip memory
from 8-bit and from 16-bit EPROMs, the
E_BWS bit in the EMICTL register is set
only once. As a result, external SRAM
must use the same bus width as the boot
EPROM, if you want to boot it. 

This example can still use the project options 
shown in Figure 1 and Figure 2. However the 
Linker Description File (.ldf) needs to be enriched by 
external memory segments. 
 
MEMORY { 

  seg_code { 
    TYPE(PM RAM) WIDTH(24) 
    START(0x000000) END(0x007FFF) 
  } 

  seg_data1 { 
    TYPE(DM RAM) WIDTH(16) 
    START(0x008000) END(0x00BFFF) 
  } 

  seg_data2 { 
    TYPE(DM RAM) WIDTH(16) 
    START(0x00C000) END(0x00FFFF) 
  } 

  seg_data_ext { 
    TYPE(DM RAM) WIDTH(8) 
    START(0x400000) END(0x40FFFF) 
  } 

  seg_code_ext { 
    TYPE(PM RAM) WIDTH(8) 
    START(0x408000) END(0x417FFF) 
  } 

} 

Listing 2: LDF Memory Layout Example 
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If new segments are introduced in the LDF 
memory map, also proper section assignment is 
required like shown in Listing 3. 
PROCESSOR p0 { 

  SECTIONS { 

    ... 

    ext_data_dxe {  
       INPUT_SECTIONS( $OBJECTS(extdata) ) 
    } > seg_data_ext 

    ext_code_dxe {  
       INPUT_SECTIONS( $OBJECTS(extcode) ) 
    } > seg_code_ext 

  } 

}             

Listing 3: LDF Section Assignment Example 

Listing 2 introduces one 24-bit TYPE(PM RAM) 
segment intended to store instructions and one 
16-bit TYPE(DM RAM) segment for data. Both are 
bootable. The WIDTH(8) commands in Listing 2 
define the physical width to 8 bit as required. 

A little understanding of EMI address translation 
is required to determine start and end address of 
the external memory segments. 

Provided that the E_DFS bit in the E_STAT 
register is cleared, the EMI uses the following 
packing schemes: if core or DMA engine access 
16-bit data in the segment seg_data_ext, then two 
8-bit accesses are required. Logical addresses are 
multiplied by two.  

However, if the core fetches 24-bit instructions 
from segment seg_code_ext, three 8-bit reads are 
required, resulting in an address multiply factor 
of four. 

Since not just the packing but also the addressing 
scheme differs, the memory map of the off-chip 
8-bit SRAM needs to be defined carefully: 
segment seg_data_ext starts at logical address 
0x40.0000. Therefore it activates the memory 
strobe /MS1. The corresponding byte address 
would be 0x80.0000, but the ADSP-2191 DSPs 
feature only 22 address lines A0..A21. Therefore a 
data read from logical address 0x40.0000 
accesses the byte addresses 0x00.0000 and 
0x00.0001 of the SRAM. Similarly, a read from 

logical address 0x40.FFFF accesses the SRAM 
at address 0x01.FFFE and 0x01.FFFF 
(0x81FFFE and 0x81FFFF ANDed with 
0x03.FFFF). 

It is obvious that the code segment seg_code_ext 
should follow contiguously to seg_data_ext 
without wasting SRAM locations due to address 
gaps. Segment seg_code_ext reserves space for 
65536 instructions and every instruction word 
takes four byte locations. Thus, seg_code_ext 
should fit into SRAM addresses 0x02.0000 to 
0x05.FFFF.  

To achieve this goal, the logical address space of 
the code segment spans from 0x40.8000 to 
0x41.7FFF. Table 2 summarizes the address 
translation of the example used in Listing 2. 
 

logical address theoretical  
8-bit address 

physical 8-bit 
SRAM address 

seg_data_ext (16 bit) 

40 0000 080 0000 00 0000 

40 FFFF 081 FFFE 01 FFFE 

seg_code_ext (24 bit) 

40 8000 102 0000 02 0000 

41 7FFF 105 FFFC 05 FFFC 

Table 2: EPROM Boot Example Address Translation  

Please note that the Clock divide and Wait States 
settings specified in the Load property page do 
not apply to SRAM accesses. The Loader Kernel 
does not alter the MSxCTL registers. 

No-Boot Option 
Although rarely used, there may be good reasons 
to refuse the booting capabilities of the ADSP-
2191 family. One example is applications that 
use on-chip memory for data storage only. Also, 
this mode helps to implement customized boot 
loader scenarios. 

Being programmable by the hardware pins (strap 
pins), the DSP can bypass the Loader Kernel and 
start program execution at address 0x01.0000. 
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Two different options support instruction 
fetching from 8-bit as well as from 16-bit 
memory connected to the strobe /MS0. 

The memory connected to /MS0 is usually an 
EPROM or Flash, but it can also be a volatile 
memory controlled by another processor in the 
system. 

In order to generate a proper EPROM file, the 
so-called Splitter Utility needs to be invoked. This 
Splitter Utility is part of the same elfloader.exe tool 
like the Loader Utility mentioned above.  

Also the Splitter Utility parses a VisualDSP++ 
Executable File (.dxe), but this time it ignores all 
segments declared by TYPE(RAM) and reads 
TYPE(ROM) segments only. 

Listing 4 shows a very basic example of an LDF 
memory layout that meets the requirements. The 
segment seg_code contains all programming code 
including the interrupt vector table. Section 
assignment instructions are not shown explicitly. 
 
MEMORY { 

  seg_data1 { 
    TYPE(PM RAM) WIDTH(24) 
    START(0x000000) END(0x007FFF) 
  } 

  seg_data2 { 
    TYPE(DM RAM) WIDTH(16) 
    START(0x008000) END(0x00FFFF) 
  } 

  seg_code { 
    TYPE(PM ROM) WIDTH(16) 
    START(0x010000) END(0x01FFFF) 
  } 

  seg_constants { 
    TYPE(DM ROM) WIDTH(16) 
    START(0x040000) END(0x05FFFF) 
  } 

} 

Listing 4: No-boot LDF File Example 

If the boot mode is set up accordingly, after reset 
the DSP starts program execution at the reset 
vector 0x01.0000. The example assumes a 16-bit 
wide EPROM/Flash connected to /MS0. No 
packing and no address multiplication is needed 
to access 16-bit words off-chip. Whereas 

fetching 24-bit instructions still requires two off-
chip reads and addresses are multiplied by two. 

The first instruction is located at physical 
EPROM addresses 0x02.0000 and 0x02.0001. 
The segment seg_code occupies EPROM space up 
to address 0x03.FFFF.  

EPROM location lower than 0x02.0000 can be 
accessed through alias addresses. The example in 
Listing 4 uses the these locations to store 
constant 16-bit data tables mapped to the data 
segment seg_constants. Nevertheless the explained 
procedure can also be used to allocate the same 
EPROM space for a second code segment.  

Assuming the size of the used EPROM is 256k 
by 16 bits, only the address lines A0..A17 are 
connected. EPROM addresses are aliased 
periodically in the DSP address space. The reset 
vector can be read from address 0x02.0000 but 
also from address 0x06.0000 or 0x0A.0000. 
Similarly, the EPROM space 0x00.0000 to 
0x01.FFFF can be accessed through the physical 
address alias 0x04.0000 to 0x05.FFFF. No 
address translation is required for 16-bit 
accesses. Thus, also the LDF file may use the 
address range between 0x04.0000 and 
0x05.FFFF to define segment seg_constants. 
Again, Table 3 summarizes the address 
translation. 
 

logical address theoretical 
16-bit address 

physical 16-bit 
EPROM address 

seg_constants (16 bit) 

04 0000 04 0000 00 0000 

05 FFFF 05 FFFF 01 FFFF 

seg_code (24 bit) 

01 0000 02 0000 02 0000 

01 FFFF 03 FFFE 03 FFFE 

Table 3: No-Boot Example Address Translation  

If the Splitter Utility processes an Executable File 
(.dxe) based on the example LDF file, it would 
emit EPROM address from 0x02.0000 to 
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0x05.FFFF. This is unacceptable because the 
256k EPROM used in this example provides 
addresses from 0x00.0000 to 0x03.FFFF only. 
That is why the Splitter Utility features the 
additional –maskaddr addressbit command line 
switch. This switch enables the masking of the 
upper physical address bits.  

If, in the example above, all physical address bits 
greater or equal A18 are masked out, every 
EPROM address is ANDed with 0x03.FFFF 
before it is emitted to the Intel Hex file. All 
addresses belonging to segment seg_code remain 
unchanged, but seg_constants addresses are 
mapped into address space 0x00.0000 to 
0x01.FFFF as required. 

The complete command line may look as 
follows: 
elfloader -proc ADSP-2191  
          -romsplitter -maskaddr 18 
          -f HEX -width 16 
          -o test test.dxe 

Using the integrated environment of 
VisualDSP++ the same command line is 
generated if the Load property page is set up as 
shown in Figure 4. 

 

Figure 4: No-boot Property Page 

Currently, the VisualDSP++ single-
stepping and breakpoint features are 
supported for off-chip code execution 
debug. 

When the DSP detects no-boot option after reset, 
the interrupt vector table starts from off-chip 
address 0x01.0000. If you want to map it to on-
chip address 0x00.0000 set the RMODE bit in the 
SYSCR register. Make sure, that corresponding 
on-chip memory locations have been initialized 
accordingly. You may also clear the RMODE bit 
again to map the interrupt vector table back to 
0x01.0000. 

Combining Boot + No-Boot 
Fortunately, the Splitter functionality discussed in 
the previous section is not restricted to the no-
boot options only. 

Almost all applications require booting after 
reset. Booting is transparent to the user and once 
all code and data resides in on-chip memory 
program execution can perform at full speed. 

In today’s applications DSPs have to perform 
several tasks rather than executing a single real-
time algorithm repetitively. Memory 
requirements increase, perhaps beyond the 
SRAM resources available on-chip.   

Adding an additional SRAM device could help. 
Although this increases systems costs, complex 
applications may or may not give you the choice 
here.  

But, you have another option. There is already 
additional memory connected to your system: the 
boot EPROM/Flash device.  

ADSP-2191 processors have full access to the 
boot device at run-time. Not only can flash be 
used to store data and boot code, it can also be 
used to store program instructions. These 
instructions can be directly executed by the DSP 
without moving them into internal memory first. 
VisualDSP++ provides you all the support you 
need. 
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The same elfloader.exe tool covers both Loader and 
Splitter functionality. It can combine both 
techniques easily and emits Loader and Splitter 
data to the same Intel Hex EPROM image file. 
With the –readall command line switch or the Load 
property page settings shown in Figure 5, you 
can force the elfloader.exe tool to consume 
TYPE(RAM) as well as TYPE(ROM) segments. 

 

Figure 5: Boot+No-boot Property Page 

The command line could look like this: 
elfloader -proc ADSP-2196  
          -b PROM -readall  
          -width 8 -maskaddr 19  
          -f HEX –opmode 0 
          –clkdivide 0 –waits 5 
          -o test test.dxe 

As an example you may balance system costs by 
utilizing the on-chip memories for DSP 
algorithms and data storage only and executing 
slower program parts directly from the EPROM. 
Evaluate your application and distinguish 
between real-time code and less speed-critical 
parts of a program such as initialization and 
control code. Typically, DSP algorithms are 
speed-sensitive and execute in highly optimized 
program loops. It is the setup and control code 
that - due to its linear nature - consumes many 
memory locations for program storage. 

Assign different section names to the individual 
code fragments in order you can manage them in 
the LDF file properly. 

The following example executes the initialization 
code directly from EPROM and continues with 
on-chip program execution afterward. Also it 
accesses some EPROM constants.  
 
.section / data constants; 
.var myconst[2] = 0xdead, 0xbeaf; 

.section / code IVreset; 
_reset: 
    iopg = External_Memory_Interface_Page; 
    ar = 0x086D; 
    io(BMSCTL) = ar; 
    io(MS0CTL) = ar; 
    ar = 0x0070; 
    io(EMICTL) = ar; 
    iopg = External_Access_Bridge_Page; 
    ar = 0x0007; 
    io(E_STAT) = ar; 

    lcall _initsystem; 
    jump _algorithm; 

.section / code setup_code; 
_initsystem: 
    dmpg1 = 0; dmpg2 = 0; 
    l0 = 0; l1 = 0; l2 = 0; l3 = 0; 
    l4 = 0; l5 = 0; l6 = 0; l7 = 0; 
    ... 
    rts; 

.section / code dsp_code; 
_algorithm: 
    dmpg1 = PAGE(myconst); 
    ax0 = dm(myconst); 
    ax1 = dm(myconst+1); 
    do algo until forever; 
        call _library; 
        ... 
algo:   ...    
 
.section / code lib_code; 
_library: 
        ... 
        rts; 
 

Listing 5: Code example with off-chip setup routine 

The sections Ivreset, lib_code and dsp_code are 
booted in the normal way, but section setup_code 
will execute from EPROM. Within the reset 
vector routine the EMI port is configured 
accordingly before the off-chip function 
_initsystem is invoked by a long call instruction. 
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Make sure that you are using long branch
instructions when jumping from on-chip
memory to external instructions or vice
versa. Alternatively you can use indirect
branches by taking advantage of the IJPG
register. RTS and RTI instructions restore
the page by themselves. 

We need to describe the memory layout within 
the LDF file, but first let us discuss how to 
manage the EPROM addresses.  

The example is based on the ADSP-2196 
architecture, with 8k of 24-bit memory and 8k of 
16-bit memory available on-chip as shown in 
Figure 3. This example assumes that 32k of 
EPROM bytes are sufficient to store the 
complete boot stream. Note that this assumption 
does not cover the worst case (48k + some extra 
boot control words)! 

Assuming a 4MBit EPROM (512k x 8 bit) the 
byte addresses 0x00.8000 to 0x07.FFFF are 
available for further usage. Just as an example let 
us reserve addresses 0x00.8000 to 0x01.FFFF for 
constant data storage and 0x02.0000 to 
0x07.FFFF for code execution. Due to the size of 
the EPROM the elfloader tool will be invoked 
with the –maskaddr 19 command. One possible 
result of the required address calculation is 
shown in Table 4: 
 

logical address theoretical 
8-bit address 

physical 8-bit 
EPROM address 

seg_ext_constants (16 bit) 

04 4000 08 8000 00 8000 

04 FFFF 09 FFFE 01 FFFE 

seg_ext_code (24 bit) 

02 8000 0A 0000 02 0000 

03 FFFF 0F FFFC 07 FFFC 

Table 4: Boot+No-boot Example Address Translation  

Accordingly, the memory layout in the LDF files 
is specified as follows: 

MEMORY { 
 
  seg_ivt { 
    TYPE(PM RAM) WIDTH(24) 
    START(0x000000) END(0x000241) 
  } 

  seg_int_code { 
    TYPE(PM RAM) WIDTH(24) 
    START(0x000242) END(0x001FFF) 
  } 

  seg_ext_code { 
    TYPE(PM ROM) WIDTH(8) 
    START(0x028000) END(0x03FFFF) 
  } 

  seg_ext_constants { 
    TYPE(DM ROM) WIDTH(8) 
    START(0x044000) END(0x04FFFF) 
  } 

} 

Listing 6: Boot + No-boot LDF File Example 

Finally, you can manage the individual sections 
by editing the LDF SECTIONS assignment. Use it 
as a cross table. 
 
PROCESSOR p0 { 

  SECTIONS { 

    vectors_dxe {  
      INPUT_SECTIONS( $OBJECTS(IVreset) ) 
    } > seg_ivt 

    dsp_code_dxe {  
      INPUT_SECTIONS( $OBJECTS(dsp_code) ) 
    } > seg_int_code 

    lib_code_dxe {  
      INPUT_SECTIONS( $OBJECTS(lib_code) ) 
    } > seg_int_code 

    setup_code_dxe {  
      INPUT_SECTIONS( $OBJECTS(setup_code) ) 
    } > seg_ext_code 

    constants_dxe {  
      INPUT_SECTIONS( $OBJECTS(constants) ) 
    } > seg_ext_constants 

}             

Listing 7: LDF Section Assignment Example 

Keep in mind that the elfloader.exe tool generates a 
boot stream for TYPE(RAM) segments only. 
TYPE(ROM) segments are stored without 
formatting. 
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Speed Estimation 
It is obvious that code that executes from 
EPROM is slower than the one executed from 
on-chip memory. Without providing a complete 
speed analysis, this chapter will just impart a first 
idea of how much slower code execution from 
EPROM is by discussing one example.  

Assuming an ADSP-2191 device running at 
160MHz (CCLK) and 80MHZ (HCLK) and a Flash 
device with a read access time of 70ns the EMI 
can be clocked with full speed (E_CDS = 000b), 
but requires five additional wait-states (E_RWC = 
101b). Then, any instruction fetch takes 18 
HCLK cycles if the Flash is 16-bit wide and 25 
HCLK cycles if the Flash is 8-bit wide. 

Depending on the bus width, off-chip program 
execution is 36 to 50 times slower than on-chip 
execution if a standard 70ns Flash device is used. 

EPROM Overlays 
We learned that code execution from off-chip 
EPROM is very easy to handle, but the execution 
speed is not that efficient. One may use an 
overlay approach, by loading speed-sensible 
algorithms from EPROM into internal memory 
on demand during run-time. 

ADSP-219x overlays are discussed in application 
notes EE-152 [2] and AN-572 [3]. This 
document assumes the basic VisualDSP++ 
overlay principle is already known.  

Usually, overlay ‘live’ in off-chip SRAM. With 
the restriction that overlay data is read-only 
(code overlays, coefficient sets etc.) overlays 
may also ‘live’ in any kind of ROM. If this ROM 
is the same as the boot EPROM, system 
complexity and costs will be reduced drastically, 
because no additional SRAM device is required.  

In order to implement such an EPROM overlay 
scenario properly, all information of EE-152 [2] 
is still valid, except that overlays cannot be 
written back and  ‘live’ segments are changed 
from TYPE(RAM) to TYPE(ROM).  

Section “Code Example” on page 12 provides a 
complete example. 

About Memory Strobes 
The question is whether all these scenarious 
discussed in the previous sections can be 
implemented glue-less, or whether additional 
logic is required. 

At run-time the E_STAT register controls whether 
the several types of off-chip accesses activate the 
/BMS or the /MSx strobes. As long as there is only 
the boot EPROM connected to the system, it 
should be connected to /BMS. After booting set 
the three bits, E_PI_BE, E_PD_BE and E_DD_BE to 
one and all off-chip accesses (except IO 
transfers) will activate the EPROM. 

These control bits belong to all /MSx strobes. If 
additional SRAM is connected to the system 
things are getting tricky. Nevertheless there are 
three possibilities to handle this: 

• Combine /BMS and /MS0 with an AND gate 
(logical OR due to negative logic) prior to 
connecting them to the chip enable pin of the 
EPROM. Connect the SRAM to /MS1, for 
example. 

• Alter the E_STAT register anytime the program 
is accessing the SRAM or the EPROM. 

• Once booted, use the EPROM for additional 
code execution but not for data storage 
anymore. Also use the SRAM for data storage 
only. Then, you can set E_PI_BE but keep 
E_PD_BE and E_DD_BE cleared. 

Please note that we recommend keeping E_PD_BE 
equal to E_DD_BE. In many cases it is just a 
question of the optimization level whether a data 
access uses the PM or the DM bus. Note the 
difference between the following two 
instructions: 
ar=ax0+ay0, ay0=dm(i4,m4); 

and 
ar=ax0+ay0, ax0=dm(i0,m0), ay0=pm(i4,m4); 
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Another issue of interest is that a boot EPROM 
needs to be connected to /BMS but if the ADSP-
2191 detects the no-boot option it expects an 
EPROM connected to /MS0. If hardware needs to 
support both scenarios ANDing /BMS and /MS0 
sounds like a great idea. The ADSP-2191 EZ-
KIT Lite features such a gate. 

At the other hand, if the AND gate is missing and 
the EPROM is connected to /BMS directly, it is 
very simple to simulate the no-boot option by 
booting a small program into on-chip memory 
that just sets up the EMI port properly and jumps 
to address 0x01.0000 afterwards. 

Generally, when booting from EPROM always 
pull the ACK down by a 10kΩ resistor. A floating 
ACK signal could prevent off-chip accesses from 
being completed according to the wait-states, 
because the E_WMS field in the BMSCTL register 
is set to binary 11 during the boot process.  

Code Example 
The following code example is written for the 
ADSP-2191 EZ-KIT Lite. It assumes an 8-bit 
flash device connected to /BMS. It takes 
advantage of the boot device in two ways: the 
initialization code executes directly from flash 
and also code overlays are loaded from it. 

In order to concentrate on the functionality 
discussed in this application note, the example 
(specially the overlay manager) is kept as simple 
as possible. 

The example consists of four source files 
• main.asm 
• ovlman.asm 
• overlays.h 
• example.ldf 

The main assembly file main.asm contains the 
complete application code, including reset vector 
and overlays. The initialization code is not 
booted. It executes from EPROM directly. Only 
a few instructions are required to setup the EMI 
port accordingly before accessing the EPROM.  

Please note that this example sets the E_DFS bit 
in the E_STAT register. 

Also the overlay code is not loaded at boot-time, 
but loaded on demand at run-time. It executes 
from on-chip memory (run space).  
 

#include <def2191.h> 

/****************************************** 
 * Reset Vector 
 * this piece of code is booted normally 
 * to on-chip address 0x0000 
 */ 

.section / code IVreset; 

_reset: 

/* configure EMI 
 * use 5 wait states 
 * ignore ACK 
 * set EMI clock equal HCLK 
 */ 

  iopg = External_Memory_Interface_Page; 
  ar = 0x086D; 
  io(BMSCTL) = ar; 
  io(MS0CTL) = ar; 

/* set EMI width to 8-bit and 
 * use active-low strobes 
 */ 

  ar = 0x0070; 
  io(EMICTL) = ar; 

/* active /BMS for all off-chip accesses 
 * also use 24-bit access scheme, because 
 * the core-based overlay manager reads 
 * instructions using 24-bit PM moves. 
 */ 

  iopg = External_Access_Bridge_Page; 
  ar = 0x000F; 
  io(E_STAT) = ar;  

  nop; nop; nop; nop; 
  nop; nop; nop; nop; 

/* long call, note that _sys_init 
 * resided in off-chip memory and the jump 
 * crosses page boundary 
 */ 

  lcall _sys_init; 

  do _algo until forever; 
        call _algorithm; 
        nop; 
_algo:  nop; 

  idle; 

/****************************************** 
 * Initialition Routine 
 * this piece of code is not critical in  
 * terms of speed. Therefore it is not  
 * booted. It resides in off-chip ROM. 
 */ 
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.section / code romcode; 

_sys_init: 

  l0 = 0; l1 = 0; l2 = 0; l3 = 0; 
  l4 = 0; l5 = 0; l6 = 0; l7 = 0; 
  dmpg1 = 0; 
  iopg = 0; 

  rts; 

/*************************************** 
 * Data Section 
 * The example requires some variables 
 * to store results. 
 */ 

.section / data data1; 

.var result_add = 0; 

.var result_sub = 0; 

.var result_mul = 0; 

.var result_div = 0; 

/****************************************** 
 * Normal DSP code 
 * this piece of code is booted normally 
 * after reset 
 */ 

.section / code program; 

_algorithm: 

  ena mm; 
  ax0 = 10; 
  ay1 = 2; 

  call _func_add; 
  dm(result_add) = ar; 

  call _func_sub; 
  dm(result_sub) = ar; 

  call _func_mul; 
  dm(result_mul) = ar; 

  call _func_div; 
  dm(result_div) = ar; 

  rts; // set breakpoint here 

/****************************************** 
 * Overlay code 
 * these functions live in off-chip ROM 
 * and are loaded on demand into internal 
 * memory. In this example every overlay 
 * consists of a single function. Overlay 
 * entry functions have to be global. 
 */ 

.section / code code_overlay1; 

.global _func_add; 

_func_add: 

  ar = ax0 + ay1; 
  rts; 

.section / code code_overlay2; 

.global _func_sub; 

_func_sub: 

  ar = ax0 - ay1; 
  rts; 

.section / code code_overlay3; 

.global _func_mul; 

_func_mul: 

  rts (db); 

    mr = ax0 * ay1 (ss); 
    ar = mr0; 

.section / code code_overlay4; 

.global _func_div; 

_func_div: 

  // divide ax0 by ay1 
  // integer division requires left shift  

  sr = lshift ax0 by 1 (lo); 

  // unsigned division core 
  // ay0 = af:ay0 / ay1 

  af = pass 0, ay0 = sr0; 
  astat = 0; 
  ar = ay1; 

  divq ar; divq ar; divq ar; divq ar; 
  divq ar; divq ar; divq ar; divq ar; 
  divq ar; divq ar; divq ar; divq ar; 
  divq ar; divq ar; divq ar;  

  rts (db); 
    divq ar; 
    ar = ay0; 

Listing 8: main.asm 

The Linker Description File plays an important 
role. Note that PLIT code, overlay manager and 
overlay run space are all mapped into the general 
on-chip code segment. Similar overlay live space 
shares its segment with off-chip ROM code. 
 
#include "overlays.h" 

ARCHITECTURE(ADSP-2191) 

$OBJECTS   = $COMMAND_LINE_OBJECTS; 

MEMORY { 

  mem_INT_RSTI {  
    TYPE(PM RAM) WIDTH(24) 
    START(0x000000) END(0x00001f)  
  } 

  mem_code {  
    TYPE(PM RAM) WIDTH(24) 
    START(0x000242) END(0x007fff)  
  } 

  mem_data2 {  
    TYPE(DM RAM) WIDTH(16) 
    START(0x008000) END(0x00bfff)  
  } 
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  mem_data1 {  
    TYPE(DM RAM) WIDTH(16) 
    START(0x00c000) END(0x00ffff)  
  } 

  mem_romcode {  
    TYPE(PM ROM) WIDTH(8) 
    START(0x028000) END(0x03ffff)  
  } 

} // end of memory map 

PROCESSOR p0 { 

  LINK_AGAINST( $COMMAND_LINE_LINK_AGAINST ) 
  OUTPUT( $COMMAND_LINE_OUTPUT_FILE ) 

  PLIT { 

    // assuming ar and ay0 are scratch  
    // registers 
    ar = PLIT_SYMBOL_OVERLAYID; 
    ay0 = PLIT_SYMBOL_ADDRESS; 

    // assuming plit and run address are 
    // both located in internal memory no 
    // ljump intruction is required and a 
    // simple jump is sufficient 
    jump _ovl_man; 
  } // plit   

  SECTIONS { 

    IVreset_dxe { 
      INPUT_SECTIONS( $OBJECTS(IVreset) ) 
    } > mem_INT_RSTI 

    program_dxe {  
      INPUT_SECTIONS( $OBJECTS(program) ) 
    } > mem_code 

    .plit {} > mem_code  

    // OVL_SECTION() is a PP macro 
    run_dxe { 
      OVL_SECTION(1) > mem_romcode 
      OVL_SECTION(2) > mem_romcode 
      OVL_SECTION(3) > mem_romcode 
      OVERLAY_SECTION(4) > mem_romcode 
    } > mem_code  

    setup_dxe {  
      INPUT_SECTIONS( $OBJECTS(romcode) )  
    } > mem_romcode 

    data1_dxe {  
      INPUT_SECTIONS( $OBJECTS(data1) ) 
    } > mem_data1 

    data2_dxe {  
      INPUT_SECTIONS( $OBJECTS(data2) ) 
    } > mem_data2 

  } // SECTIONS    

} // PROCESSOR p0 

Listing 9: example.ldf 

This LDF file uses the preprocessor macro 
OVL_SECTION() that has been defined in the file 
overlays.h shown in Listing 11. 

The PLIT code calls the overlay manager shown 
in Listing 10. This is a very basic overlay 
manager for demonstration purposes. It uses core 
instructions to load overlays into on-chip 
memory rather than DMA. Please refer to EE-152 
[2] for real-world overlay managers. 
 
// import C-style structure 
.import "overlays.h"; 

// include preprocessor macros 
#include "overlays.h"; 

.section / data data1; 

.extern OVL_EXTERNALS(1); 

.extern OVL_EXTERNALS(2); 

.extern OVL_EXTERNALS(3); 

.extern OVL_EXTERNALS(4); 

.struct ovl_struct _ovl_tab[] = { 
  OVL_STRUCT_INIT(1), 
  OVL_STRUCT_INIT(2), 
  OVL_STRUCT_INIT(3), 
  OVL_STRUCT_INIT(4) 
}; 

.global _ovl_id; 

.var _ovl_id; 

.global _ovl_addr; 

.var _ovl_addr;  

.var _ovl_loaded = -1; 

.var _save_dmpg2; 

.var _run_addr; 

/****************************************** 
/* this simple example assumes  
 *   dmpg1 = 0, iopg = 0 
 *   l4 = 0, l2 = 0; 
 *   run space is in page 0 
 *   _ovl_tab in page 0 
 * input parameters 
 *   ar = overlay_id 
 *   ay0 = run address 
 * also it alters several registers 
 */ 

.section / code program; 

.global _ovl_man; 

_ovl_man: 

  // save run address 
  dm(_run_addr) = ay0; 

  // is ovl already loaded? 
  ay0 = dm(_ovl_loaded); 
  ar - ay0; 
  if eq rts; 
  dm(_ovl_loaded) = ar; 

  // read overlay structure 
  i4 = _ovl_tab - sizeof(ovl_struct); 
  ay0 = dmpg2; 
  dm(_save_dmpg2) = ay0; 
  dmpg2 = 0; 
  m4 = sizeof(ovl_struct); 
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  cntr = ar; 
  do getstructaddr until ce; 
getstructaddr: modify(i4+=m4);  

  ar = dm(i4+offsetof(ovl_struct,run_size)); 
  cntr = ar;  
  ay0 = 
dm(i4+offsetof(ovl_struct,run_addr)); 
  i2 = ay0; 
  ar = 
dm(i4+offsetof(ovl_struct,live_addr)); 
  ay0 = 
dm(i4+offsetof(ovl_struct,live_page)); 
  dmpg2 = ay0; 
  i4 = ar; 
  m4 = 1; 
  m2 = 1; 

  // load overlay 
  do loadovl until ce; 
         ar = pm(i4+=m4); 
loadovl: pm(i2+=m2)=ar; 

  // jump to run address 
  i4 = dm(_run_addr); 
  flush cache; 
  jump (i4) (db); 
    ay0 = dm(_save_dmpg2); 
    dmpg2 = ay0; 

Listing 10: ovlman.asm 

The overlay manager takes advantage of C-style 
structures, first time supported by the 
VisualDSP++ 3.0 assembler. The special overlay 
structure ovl_struct is defined in Listing 11. The 
overlay manager uses the .IMPORT assembly 
directive to get access to this structure. 
Furthermore overlays.h defines preprocessor 
macros that help you to define and initialize the 
ovl_struct structure. In order to group structure 
definition and macros in one file, the structure 
definition needs to be encapsulated by the #ifdef 
_LANGUAGE_C statement. 
 

#ifndef __overlay_header__ 
#define __overlay_header__ 

/*** ASM macros *************************/ 

#define OVL_EXTERNALS(N) \ 
  _ov_word_size_live_##N,\ 
  _ov_word_size_run_##N,\ 
  _ov_startaddress_##N, \ 
  _ov_runtimestartaddress_##N 

#define OVL_STRUCT_INIT(N) \ 
  { \ 
    PAGE(_ov_startaddress_##N), \ 
    _ov_startaddress_##N, \ 
    _ov_word_size_live_##N, \ 
    PAGE(_ov_runtimestartaddress_##N), \ 
    _ov_runtimestartaddress_##N, \ 

    _ov_word_size_run_##N \ 
  } 

/*** LDF macros ************************/ 

#define OVL_SECTION(N) \ 
  OVERLAY_INPUT { \ 
    ALGORITHM (ALL_FIT) \ 
    OVERLAY_OUTPUT ( \ 
      $COMMAND_LINE_OUTPUT_DIRECTORY\ovl \ 
        ##N##.ovl ) \ 
    INPUT_SECTIONS ( \ 
      $OBJECTS(code_overlay##N)) \ 
  } 

/*** C-style structures ***************/ 

#ifdef _LANGUAGE_C 

typedef struct  {  
  int live_page; 
  int live_addr; 
  int live_size; 
  int run_page; 
  int run_addr; 
  int run_size; 
} ovl_struct; 

#endif  

#endif 

Listing 11: overlays.h 

Finally make sure that the project is built using 
the settings shown in Figure 1 and Figure 2.  

If you are working with VisualDSP++
3.0 you may need some patches to get
this example to work. Please download
the latest assembler / linker / loader
patches from  

ftp://ftp.analog.com/pub/tools/patches. 

To evaluate this example you may use an ADSP-
2191 EZ-KIT Lite. Download the Loader File (.ldr) 
using the VisualDSP++ Flash Programming plug-in. 
Afterward deactivate the VisualDSP++ 
debugging session. Make sure the boot mode is 
set to EPROM boot, and press the Reset push 
button. Then, invoke the debugging session again 
and use the File  Load Symbols command to 
download the debugging information stored in 
the project’s Executable File (.dxe). Without 
performing single-steps, set a breakpoint at the 
RTS instruction of the _algorithm subfunction. 
Press F5. As soon as the DSP halts due to the 
breakpoint you may verify the content of the 
result variables starting from address 0x00.C000. 
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Conclusion 
In the successful story of Analog Devices DSPs, 
booting from parallel EPROM or Flash devices 
has always played an import role.  

Although the soft overlay approach of the ADSP-
218x DSPs already took advantage of the boot 
EPROM during run-time, the ADSP-2191 DSP is 

the first processor from ADI that enables 
unrestricted access to the boot EPROM during 
run-time. 

VisualDSP++ 3.0 takes this architecture into 
consideration and provides powerful scenarios to 
reduce system complexity and costs.  
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