
aaaa Engineer To Engineer Note EE-121
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices
regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Porting Code From ADSP-218x
To ADSP-219x
 Last modified 5/17/01

This tech-note is intended for existing users of the ADSP-
218x, who are familiar with the architecture and
instruction set of the ADSP-218x, and plan to upgrade
their design to the ADSP-219x. It is divided into two
main sections - the first describes the enhancements and
differences between the ADSP-218x family of DSPs and
the ADSP-219x in terms of the DSP architecture and the
instruction set, while the second section illustrates the new
ELF assembler and linker formats with the help of an
example.

One of the goals in designing the ADSP-219x has been to
keep its instruction-set and assembly syntax as closely
compatible with the ADSP-21xx family of DSPs as
possible. The exceptions (which have been kept to a
minimum and intended to be as minimally intrusive to the
customer as possible) will be documented in this
Application note. The changes allow for a DSP
architecture that is more C-friendly, resulting in a more
efficient C compiler. It also allows users additional
instructions to improve efficiency of assembly code.
These changes facilitate the increased core processor
operating speeds.

DIFFERENCES IN ARCHITECTURE

1. Unified Memory Space

The ADSP-218x had two separate memory spaces – PM
and DM. The ADSP-219x on the other hand, has a unified
memory space with separate memory blocks to
differentiate between 24 and 16-bit memory. For example,
the first GP member of the ADSP-219x family, ADSP-
2192 has dual DSP cores, with core 0 having 16Kx24 and
64Kx16 words of on-chip memory, and core 1 having
16Kx24 and 32Kx16 words of on-chip memory. A
detailed description of the ADSP-2192 memory map can
be obtained from the ADSP-2192 datasheet. Figure 1
shows the memory organization of the ADSP-2192.

The program sequencer will be able to fetch two data
operands from any two memory blocks in a single cycle.
While having a unified memory map allows for more
flexible memory addressing, it’s important to understand
that on the ADSP-219x, the addresses PM(0x0000) and
DM(0x0000) access the same physical memory location.
The first syntax fetches/writes 24-bit data, while the
second syntax fetches/writes 16-bits of data.

A linker description file (LDF) provided at the end of this
tech-note describes the memory map for the ADSP-2192.

Figure 1. ADSP-2192 memory map

EE-121 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

2. 16-bit DAG Registers and Memory Paging

The ADSP-219x has a paged architecture that uses 16-bit
DAG Registers to access 64K pages. But since the address
buses in the ADSP-219x are 24 bits wide, there are also
two new page registers, DMPG1 and DMPG2, which are
used to store the upper 8 bits of the 24-bit address.
DMPG1 works with DAG registers I0-I3 and DMPG2
works with I4-I7, respectively. Page registers can be
initialized as shown in the following example

 I2 = 0x3456;

 DMPG1 = 0x12; /* Page register can be set to an
absolute page value…*/

 DMPG2 = page(data_buffer); /* ..OR could also be
initialized to a buffer */

 L2 = 0;

 AX0 = 0xaaaa;

 AR = MR1 - AX0;

 DM(I2,M2) = AR;

Note that program execution continues linearly through
memory. Local jumps, loops, and calls within page
boundaries do not affect page registers.

3. Increased variety in DAG Addressing Modes

The ADSP-219x architecture has been enhanced to
provide added flexibility in DAG addressing modes.
There are four new enhanced addressing modes such as

• Pre-modify-without update addressing (in addition to
the existing post-modify with update mode that
existed on the ADSP-218x)

e.g., DM(M1,I0) = AR;

• Pre-modify and post-modify with an 8-bit 2’s-
complement immediate modify value instead of an M
register

e.g., AX0 = PM(I5,-4);

• DAG modify with an 8-bit 2’s complement
immediate-modify value

e.g., MODIFY(I7,24);

Note: In terms of syntax, the ADSP-219x assembler
supports a new and more intuitive “C-style” format in
addition to the existing format as shown in the table
below. It is hoped that this new representation will make
code more readable and easier to understand.

4. Increased Variety and Types of Jumps and
Function Calls (Relative and Absolute/Long)

The ADSP-218x with its 16K words of accessible space
only required a single form of conditional/unconditional
jump/call instruction of the form

[IF COND] CALL <address>;

The address could either be an absolute 14-bit value
provided in the instruction, or could be an indirect address
pointed to by one of the DAG2 Index registers (I4, I5, I6,
or I7).

However, the ADSP-219x has an available addressable
space of 64K words. Hence, it provides a wider variety of
conditional and unconditional jumps and calls, which may
be either delayed or non-delayed. The available options
are:

• 13-bit non-delayed or delayed relative conditional
jump

• Conditional indirect jump or call with address pointed
to by a DAG register. In this case, the upper 8 bits of
the address are stored in a “Jump Page Register”
called IJPG, which is new to the ADSP-219x. Note
that any one of the 8 DAG registers can be used for
jump address.

• 16-bit non-delayed or delayed relative unconditional
jump or call

• 24-bit conditional non-delayed long jump or call

PM(I1 + -4) = MR2;
 OR

PM(-4,I1) = MR2;

N/A

Pre-modify

AX0 = DM(I5 += M6);
OR

AX0 = DM(I5,M6);

AX0 = DM(I5,M6);

Post-modify

New

Legacy

EE-121 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Jumps, calls and returns can take up to 4 DSP clock cycles
if the branch is taken and no penalty if the branch is not
taken (as explained in section 5)

Note that the use of delayed branches and jumps will
effectively reduce the above latency by 2. This is because
the two instructions following the jump are also executed.

5. The ADSP-219x Instruction Pipeline

The ADSP-219x has a six-stage Instruction pipeline,
comprising the L(ook-ahead), P(re-fetch), F(etch),
A(ddress), D(ecode), and E(xecute) stages. The pipeline
is completely transparent from a user standpoint.
Incorporated within the instruction pipeline is a two-stage
memory pipeline. The additional depth in the pipeline
means that memory is no longer double pumped leading to
less power consumption. The added depth of the pipeline
is also required to accommodate the increased operating
speed of the processor. For a detailed description of the
ADSP-219x pipeline, please refer to EE-Note EE-123
titled “An Overview of the ADSP-219x Pipeline”.

The added depth to the pipeline enables a programmer to
use delayed branches and function calls. Figure 2 shows
the pipeline structure for a delayed jump that is taken
(Figure 2). Note that the two instructions immediately
following the jump are executed, while the instructions
further down, P and Q (corresponding to the F and P
stages of the pipeline) are flushed. If the jump had not
been taken, normal program execution would have
continued without any lost cycles.

Address Instruction

 L:
 M: IF COND JUMP X (DB);
 N:
 O:
 P:
 Q:

Figure 2

CLOCK CYCLES

L Q X Y Z : :
P P Q X Y Z : :
F O P nop X Y Z :
A N O nop nop X Y Z
D M N O nop nop X Y
E L M N O nop nop X

Figure 3

There is a 4-cycle delay in servicing an interrupt (Fig 4).
On receiving an interrupt request, the DSP completes
execution of the present instruction, flushes the pipeline,
and fetches the first instruction of the interrupt vector.

CLOCK CYCLES

L R j j+1 j+2 : : :
P Q R j j+1 j+2 : :
F P Q nop j j+1 j+2 :
A O P nop nop j j+1 j+2
D N O nop nop nop j j+1
E M N nop nop nop nop j

 Interrupt First instruction of
 occurs and interrupt vector is
 recognized loaded into top of pipeline

where j = first instruction of ISR

Figure 4

6. Base Registers For Circular Buffers (Removes
Restriction on Starting Addresses That Used To Exist
On 218x)

EE-121 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

The ADSP-219x uses base registers for addressing
circular buffers. This removes existing hardware
restrictions on the ADSP-218x with regards to the location
of the starting/base address of circular buffers, thereby
enabling any number of circular buffers to be declared.
Further, the base registers are mapped to “register” space
on the core. Switching between primary and secondary
DAG register banks automatically also causes primary and
secondary base registers to be enabled.

A slice of ADSP-218x initialization code that looks like:

…
.VAR/CIRC some_buffer[N];
…
I1 = ^some_buffer;
L1 = %some_buffer;
…

would now be written as:

…
.VAR some_buffer[N];
…
I1 = some_buffer;
L1 = length (some_buffer);
AR = I1;
REG(B1) = AR;
…

It is important to note that the ‘^’ character is no longer
needed for initializing the Index register Ix, and also that
the ‘%’ character used to initialize the Length register Lx,
is now replaced by the ‘length’ qualifier.

7. System Control Register Space

ADSP-219x system registers (such as the DAG base
registers discussed in the previous section) are now
mapped to and reside in a separate register space on the
ADSP-219x. The syntax “REG(register)” should now be
used for accessing these registers.

8. Addition of SR as a Dual Accumulator for The
MAC in place of the MAC Feedback Register (MF)

The SR register which was 32-bits wide on the ADSP-
218x (comprising two 16-bit registers SR0 and SR1) has

now been expanded to 40 bits with the introduction of a
new 16-bit register called SR2. The lower 8 bits of SR2
are used in shift operations, and SR2 can also be used as a
full 16-bit scratch register. SR2 has replaced the MAC
feedback register MF. Thus, the ADSP-219x now has
two true 40-bit accumulators: MR and SR.

Instructions of the form

[IF cond] MF = MR + MX0*MY1 (UU);

will now become

[IF cond] SR = MR +MX0*MY1 (UU);

while instructions that used the MF register as a source
can now use the 16-bit SR1 register. E.g.,

MR = MR + MX1*MF (SS);

will now become

1. MR = MR + MX1*SR1 (SS);

9. Differences In MSTAT Register And The
Availability Of An Alternate Set Of DAGs

 The MSTAT register, which was 7 bits wide on the
ADSP-218x, is now an 8-bit register.

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0

 Comp Register Select
 Bit-Reverse Mode in DAG1
 ALU Overflow Latch Mode Enable
 AR Saturation Mode Enable
 MAC Result Placement Mode
 Timer Enable
 Secondary DAG Register Bank Enable
 Global Interrupt Enable

Figure 5

EE-121 Page 5
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

While the operation of bits 0-5 is unchanged, clearing or
setting bit 6 now enables the user to switch between
primary and secondary DAG register banks, respectively.

e.g.,
ENA SEC_DAG;

Setting or clearing bit 7 will let the user enable or disable
global interrupts. The “Go Mode” as was defined for the
ADSP-218x no longer exists for the ADSP-219x (the DSP
is configured to always work in “Go Mode”). Multiple
modes may be set/cleared in a single cycle, but mode
enables and disables cannot be mixed in the same
instruction. For example

ENA M_MODE, TIMER;

is valid, but

ENA M_MODE, DIS TIMER;

is not.

Changes to the MSTAT using these (type 18) mode
control instructions have zero latency, meaning the results
take effect the very next cycle. Note however, that there
are still non-zero latencies when writing to the MSTAT
register directly.

10. SE Is No Longer A DREG

With the introduction of a new DREG in the form of SR2,
it became necessary to move one of the existing DREGs to
a general core register space. This was the SE register,
which is arguably the least used DREG. What this means
is that multifunction instructions that used the SE as a
general DREG or as a scratch register will now have to
use one of the other DREGs as a scratch register.
Multifunction instructions that used SE will have to be
done the following way. For example,

SR = LSHIFT MR1 (HI), SE = DM (I6, M5);

will now be

SR = LSHIFT MR1 (HI);
SE = DM (I6, M5);

It is important to note however that the functionality of the
SE register has remained unchanged.

11. The NORM instruction differs slightly between the
ADSP-219x and previous 16-bit, fixed-point DSP's in

the ADSP-21xx family. The difference can only be
seen when performing "overflow normalization".

+ On the ADSP-219x, the NORM instruction
checks only that (SE == +1) for performing the
shift in of the AC flag (overflow normalization).

+ On previous ADSP-2100 family DSP's, the
NORM instruction checks both that
(SE == +1) and (AV == 1) before shifting in the
AC flag.

The EXP(HIX) instruction always sets (SE = +1) when the
AV flag is set, so only when NORM is used without a
preceding EXP instruction is the implementation
difference manifest.

12. IRPTL Register Instead Of IFC

The IRPTL Register has taken the place of what used to
be the IFC Register on the ADSP-21xx.

The operation of the two registers is however identical, so
instructions of the form

IFC = AX0;

or

IFC = 0x08;

will now become

IRPTL = AX0;

or

IRPTL = 0x08;

respectively.

The IRPTL register (which is similar in functionality to
the IRPTL on the SHARC) also provides a way of
latching interrupts, something the 21xx did not have.

13. Introduction Of the SV Condition (Programmed
Using the CCODE Register and SWCOND)

EE-121 Page 6
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

The ADSP-219x provides a new arithmetic status
condition, Shifter Overflow. A bit (bit 9) in a newly
introduced register called the CCODE register tests for
shifter overflow. This is done as follows:

CCODE = 0x09;
IF NOT SWCOND SR = LSHIFT MX0 (LO);

will shift the contents of MX0 into SR0 until SR
overflows.

14. Using the CCODE Register and SWCOND To
Test For The XIN POS/NEG Condition

The CCODE register also detects for the ALU condition
IF POS/IF NEG (Bit 8 in this case). ADSP-218x code that
used this condition, for example:

IF POS AR = ABS AX0;

would become

CCODE = 0x08; IF
NOT SWCOND AR = ABS AX0;

DIFFERENCES IN EXECUTABLE FILE
FORMATS, INSTRUCTION SYNTAX

If writing new code for the ADSP-219x, users are
encouraged to use the new assembler and linker format
and syntax. For a detailed description of the ELF
assembler and linker formats, please refer the ADSP-219x
tools documentation.

15. Architecture files replaced by more powerful
Linker Description (LDF) files

The new common syntax that the software tools are
adopting have replaced the architecture files with the more
powerful linker-description files. A detailed description of
LDF files is beyond the scope of this application note, but
details can be found in the VisualDSP User’s guide and
Reference.

16. Support of Legacy ADSP-218x Code

The ADSP-219x ELF assembler and linker however allow
existing ADSP-218x users to port existing applications to
the ADSP-219x with minimal modifications. The
assembler has a couple of switches (-legacy –c), which
allows the assembler to recognize ADSP-218x specific
syntax. The use of these switches is illustrated with the
help of an example. Consider an example ADSP-218x
program shown in Table 1. By making the changes
highlighted in the boxes, one can assemble and link the
source code program to work on the ADSP-219x.

Table 2 shows a sample LDF file specific to the ADSP-
2192. Note that the linker place default code sections into
the section titled “program” , while default data buffers
are placed in the section titled “data”.

Table 3 shows the same program written entirely using the
“new” ELF assembler and linker syntax. This
programming style is recommended for any new
applications.

EE-121 Page 7
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

.MODULE/RAM main2181;

.VAR/RAM/DM/CIRC buffer1[0x100];
.INIT buffer1: <text1.txt>;

.VAR/RAM word1;

.VAR/RAM/DM/SEG=int_dm2 buffer2 = 0xabcd;

 .VAR/RAM/DM/ABS=0x9000 buffer3 = 0xdead;

/* .VAR/RAM/DM/SEG=seg_buffer3 buffer3 = 0xdead; */

.VAR/RAM/PM pm_buffer1;
.INIT24 pm_buffer1: 0x123456;

JUMP start; RTI;RTI;RTI; /* interrupt vector table – Processor specific */
RTI;RTI;RTI;RTI; RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI; RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI; RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI; RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI; RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI; RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI; RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;

start: /* start of main code */

#ifndef AR_SET_TO_2
#define N 100
AR = 0x0001;
#endif

#ifdef AR_SET_TO_2
#define N 10
AR = 0x0002;
#endif

I7 = ^buffer1;
L7 = %buffer1;
M7 = 1;

M5 = 6;

I2 = ^buffer2;
L2 = 0;

I1 = ^buffer3;
L1 = 0;

AX0 = DM(I7,M7);
MODIFY(I7,M5);
MY1 = DM(I7,M7);
MR = 0;
MF =AR*MY1 (RND), MX1=PM(I7,M7); {MF = x2}
MR=MR+MX1*MF (SS);

CNTR = N;
DO this_loop UNTIL CE;
this_loop: AR = AR + AY0, AY0 = PM(I7,M7);

.ENDMOD;

If a segment name
is not specified for
a DM data buffer,
the linker places
that buffer in the
default LDF section
called “data”

Replace instances of MF with dual
accumulator SR

It is recommended
that variable
declarations placed
at an absolute
address be re-
written to instead
reside within a
segment that starts
at that address.
i.e., change it to
something like..

If a segment name is not specified for a
module, the linker places the module in the
default LDF section called “program”

Remember that on the 219x, you don’t have to
(and shouldn’t) use /CIRC directive. Use base
registers instead.

Add a couple of lines here to
initialize base registers:
AX0 = I7;
REG(B7) = AX0;

Default PM data buffers
are stored in the
“program” section.

Table 1. Original ADSP-218x example program.

Can be optimized by using new ADSP-
219x pre-modify DAG addressing

EE-121 Page 8
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

ARCHITECTURE(ADSP-2192-12)

SEARCH_DIR($ADI_DSP\219x\lib)

// Libraries from the command line are included in COMMAND_LINE_OBJECTS.
$OBJECTS = $COMMAND_LINE_OBJECTS ;

// This LDF file reflects the memory map of Core 0 of the ADSP-2192 DSP. It will need to be modified
// to relfect other DSPs

MEMORY
{

 seg_itab { TYPE(PM RAM) START(0x010000) END(0x01003f) WIDTH(24) }
 seg_code { TYPE(PM RAM) START(0x010040) END(0x013fff) WIDTH(24) }
 seg_data1 { TYPE(DM RAM) START(0x000000) END(0x003fff) WIDTH(16) }
 seg_data2 { TYPE(DM RAM) START(0x004000) END(0x007fff) WIDTH(16) }
 seg_my_own { TYPE(DM RAM) START(0x009000) END(0x00bfff) WIDTH(16) }
 seg_data3 { TYPE(DM RAM) START(0x00c000) END(0x00ffff) WIDTH(16) }

}

PROCESSOR p0
{
 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS
 {
 input_sec1
 {
 INPUT_SECTIONS($OBJECTS(seg_rth))
 } > seg_itab
 input_sec2
 {
 INPUT_SECTIONS($OBJECTS(program))
 } >seg_code
 input_sec3
 {
 INPUT_SECTIONS($OBJECTS(seg_1))
 } >seg_code
 input_sec4
 {
 INPUT_SECTIONS($OBJECTS(data1))
 } >seg_data1
 input_sec5
 {
 INPUT_SECTIONS($OBJECTS(int_dm2))
 } >seg_data2
 input_sec6
 {
 INPUT_SECTIONS($OBJECTS(seg_buffer3))
 } >seg_my_own
 input_sec7
 {
 INPUT_SECTIONS($OBJECTS(int_dm3))
 } >seg_data3
 }
}

Table 2. An ADSP-219x LDF file that reflects the ADSP-2192 memory map

Default “PM” section

Default “DM” section

My own section for “buffer3”.
I force it to go into the memory
segment titled “seg_my_own”

EE-121 Page 9
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

. .SECTION/DATA int_dm1;
.VAR buffer1[0x100] = "text1.txt";

.SECTION/DATA dummy;
.VAR buffer2[0x100];

.SECTION/DATA seg_buffer3;
.VAR buffer3 = 0xdead;

.SECTION/PM seg_1;
.VAR/INIT24 pm_buffer1 = 0x123456;

.SECTION/CODE seg_rth;
JUMP start; RTI;RTI;RTI; /* begin execution */
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;

.SECTION/CODE program;
start:

#ifndef AR_SET_TO_2
#define N 100
AR = 0x0001;
#endif

#ifdef AR_SET_TO_2
#define N 10
AR = 0x0002;
#endif

I7 = buffer1;
L7 = length(buffer1);
M7 = 1;

I2 = length(buffer2);
L2 = 0;

I1 = length(buffer3);
L1 = 0;

AX0 = DM(I7,M7);

MY1 = DM(6,I7);
MR = 0;
SR =AR*MY1 (RND), MX1=PM(I7,M7);
SR=MR+MX1*SR1 (SS);

CNTR = N;
DO this_loop UNTIL CE;
this_loop: AR = AR + AY0, AY0 = PM(I7,M7);

Table 3. Program from Table 1 written entirely using new ADSP-219x syntax
(recommended approach for any new code)

