
Engineer To Engineer Note EE-36
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

ADSP-21xx interface to the IOM-2
bus

Last Modified: 7/23/97

Introduction
The IOM Revision 2 (IOM-2) standard defines an
industry standard serial bus for interconnecting
telecommunications ICs. The serial interface satisfies the
requirements of ISDN and analog applications and has
been defined by four major European telephone equipment
manufacturers.

The IOM-2 Bus
The IOM-2 bus is a synchronous full duplex
communication link, containing user data,
control/programming, and status channels and has been
designed for terminal mode and line card mode. Both the
line card mode and terminal portions of the IOM-2
standard utilize the same basic frame and clocking
structure, but differ in the number and usage of the
individual channels that are time-multiplexed over a four-
wire serial interface. Data is clocked by a Data Clock
(DCL) that operates at twice the data rate. A frame is
delimited by an 8-kHz Frame Synchronization Clock
(FSC). Data is transmitted over Data Upstream (DU) and
Data Downstream (DD).

Line Card Mode
The line card version of the IOM-2 provides a connection
path between line transceivers (ISDN) and codecs (analog),
and the line card controller; the line card controller
provides the connection to the switch backbone. In this
mode up to 8 ISDN transceiver or up to 16 codecs/filters
could be connected to the bus. Data, control and status
information is multiplexed into frame, which are
transmitted in an 8kHz rate. The frames are divided into 8
sub-frames, with one sub-frame being dedicated to each
transceiver or pair of codecs.

Terminal Mode
The Terminal Mode is designed for ISDN and NT1
applications.

The IOM-2 terminal version consists of three subframes,
each containing 32 bits. This 12 byte frame is repeated at
8kHz, giving an aggregate data rate of 768kbit/s.

ADSP-21xx Serial Port
The ADSP-21xx has one/two synchronous serial full-
duplex 5 wire ports (SPORT) and one of these interfaces
supports time-multiplexed data streams. Data is clocked
by the Serial Clock (SCLK) that operates at the data rate.
Optional there is a Frame Sync Signal for the receive &
transmit side that indicates the start of a new word or
frame in multichannel mode. Data is sent over Data
Transmit (DT) and Data Receive (DR) lines. In normal
operation an interrupt is generated when an word has been
received or when a transmitted word has been shifted out
of the SPORT. There are two independent interrupt vector
locations to handle the receiving and transmitting section
separately.

Autobuffering
The generation of an interrupt after each transmitted/
received word would cause a huge overhead and for this
reason you could use an autobuffering mode that
automatically transfers SPORT data to/from the internal
memory of the DSP. For this application you have to
define a circular buffer in the internal memory that should
hold the data to be sent/received. The length of the buffer
is user defined and when the buffer is full or has been read
completely an interrupt will be generated and the buffer
will be filled/ read again by the SPORT. This means we
have to process the data in the buffer before the SPORT
accesses this memory again.

Multichannel Mode
As already mentioned above one of the SPORTs of the
DSP has the possibility to handle time-multiplexed data
streams. It is possible to choose between 24 or 32 time
slots. The user can define in which time slots he wants to
send data and which time slots should be ignored during
reception. This can be done independently for the receiving
& and transmitting side. The autobuffering mode could
also be combined with the MC mode. The best way to
combine autobuffering and multichannel mode is to set
the length of the circular autobuffer to the number of
time slots that should be sent/ received. In the following

EE-36 Page 2

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

sections it is assumed that an external device is generating
the SCLK and Frame Sync. Signals.
As the IOM-2 standard is using only one Frame Sync.
Signal, RFS and TFS of the DSP have to be shorted.

IOM-2 Line-Card Mode Interfacing
Remember that the IOM-2 standard is using a clock that
operates at twice the data rate. The ADSP-21xx family
does not have a double serial clock feature and therefore we
have to divide the DCL using a Flip Flop. In the Line-
Card Mode we have 8 channels each consisting of 32 bits
(256 bits total length). The number of DSP channels is
set to 32 and therefore each DSP time slot is 1 Byte long
(256 bits total frame length/32 time slots). The word
length (SLEN) of the DSP is set to 7 and the DSP now
interprets all incoming data as words of the length of one
byte.

Figure 1: IOM-2 Line Card Frame Structure
 DCL=4.096MHz

At last we must declare an autobuffer in the data memory
(DM) of the DSP that is 32 locations deep as we are
going to handle 32 time slots.

- MC enabled / 32 slots
- Autobuffering enabled
- SLEN = 7
- DTYPE = 00 (right justified MSBs zero filled)
- MCWS = FF FF (all time slots enabled)

The table below illustrates the content of the declared
autobuffer.
IOM2 Addr Autobuffer in DM Memory/16 bits wide

D15 D8 D7

D0
CH0 x00 0x00 B1 (8 bits)

x01 0x00 B2 (8 bits)
x02 0x00 Monitor (8bits)
x03 0x00 D2(2

)
C/I(4) MR(1) MX(1)

CH1 x04 0x00 B1 (8 bits)
x05 0x00 B2 (8 bits)
x06 0x00 Monitor (8bits)
x07 0x00 D2 C/I MR MX

:
: :

CH7 x1c 0x00 B1 (8 bits)
x1d 0x00 B2 (8 bits)
x1e 0x00 Monitor (8bits)
x1f 0x00 D2 C/I MR MX

The Multichannel Word Select register could be used to
ignore certain time slots. In this case you could
implement a shorter autobuffer.

In the following example only the B1, B2 channels should
be serviced and the monitor and control bits should be
ignored.
The following settings could be used:

- MC enabled / 32 slots
- Autobuffering enabled
- SLEN = 7
- DTYPE = 00 (right justified MSBs zero filled)
- MCWS = CC CC (1st two time slots of each IOM

channel)

In this case it is convenient to use a 16 (two B words * 8
channels) location deep autobuffer. This would generate
an interrupt after the all B1 & B2 data of all 8 IOM
channels has been sent/received and we have to process the
content of the autobuffer before the SPORT is accessing
again the autobuffer.
Remember: The buffer occupies only 16 address locations
as we do not want to receive/transmit the monitor &
control data.

IOM2 Addr Autobuffer in DM Memory/16 bits wide
D15
D0

CH0 x00 0x00 B1 (8 bits)

SC

CL

x IOM CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7

B1 (8) B2 (8) Monitor (8) D (2) C/I (4) MR MX

B1 (8) B2 (8) Monitor (8) C/I (6) MR MX

CH0

125 us

DSP
time slot 0

DSP
time slot 1

DSP
time slot 2

DSP
time slot 3

EE-36 Page 3

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

x01 0x00 B2 (8 bits)
ignored
 ignored

CH1 x02 0x00 B1 (8 bits)
x03 0x00 B2 (8 bits)

ignored
 ignored

: : :
CH7 x0e 0x00 B1 (8 bits)

x0f 0x00 B2 (8 bits)
 ignored
 ignored

IOM-2 Terminal Mode Interfacing
The IOM-2 terminal version consists of three sub-frames,
each containing 32 bits (total length of 96 bits). Again we
have the choice between 24 or 32 time slots. Using 32
time slots would mean that each word must be 3 bits long
and using 24 time slots assumes 4 bit long words. This is
not very comfortable as in this case the B1, B2 user data
would be divided up into two nibbles. The best way to
interface the terminal mode is to divide the Frame Synch,.
Signal FSC of the IOM-2 interface by two and connect it
to RFS/TFS of the DSP. In this case the DSP stores 6
IOM-2 channels in the autobuffer array. One DSP frame
equals 2 IOM-2 frames = 2*96 bits. The DSP word length
(SLEN-1) is 2*96/24 channels = 8 bit. This is again a
format we could handle very easily. Remember: The DCL
signal must still be divided as the DSP should not latch
serial data twice. The following settings are used to access
data:

- MC enabled / 24 slots
- Autobuffering enabled
- SLEN = 7
- DTYPE = 00
-MCWSx = 0xFF FF (enable all 24 time slots)

Remember: The IOM-2 frame is divided up into 3
subframes but we are going to receive 6 subframes
consecutively. The content of the autobuffer could look
like the following table:

IOM2 Addr Autobuffer in DM Memory/16 bits wide
D15 D8 D7
D0

CH0 x00 0x00 B1 (8 bits)
x01 0x00 B2 (8 bits)
x02 0x00 Mon0 (8bits)
x03 0x00 D C/I0 MR MX

CH1 x04 0x00 IC1 (8 bits)
x05 0x00 IC2 (8 bits)
x06 0x00 Mon1 (8bits)
x07 0x00 C/I1 MR MX

CH2 x08 0x00
x09 0x00
x0a 0x00
x0b 0x00 C/I2

CH0 x0c 0x00 B1 (8 bits)
x0d 0x00 B2 (8 bits)
x0e 0x00 Mon0 (8bits)
x0f 0x00 D C/I0 MR MX

CH1 x10 0x00 IC1 (8 bits)
x11 0x00 IC2 (8 bits)
x12 0x00 Mon1 (8bits)
x13 0x00 C/I1 MR MX

CH2 x14 0x00
x15 0x00
x16 0x00
x17 0x00 C/I2

Again we have the possibility to select certain time slots
on the receiving and transmitting side independently. In
The following example ignores control and monitor data
and receives/sent B1 & B2 data.

In this case the time slots 0, 1, 12 and 13 which contain
the B1 & B2 data should be enabled. The table below
illustrates the content of the autobuffer in data memory
that has a length of four.

IOM2 Addr Autobuffer in DM Memory/16 bits wide
D15 D8 D7
D0

CH0 x00 0x00 B1 (8 bits)
x01 0x00 B2 (8 bits)

0x00 ignored
0x00 ignored

CH1 0x00 ignored
0x00 ignored
0x00 ignored
0x00 ignored

CH2 0x00 ignored
0x00 ignored
0x00 ignored
0x00 ignored

CH0 x02 0x00 B1 (8 bits)
x03 0x00 B2 (8 bits)

0x00 ignored

EE-36 Page 4

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

0x00 ignored
CH1 0x00 ignored

0x00 ignored
0x00 ignored
0x00 ignored

CH2 0x00 ignored
0x00 ignored
0x00 ignored
0x00 ignored

IOM-2 Terminal Mode Interfacing II
The interface to the terminal mode could also be
implemented without dividing the frame sync signal of the
IOM-2 standard. In this case the incoming/outgoing data
is divided up into nibbles and it is not that comfortable to
handle this data. The 32 bit barrel shifter of the DSP could
handle these nibbles and it takes two overhead cycles to
receive/ transmit data via the IOM-2 interface. A
subroutine to put together the nibbles to a 8 bit word
could look like the following one:

In this case the subroutine IOM2_RX is used to build the
8 bit B1 & B2 data word of the nibbles that are stored in
the autobuffer.
Assistance:

IOM-2 Terminal Interfacing III
It is also possible to use no additional glue logic at all and
this would mean that every data bit of the serial port is
latched twice as we are now using the double clock of the
IOM-2 standard. A routine is available that uses a lookup
table and consumes additional 40 cycles per received 8 bit
word. Please contact ANALOG DEVICES for further
details or application assistance.

http://www.analog.com
ftp.analog.com

Literature:
[1] ADSP-2100 Family User’s Manual
[2] ICs for Communications

IOM-2 Interface Reference Guide

/**/
/* IOM2 interface to the ADSP-2181 SPORT0 */
/* SIEMENS VIDEOPHONE */
/* TDMA, 24 Slots, SLEN = 4 */
/* autobuffering 4 words deep = 4 nibbles */
/* = 2 B channels used */
/* CH0..CH3 enabled */
/* SCLK = DCL / 2 */
/**/

.MODULE IOM2;

.VAR/DM/RAM B1_RX;

.VAR/DM/RAM B2_RX;

.GLOBAL B1_RX;

.GLOBAL B2_RX;

.ENTRY IOM2_RX;
/***/
/* subroutine IOM2_RX that should be called after the autobuffer */
/* interrupt has occured */
/***/
IOM2_RX:

ar=dm(i1,m0); /* get high nibble of B1 */
sr0=dm(i1,m0); /* get low nibble of B1 */
sr=sr or lshift ar by 4 (LO); /* get high nibble of B2 */
dm(B1_RX)=sr0;

ar=dm(i1,m0); /* get high nibble of B2 */
sr0=dm(i1,m0); /* get low nibble of B2 */
sr=sr or lshift ar by 4 (LO);
dm(B2_RX)=sr0;

RTS;
.ENDMOD;

