
W3.5
C/C++ Compiler and Library

Manual for ADSP-219x Processors

Revision 4.1, October 2003

Part Number:
82-000390-03

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP++, the VisualDSP++ logo, and
EZ-KIT Lite are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
PREFACE

Purpose .. xxix

Intended Audience ... xxix

Manual Contents Description ... xxx

What’s New in this Manual ... xxx

Technical or Customer Support .. xxxi

Supported Processors .. xxxi

Product Information ... xxxii

MyAnalog.com .. xxxii

DSP Product Information .. xxxii

Related Documents .. xxxiii

Online Technical Documentation ... xxxiv

From VisualDSP++ .. xxxiv

From Windows ... xxxv

From the Web ... xxxv

Printed Manuals ... xxxvi

VisualDSP++ Documentation Set xxxvi

Hardware Manuals ... xxxvi

Datasheets ... xxxvi
VisualDSP++ 3.5 C/C++ Compiler and Library Manual iii
 for ADSP-219x DSPs

CONTENTS
Contacting DSP Publications ... xxxvii

Notation Conventions ... xxxvii

COMPILER

C/C++ Compiler Overview ... 1-2

Standard Conformance .. 1-4

Compiler Command-Line Interface .. 1-6

Running the Compiler .. 1-7

Specifying Compiler Options in VisualDSP++ 1-11

Compiler Command-Line Switches 1-12

C/C++ Compiler Switch Summaries 1-12

C/C++ Mode Selection Switch Descriptions 1-21

-c89 ... 1-21

-c++ ... 1-21

C/C++ Compiler Common Switch Descriptions 1-21

sourcefile .. 1-21

-@ filename .. 1-22

-A name(tokens) ... 1-22

-alttok .. 1-23

-bss .. 1-23

-build-lib .. 1-24

-C .. 1-24

-c ... 1-24

-const-read-write .. 1-24

-Dmacro[=definition] ... 1-24
iv VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

CONTENTS
-debug-types <file.h> ... 1-25

-default-linkage-{asm|C|C++} .. 1-25

-dry .. 1-25

-dryrun ... 1-26

-E ... 1-26

-ED .. 1-26

-EE ... 1-26

-extra-keywords ... 1-26

-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2 [,...]]
1-27

-force-circbuf .. 1-27

-fp-associative ... 1-27

-full-version .. 1-27

-g .. 1-28

-H .. 1-28

-HH ... 1-28

-h[elp] .. 1-29

-I- ... 1-29

-I directory [{,|;} directory...] ... 1-29

-i .. 1-30

-include filename .. 1-30

-ipa ... 1-30

-jump-{dm|pm|same} .. 1-31

-L directory [{,|;} directory...] .. 1-31

-l library ... 1-31
VisualDSP++ 3.5 C/C++ Compiler and Library Manual v
 for ADSP-219x DSPs

CONTENTS
-M ... 1-32

-MD .. 1-32

-MM .. 1-32

-Mo filename .. 1-32

-Mt filename .. 1-32

-MQ .. 1-33

-map filename .. 1-33

-mem ... 1-33

-no-alttok ... 1-33

-no-bss ... 1-33

-no-builtin ... 1-34

-no-circbuf ... 1-34

-no-defs .. 1-34

-no-extra-keywords ... 1-34

-no-fp-associative .. 1-34

-no_hardware_pc_stack ... 1-35

-no-mem .. 1-35

-no-std-ass .. 1-35

-no-std-def ... 1-35

-no-std-inc ... 1-35

-no-std-lib .. 1-36

-no-widen-muls .. 1-36

-nothreads .. 1-36

-O .. 1-37
vi VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

CONTENTS
-Oa ... 1-37

-Os ... 1-37

-Ov num ... 1-38

-o filename .. 1-38

-oldasmcall-{csp|8x} .. 1-38

-P ... 1-38

-PP ... 1-38

-path {-asm | -compiler | -def | -lib | -link | -mem} filename 1-39

-path-install directory .. 1-39

-path-output directory ... 1-39

-path-temp directory ... 1-39

-pch .. 1-40

-pchdir directory ... 1-40

-pedantic .. 1-40

-pedantic-errors ... 1-40

-pplist filename ... 1-41

-proc processor .. 1-41

-R directory [{;|,}directory …] 1-42

-R- .. 1-43

-reserve register[, register …] ... 1-43

-S ... 1-43

-s .. 1-43

-save-temps ... 1-44

-show .. 1-44
VisualDSP++ 3.5 C/C++ Compiler and Library Manual vii
 for ADSP-219x DSPs

CONTENTS
-si-revision version .. 1-44

-signed-bitfield ... 1-45

-signed-char .. 1-45

-syntax-only .. 1-45

-sysdefs ... 1-45

-T filename .. 1-46

-threads .. 1-46

-time .. 1-47

-Umacro ... 1-47

-unsigned-bitfield ... 1-47

-unsigned-char .. 1-48

-v ... 1-48

-val-global <name-list> .. 1-48

-verbose .. 1-48

-version .. 1-49

-W {error|remark|suppress|warn} [.number...] 1-49

-Werror-limit number ... 1-49

-Wremarks .. 1-49

-Wterse ... 1-49

-w .. 1-50

-warn-protos ... 1-50

-workaround <workaround>[,<workaround>]* 1-50

-write-files .. 1-50

-write-opts .. 1-50
viii VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

CONTENTS
-xref <filename> .. 1-51

C++ Mode Compiler Switch Descriptions 1-52

-anach ... 1-52

-no-anach ... 1-53

-no-demangle .. 1-53

Data Type Sizes ... 1-54

Optimization Control .. 1-56

Interprocedural Analysis .. 1-57

C/C++ Compiler Language Extensions .. 1-59

Inline Function Support Keyword (inline) 1-62

Inline Assembly Language Support Keyword (asm) 1-63

Assembly Construct Template ... 1-64

ASM() Construct Syntax: .. 1-64

ASM() Construct Syntax Rules 1-66

ASM() Construct Template Example 1-67

Assembly Construct Operand Description 1-68

Assembly Constructs with Multiple Instructions 1-74

Assembly Construct Reordering and Optimization 1-74

Assembly Constructs with Input and Output Operands 1-75

Assembly Constructs and Macros 1-77

Assembly Constructs and Flow Control 1-77

Dual Memory Support Keywords (pm dm) 1-78

Memory Keywords and Assignments/Type Conversions 1-80

Memory Keywords and Function Declarations/Pointers 1-81
VisualDSP++ 3.5 C/C++ Compiler and Library Manual ix
 for ADSP-219x DSPs

CONTENTS
Memory Keywords and Function Arguments 1-82

Memory Keywords and Macros ... 1-82

PM and DM Compiler Support for Standard C Library Functions
1-83

Placement Support Keyword (section) 1-83

Boolean Type Support Keywords (bool, true, false) 1-84

Pointer Class Support Keyword (restrict) 1-84

Variable Length Array Support .. 1-85

Non-Constant Aggregate Initializer Support 1-87

Indexed Initializer Support .. 1-87

Aggregate Constructor Expression Support 1-89

Fractional Type Support .. 1-90

Format of Fractional Literals ... 1-91

Conversions Involving Fractional Values 1-91

Fractional Arithmetic Operations 1-92

Mixed Mode Operations ... 1-92

Saturated Arithmetic ... 1-93

Preprocessor Generated Warnings .. 1-93

C++ Style Comments .. 1-94

Compiler Built-In Functions ... 1-94

Access to System Registers .. 1-95

I/O Space Read or Write ... 1-97

Interrupt Control ... 1-98

Mode Control .. 1-99

Near and Far Type Qualifiers .. 1-99
x VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

CONTENTS
Declarations .. 1-99

Sizes of Far and Near Qualified Types 1-100

Conversions Between Far and Near Pointers 1-101

Addressing “Far” Data ... 1-102

C++ Function Overloading .. 1-102

Library Support for “Far" Pointers 1-102

Legacy Support ... 1-102

Circular Buffer Built-In Functions 1-103

Automatic Circular Buffer Generation 1-103

Circular Buffer Increment of an Index 1-104

Circular Buffer Increment of a Pointer 1-105

ETSI Support .. 1-106

ETSI Support Overview .. 1-106

Calling ETSI Library Functions 1-108

Using the ETSI Built-In Functions 1-109

Linking ETSI Library Functions 1-109

Working with ETSI Library Source Code 1-110

ETSI Support for Data Types .. 1-110

ETSI Header File .. 1-111

Pragmas .. 1-119

Data Alignment Pragmas ... 1-121

#pragma align num ... 1-121

#pragma pad (alignopt) ... 1-121

Interrupt Handler Pragmas .. 1-122
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xi
 for ADSP-219x DSPs

CONTENTS
#pragma interrupt .. 1-122

#pragma altregisters .. 1-122

Loop Optimization Pragmas ... 1-123

#pragma loop_count(min, max, modulo) 1-124

#pragma vector_for ... 1-124

#pragma no_alias .. 1-125

General Optimization Pragmas 1-125

Linking Control Pragmas .. 1-126

#pragma linkage_name identifier 1-126

 #pragma retain_name .. 1-127

 #pragma weak_entry .. 1-128

Function Side-Effect Pragmas ... 1-128

#pragma alloc ... 1-129

#pragma pure ... 1-129

#pragma const .. 1-130

#pragma regs_clobbered string 1-130

#pragma result_alignment (n) 1-134

Template Instantiation Pragmas 1-134

#pragma instantiate instance 1-135

#pragma do_not_instantiate instance 1-136

#pragma can_instantiate instance 1-136

Header File Control Pragmas .. 1-136

#pragma hdrstop .. 1-136

#pragma no_pch ... 1-137
xii VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

CONTENTS
#pragma once ... 1-138

#pragma system_header ... 1-138

GCC Compatibility Extensions ... 1-138

Statement Expressions ... 1-139

Type Reference Support Keyword (Typeof) 1-140

GCC Generalized Lvalues ... 1-141

Conditional Expressions with Missing Operands 1-142

Hexadecimal Floating-Point Numbers 1-142

Zero Length Arrays ... 1-143

Variable Argument Macros .. 1-143

Line Breaks in String Literals ... 1-144

Arithmetic on Pointers to Void and Pointers to Functions 1-144

Cast to Union ... 1-144

Ranges in Case Labels ... 1-144

Declarations mixed with Code ... 1-144

Escape Character Constant .. 1-145

Alignment Inquiry Keyword (__alignof__) 1-145

Keyword for Specifying Names in Generated Assembler (asm) 1-145

Function, Variable and Type Attribute Keyword (__attribute__)
1-146

Preprocessor Features .. 1-147

Predefined Preprocessor Macros ... 1-147

Header Files .. 1-149

Writing Preprocessor Macros .. 1-149

Preprocessing of .IDL Files .. 1-151
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xiii
 for ADSP-219x DSPs

CONTENTS
C/C++ Run-Time Model and Environment 1-153

Using the Run-Time Header ... 1-154

Interrupt Table and Interface ... 1-154

Stack Frame .. 1-155

Stack Frame Description ... 1-157

General System-Wide Specifications 1-158

At a procedure call, the following must be true: 1-159

At an interrupt, the following must be true: 1-159

Return Values ... 1-159

Procedure Call and Return .. 1-159

On Entry: ... 1-160

To Return from a Procedure: 1-160

Miscellaneous Information .. 1-161

Register Classification ... 1-161

Callee Preserved Registers (“Preserved”) 1-161

Dedicated Registers .. 1-161

Caller Save Registers (“Scratch”) 1-161

Circular Buffer Length Registers 1-162

Mode Status (MSTAT) Register 1-162

Complete List of Registers .. 1-163

File I/O Support ... 1-166

Extending I/O Support To New Devices 1-166

C/C++ and Assembly Language Interface 1-169

Calling Assembly Subroutines from C/C++ Programs 1-170
xiv VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

CONTENTS
Calling C/C++ Functions from Assembly Programs 1-172

Using Mixed C/C++ and Assembly Naming Conventions 1-174

C++ Programming Examples .. 1-176

Using Fract Type Support .. 1-176

Using Complex Number Support 1-177

ACHIEVING OPTIMAL PERFORMANCE FROM C/C++
SOURCE CODE

General Guidelines ... 2-3

How the Compiler Can Help ... 2-4

Using the Compiler Optimizer .. 2-4

 Using the Statistical Profiler ... 2-5

Using Interprocedural Optimization 2-6

Data Types .. 2-7

Avoiding Emulated Arithmetic .. 2-8

Getting the Most from IPA .. 2-9

Initializing Constants Statically ... 2-9

Avoiding Aliases .. 2-10

Indexed Arrays vs. Pointers .. 2-12

Trying Pointer and Indexed Styles 2-12

Function Inlining .. 2-13

Using Inline asm Statements .. 2-14

Memory Usage .. 2-15

Loop Guidelines ... 2-17

Keeping Loops Short ... 2-17
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xv
 for ADSP-219x DSPs

CONTENTS
Avoiding Unrolling Loops ... 2-17

Avoiding Loop Rotation by Hand .. 2-18

Avoiding Array Writes in Loops ... 2-19

 Inner Loops vs. Outer Loops .. 2-19

Avoiding Conditional Code in Loops 2-20

Avoiding Placing Function Calls in Loops 2-21

 Avoiding Non-Unit Strides ... 2-21

Loop Control .. 2-21

Using the Restrict Qualifier ... 2-22

Using the Const Qualifier ... 2-23

Avoiding Long Latencies ... 2-24

Using Built-In Functions in Code Optimization 2-25

Fractional Data ... 2-25

System Support Built-In Functions .. 2-26

Using Circular Buffers ... 2-27

Smaller Applications: Optimizing for Code Size 2-29

Pragmas .. 2-31

Function Pragmas ... 2-31

#pragma const .. 2-31

#pragma pure ... 2-32

#pragma alloc ... 2-32

#pragma regs_clobbered .. 2-33

#pragma optimize_{off|for_speed|for_space|as_cmd_line} .. 2-35

Loop Optimization Pragmas .. 2-35
xvi VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

CONTENTS
#pragma loop_count ... 2-35

#pragma no_alias .. 2-36

Useful Optimization Switches .. 2-37

C/C++ RUN-TIME LIBRARY

C and C++ Run-Time Library Guide ... 3-3

Calling Library Functions .. 3-4

Using the Compiler’s Built-In C Library Functions 3-5

Linking Library Functions ... 3-6

Working With Library Header Files ... 3-8

assert.h ... 3-9

ctype.h ... 3-9

def2191.h – Memory Map Definitions 3-10

def2192-12.h – Memory Map Definitions 3-10

def219x.h– Memory Map Definitions 3-10

errno.h ... 3-10

float.h ... 3-10

iso646.h ... 3-11

limits.h ... 3-11

locale.h ... 3-12

math.h .. 3-12

setjmp.h .. 3-13

signal.h ... 3-13

stdarg.h .. 3-13

stddef.h .. 3-13
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xvii
 for ADSP-219x DSPs

CONTENTS
stdio.h .. 3-13

stdlib.h ... 3-15

string.h .. 3-15

sysreg.h .. 3-15

Abridged C++ Library Support .. 3-16

Embedded C++ Library Header Files 3-16

complex .. 3-16

exception .. 3-17

fract ... 3-17

fstream ... 3-17

iomanip .. 3-17

ios .. 3-17

iosfwd .. 3-17

iostream ... 3-18

istream ... 3-18

new .. 3-18

ostream .. 3-18

sstream ... 3-18

stdexcept .. 3-18

streambuf ... 3-18

string .. 3-19

strstream .. 3-19

C++ Header Files for C Library Facilities 3-19

Embedded Standard Template Library Header Files 3-20
xviii VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

algorithm .. 3-20

deque .. 3-20

functional ... 3-21

hash_map ... 3-21

hash_set .. 3-21

iterator ... 3-21

list .. 3-21

map .. 3-21

memory .. 3-21

numeric .. 3-21

queue .. 3-21

set .. 3-22

stack ... 3-22

utility ... 3-22

vector ... 3-22

fstream.h ... 3-22

iomanip.h ... 3-22

iostream.h ... 3-22

new.h .. 3-22

Documented Library Functions ... 3-23

C Run-Time Library Reference .. 3-26

Notation Conventions ... 3-26

Reference Format .. 3-26

abort .. 3-27
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xix
 for ADSP-219x DSPs

abs ... 3-28

acos .. 3-29

asin .. 3-30

atan .. 3-31

atan2 .. 3-32

atexit .. 3-33

atof .. 3-34

atoi .. 3-37

atol .. 3-38

bsearch ... 3-39

calloc ... 3-41

ceil ... 3-42

clear_interrupt .. 3-43

cos ... 3-45

cosh ... 3-48

disable_interrupts ... 3-49

div ... 3-50

enable_interrupts .. 3-51

exit ... 3-52

exp ... 3-53

external_memory_read ... 3-54

external_memory_write .. 3-56

fabs .. 3-58

floor ... 3-59
xx VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

fmod .. 3-60

free ... 3-61

frexp ... 3-62

interrupt ... 3-63

io_space_read ... 3-67

io_space_write .. 3-69

isalnum ... 3-71

isalpha .. 3-72

iscntrl ... 3-73

isdigit ... 3-74

isgraph .. 3-75

isinf .. 3-76

islower .. 3-78

isnan ... 3-79

isprint ... 3-81

ispunct ... 3-82

isspace .. 3-83

isupper ... 3-84

isxdigit .. 3-85

labs ... 3-86

ldexp .. 3-87

ldiv ... 3-88

log .. 3-89

log10 .. 3-90
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxi
 for ADSP-219x DSPs

longjmp ... 3-91

malloc .. 3-93

memchr .. 3-94

memcmp .. 3-95

memcpy ... 3-96

memcpy_from_shared ... 3-97

memcpy_to_shared ... 3-98

memmove .. 3-99

memset .. 3-100

mode_change ... 3-101

modf .. 3-103

pow .. 3-104

qsort .. 3-105

raise ... 3-107

rand ... 3-109

realloc .. 3-110

setjmp .. 3-111

signal ... 3-112

sin .. 3-116

sinh .. 3-118

sqrt .. 3-119

srand .. 3-120

strcat .. 3-121

strchr ... 3-122
xxii VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

strcmp .. 3-123

strcoll ... 3-124

strcpy ... 3-125

strcspn .. 3-126

strerror ... 3-127

strlen .. 3-128

strncat .. 3-129

strncmp .. 3-130

strncpy ... 3-131

strpbrk .. 3-132

strrchr ... 3-133

strspn ... 3-134

strstr ... 3-135

strtod .. 3-136

strtodf .. 3-138

strtok .. 3-140

strtol ... 3-142

strtoul ... 3-144

strxfrm ... 3-146

sysreg_read ... 3-148

sysreg_write .. 3-151

tan .. 3-154

tanh .. 3-155

tolower ... 3-156
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxiii
 for ADSP-219x DSPs

toupper .. 3-157

va_arg .. 3-158

va_end ... 3-160

va_start .. 3-161

DSP RUN-TIME LIBRARY

DSP Run-Time Library Guide .. 4-2

Calling DSP Library Functions .. 4-2

Linking DSP Library Functions ... 4-3

Working with Library Source Code ... 4-3

DSP Header Files .. 4-4

complex.h — Basic Complex Arithmetic Functions 4-4

filter.h — DSP Filters and Transformations 4-6

math.h — Math Functions ... 4-10

matrix.h — Matrix Functions ... 4-12

stats.h — Statistical Functions .. 4-16

vector.h — Vector Functions ... 4-17

window.h — Window Generators 4-20

DSP Run-Time Library Reference ... 4-22

Notation Conventions ... 4-22

a_compress ... 4-23

a_expand .. 4-24

alog .. 4-25

alog10 .. 4-26

arg ... 4-27
xxiv VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

autocoh .. 4-28

autocorr .. 4-29

cabs .. 4-30

cadd ... 4-31

cartesian ... 4-32

cdiv .. 4-34

cexp .. 4-35

cfft ... 4-36

cfftrad4 ... 4-38

cfft2d ... 4-40

cfir ... 4-42

clip ... 4-44

cmlt .. 4-45

conj .. 4-46

convolve ... 4-47

conv2d ... 4-49

conv2d3x3 .. 4-50

copysign ... 4-51

cot .. 4-52

countones ... 4-53

crosscoh .. 4-54

crosscorr ... 4-55

csub .. 4-56

fir ... 4-57
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxv
 for ADSP-219x DSPs

fir_decima .. 4-59

fir_interp .. 4-61

gen_bartlett .. 4-63

gen_blackman .. 4-65

gen_gaussian .. 4-66

gen_hamming .. 4-67

gen_hanning .. 4-68

gen_harris .. 4-69

gen_kaiser .. 4-70

gen_rectangular .. 4-71

gen_triangle ... 4-72

gen_vonhann .. 4-74

histogram ... 4-75

ifft ... 4-77

ifftrad4 ... 4-79

ifft2d .. 4-81

iir ... 4-83

max .. 4-85

mean .. 4-86

min .. 4-87

mu_compress ... 4-88

mu_expand .. 4-89

norm .. 4-90

polar .. 4-91
xxvi VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

rfft .. 4-94

rfftrad4 ... 4-96

rfft2d .. 4-98

rms ... 4-100

rsqrt ... 4-101

twidfftrad2 ... 4-102

twidfftrad4 ... 4-104

twidfft2d .. 4-106

var .. 4-108

zero_cross ... 4-109

COMPILER LEGACY SUPPORT

Tools Differences ... A-1

C/C++ Compiler and Run-Time Library A-3

Segment Placement Support Keyword Changed to Section A-3

G21 Compatibility Call .. A-3

Support for G21-Based Options And Extensions A-4

ANSI C Extensions ... A-4

Compiler Switch Modifications ... A-5

New and Obsolete Warnings ... A-8

Run-Time Model .. A-9

C/C++ Run-Time Library ... A-9

INDEX
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxvii
 for ADSP-219x DSPs

xxviii VisualDSP++ 3.5 C/C++ Compiler and Library Manual
 for ADSP-219x DSPs

PREFACE

Thank you for purchasing Analog Devices development software for digi-

tal signal processors (DSPs).

Purpose
The VisualDSP++ 3.5 C/C++ Compiler and Library Manual for
ADSP-219x DSPs contains information about the C/C++ compiler and
run-time library program for ADSP-219x DSPs. It includes syntax for
command lines, switches, and language extensions. It leads you through
the process of using library routines and writing mixed C/C++/assembly
code.

Intended Audience
The primary audience for this manual is DSP programmers who are famil-
iar with Analog Devices DSPs. This manual assumes that the audience has
a working knowledge of the ADSP-219x DSPs architecture and instruc-
tion set and the C/C++ programming languages.

Programmers who are unfamiliar with ADSP-219x DSPs can use this
manual, but they should supplement it with other texts (such as the
appropriate hardware reference and instruction set reference) that provide
information about your ADSP-219x DSP architecture and instructions).
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxix
for ADSP-219x DSPs

Manual Contents Description
Manual Contents Description
This manual contains:

• Chapter 1, “Compiler”

Provides information on compiler options, language extensions and
C/C++/assembly interfacing

• Chapter 2, “Achieving Optimal Performance from C/C++ Source
Code”
Shows how to optimize compiler operation.

• Chapter 3, “C/C++ Run-Time Library”

Shows how to use library functions and provides a complete C/C++
library function reference

• Chapter 4, “DSP Run-Time Library”

Shows how to use DSP library functions and provides a complete
DSP library function reference

• Appendix A, “Compiler Legacy Support”

Describes support for legacy code that was developed with previous
releases of the development tools.

What�s New in this Manual
This edition of the VisualDSP++ 3.5 C/C++Compiler and Library Manual
for ADSP-219x DSPs documents support for all ADSP-219x processors.
Refer to VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors for infor-
mation on all new and updated features and other release information.
xxx VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Preface
Technical or Customer Support
You can reach DSP Tools Support in the following ways:

• Visit the DSP Development Tools website at
www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to
dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106|

USA

Supported Processors
The name “ADSP-219x” refers to a family of Analog Devices 16-bit,
fixed-point processors. VisualDSP++ currently supports the following
ADSP-219x processors:

ADSP-2191 DSP, ADSP-2192-12 DSP, ADSP-2195 DSP,

ADSP-2196 DSP, ADSP-21990 DSP, ADSP-21991 DSP, and

ADSP-21992 DSP
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxxi
for ADSP-219x DSPs

Product Information
Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/dsp, which provides access to technical publications,
datasheets, application notes, product overviews, and product
announcements.
xxxii VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Preface
You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
089/76 903-557 (Europe)

• Access the Digital Signal Processing Division’s FTP website at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications:

For hardware information, refer to the processor’s Hardware Reference
Manual and Instruction Set Reference Manual.

VisualDSP++ 3.5 Getting Started Guide for 16-Bit Processors

VisualDSP++ 3.5 User’s Guide for 16-Bit Processors

VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and ADSP-219x DSPs

VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors

VisualDSP++ 3.5 Loader Manual for 16-Bit Processors

VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors

VisualDSP++ Kernel (VDK) User’s Guide

VisualDSP++ Component Software Engineering User’s Guide

Quick Installation Reference Card
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxxiii
for ADSP-219x DSPs

Product Information
Online Technical Documentation
Online documentation comprises VisualDSP++ Help system and tools
manuals, Dinkum Abridged C++ library and FlexLM network license
manager software documentation. You can easily search across the entire
VisualDSP++ documentation set for any topic of interest. For easy print-
ing, supplementary .PDF files for the tools manuals are also provided.

A description of each documentation file type is as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

From VisualDSP++

Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

Open online Help from context-sensitive user interface items (toolbar
buttons, menu commands, and windows).

File Description

.CHM Help system files and VisualDSP++ tools manuals.

.HTM or .HTML Dinkum Abridged C++ library and FlexLM network license manager soft-
ware documentation. Viewing and printing the .HTML files require a
browser, such as Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ tools manuals in Portable Documentation Format, one .PDF
file for each manual. Viewing and printing the .PDF files require a PDF
reader, such as Adobe Acrobat Reader 4.0 (or higher).
xxxiv VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Preface
From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM files) are located in the Help folder, and .PDF files
are located in the Docs folder of your VisualDSP++ installation. The Docs
folder also contains the Dinkum Abridged C++ library and FlexLM net-
work license manager software documentation.

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

Using the Windows Start Button

• Access the VisualDSP++ online Help by clicking the Start button
and choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

From the Web

To download the tools manuals, point your browser at
http://www.analog.com/technology/dsp/developmentTools/gen_purpose.html

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxxv
for ADSP-219x DSPs

Product Information
Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

VisualDSP++ manuals may be purchased through Analog Devices Cus-
tomer Service at 1-781-329-4700; ask for a Customer Service
representative. The manuals can be purchased only as a kit. For additional
information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto http://www.analog.com/salesdir/continent.asp.

Hardware Manuals

Hardware reference and instruction set reference manuals can be ordered
through the Literature Center or downloaded from the Analog Devices
website. The phone number is 1-800-ANALOGD (1-800-262-5643).
The manuals can be ordered by a title or by product number located on
the back cover of each manual.

Datasheets

All datasheets can be downloaded from the Analog Devices website. As a
general rule, any datasheet with a letter suffix (L, M, N) can be obtained
from the Literature Center at 1-800-ANALOGD (1-800-262-5643) or
downloaded from the website. Datasheets without the suffix can be down-
loaded from the website only—no hard copies are available. You can ask
for the datasheet by a part name or by product number.
xxxvi VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Preface
If you want to have a datasheet faxed to you, call the phone number for
that service 1-800-446-6212. Follow the prompts and a list of datasheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested datasheets are available.

Contacting DSP Publications
Please send your comments and recommendation on how to improve our
manuals and online Help. You can contact us by sending an E-mail to
dsp.techpubs@analog.com.

Notation Conventions
The following table identifies and describes text conventions used in this
manual. Additional conventions, which apply only to specific chapters,
may appear throughout this document.

Example Description

Close command
(File menu)

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close
command appears on the File menu.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual xxxvii
for ADSP-219x DSPs

Notation Conventions
�
A note, providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

�
A caution, providing information about critical design or program-
ming issues that influence operation of a product. In the online version
of this book, the word Caution appears instead of this symbol.

Example Description
xxxviii VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
1 COMPILER

The C/C++ compiler (cc219x) is part of Analog Devices development soft-
ware for ADSP-219x DSPs.

This chapter contains:

• “C/C++ Compiler Overview” on page 1-2
Provides an overview of C/C++ compiler for ADSP-219x DSPs.

• “Compiler Command-Line Interface” on page 1-6
Describes the operation of the compiler as it processes programs,
including input and output files, and command-line switches.

• “C/C++ Compiler Language Extensions” on page 1-59
Describes the cc219x compiler’s extensions to the ISO/ANSI stan-
dard for the C and C++ languages.

• “Preprocessor Features” on page 1-147
Contains information on the preprocessor and ways to modify
source compilation.

• “C/C++ Run-Time Model and Environment” on page 1-153
Contains reference information about implementation of C/C++
programs, data, and function calls in ADSP-219x DSPs.

• “C/C++ and Assembly Language Interface” on page 1-169
Describes how to call an assembly language subroutine from C or
C++ program, and how to call a C or C++ function from within an
assembly language program.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-1
for ADSP-219x DSPs

C/C++ Compiler Overview
C/C++ Compiler Overview
The C/C++ compiler (cc219x) is designed to aid your DSP project devel-
opment efforts by:

• Processing C and C++ source files, producing machine level ver-
sions of the source code and object files

• Providing relocatable code and debugging information within the
object files

• Providing relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C/C++, developers can significantly decrease time-to-market since
it gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized DSP opera-
tions without having to understand the underlying DSP architecture.

The C/C++ compiler (cc219x) compiles ISO/ANSI standard C and C++
code for the ADSP-219x DSPs. Additionally, Analog Devices includes
within the compiler a number of C language extensions designed to assist
in DSP development. The cc219x compiler runs from the VisualDSP++
environment or from an operating system command line.

The C/C++ compiler (cc219x) processes your C and C++ language source
files and produces ADSP-219x DSP’s assembler source files. The assem-
bler source files are assembled by the ADSP-219x assembler (easm219x).
The assembler creates Executable and Linkable Format (ELF) object files
that can either be linked (using the linker) to create an ADSP-219x exe-
cutable file or included in an archive library (using elfar). The way in
which the compiler controls the assemble, link, and archive phases of the
process depends on the source input files and the compiler options used.

Source files contain the C/C++ program to be processed by the compiler.
The cc219x compiler supports the ANSI/ISO standard definitions of the
C and C++ languages. For information on the C language standard, see
1-2 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
any of the many reference texts on the C language. Analog Devices recom-
mends the Bjarne Stroustrup text “The C++ Programming Language”
from Addison Wesley Longman Publishing Co (ISBN: 0201889544)
(1997) as a reference text for the C++ programming language.

The cc219x compiler supports the proposed Embedded C++ Standard.
The Embedded C++ Standard defines a subset of the full ISO/IEC
14882:1998 C++ language standard. The proposal excludes features that
can detract from compiler performance in embedded systems, such as
exception handling and run-time type identification. In addition to the
embedded C++ standard features, cc219x supports the proposed standard
definition, templates, and all other features of the full C++ standard
except for the exception handling and run-time type identifications. The
additional supported features provide extra functionality without degrad-
ing the compiler performance.

The cc219x compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the ADSP-219x DSPs. For infor-
mation on these extensions, see “C/C++ Compiler Language Extensions”
on page 1-59.

Compiler options are set in the VisualDSP++ Integrated Development
and Debug Environment (IDDE) from the Compile page of the Project
Options dialog box (see “Specifying Compiler Options in VisualDSP++”
on page 1-11). The selections control how the compiler processes your
source files, letting you select features that include the language dialect,
error reporting, and debugger output.

For more information on the VisualDSP++ environment, see the
VisualDSP++ 3.5 User’s Guide for ADSP-21xx DSPs and online Help.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-3
for ADSP-219x DSPs

C/C++ Compiler Overview
Standard Conformance
Analog C compilers conform to the ISO/IEC 998:1990 C standard and
the ISO/IEC 14882:1998 C++ standard (in C++ mode) with a small num-
ber of currently unsupported features or areas of divergence.

Unsupported features are:

• Runtime-type information (RTTI) for C++ is not supported.

• Exceptions for C++ is not supported.

• ANSI features that require operating-system support are generally
not supported. This includes time.h functionality in C.

• The cc219x compiler does not provide comprehensive support of
NaN's, overflow and underflow conditions in their compiler sup-
port floating-point routines.

Areas of divergence from Standard:

• The double type is defined in terms of a single precision 32-bit
floats, not double precision 64-bit floats.

• The cc219x compiler makes use of the DSP’s double word (long)
MAC instruction results to avoid having to explicitly promote inte-
ger operand multiplication to long. If the integer multiplication
result overflows the integer type, then the result is not truncated as
would be the case in strict ANSI terms. This behavior is disabled
using the compiler’s“-no-widen-muls” switch (on page 1-36).

• Normal ANSI C external linkage does not specifically require stan-
dard include files to be used, although it is recommended. In most
cases, Analog C compilers do require standard include files to be
used. This is because build configurations and optimization levels
are used to select the correct and optimal implementation of the
functions. For example, the include files may redefine standard C
functions to use optimal compiler built-in implementations.
1-4 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The compilers also support a number of language extensions that are
essentially aids to DSP programmers and would not be defined in strict
ANSI conforming implementations. These extensions are usually enabled
by default and in some cases can be disabled using a command-line switch,
if required.

These extensions include:

• Inline (function) which directs the compiler to integrate the func-
tion code into the code of the callers.

• Dual memory support keywords (pm/dm). Disabled using the
-no-extra-keywords compiler switch (see on page 1-34).

• Placement support keyword (section). Disabled using the
-no-extra-keywords compiler switch (see on page 1-34).

• Boolean type support keywords in C (bool, true, false). Disabled
using the -no-extra-keywords compiler switch (see on page 1-34).

• Variable length array support

• Non-constant aggregate initializer support

• Indexed initializer support

• Preprocessor generated warnings

• Support for C++-style comments in C programs

For more information on these extensions, see the“C/C++ Compiler Lan-
guage Extensions” on page 1-59.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-5
for ADSP-219x DSPs

Compiler Command-Line Interface
Compiler Command-Line Interface
This section describes how the cc219x compiler is invoked from the com-
mand line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:

• “Running the Compiler” on page 1-7

• “Specifying Compiler Options in VisualDSP++” on page 1-11

• “Compiler Command-Line Switches” on page 1-12

• “Data Type Sizes” on page 1-54

• “Optimization Control” on page 1-56

By default, the compiler runs with Analog Extensions for C code enabled.
This means that the compiler processes source files written in ANSI/ISO
standard C language supplemented with Analog Devices extensions.
Table 1-1 on page 1-8 lists valid extensions. By default, the compiler pro-
cesses the input file through the listed stages to produce a .DXE file (see file
names in Table 1-2 on page 1-10). Table 1-3 on page 1-13 lists the
switches that select the language dialect.

Although many switches are generic between C and C++, some of them
are valid in C++ mode only. A summary of the generic C/C++ compiler
switches appears in Table 1-4 on page 1-13. A summary of the C++-spe-
cific compiler switches appears in Table 1-5 on page 1-20. The summaries
are followed by descriptions of each switch.

� When developing a DSP project, you may find it useful to modify
the compiler’s default options settings. The way you set the com-
piler’s options depends on the environment used to run the DSP
development software. See “Specifying Compiler Options in Visu-
alDSP++” on page 1-11 for more information.
1-6 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Running the Compiler
Use the following general syntax for the cc219x command line:

 cc219x [-switch [-switch …]] sourcefile [sourcefile …]

where:

• -switch is the name of the switch to be processed. The compiler
has many switches. These switches select the operations and modes
for the compiler and other tools. Command-line switches are case
sensitive. For example, -O is not the same as -o.

• sourcefile is the name of the file to be preprocessed, compiled,
assembled, and/or linked.

A file name can include the drive, directory, file name, and file
extension. The compiler supports both Win32- and POSIX-style
paths, using either forward or back slashes as the directory delim-
iter. It also supports UNC path names (starting with two slashes
and a network name).
The cc219x compiler uses the file extension to determine what the
file contains and what operations to perform upon it. Table 1-2 on
page 1-10 lists the allowed extensions.

For example, the following command line

 cc219x -proc ADSP-2191 -O -Wremarks -o program.dxe source.c

 runs cc219x with the following switches:

 -proc ADSP-2191 Specifies the processor

 -O Specifies optimization for the compiler

 -Wremarks Selects extra diagnostic remarks in addition to
warning and error messages

 -o program.dxe Selects a name for the compiled, linked output
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-7
for ADSP-219x DSPs

Compiler Command-Line Interface
 source.c Specifies the C language source file to be compiled

The following example command line

 cc219x -proc ADSP-2191 -c++ source.cpp

 runs cc219x with:

 -c++ Specifies that all of the source files are written in
C++

 source.cpp Specifies the C++ language source file for your
program

The normal function of cc219x is to invoke the compiler, assembler, and
linker as required to produce an executable object file. The precise opera-
tion is determined by the extensions of the input filenames, and by various
switches.

In normal operation the compiler uses the following extension files to per-
form a specified action:

If multiple files are specified, each is first processed to produce an object
file; then all object files are presented to the linker.

You can stop this sequence at various points by using appropriate com-
piler switches, or by selecting options with the VisualDSP++ environment.
These switches are -E, -P,-M,-H,-S, and -c.

Table 1-1. File Extensions

Extension Action

.C .c .cc .cpp .cxx Source file is compiled, assembled, and linked

.asm, .dsp, or .s Assembly language source file is assembled and linked

.doj Object file (from previous assembly) is linked
1-8 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Many of the compiler’s switches take a file name as an optional parameter.
If you do not use the optional output name switch, cc219x names the out-
put for you. Table 1-2 on page 1-10 lists the type of files, names, and
extensions cc219x appends to output files.

File extensions vary by command-line switch and file type. These exten-
sions are influenced by the program that is processing the file, any search
directories that you select, and any path information that you include in
the file name. Table 1-2 indicates the searches that the preprocessor, com-
piler, assembler, and linker support. The compiler supports relative and
absolute directory names to define file search paths. For information on
additional search directories, see the -I directory switch (on page 1-29)
and -L directory switch (on page 1-31).

When you provide an input or output file name as an optional parameter,
use the following guidelines:

• Use a file name (include the file extension) with either an unambig-
uous relative path or an absolute path. A file name with an absolute
path includes the drive, directory, file name, and file extension.

Enclose long file names within straight quotes; for example, "long
file name.c". The cc219x compiler uses the file extension conven-
tions listed in Table 1-2 to determine the input file type.

• Verify that the compiler is using the correct file. If you do not pro-
vide the complete file path as part of the parameter or add
additional search directories, cc219x looks for input in the current
directory.

� Using the verbose output switches for the preprocessor, compiler,
assembler, and linker causes each of these tools to echo the name of
each file as it is processed.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-9
for ADSP-219x DSPs

Compiler Command-Line Interface
Table 1-2. Input and Output Files

Input File
Extension

File Extension Description

.c C/C++ source file.

.cc .cpp .cxx C++ source file.

.h Header file (referenced by a #include statement).

.pch C++ pre-compiled header file.

.i Preprocessed C/C++ source, created when preprocess only (-E compiler
switch) is specified.

.ipa, opa Interprocedural analysis files — used internally by the compiler when per-
forming interprocedural analysis.

.s, .dsp, .asm Assembler source file.

.idl Interface definition language files for VCSE.

.ii, ti Template instantiation files -- used internally by the compiler when instan-
tiating C++ templates

.is Preprocessed assembly source (retained when -save-temps is specified).

.ldf Linker Description File.

.doj Object file to be linked.

.dlb Library of object files to be linked as needed.

.xml DSP system memory map file output.

.sym DSP system symbol map file output.
1-10 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Specifying Compiler Options in VisualDSP++
When using the VisualDSP++ Integrated Development and Debug Envi-
ronment (IDDE), use the Compile tab from the Project Options dialog
box to get compiler functional options as shown on Figure 1-1.

There are four sub-pages you can access—General, Preprocessor, Proces-
sor, and Warning. Most project options have a corresponding compiler
command-line switch described in “Compiler Command-Line Switches”

Figure 1-1. Project Options – Compile Property Page
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-11
for ADSP-219x DSPs

Compiler Command-Line Interface
on page 1-12. The Additional options field in each sub-page is used to
enter the appropriate file names and options that do not have correspond-
ing controls on the Compile tab but are available as compiler switches.

Use the VisualDSP++ context-sensitive online Help to get information on
compiler options you can specify in VisualDSP++.

Compiler Command-Line Switches
This section describes the command-line switches you can use when com-
piling. It contains a set of tables that provide a brief description of each
switch. These tables are organized by type of a switch. Following these
tables are sections that provide fuller descriptions of each switch.

C/C++ Compiler Switch Summaries

This section contains a set of tables that summarize generic and specific
switches (options).

• “C or C++ Mode Selection Switches” in Table 1-3 on page 1-13

• “C/C++ Compiler Common Switches” in Table 1-4 on page 1-13

• “C++ Mode Compiler Switches” in Table 1-5 on page 1-20.

A brief description of each switch follows the tables, beginning on
on page 1-21.
1-12 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Table 1-3. C or C++ Mode Selection Switches

Switch Name Description

-c89
(on page 1-21)

Supports programs that conform to the ISO/IEC
9899:1990 standard.

-c++
(on page 1-21)

Supports ANSI/ISO standard C++ with Analog Devices
extensions.

Table 1-4. C/C++ Compiler Common Switches

Switch Name Description

sourcefile
(on page 1-21)

Specifies file to be compiled.

-@ filename
(on page 1-22)

Reads command-line input from the file.

-A name(tokens)
(on page 1-22)

Asserts the specified name as a predicate.

-alttok
(on page 1-23)

Allows alternative keywords and sequences in sources.

-bss
(on page 1-24)

Causes the compiler to put global zero-initialized data into
a separate BSS-style section.

-build-lib
(on page 1-24)

Directs the librarian to build a library file.

-C
(on page 1-24)

Retains preprocessor comments in the output file; active
only with the -E or -P switch).

-c
 (on page 1-24)

Compiles and/or assembles only; does not link.

-const-read-write
 (on page 1-24)

Specifies that data accessed via a pointer to const data
may be modified elsewhere.

-Dmacro[=definition]
(on page 1-24)

Defines a macro.

-debug-types
(on page 1-25)

Supports building a *.h file directly and writing a com-
plete set of debugging information for the header file.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-13
for ADSP-219x DSPs

Compiler Command-Line Interface
-default-linkage-{asm|C|C++}
(on page 1-25)

Sets the default linkage type (C, C++, asm).

-dry
(on page 1-25)

Displays, but does not perform, main driver actions
(verbose dry-run).

-dryrun
(on page 1-26)

Displays, but does not perform, top-level driver actions
(terse dry-run).

-E
(on page 1-26)

Preprocesses, but does not compile, the source file.

-ED
(on page 1-26)

Produce preprocessed file and compile source.

-EE
(on page 1-26)

Preprocesses and compiles the source file.

-extra-keywords
(on page 1-26)

Recognizes Analog Devices extensions to ISO/ANSI stan-
dards for C and C++. Default mode.

-flags-{tools} <arg1>
[,arg2...]
(on page 1-27)

Passes command-line switches through the compiler to
other build tools.

-fp-associative
(on page 1-27)

Treats floating-point multiplication and addition as asso-
ciative.

-force-cirbuf
(on page 1-27)

Treats array references of the form array[i%n] as circular
buffer operations.

-full-version
(on page 1-27)

Displays version information for build tools.

-g
(on page 1-28)

Generates DWARF-2 debug information.

-H
((on page 1-28))

Outputs a list of header files, but does not compile the
source file.

-HH
(on page 1-28)

Outputs a list of included header files and compiles.

-h[elp]
(on page 1-29)

Outputs a list of command-line switches with brief syntax
descriptions.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
1-14 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-I-
(on page 1-29)

Establishes the point in the include directory list at
which the search for header files enclosed in angle brackets
should begin.

-I directory
(on page 1-29)

Appends directory to the standard search path.

-i
(on page 1-30)

Outputs only header details or makefile dependencies for
include files specified in double quotes.

-include filename
(on page 1-30)

Includes named file prior to preprocessing each source file.

-ipa
(on page 1-30)

Specifies that interprocedural analysis should be performed
for optimization between translation units.

-jump-{pm|dm|same}
(on page 1-31)

Specifies where the compiler should place jump tables in
memory

-L directory
(on page 1-31)

Appends the specified directory to the standard library
search path when linking.

-l library
(on page 1-31)

Searches the specified library for functions when linking.

-M
(on page 1-32)

Generates make rules only; does not compile.

-MD
(on page 1-32)

Generates make rule and compiles.

-MM
(on page 1-32)

Generates make rules and compiles.

-Mo filename
(on page 1-32)

Makes dependencies other than stdout. This switch is
used in conjunction with the -ED or -MD options.

-Mt filename
(on page 1-32)

Makes dependencies, where the target is renamed as
filename.

-MQ
(on page 1-33)

Generates make rules only; does not compile. No notifica-
tion when input files are missing.

-map filename
(on page 1-33)

Directs the linker to generate a memory map of all
symbols.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-15
for ADSP-219x DSPs

Compiler Command-Line Interface
-mem
(on page 1-33)

Causes the compiler to invoke the Memory Initializer after
linking the executable file.

-no-alttok
(on page 1-33)

Does not allow alternative keywords and sequences in
sources.

-no-bss
(on page 1-33)

Causes the compiler to group global zero-initialized data
into the same section as global data with non-zero initializ-
ers.

-no-builtin
(on page 1-34)

Disables recognition of __builtin functions.

-no-circbuf
(on page 1-34)

Disables the automatic generation of circular buffer code
by the compiler.

-no-defs
(on page 1-34)

Does not define any default preprocessor macros, include
directories, library directories, libraries, run-time headers,
or keyword extensions.

-no-extra-keywords
(on page 1-34)

Does not define language extension keywords that could
be valid C or C++ identifiers.

-no-fp-associative
(on page 1-34)

Does not treat floating-point multiply and addition as an
associative.

-no_hardware_pc_stack
(on page 1-35)

Uses software stack instead of default hardware stack for
return PC.

-no-mem
(on page 1-35)

Causes the compiler to not invoke the Memory Initializer
after linking. Set by default.

-no-std-ass
(on page 1-35)

Prevents the compiler from defining standard assertions.

-no-std-def
(on page 1-35)

Disables normal macro definitions; also disables Analog
Devices keyword extensions that do not have leading
underscores (__).

-no-std-inc
(on page 1-35)

Searches for preprocessor header files only in the current
directory and in directories specified with the -I switch.

-no-std-lib
(on page 1-36)

Searches for only those linker libraries specified with the
-l switch when linking.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
1-16 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-nothreads
(on page 1-36)

Specifies that compiled code does not need to be
thread-safe.

-no-widen-muls
(on page 1-36)

Disable widening multiplications optimization.

-0
(on page 1-37)

Enables optimizations.

-Oa
(on page 1-37)

Enables automatic function inlining.

-Os
(on page 1-37)

Optimizes for code size.

-Ov num
(on page 1-38)

Controls speed vs. size optimizations.

-o filename
(on page 1-38)

Specifies the output file name.

-oldasmcall-{csp|8x}
(on page 1-38)

Switches the operation of the OldAsmCall linkage speci-
fier.

-P
(on page 1-38)

Preprocesses, but does not compile, the source file. Omits
line numbers in the preprocessor output.

-PP
(on page 1-38)

Similar to -P, but does not halt compilation after prepro-
cessing.

-path-{asm|compiler|def|
lib|link|mem} filename
(on page 1-39)

Uses the specified directory as the location of the specified
compilation tool (assembler, compiler, library builder, or
linker).

-path-install directory
(on page 1-39)

Uses the specified directory as the location for all
compilation tool.

-path-output directory
(on page 1-39)

Specifies the location of non-temporary files.

-path-temp directory
(on page 1-39)

Specifies the location of temporary files.

-pch
(on page 1-40)

Generates and uses precompiled header files (*.pch)

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-17
for ADSP-219x DSPs

Compiler Command-Line Interface
-pchdir directory
(on page 1-40)

Specifies the location of PCHRepository.

-pedantic
(on page 1-40)

Issues compiler warnings for any constructs that are not
ISO/ANSI standard C/C++-compliant.

-pedantic-errors
(on page 1-40)

Issues compiler errors for any constructs that are not
ISO/ANSI standard C/C++-compliant.

-pplist filename
(on page 1-41)

Outputs a raw preprocessed listing to the specified file.

-proc identifier
(on page 1-41)

Specifies that the compiler should produce code suitable
for the specified DSP.

-R directory
(on page 1-42)

Appends directory to the standard search path for source
files.

-R-
(on page 1-43)

Removes all directories from the standard search path for
source files.

-reserve <reg1>[,reg2...]
(on page 1-43)

Reserves the I2, I3, and M0 registers from compiler use.
Note: Reserving registers can have a detrimental effect on
the compiler’s optimization capabilities.

-S
(on page 1-43)

Stops compilation before running the assembler.

-s
(on page 1-43)

Removes debugging information from the output execut-
able file when linking.

-save-temps
(on page 1-44)

Saves intermediate compiler temporary files.

-show
(on page 1-44)

Displays the driver command-line information.

-si-revision version
(on page 1-44)

Specifies a silicon revision of the specified processor.

-signed-bitfield
(on page 1-45)

Makes the default type for int bitfields signed.

-signed-char
(on page 1-45)

Makes the default type for char signed.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
1-18 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-syntax-only
(on page 1-45)

Checks the source code for compiler syntax errors, but
does not write any output.

-sysdefs
(on page 1-45)

Defines the system definition macros.

-T filename
 (on page 1-46)

Uses the specified the Linker Description File as control
input for linking.

-threads
(on page 1-46)

Specifies that the build and link should be thread-safe.

-time
(on page 1-47)

Displays the elapsed time as part of the output informa-
tion on each part of the compilation process.

-Umacro
(on page 1-47)

Undefines macro (s).

-unsigned-bitfield
(on page 1-47)

Makes the default type for bitfield unsigned.

-unsigned-char
(on page 1-48)

Makes the default type for char unsigned.

-v
(on page 1-48)

Displays both the version and command-line information
for all compilation tools as they process each file (version
& verbose).

-val-global <name-list>
(on page 1-48)

Adds global names.

-verbose
(on page 1-48)

Displays command-line information for all compilation
tools as they process each file.

-version
(on page 1-49)

Displays version information for all compilation tools as
they process each file.

-W{error|remark|
suppress|warn} number
(on page 1-49)

Overrides the default severity of the specified diagnostic
messages (errors, remarks, or warnings).

-Werror-limit number
(on page 1-49)

Stops compiling after reaching the specified number of
errors.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-19
for ADSP-219x DSPs

Compiler Command-Line Interface

-Wremarks
(on page 1-49)

Indicates that the compiler may issue remarks, which are
diagnostic messages even milder than warnings.

-Wterse
(on page 1-49)

Issues only the briefest form of compiler warnings, errors,
and remarks.

-w
(on page 1-50)

Does not display compiler warning messages.

-warn-protos
(on page 1-50)

Produces a warning when a function is called without a
prototype.

-workaround <workaround>
[,<workaround>]*
(on page 1-50)

Enables code generator workaround for specific hardware
defects.

-write-files
(on page 1-50)

Enables compiler I/O redirection.

-write-opts
(on page 1-50)

Passes the user options (but not input filenames) via a tem-
porary file.

-xref filename
(on page 1-51)

Outputs cross-reference information to the specified file.

Table 1-5. C++ Mode Compiler Switches

Switch Name Description

-anach
(on page 1-52)

Enables C++ anachronisms. The default mode.

-no-anach
(on page 1-53)

Disables C++ anachronisms.

-no-demangle
(on page 1-53)

Prevents filtering of any linker errors through the deman-
gler.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
1-20 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
C/C++ Mode Selection Switch Descriptions

The following command-line switches provide C/C++ mode selection.

-c89

The -c89 switch directs the compiler to support programs that conform to
the ISO/IEC 9899:1990 standard. For greater conformance to the stan-
dard, the following switches should be used: -alttok, -const-read-write,
no-extra-keywords, and -pedantic (see in Table 1-4 on page 1-13).

-c++

The –c++ (C++ mode) switch directs the compiler to assume that the
source file(s) are written in ANSI/ISO standard C++ with Analog Devices
language extensions.

All the standard features of C++ are accepted in the default mode except
exception handling and run-time type identification because these impose
a run-time overhead that is not desirable for all embedded programs.

C/C++ Compiler Common Switch Descriptions

The following command-line switches apply in C and C++ modes.

sourcefile

The sourcefile parameter (or parameters) switch specifies the name of
the file (or files) to be preprocessed, compiled, assembled, and/or linked.
A file name can include the drive, directory, file name, and file extension.
The cc219x compiler uses the file extension to determine the operations to
perform. Table 1-2 on page 1-10 lists the permitted extensions and
matching compiler operations.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-21
for ADSP-219x DSPs

Compiler Command-Line Interface
-@ filename

The @ filename (command file) switch directs the compiler to read com-
mand-line input from filename. The specified filename must contain
driver options but may also contain source filenames and environment
variables. It can be used to store frequently used options as well as to read
from a file list.

-A name(tokens)

The -A (assert) switch directs the compiler to assert name as a predicate
with the specified tokens. This has the same effect as the #assert prepro-
cessor directive. The following assertions are predefined:

The -A name(value) switch is equivalent to including

#assert name(value)

in your source file, and both may be tested in a preprocessor condition in
the following manner:

#if #name(value)
// do something

#else
// do something else

#endif

For example, the default assertions may be tested as:

#if #machine(adsp219x)
// do something

#endif

system embedded

machine adsp219x

cpu adsp219x

compiler cc219x
1-22 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
� The parentheses in the assertion should be quoted when using the
-A switch, to prevent misinterpretation. No quotes are needed for a
#assert directive in a source file.

-alttok

The -alttok alternative tokens) switch directs the compiler to allow
digraph sequences in C and C++ source files. Additionally, the switch
enables the recognition of these alternative operator keywords in C++
source files.

� To use them in C, you should use #include <iso646.h>.

-bss

The -bss switch causes the compiler to place global zero-initialized data
into a BSS-style section (called “bsz”), rather than into the normal global
data section. This is default mode. See also the –no-bss switch
(on page 1-33).

Keyword Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-23
for ADSP-219x DSPs

Compiler Command-Line Interface
-build-lib

The -build-lib (build library) switch directs the compiler to use elfar
(librarian) to produce a library file (.dlb) as the output instead of using
the linker to produce an executable file (.dxe). The -o option
(on page 1-38) must be used to specify the name of the resulting library.

-C

The -C (comments) switch, which is only active in combination with the –
E, -EE, -ED, -P or -PP switches, directs the preprocessor to retain com-
ments in its output.

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but stop before linking. The output is an object
file (.doj) for each source file.

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write data (as in ANSI C). The compiler’s
default behavior assumes that data referenced through const pointers will
never change.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

-Dmacro[=definition]

The -D (define macro) switch directs the compiler to define a macro. If
you do not include the optional definition string, the compiler defines the
macro as the string ‘1’. If definition is required to be a character string
1-24 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
constant, it must be surrounded by escaped double quotes. Note that the
compiler processes -D switches on the command line before any -U (unde-
fine macro) switches.

� This switch can be invoked with the Definitions: dialog field
located in the VisualDSP++ Project Options dialog box, Compile
tab, Preprocessor category.

-debug-types <file.h>

The -debug-types switch provides for building an *.h file directly and
writing a complete set of debugging information for the header file. The
-g option (on page 1-28) need not be specified with the -debug-types
switch because it is implied. For example,

cc219x -debug-types anyHeader.h

The implicit -g option writes debugging information for only those
typedefs that are referenced in the program. The -debug-types option
provides complete debugging information for all typedefs and structs.

-default-linkage-{asm|C|C++}

The -default-linkage-asm (assembler linkage)/-default-linkage-C (C
linkage)/-default-linkage-C++ (C++ linkage) switch directs the compiler
to set the default linkage type. C linkage is the default type in C mode,
and C++ linkage is the default type in C++ mode.

� This switch can be specified in the Additional Options box located
in the VisualDSP++ Project Options dialog box, Compile tab,
General category.

-dry

The -dry (verbose dry-run) switch directs the compiler to display main
driver actions, but not to perform them.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-25
for ADSP-219x DSPs

Compiler Command-Line Interface
-dryrun

The -dryrun (terse dry-run) switch directs the compiler to display
top-level driver actions, but not to perform them.

-E

The -E (stop after preprocessing) switch directs the compiler to stop after
the C/C++ preprocessor runs (without compiling). The output (prepro-
cessed source code) prints to the standard output stream (<stdout>) unless
the output file is specified with the -o switch. Note that the -C switch can
be used in combination with the -E switch.

-ED

The -ED (run after preprocessing to file) switch directs the compiler to
write the output of the C/C++ preprocessor to a file named
original_filename.i. After preprocessing, compilation proceeds
normally.

-EE

The -EE (run after preprocessing) switch directs the compiler to write the
output of the C/C++ preprocessor to standard output. After preprocess-
ing, compilation proceeds normally.

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ISO/ANSI standard C and C++. This recognition includes keywords such
as pm and dm without leading underscores which could affect conforming
ISO/ANSI C and C++ programs. This is the default mode. The
-no-extra-keywords switch (on page 1-34) can be used to disallow sup-
port for the additional keywords. Table 1-7 on page 1-60 provides a list
and a brief description of keyword extensions.
1-26 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2 [,...]]

The -flags (command-line input) switch directs the compiler to pass
command-line switches to the other build tools. These tools are:

-force-circbuf

The -force-circbuf (circular buffer) switch instructs the compiler to
make use of circular buffer facilities, even if the compiler cannot verify
that the circular index or pointer is always within the range of the buffer.
Without this switch, the compiler's default behavior is to be conservative,
and not use circular buffers unless it can verify that the circular index or
pointer is always within the circular buffer range. See “Circular Buffer
Built-In Functions” on page 1-103.

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as associative.

-full-version

The -full-version (display versions) switch directs the compiler to dis-
play version information for build tools used in a compilation.

Option Tool

-flags-asm Assembler

-flags-compiler Compiler

-flags-lib Library Builder

-flags-link Linker

-flags-mem Memory Initializer
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-27
for ADSP-219x DSPs

Compiler Command-Line Interface
-g

The -g (generate debug information) switch directs the compiler to out-
put symbols and other information used by the debugger.

When the -g switch is used in conjunction with the -O (enable optimiza-
tion) switch, the compiler performs standard optimizations. The compiler
also outputs symbols and other information to provide limited source level
debugging through VisualDSP++. This combination of options provides
line debugging and global variable debugging.

� You can invoke this switch by selecting the Generate debug infor-
mation check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

� When -g and -O are specified, no debug information is available for
local variables and the standard optimizations can sometimes
re-arrange program code in a way that inaccurate line number
information may be produced. For full debugging capabilities, use
the -g switch without the -O switch.

-H

The -H (list headers) switch directs the compiler to output only a list of
the files included by the preprocessor via the #include directive, without
compiling. The -o switch (on page 1-38) may be used to specify the redi-
rection of the list to a file.

-HH

The -HH (list headers and compile) switch directs the compiler to print to
the standard output file stream a list of the files included by the preproces-
sor via the #include directive. After preprocessing, compilation proceeds
normally.
1-28 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-h[elp]

The -help (command-line help) switch directs the compiler to output a
list of command-line switches with a brief syntax description.

-I-

The -I- (start include directory list) switch establishes the point in the
include directory list at which the search for header files enclosed in angle
brackets should begin. Normally, for header files enclosed in double
quotes, the compiler searches in the directory containing the current input
file; then the compiler reverts back to looking in the directories specified
with the -I switch and then in the standard include directory.

� For header files in angle brackets the compiler performs the latter
two searches only.

It is possible to replace the initial search (within the directory containing
the current input file) by placing the -I- switch at the point on the com-
mand line where the search for all types of header file should begin. All
include directories on the command line specified before the -I- switch
will only be used in the search for header files that are enclosed in double
quotes.

� This switch removes the directory containing the current input file
from the include directory list.

-I directory [{,|;} directory...]

The -I (include search directory) switch directs the C/C++ preprocessor
to append the directory (directories) to the search path for include files.
This option may be specified more than once; all specified directories are
added to the search path.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-29
for ADSP-219x DSPs

Compiler Command-Line Interface
Include files, whose names are not absolute path names and that are
enclosed in “...” when included, will be searched for in the following
directories in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch in the order they are
listed on the command line

3. Any directories on the standard list:
 <VisualDSP++ install dir>/.../include

� If a file is included using the <...> form, this file will only be
searched for by using directories defined in items 2 and 3 above.

-i

The -i (less includes) switch may be used with the –H, -HH, -M, or -MM
switches to direct the compiler to only output header details (-H, -HH) or
makefile dependencies (-M, -MM) for include files specified in double
quotes.

-include filename

The -include (include file) switch directs the preprocessor to process the
specified file before processing the regular input file. Any -D and -U
options on the command line are always processed before an -include file.

-ipa

The -ipa (interprocedural analysis) switch turns on Interprocedural Anal-
ysis (IPA) in the compiler. This option enables optimization across the
entire program, including between source files that were compiled sepa-
rately. The -ipa option should be applied to all C and C++ files in the
1-30 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
program. For more information, see “Interprocedural Analysis” on
page 1-57. Specifying -ipa also implies setting the -O switch
(on page 1-37).

� You can invoke this switch by selecting the Interprocedural
optimization check box in the VisualDSP++ Project Options dia-
log box, Compile tab, General category.

-jump-{dm|pm|same}

The -jump (select jump table memory type) switch directs the compiler to
place jump tables in data memory (-jump-dm), program memory
(-jump-pm), or the same memory section as the function to which it
applies (-jump-same). Jump tables are storage that might be required to
hold in memory target addresses for branch instruction used in complex
IF-THEN-ELSE statements or switch statements. The default storage
memory for jump tables is data memory (-jump-dm).

-L directory [{,|;} directory...]

The -L (library search directory) switch directs the linker to append the
directory to the search path for library files.

-l library

The -l (link library) switch directs the linker to search the library for
functions when linking. The library name is the portion of the file name
between the lib prefix and .dlb extension. For example, the compiler
command-line switch -lc directs the linker to search in the library named
c for functions. This library resides in a file named libc.dlb.

Normally, you should list all object files on the command line before the
-l switch. This ensures that the functions and global variables the object
files refer to are loaded in the given order. This option may be specified
more than once; libraries are searched as encountered during the
left-to-right processing of the command line.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-31
for ADSP-219x DSPs

Compiler Command-Line Interface
-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file but to output a rule, which is suitable for the make
utility, describing the dependencies of the main program file. The format
of the make rule output by the preprocessor is:

object-file: include-file ...

-MD

The -MM (generate make rules and compile) switch directs the preprocessor
to print to a file called original_filename.d a rule describing the depen-
dencies of the main program file. After preprocessing, compilation
proceeds normally. See also the –Mo switch.

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to stdout a rule describing the dependencies of the main program
file. After preprocessing, compilation proceeds normally.

-Mo filename

The -Mo filename (preprocessor output file) switch directs the compiler
to use filename for the output of –MD or –ED switches.

-Mt filename

The -Mt filename (output make rule for the named source) switch speci-
fies the name of the source file for which the compiler generates the make
rule when you use the -M or -MM switch. If the named file is not in the cur-
rent directory, you must provide the path name in double quotation
marks (“”). The new file name will override the default base.doj. The -Mt
option supports the .IMPORT extension.
1-32 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-MQ

The -MQ switch directs the compiler not to compile the source file but to
output a rule. In addition, the -MQ switch does not produce any notifica-
tion when input files are missing.

-map filename

The -map (generate a memory map) switch directs the linker to output a
memory map of all symbols. The map file name corresponds to the
filename argument. For example, if the filename argument is test, the
map file name is test.xml. The .xml extension is added where necessary.

-mem

The -mem (invoke memory initializer) switch causes the compiler to invoke
the Memory Initializer tool after linking the executable. The MemInit
tool can be controlled through the -flags-mem switch (on page 1-27).

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler to
not accept alternative operator keywords and digraph sequences in the
source files. This is the default mode. For more information, see the
-alttok switch on page 1-23.

-no-bss

The -no-bss switch causes the compiler to keep zero-initialized and
non-zero-initialized data in the same data section, rather than separating
zero-initialized data into a different, BSS-style section. See also the –bss
switch (on page 1-23).
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-33
for ADSP-219x DSPs

Compiler Command-Line Interface
-no-builtin

The -no-builtin (no builtin functions) switch directs the compiler to rec-
ognize only built-in functions that begin with two underscores (__). Note
that this switch influences many functions. This switch also predefines the
__NO_BUILTIN preprocessor macro. For more information on built-in func-
tions, see “Compiler Built-In Functions” on page 1-94.

-no-circbuf

The -no-circbuf (no circular buffer) switch directs the compiler not to
define any default preprocessor macros, include directories, library direc-
tories, libraries, or run-time headers. It also disables the Analog Devices
C/C++ keyword extensions.

-no-defs

The -no-defs (disable defaults) switch directs the preprocessor not to
define any default preprocessor macros, include directories, library direc-
tories, libraries, or run-time headers.

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize the Analog Devices keyword extensions that
might affect conformance to ISO/ANSI programs. These extensions
include keywords, such as pm and dm, which may be used as identifiers in
conforming programs. The alternate keywords that are prefixed with two
leading underscores, such as __pm and __dm, continue to work.

The “-extra-keywords” switch (on page 1-26) can be used to explicitly
request support for the additional keywords.

-no-fp-associative

The -no-fp-associative switch directs the compiler not to treat
floating-point multiplication and addition as associative.
1-34 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-no_hardware_pc_stack

The -no_hardware_pc_stack switch directs the compiler to produce code
to avoid the possibility of overflowing the hardware call stack. This is
done by popping, from the hardware PC stack, the return address at the
start of each function and storing this value on the software data stack to
be pushed back on the hardware stack just before returning from the
function.

-no-mem

The -no-mem switch causes the compiler to not invoke the Memory Initial-
izer tool after linking the executable. This is the default setting. See also
“-mem” on page 1-33.

-no-std-ass

The -no-std-ass (disable standard assertions) switch prevents the com-
piler from defining the standard assertions. See the -A switch
(on page 1-22) for the list of standard assertions.

-no-std-def

The -no-std-def (disable standard macro definitions) prevents the com-
piler from defining any default preprocessor macro definitions.

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the C
preprocessor to limit its search for header files to the current directory and
directories specified with -I switch.

� You can invoke this switch by selecting the Ignore standard
include paths check box in the VisualDSP++ Project Options
dialog box, Compile tab, Preprocessor category.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-35
for ADSP-219x DSPs

Compiler Command-Line Interface
-no-std-lib

The -no-std-lib (disable standard library search) switch directs the linker
to limit its search for libraries to directories specified with the -L switch
(on page 1-31).

-no-widen-muls

The -no-widen-muls (disable widening multiplications) switch disables
the compiler optimization which it performs on multiplication operations.

By default, the compiler, attempts to optimize integer multiplication
operations which are stored in a long result to utilize the double-word
MAC result registers of the ADSP-219x processors. The code produced
this way is better suited to the processor and therefore more efficient.

However, this optimization can generate overflow results which are not
consistent in some cases and may differ from expected results depending
on the optimizations enabled and the way that the source is written. The
inconsistency and differences are seen if an overflow and truncation of the
integer operands would normally occur.

When the optimization is applied, there is no truncation. When the opti-
mization is disabled, the result of overflow will be truncated to integer size
before being stored in the long result.

-nothreads

The -nothreads (disable thread-safe build) switch specifies that all com-
piled code and libraries used in the build need not be thread-safe. This is
the default setting when the -threads (enable thread-safe build) switch is
not used.
1-36 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-O

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the cc219x compiler.

� You can invoke this switch by selecting the Enable optimization
check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

-Oa

The -Oa (automatic function inlining) switch enables the inline expansion
of C/C++ functions which are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the –Ov (optimize for speed versus size) switch (on page 1-38).
Therefore, use of -Ov100 indicates that as many functions as possible will
be auto-inlined whereas –Ov0 prevents any function from being
auto-inlined. Specifying -Oa also implies the use of -O.

� When remarks are enabled, the compiler will produce a remark to
indicate each function that is inlined.

-Os

The -Os (optimize for size) switch directs the compiler to produce code
that is optimized for size. This is achieved by performing all optimizations
except those that increase code size. The optimizations not performed
include loop unrolling, some delay slot filling, and jump avoidance. The
compiler also uses a function to save and restore preserved registers for a
function instead of generating the more cycle-efficient inline default
versions.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-37
for ADSP-219x DSPs

Compiler Command-Line Interface
-Ov num

The -Ov num (optimize for speed versus size) switch directs the compiler to
produce code that is optimized for speed versus size. The 'num' should be
an integer between 0 (purely size) and 100 (purely speed).

-o filename

The -o (output file) switch directs the compiler to use filename for the
name of the final output file.

-oldasmcall-{csp|8x}

The -oldasmcall-{csp|8x} switch changes the operation of the
OldAsmCall linkage specifier between compatibility call for the
ADSP-21csp01 DSP and legacy ADSP-218x DSPs (-oldasmcall-csp is
default). Therefore, -oldasmcall-csp makes code compatible with (leg-
acy) ADSP-21csp01 code, while -oldasmcall-8x makes code compatible
with (legacy) ADSP-218x code.

-P

The -P (omit line numbers) switch directs the compiler to stop after the C
preprocessor runs (without compiling) and to omit the #line preprocessor
directives (with line number information) in the output from the prepro-
cessor. The -C switch may be used in combination with the -P switch.

-PP

The -PP (omit line numbers and compile) switch directs the compiler to
omit the #line preprocessor directives with line number information from
the preprocessor output. After preprocessing, compilation proceeds
normally.
1-38 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-path {-asm | -compiler | -def | -lib | -link | -mem} filename

The -path (tool location) switch directs the compiler to use the specified
component in place of the default-installed version of the compilation
tool. The component should comprise a relative or absolute path to its
location. Respectively, the tools are the assembler, compiler, driver defini-
tions file, librarian, linker or memory initializer. Use this switch when you
wish to override the normal version of one or more of the tools. The -path
switch also overrides the directory specified by the -path-install switch
(on page 1-39).

-path-install directory

The -path-install (installation location) switch directs the compiler to
use the specified directory as the location for all compilation tools instead
of the default path. This is useful when working with multiple versions of
the tool set.

� You can selectively override this switch with the -path-tool
switch.

-path-output directory

The -path-output (non-temporary files location) switch directs the com-
piler to place output files in the specified directory.

-path-temp directory

The -path-temp (temporary files location) switch directs the compiler to
place temporary files in the specified directory.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-39
for ADSP-219x DSPs

Compiler Command-Line Interface
-pch

The -pch (precompiled header) switch directs the compiler to automati-
cally generate and use precompiled header files. A precompiled output
header has a .pch extension attached to the source file name. By default,
all precompiled headers are stored in a directory called PCHRepository.

� Precompiled header files can significantly speed compilation; pre-
compiled headers tend to occupy more disk space.

-pchdir directory

The -pchdir (locate PCHRepository) switch specifies the location of an
alternative PCHRepository directory for storing and invocation of precom-
piled header files. If the directory does not exist, the compiler creates it.
Note that -o (output) does not influence the -pchdir option.

-pedantic

The -pedantic (ANSI standard warnings) switch causes the compiler to
issue warnings for any constructs found in your program that do not
strictly conform to the ISO/ANSI standard for C or C++.

� The compiler may not detect all noconforming constructs. In par-
ticular, the -pedantic switch does not cause the compiler to issue
errors when Analog Devices keyword extensions are used.

-pedantic-errors

The -pedantic-errors (ANSI C errors) switch causes the compiler to
issue errors instead of warnings for cases described in the -pedantic
switch.
1-40 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-pplist filename

The -pplist (preprocessor listing) switch directs the preprocessor to out-
put a listing to the named file. When more than one source file has been
preprocessed, the listing file contains information about the last file pro-
cessed. The generated file contains raw source lines, information on
transitions into and out of include files, and diagnostics generated by the
compiler.

Each listing line begins with a key character that identifies its type as:

-proc processor

The -proc (target processor) switch specifies that the compiler should pro-
duce code suitable for the specified processor. The processor identifiers
directly supported in VisualDSP++ 3.5 are:

ADSP-2191, ADSP-21990, ADSP-21991, ADSP-21992, ADSP-2195,
ADSP-2196, ADSP-2192-12 and ADSP-219x

For example,

cc219x -proc ADSP-2191 -o bin\p1.doj p1.asm

Character Meaning

N Normal line of source

X Expanded line of source

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-41
for ADSP-219x DSPs

Compiler Command-Line Interface
� If no target is specified with the -proc switch, the system uses the
ADSP-219x setting as a default.

If the processor identifier is unknown to the compiler, it attempts to read
required switches for code generation from the file <processor>.ini. The
assembler searches for the .ini file in the VisualDSP ++ System folder.
For custom processors, the compiler searches the section “proc” in the
<processor>.ini for key 'architecture'. The custom processor must be
based on an architecture key that is one of the known processors. For
example, -proc Customxxx searches the Customxxx.ini file.

When compiling with the -proc switch, the appropriate processor macro
as well as __ADSP21XX__ and __ADSP219X__ preprocessor macros are
defined as 1. For example, __ADSP2191__ and __ADSP219X__ are 1.

� See also “-si-revision version” on page 1-44 for more information
on silicon revision of the specified processor.

-R directory [{;|,}directory …]

The -R (add source directory) switch directs the compiler to add the spec-
ified directory to the list of directories searched for source files.

On Windows™ platforms, multiple source directories are given as a
comma or semicolon separated list. The compiler searches for the source
files in the order specified on the command line. The compiler searches
the specified directories before reverting to the current project directory.
This option is position-dependent on the command line; that is, it affects
only source files that follow the option.

� Source files whose file names begin with /, ./, or ../ (or Windows
equivalent) and contain drive specifiers (on Windows platforms)
are not affected by this option.
1-42 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-R-

The -R- (disable source path) switch removes all directories from the stan-
dard search path for source files, effectively disabling this feature.

� This option is position-dependent on the command line; it only
affects files following it.

-reserve register[, register …]

The -reserve (reserve register) switch directs the compiler not to use the
specified register(s). This guarantees that a known register or set of regis-
ters is available for auto buffering.

You can reserve the I2, I3, and M0 registers. Separate register names with
commas on the compiler command line. Reserving registers seriously
reduces the effectiveness of compiler optimizations and should only be
done when essential.

-S

The -S (stop after compilation) switch directs the compiler to stop compi-
lation before running the assembler. The compiler outputs an assembler
file with a .s extension.

� You can invoke this switch by selecting the Stop after: Compiler
check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category selection.

-s

The -s (strip debugging information) switch directs the compiler to
remove debugging information (symbol table and other items) from the
output executable file during linking.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-43
for ADSP-219x DSPs

Compiler Command-Line Interface
-save-temps

The -save-temps (save intermediate files) switch directs the compiler to
retain intermediate files generated and normally removed as part of the
various compilation stages. These intermediate files are placed in the
–path-output specified output directory or the build directory if the
-path-output switch (on page 1-39) is not used. See Table 1-2 on
page 1-10 for a list of intermediate files.

-show

The -show (display command line) switch directs the compiler to echo all
command-line arguments, expanded option files switches, and environ-
ment variables used by the compiler

-si-revision version

The -si-revision version (silicon revision) switch sets the version of the
hardware which is the required target for the build. It is used to enable
inherent behavior relating to any errata in specific silicon revisions. The
revision can be specified as “none” or a number of the form described by
regular expression [0-9]+\.[0-9]{1,3} (for example, 1.123). The com-
piler defines a macro __SILICON_REVISION__ to a value specific to each
silicon revision. For unknown revisions, the compiler will generate a
warning and default to the latest known revision.

The parameter “version” represents a silicon revision of the processor
specified by the -proc switch (on page 1-41). The “none” revision disables
support for silicon errata. For example,

cc219x -proc ADSP-2191 -si-revision 0.1

� In the absence of silicon revision, the compiler selects the greatest
silicon revision it “knows” about, if any.
1-44 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
A compiler will “pass along” the appropriate -si-revision switch setting
when invoking another VisualDSP++ tool, for example, when the com-
piler driver invokes assembler and linker.

-signed-bitfield

The -signed-bitfield (make plain bitfields signed) switch directs the
compiler to make bitfields which have not been declared with an explicit
signed or unsigned keyword to be signed. This switch does not effect plain
one-bit bitfields which are always unsigned. This is the default mode. See
also the -unsigned-bitfield switch (on page 1-47).

-signed-char

The -signed-char (make char signed) switch directs the compiler to make
the default type for char signed. The compiler also defines the
__SIGNED_CHARS__ macro. This is the default mode when the
-unsigned-char (make char unsigned) switch is not used.

-syntax-only

The -syntax-only (only check syntax) switch directs the compiler to
check the source code for syntax errors and warnings. No output files will
be generated with this switch.

-sysdefs

The -sysdefs (system definitions) switch directs the compiler to define
several preprocessor macros describing the current user and user’s system.
The macros are defined as character string constants and are used in func-
tions with null-terminated string arguments.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-45
for ADSP-219x DSPs

Compiler Command-Line Interface
The following macros are defined if the system returns information for
them:

� __MACHINE__, __GROUPNAME__, and __REALNAME__ are not available
on Windows platforms.

-T filename

The -T (Linker Description File) switch directs that the linker, when
invoked, will use the specified Linker Description File (LDF). If -T is not
specified, a default .LDF file is selected based on the processor variant.

-threads

The -threads (enable thread-safe build) specifies that the build and link
should be thread-safe. The macro _ADI_THREADS is defined to one (1). It is
used for conditional compilation by the preprocessor and by the default
Linker Description Files to link with thread-safe libraries.

� This switch is only likely to be used by applications involving the
VisualDSP++ Kernel (VDK).

Macro Description

__HOSTNAME__ The name of the host machine

__MACHINE__ The machine type of the host machine

__SYSTEM__ The OS name of the host machine

__USERNAME__ The current user's login name

__GROUPNAME__ The current user's group name

__REALNAME__ The current user's real name
1-46 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-time

The -time (time the compiler) switch directs the compiler to display the
elapsed time as part of the output information on each part of the compi-
lation process.

-Umacro

The -U (undefine macro) switch lets you undefine macros. If you specify a
macro name, it will be undefined. The compiler processes all -D (define
macro) switches on the command line before any -U (undefine macro)
switches.

� You can invoke this switch by selecting the Undefines field in the
VisualDSP++ Project Options dialog box, Compile tab,
Preprocessor category.

-unsigned-bitfield

The -unsigned-bitfield (make plain bitfields unsigned) switch directs
the compiler to make bitfields which have not been declared with an
explicit signed or unsigned keyword to be unsigned. This switch does not
effect plain one-bit bitfields which are always unsigned.

For example, given the declaration

struct {

int a:2;

int b:1;

signed int c:2;

unsigned int d:2;

} x;

the bitfield values are:
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-47
for ADSP-219x DSPs

Compiler Command-Line Interface
See also the -signed-bitfields switch (on page 1-45).

-unsigned-char

The -unsigned-char (make char unsigned) switch directs the compiler to
make the default type for char unsigned. The compiler also undefines the
__SIGNED_CHARS__ preprocessor macro

-v

The -v (version and verbose) switch directs the compiler to display both
the version and command-line information for all the compilation tools as
they process each file.

-val-global <name-list>

The -val-global (add global names) switch directs the compiler that the
names given by <name-list> are present in all globally defined variables.
The list is separated by double colons(::). In C++, these names are
encoded as enclosing namespace or classes. In C, the names are prefixed
and separated by underscores (_). The compiler will issue an error on any
globally defined variable in the current source module(s) not using
<name-list>. This switch is used to define VCSE components.

-verbose

The -verbose (display command line) switch directs the compiler to dis-
play command-line information for all the compilation tools as they
process each file.

Field -signed-bitfield -unsigned-bitfield Why

x.a -2..1 0..3 Plain field

x.b 0..1 0..1 One bit

x.c -2..1 -2..1 Explicit signed

x.d 0..3 0..3 Explicit unsigned
1-48 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-version

The -version (display compiler version) switch directs the compiler to
display its version information.

-W {error|remark|suppress|warn} [.number...]

The -W {...} number (override error message) switch directs the compiler
to override the specified diagnostic messages (errors, remarks, or warn-
ings). The num argument specifies the message to override.

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. The {D} (discretionary) string after the diag-
nostic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

-Werror-limit number

The -Werror-limit (maximum compiler errors) switch lets you set a max-
imum number of errors for the compiler.

-Wremarks

The -Wremarks (enable diagnostic warnings) switch directs the compiler to
issue remarks, which are diagnostic messages that are even milder than
warnings.

� You can invoke this switch by selecting the Enable remarks check
box in the VisualDSP++ Project Options dialog box, Compile tab,
Warning selection.

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-49
for ADSP-219x DSPs

Compiler Command-Line Interface
-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

� You can invoke this switch by selecting the Disable all warnings
and remarks check box in the VisualDSP++ Project Options dia-
log box, Compile tab, Warning selection.

-warn-protos

The -warn-protos (prototypes warning) switch directs the compiler to
produce a warning message when a function is called without a full proto-
type being supplied.

-workaround <workaround>[,<workaround>]*

The -workaround switch enables code generator workaround for specific
hardware defects. Example of a valid workaround: type32a-anomaly.

-write-files

The -write-files (enable driver I/O redirection) switch directs the com-
piler driver to redirect the file name portions of its command line through
a temporary file. This technique helps with handling long file names,
which can make the compiler driver’s command line too long for some
operating systems.

-write-opts

The -write-opts switch directs the compiler to pass the user-specified
options (but not the input file names) to the main driver via a temporary
file. This can be helpful if the resulting main driver command line would
otherwise be too long.
1-50 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
-xref <filename>

The -xref (cross-reference list) switch directs the compiler to write
cross-reference listing information to the specified file. When more than
one source file has been compiled, the listing contains information about
the last file processed. For each reference to a symbol in the source pro-
gram, a line of the form

symbol-id name ref-code filename line-number column-number

is written to the named file. The symbol-id represents a unique decimal
number for the symbol, and ref-code is one of the following characters:

Character Meaning

D Definition

d Declaration

M Modification

A Address taken

U Used

C Changed (used and modified)

R Any other type of reference

E Error (unknown type of reference
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-51
for ADSP-219x DSPs

Compiler Command-Line Interface
C++ Mode Compiler Switch Descriptions

The following switches apply only to C++.

-anach

The -anach (enable C++ anachronisms) directs the compiler to accept
some language features that are prohibited by the C++ standard but still in
common use. This is the default mode. Use the –no-anach switch for
greater standard compliance.

The following anachronisms are accepted in the default C++ mode:

• Overload is allowed in function declarations. It is accepted and
ignored.

• Definitions are not required for static data members that can be
initialized using default initialization. The anachronism does not
apply to static data members of template classes; they must always
be defined.

• The number of elements in an array may be specified in an array
delete operation. The value is ignored.

• A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

• The base class name may be omitted in a base class initializer if
there is only one immediate base class.

• Assignment to this in constructors and destructors is allowed. This
is allowed only if anachronisms are enabled and the assignment to
this configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a
given object) can be cast to a pointer to a function.
1-52 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
• A nested class name may be used as a un-nested class name pro-
vided no other class of that name has been declared. The
anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a
different type. A temporary is created, it is initialized from the
(converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an
rvalue of the class type or a derived class thereof. No (additional)
temporary is used.

• A function with old-style parameter declarations is allowed and
may participate in function overloading as though it were proto-
typed. Default argument promotion is not applied to parameter
types of such functions when the check for compatibility is done,
so that the following statements declare the overload of two func-
tions named f.

int f(int);

int f(x) char x; { return x; }

-no-anach

The -no-anach (disable C++ anachronisms) switch directs the compiler to
disallow some old C++ language features that are prohibited by the C++
standard. See the –anach switch (on page 1-52) for a full description of
these features.

-no-demangle

The -no-demangle (disable demangler) switch directs the compiler to pre-
vent the driver from filtering any linker errors through the demangler.
The demangler’s primary role is to convert the encoded name of a func-
tion into a more understandable version of the name.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-53
for ADSP-219x DSPs

Compiler Command-Line Interface
Data Type Sizes
The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types and
therefore at high speed.

Table 1-6 shows the size used for each of the intrinsic C/C++ data types

On any platform the basic type int will be the native word size. The data
type long is 32 bits, as is float. A pointer is the same size as an int.

Table 1-6. Data Type Sizes for ADSP-219x Processors

Type Bit Size sizeof returns

char 8 bits signed 1

unsigned char 8 bits unsigned 1

int 16 bits signed 1

unsigned int 16 bits unsigned 1

short 16 bits signed 1

unsigned short 16 bits unsigned 1

long 32 bits signed 2

unsigned long 32 bits unsigned 2

float 32 bits float 2

double 32 bits float 2

pointer 16 bits 1

function pointer 32 bits 2

fract16 16 bits fractional 1

fract32 32 bits fractional 2
1-54 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
In the ADSP-219x processor architecture, the long long int, unsigned
long long int, and long double data types are not implemented (they
will not be redefined to other types). In general, double word data types
should be expected to run more slowly, relying largely on software-emu-
lated arithmetic.

Analog Devices does not support data sizes smaller than a single word
location for the ADSP-219x processors. For the current processors, this
means that both short and char have the same size as int. Although
16-bit chars are unusual, they do conform to the standard.

Type double poses a special problem. The C language tends to default to
double for constants and in many floating-point calculations. Without
some special handling, many programs would inadvertently end up using
slow-speed emulated 64-bit floating-point arithmetic, even when variables
are declared consistently as float.

In order to avoid this problem and provide the best performance, the size
of double on the ADSP-219x processors is always 32 bits. This should be
acceptable for most DSP programming. It is not, however, fully standard
conforming.

The standard include files automatically redefine the math library inter-
faces such that functions like sin can be directly called with the proper
size operands. Therefore,

float sinf (float); /* 32-bit */

double sin (double); /* 32-bit */

For full descriptions of these functions and their implementation, see
Chapter 4, “DSP Run-Time Library”.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-55
for ADSP-219x DSPs

Compiler Command-Line Interface
Optimization Control
The general aim of compiler optimizations is to generate correct code that
executes fast and is small in size. Not all optimizations are suitable for
every application or possible all the time so the compiler optimizer has a
number of configurations, or optimization levels, which can be applied
when suitable. Each of these levels are enabled by one or more compiler
switches (and VisualDSP++ project options) or pragmas.

� Refer Chapter 2, “Achieving Optimal Performance from C/C++
Source Code” for information on how to obtain maximal code per-
formance from the compiler.

The following list identifies several optimization levels. The levels are
notionally ordered with least optimization listed first and most optimiza-
tion listed last. The descriptions for each level outline the optimizations
performed by the compiler and identifies any switches or pragmas
required or that have direct influence on the optimization levels
performed.

• Debug
The compiler produces debug information to ensure that the object
code matches the appropriate source code line. See “-g” on
page 1-28 for more information.

• Default
The compiler does not perform any optimizations by default when
none of the compiler optimizations switches are used (or enabled in
VisualDSP++ project options). Default optimizations level can be
enabled using the optimize_off pragma (on page 1-125).

• Procedural Optimizations
The compiler performs advanced, aggressive optimization on each
procedure in the file being compiled. The optimizations can be
directed to favor optimizations for speed (-O) or space (-Os) or a
factor between speed and space (-Ov). If debugging is also
1-56 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
requested, the optimization is given priority so the debugging func-
tionality may be limited. See “-O” on page 1-37, “-Os” on
page 1-37, and “-Ov num” on page 1-38.

Procedural optimizations for speed and space (-O and -Os) can be
enabled in C/C++ source using the pragma
optimize_{for_speed|for_space} (see on page 1-125 more infor-
mation on optimization pragmas).

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. It does this when
it has determined that doing so will reduce execution time. How
aggressively the compiler performs automatic inlining is controlled
using the -Ov switch. Automatic inlining is enabled using the -Oa
switch and additionally enables Procedural Optimizations (-O).
Refer to “-Oa” on page 1-37, “-Ov num” on page 1-38, and
“-O” on page 1-37 for more information.

• Interprocedural optimizations (IPA)
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. IPA is enabled using the -ipa switch and
additionally enables Procedural Optimizations (-O).
See “-ipa” on page 1-30 and “-O” on page 1-37 for more
information.

Interprocedural Analysis

The compiler has an optimization capability called Interprocedural Analysis
(IPA) that allows the compiler to optimize across translation units instead
of within individual translation units. This capability allows the compiler
to see all of the source files used in a final link at compilation time and to
use that information while optimizing.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-57
for ADSP-219x DSPs

Compiler Command-Line Interface
Interprocedural analysis is enabled by selecting the Interprocedural analy-
sis option on the Compiler tab (accessed via the VisualDSP++ Project
Options dialog box), or by specifying the -ipa command-line switch
(on page 1-30). The -ipa switch automatically enables the -O switch to
turn on optimization.

Use of the -ipa switch causes additional files to be generated along with
the object file produced by the compiler. These files have .ipa and .opa
filename extensions and should not be deleted manually unless the associ-
ated object file is also deleted.

All of the -ipa optimizations are invoked after the initial link; when a spe-
cial program has called, the prelinker re-invokes the compiler to perform
the new optimizations.

Because a file may be recompiled by the prelinker, you cannot use the -S
option to see the final optimized assembler file when -ipa is enabled.
Instead, you must use the -save-temps switch, so that the full com-
pile/link cycle can be performed first.

Because IPA operates only during the final link, the -ipa switch has no
benefit when compiling the source files to object format for inclusion in a
library. Although IPA will generate usage information for potential addi-
tional optimizations at the final link stage, neither the usage information
nor the module's source file are available when the linker includes a mod-
ule from a library. Therefore, each library module is compiled to the
normal -O optimization level.

The prelinker inspects object modules included from libraries and other
object files which were not compiled with the -ipa switch to see whether
there are hidden references to the functions and variables defined in those
objects which were compiled with the -ipa switch, and optimizes those
variables and functions accordingly.
1-58 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
C/C++ Compiler Language Extensions
The compiler supports a set of extensions to the ANSI standard for the C
and C++ languages. These extensions add support for DSP hardware and
allow some C++ programming features when compiling in C mode. The
extensions are also available when compiling in C++ mode.

This section contains:

• “Inline Function Support Keyword (inline)” on page 1-62

• “Inline Assembly Language Support Keyword (asm)” on page 1-63

• “Dual Memory Support Keywords (pm dm)” on page 1-78

• “Placement Support Keyword (section)” on page 1-83

• “Boolean Type Support Keywords (bool, true, false)” on page 1-84

• “Pointer Class Support Keyword (restrict)” on page 1-84

• “Variable Length Array Support” on page 1-85

• “Non-Constant Aggregate Initializer Support” on page 1-87

• “Indexed Initializer Support” on page 1-87

• “Aggregate Constructor Expression Support” on page 1-89

• “Fractional Type Support” on page 1-90

• “Preprocessor Generated Warnings” on page 1-93

• “C++ Style Comments” on page 1-94

• “Compiler Built-In Functions” on page 1-94

• “ETSI Support” on page 1-106

• “Pragmas” on page 1-119

• “GCC Compatibility Extensions” on page 1-138
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-59
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
The additional keywords that are part of these C/C++ extensions do not
conflict with any ISO/ANSI C/C++ keywords. The formal definitions of
these extension keywords are prefixed with a leading double underscore
(__). Unless the -no-extra-keywords command-line switch is used, the
compiler defines the shorter forms of the keyword extension that omits
the leading underscores. See “-extra-keywords” on page 1-26 for more
information.

This section describes only the shorter forms of the keyword extensions,
but in most cases you can use either form in your code. For example, all
references to the inline keyword in this text appear without the leading
double underscores, but you can use inline or __inline interchangeably
in your code.

You might need to use the longer forms (such as __inline) exclusively if
you are porting a program that uses the extra Analog Devices keywords as
identifiers. For example, a program might declare local variables such as pm
or dm. In this case, you should use the -no-extra-keywords switch, and if
you need to declare a function as inline, or allocate variables to memory
spaces, you can use __inline or __pm/__dm respectively.

Table 1-7 provides a list and a brief description of keyword extensions.
Table 1-8 provides a list and a brief description of operational extensions.
Both tables direct you to sections of this chapter that document each
extension in more detail.

Table 1-7. Keyword Extensions

Keyword extensions Description

inline (function) Directs the compiler to integrate the function code into the code of
the callers.For more information, see “Inline Function Support
Keyword (inline)” on page 1-62.

dm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Data Memory.
For more information, see “Dual Memory Support Keywords (pm
dm)” on page 1-78.
1-60 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
pm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Program Memory.
For more information, see “Dual Memory Support Keywords (pm
dm)” on page 1-78.

section(“string”) Specifies the section in which an object or function is placed.
For more information, see “Placement Support Keyword (section)”
on page 1-83.

bool, true, false A Boolean type. For more information, see “Boolean Type Support
Keywords (bool, true, false)” on page 1-84.

restrict keyword Specifies restricted pointer features. For more information, see
“Pointer Class Support Keyword (restrict)” on page 1-84.

Table 1-8. Operational Extensions

Operation extensions Description

Variable length arrays Support for variable length arrays lets you use automatic arrays
whose length is not known until runtime. For more information,
see “Variable Length Array Support” on page 1-85.

Non-constant initializers Support for non-constant initializers lets you use non-constants as
elements of aggregate initializers for automatic variables.
For more information, see “Non-Constant Aggregate Initializer
Support” on page 1-87.

Indexed
initializers

Support for indexed initializers lets you specify elements of an
aggregate initializer in an arbitrary order. For more information,
see “Indexed Initializer Support” on page 1-87.

Preprocessor generated
warnings

Support for generating warning messages from the preprocessor.
For more information, see “Preprocessor Generated Warnings” on
page 1-93.

C++-style comments Support for C++-style comments in C programs.
For more information, see “C++ Style Comments” on page 1-94.

Table 1-7. Keyword Extensions (Cont’d)

Keyword extensions Description
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-61
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Inline Function Support Keyword (inline)
The inline keyword directs cc219x to integrate the code for the function
you declare as inline into the code of its callers. Inline function support
and the inline keyword is a standard feature of C++; the compiler pro-
vides it as a C extension. Using this keyword eliminates the function-call
overhead and therefore can increase the speed of your program’s execu-
tion. Argument values that are constant and that have known values may
permit simplifications at compile time.

The following example shows a function definition that uses the inline
keyword.

inline int max3 (int a, int b int c) {

return max (a, max(b, c));

}

A function declared inline must be defined (its body must be included)
in every file in which the function is used. The normal way to do this is to
place the inline definition in a header file. Usually, it will also be declared
static.

In some cases, the compiler does not output object code for the function;
for example, the address is not needed for an inline function called only
from within the defining program. However, recursive calls, and functions
whose addresses are explicitly referred to by the program, are compiled to
assembly code.

� The compiler only inlines functions, even those declared using the
inline keyword, when optimizations are enabled (using the -O
switches, as described on page 1-37).
1-62 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Inline Assembly Language Support Keyword (asm)
The cc219x asm() construct allows you to code ADSP-219x assembly lan-
guage instructions within a C or C++ function and to pass declarations
and directives through to the assembler. The asm() construct is useful for
expressing assembly language statements that cannot be expressed easily or
efficiently with C constructs.

The asm() keyword allows you code complete assembly language instruc-
tions or you can specify the operands of the instruction using C
expressions. When specifying operands with a C expression, you do not
need to know which registers or memory locations contain C variables.

The C compiler does not analyze code defined with the asm() construct; it
passes this code directly to the assembler. The compiler does perform sub-
stitutions for operands of the formats %0 through %9. However, it passes
everything else through to the assembler without reading or analyzing it.

� The asm() constructs are executable statements, and as such, may
not appear before declarations within C/C++ functions.

A simplified asm() construct without operands takes the form of:

asm(" ENA INT;");

The complete assembly language instruction, enclosed in quotes, is the
argument to asm().

� The compiler generates a label before and after inline assembly
instructions when generating debug code (-g switch). These labels
are used to generate the debug line information used by the debug-
ger. If the inline assembler inserts conditionally assembled code, an
undefined symbol error is likely to occur at link time. If the inline
assembler changes the current section and thereby causes the com-
piler labels to be placed in another section, such as a data section
(instead of the default code section), then the debug line informa-
tion will be incorrect for these lines.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-63
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Using asm() constructs with operands requires some additional syntax.
The construct syntax is described in:

• “Assembly Construct Template” on page 1-64

• “Assembly Construct Operand Description” on page 1-68

• “Assembly Constructs with Multiple Instructions” on page 1-74

• “Assembly Construct Reordering and Optimization” on page 1-74

• “Assembly Constructs with Input and Output Operands” on
page 1-75

• “Assembly Constructs and Macros” on page 1-77

Assembly Construct Template

Using asm() constructs, you can specify the operands of the assembly
instruction using C expressions. You do not need to know which registers
or memory locations contain C variables.

ASM() Construct Syntax:

Use the following general syntax for your asm() constructs.

asm(

template

[:[constraint(output operand)[,constraint(output operand)…]]

[:[constraint(input operand)[,constraint(input operand)…]]

[:clobber]]]

);

The syntax elements are defined as:
1-64 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
template

• The template is a string containing the assembly instruction(s) with
%number indicating where the compiler should substitute the oper-
ands. Operands are numbered in order of occurrence from left to
right, starting at 0. Separate multiple instructions with a semico-
lon; then enclose the entire string within double quotes.

For more information on templates containing multiple instruc-
tions, see “Assembly Constructs with Multiple Instructions” on
page 1-74.

constraint

The constraint is a string that directs the compiler to use certain
groups of registers for the input and output operands. Enclose the
constraint string within double quotes. For more information on
operand constraints, see “Assembly Construct Operand Descrip-
tion” on page 1-68.

output operand

The output operand is the name of a C or C++ variable that
receives output from a corresponding operand in the assembly
instruction.

input operand

The input operand is a C/C++ expression that provides an input to
a corresponding operand in the assembly instruction.

clobber

The clobber notifies the compiler that a list of registers are over-
written by the assembly instructions. Use lowercase characters to
name clobbered registers. Enclose each name within double quotes,
and separate each quoted register name with a comma. The input
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-65
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
and output operands are guaranteed not to use any of the clobbered
registers, so you can read and write the clobbered registers as often
as you like. See Table 1-10 on page 1-73.

ASM() Construct Syntax Rules

These rules apply to assembly construct template syntax:

• The template is the only mandatory argument to asm(). All other
arguments are optional.

• An operand constraint string followed by a C/C++ expression in
parentheses describes each operand. For output operands, it must
be possible to assign to the expression—that is, the expression must
be legal on the left side of an assignment statement.

• A colon separates:

• The template from the first output operand

• The last output operand from the first input operand

• The last input operand from the clobbered registers

• A space must be added between adjacent colon field delimiters in
order to avoid a clash with the C++ “::” reserved global resolution
operator.

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.

• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).
1-66 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
� The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The com-
piler does not parse the assembler instruction template, does not
interpret the template, and does not verify whether the template
contains valid input for the assembler.

ASM() Construct Template Example

The following example shows how to apply the asm() construct template
to the ADSP-219x assembly language abs instruction:

{
int x, result;

asm ("%0=abs %1;" :
“=c" (result) :
“c" (x));

}

In the previous example, note the following points:

• The template is “%0=abs %1;”. The %0 is replaced with operand
zero (result), the first operand. The %1 is replaced with operand
one (x).

• The output operand is the C/C++ variable result. The letter c is
the operand constraint for the variable. This constrains the output
to an ALU result register. The compiler generates code to copy the
output from the register to the variable result, if necessary. The “=”
in =c indicates that the operand is an output.

• The input operand is the C/C++ variable x. The letter c is the oper-
and constraint for the variable. This constrains x to an ALU register.
If x is stored in different kinds of registers or in memory, the com-
piler generates code to copy the values into an register before the
asm() construct uses them.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-67
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the oper-
ands in the assembly language template. There are several pieces of
information that need to be conveyed for the compiler to know how to
assign registers to operands. This information is conveyed with an oper-
and constraint. The compiler needs to know what kind of registers the
assembly instructions can operate on, so it can allocate the correct register
type.

You convey this information with a letter in the operand constraint string
which describes the class of allowable registers. Table 1-9 on page 1-72
describes the correspondence between constraint letters and register
classes.

� The use of any letter not listed in Table 1-9 results in unspecified
behavior. The compiler does not check the validity of the code by
using the constraint letter.

For example, if your assembly template contains “ax1 = dm(%0

+= m3);” and the address you want to load from is in the variable
p, the compiler needs to know that it should put p in a DAG1 I reg-
ister (I0–I3) before it generates your instruction. You convey this
information to cc219x by specifying the operand “w” (p) where
“w” is the constraint letter for DAG1 I registers.

To assign registers to the operands, the compiler must also be told which
operands in an assembly language instruction are inputs, which are out-
puts, and which outputs may not overlap inputs. The compiler is told this
in three ways.

• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and always follow the out-
put operands.
1-68 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
• The operand constraints describe which registers are modified by
an assembly language instruction. The = in =constraint indicates
that the operand is an output; all output operand constraints must
use =.

• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output operand has the
&= constraint modifier. This situation can occur because the com-
piler assumes that the inputs are consumed before the outputs are
produced.

This assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use &= for each output operand
that must not overlap an input or supply an “&” for the input operand.

Operand constraints indicate what kind of operand they describe by
means of preceding symbols. The possible preceding symbols are: no sym-
bol, =, +, &, ?, and #.

• (no symbol)

The operand is an input. It must appear as part of
the third argument to the asm() construct. The allo-
cated register will be loaded with the value of the
C/C++ expression before the asm() template is exe-
cuted. Its C/C++ expression will not be modified by
the asm(), and its value may be a constant or literal.
Example: d

• = symbol

The operand is an output. It must appear as part of
the second argument to the asm() construct. Once
the asm() template has been executed, the value in
the allocated register is stored into the location indi-
cated by its C/C++ expression; therefore, the
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-69
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
expression must be one that would be valid as the
left-hand side of an assignment.
Example: =d

• + symbol

The operand is both an input and an output. It must
appear as part of the second argument to the asm()
construct. The allocated register is loaded with the
C/C++ expression value, the asm() template is exe-
cuted, and then the allocated register’s new value is
stored back into the C/C++ expression. Therefore, as
with pure outputs, the C/C++ expression must be
one that is valid on the left-hand side of an assign-
ment.
Example: +d

• ? symbol

The operand is temporary. It must appear as part of
the third argument to the asm() construct. A register
is allocated as working space for the duration of the
asm() template execution. The register’s initial value
is undefined, and the register’s final value is dis-
carded. The corresponding C/C++ expression is not
loaded into the register, but must be present. This
expression is normally specified using a literal zero.
Example: ?d

• & symbol

This operand constraint may be applied to inputs
and outputs. It indicates that the register allocated to
the input (or output) may not be one of the registers
that are allocated to the outputs (or inputs). This
operand constraint is used when one or more output
registers are set while one or more inputs are still to
1-70 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
be referenced. (This situation sometimes occurs if
the asm() template contains more than one instruc-
tion.)
Example: &d

• # symbol

The operand is an input, but the register's value is
clobbered by the asm() template execution. The
compiler may make no assumptions about the regis-
ter's final value. The operand must appear as part of
the second argument to the asm() construct.
Example: #d

Table 1-9 on page 1-72 lists the registers that may be allocated for each
register constraint letter. The use of any letter not listed in the “Con-
straint” column of this table results in unspecified behavior. The compiler
does not check the validity of the code by using the constraint letter.
Table 1-10 on page 1-73 lists the registers that may be named as part of
the clobber list.

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter
would be. The register names are the same as those used to specify the
clobber list; see Table 1-10.

For example,

asm("%0 = %1 + %2;"

:"=ar"(sum) /* output */

:"g"(x),"G"(y) /* input */

);

would load x into ALU-X register, y into ALU-Y register, and sum will
be calculated in register AR.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-71
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Table 1-9. ASM() Operand Constraints

Constraint1 Description Registers

b input xregs to MAC MX1, MX0, SR1, SR0, MR1,
MR0, AR

B input yregs to MAC MY1, MY0

c results from ALU AR

C result from int multiplies MR0

cc Used in the clobber list to tell the
compiler that condition codes have
been clobbered

ASTAT

d input xregs to SHIFTER SI, SR1, SR0, MR1, MR0,
AX0, AY0, AX1, AY1, MX0,
MX1, MY0, MY1, AR

D result from shift SR1

e data registers, size 16 SI, AX1, AX0, MX1, MX0,
MY0, MY1, AY1, AY0, MR1,
MR0, SR1, SR0, AR

f shift amount SE

g ALU X registers AX1 AX0 AR SR1 SR0 MR1 MR0

G ALU Y registers AY1 AY0

memory Used in the clobber list to tell the
compiler that the asm() statement
writes to memory

r all registers SR1, SR0, SI, MY1, MX1,
AY1, AX1, MY0, MX0, AY0,
AX0, MR1, MR0, AR, I0-I7,
M0-M7, L0-L7

u DAG1 L registers L0-L3

v DAG2 L registers L4-L7

w DAG1 I registers I0-I3

x DAG1 M registers M0-M3
1-72 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
y DAG2 I registers I4-I7

z DAG2 M registers M4-M7

=&constraint Indicates that the constraint is applied to an output operand that may
not overlap an input operand

=constraint Indicates that the constraint is applied to an output operand

&constraint Indicates the constraint is applied to an input operand that may not be
overlapped with an output operand

=&constraint Indicates the constraint is applied to an output operand that may not
overlap an input operand

?constraint Indicates the constraint is temporary

+constraint Indicates the constraint is both an input and output operand

1 The use of any letter not listed in the table results in unspecified behavior. The compiler does
not check the validity of the code by using the constraint letter.

Table 1-10. Register Names for asm() Constructs

Clobber String Meaning

"AX1", "AX0", "AY1", "AY0", "AR", "AF" ALU registers

"MX1", "MX0", "MY1", "MY0", "MR1", "MR0",
"MR2"

MAC registers

"SI", "SE", "SR1", "SR0", "SB", "SR2" Shifter registers

"I0", "I1", "I2", "I3", "I6", "I7" DAG addressing registers

"M0", "M1", "M2", "M3", "M4", "M6", "M7" Modifier registers

"B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7" Base registers

"DMPG1", "DMPG2" Page registers

"L0", "L1", "L2", "L3", "L5", "L6", "L7" Length register

"PX" PMD-DMD bus exchange register

Table 1-9. ASM() Operand Constraints (Cont’d)

Constraint1 Description Registers
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-73
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Assembly Constructs with Multiple Instructions

There can be many assembly instructions in one template. If the asm()
string is longer than one line, you may continue it on the next line by
placing a backslash (\) at the end of the line or by quoting each line
separately.

This is an example of multiple instructions in a template:

asm ("se=exp %1 (hi); \
"sr=norm %1 (hi); \
"%0=sr0;"
: "=e" (normalized) // output
: "e" (inval) ; // input

: "se", "sr2", "sr1", "sr0") ; // clobbers

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands or the
items specified using the clobber specifiers. This does not mean that you

"astat" ALU status register

"MSTAT", "MMODE", "SSTAT" mode control register

"IMASK", "ICNTL", "IFC" Interrupt registers

"CNTR", "STACKA", "STACKP" Program sequencer register

"IJPG", "IOPG", Paging/overlay register;
ADSP-2190 DSP only

"cc" Condition code register

"memory" Unspecified memory location(s)

Table 1-10. Register Names for asm() Constructs (Cont’d)

Clobber String Meaning
1-74 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
cannot use instructions with side effects, but you must be careful to notify
the compiler that you are using them by using the clobber specifiers (see
Table 1-10 on page 1-73).

The compiler may eliminate supplied assembly instructions if the output
operands are not used, move them out of loops, or replace two with one if
they constitute a common subexpression. Also, if the instruction has a side
effect on a variable that otherwise appears not to change, the old value of
the variable may be reused later if it happens to be found in a register.

Use the keyword volatile to prevent an asm() instruction from being
moved, combined, or deleted. For example:

#define IOwrite(val,addr) \

asm volatile ("si="#val";IO("#addr")=si;": : :"si");

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use only one asm volatile() construct, or
use the output of the asm() construct in a C/C++ statement.

Assembly Constructs with Input and Output Operands

The assembly constructs’ output operands must be write only; cc219x
assumes that the values in these operands do not need to be preserved.
When the assembler instruction has an operand that is both read from and
written to, you must logically split its function into two separate operands:
one input operand and one write-only output operand. The connection
between them is expressed by constraints that say they need to be in the
same location when the instruction executes.

You can use the same C expression for both operands, or different expres-
sions. For example, in the following statement, the modify instruction uses
sock as its read only source operand and shoe as its read-write destination:
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-75
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
/* (pseudo code) modify (shoe += sock); */

asm ("modify (%0 += %2);":"=w"(shoe):"0"(shoe),"x"(sock));

The constraint "0" for operand 1 says that it must occupy the same loca-
tion as operand 0. A digit in an operand constraint is allowed only in an
input operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand is in the
same place as another operand. Just because a variable (for example shoe
in the code that follows) is used for more than one operand does not guar-
antee that the operands are in the same place in the generated assembler
code.

/* Do NOT try to control placement with operand names; use
the % digit. The following code might NOT work.*/
asm ("modify (%0 += %2);":"=w"(shoe):"w"(shoe),"x"(sock));

In some cases, operands 0 and 1 could be stored in different registers due
to reloading or optimizations.

Be aware that asm() does not support input operands that are used as both
read operands and write operands. The example below shows a dangerous
use of such an operand. In this example, my_variable is modified during
the asm() operation. The compiler only knows that the output,
result_asm, has changed. Subsequent use of my_variable after the asm()
instruction may yield incorrect results since those values may have been
modified during the asm() instruction and may not have been restored.

int result_asm;

int *my_variable;

/* NOT recommended */

/* (pseudo code) result_asm = dm(*my_variable += 3); */

/* asm() operation changes value of my_variable */

asm("%0=DM(%1 += 3);":"=e"(result_asm):"w"(my_variable));
1-76 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Assembly Constructs and Macros

One way to use asm() constructs is to encapsulate them in macros that
look like functions. For example, the following shows macros that contain
asm() constructs. This code defines a macro, abs_macro(), which uses the
inline asm() instruction to perform an assembly-language abs operation of
variable x_var, putting the result in result_var:

#define abs_macro(result,x) \
asm("%0=abs %1;":"=c" (result):"c"(x))

/* (pseudo code) result = abs x */

main(){
int result_var=0;
int x_var=10;

abs_macro(result_var, 10);
/* or */
abs_macro(result_var, x_var);

}

Assembly Constructs and Flow Control

It is inadvisable to place flow control operations within an asm() construct
that “leaves” the asm() construct, such as calling a procedure or perform-
ing a jump, to another piece of code that is not within the asm() construct
itself. Such operations are invisible to the compiler and may violate
assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all conven-
tions are obeyed, or the called procedure may corrupt the state used by the
function containing the asm() construct.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-77
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Dual Memory Support Keywords (pm dm)
This section describes cc219x keyword extensions to C and C++ that sup-
port the dual-memory space, modified Harvard architecture of the
ADSP-219x processors. There are two keywords used to designate mem-
ory space: dm and pm. These keywords can be used to specify the location of
a static or global variable or to qualify a pointer declaration.

These keywords allow you to control placement of data in primary (dm) or
secondary (pm) data memory. No data is placed in the memory unit that
holds programs. The following rules apply to dual memory support
keywords:

• A memory space keyword (dm or pm) refers to the expression to its
right.

• You can specify a memory space for each level of pointer. This cor-
responds to one memory space for each * in the declaration.

• The compiler uses Data Memory as the default memory space for
all variables. All undeclared spaces for data are Data Memory
spaces.

• The compiler always uses Program Memory as the memory space
for functions. Function pointers always point to Program Memory.

• You cannot assign memory spaces to automatic variables. All auto-
matic variables reside on the stack, which is always in Data
Memory.

• Literal character strings always reside in Data Memory.

• Although program memory on the ADSP-219x DSPs consists of
24-bit words, only 16 bits of each word are used when C or C++
data is stored in pm. (This is normally the case for assembly lan-
1-78 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
guage programming as well.) If you need special access to all
24 bits, you should use an assembly language subroutine and work
with the PX register.

The following listing shows examples of dual memory keyword syntax.

int pm abc[100];
/* declares an array abc with 100 elements in Program Memory */
int dm def[100];
/* declares an array def with 100 elements in Data Memory */
int ghi[100];
/* declares an array ghi with 100 elements in Data Memory */
int pm * pm pp;
/* declares pp to be a pointer which resides in Program Memory

and points to a Program Memory integer */
int dm * dm dd;
/* declares dd to be a pointer which resides in primary Data

Memory and points to a Data Memory integer */
int *dd;
/* declares dd to be a pointer which resides in Data Memory

and points to a Data Memory integer */
int pm * dm dp;
/* declares dp to be a pointer which resides in Data Memory

and points to a Program Memory integer */
int pm * dp;
/* declares dp to be a pointer which resides in Data Memory

and points to a Program Memory integer */
int dm * pm pd;
/* declares pd to be a pointer which resides in pm (secondary

Data Memory) and points to a Data Memory integer */
int * pm pd;
/* declares pd to be a pointer which resides in Program memory

and points to a Data Memory integer */
float pm * dm * pm fp;
/* the first pm means that *fp is in Program Memory,

the following dm puts *fp in Data Memory, and fp
itself is in Program Memory */
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-79
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Memory space specification keywords cannot qualify type names and
structure tags, but you can use them in pointer declarations. The follow-
ing listing shows examples of memory space specification keywords in
typedef and struct statements.

/* Dual Memory Support Keyword typedef & struct Examples */
typedef float pm * PFLOATP;
/* PFLOATP defines a type which is a pointer to a */
/* float which resides in pm. */

struct s {int x; int y; int z;};
static pm struct s mystruct={10,9,8};
/* Note that the pm specification is not used in */
/* the structure definition. The pm specification */
/* is used when defining the variable mystruct */

Memory Keywords and Assignments/Type Conversions

Memory space specifications limit the kinds of assignments your program
can make:

• You may make assignments between variables allocated in different
memory spaces.

• Pointers to program memory must always point to PM. Pointers to
data memory must always point to DM. You may not mix addresses
from different memory spaces within one expression. Do not
attempt to explicitly cast one type of pointer to another.

The following listings show a code segment with variables in different
memory spaces being assigned and a code segment with illegal mixing of
memory space assignments.

/* Legal Dual Memory Space Variable Assignment Example */
int pm x;
int dm y;
x = y; /* Legal code */

/* Illegal Dual Memory Space Type Cast Example */
1-80 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
int pm *x;
int dm *y;
int dm a;
x = y; /* Compiler will flag error */
x = &a; /* Compiler will flag error */

Memory Keywords and Function Declarations/Pointers

Functions always reside in program memory. Pointers to functions always
point to PM. The following listing shows some example function declara-
tions with pointers.

/* Dual Memory Support Keyword Function Declaration (With Point-
ers) Syntax Examples */

int * y(); /* function y resides in */
/* pm and returns a */
/* pointer to an integer */
/* which resides in dm */

int pm * y(); /* function y resides in */
/* pm and returns a */
/* pointer to an integer */
/* which resides in pm */

int dm * y(); /* function y resides in */
/* pm and returns a */
/* pointer to an integer */
/* which resides in dm */

int * pm * y(); /* function y resides in */
/* pm and returns a */
/* pointer to a pointer */
/* residing in pm that */
/* points to an integer */
/* which resides in dm */
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-81
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Memory Keywords and Function Arguments

The compiler checks calls to prototyped functions for memory space spec-
ifications consistent with the function prototype. The following example
shows sample code that cc219x flags as inconsistent use of memory spaces
between a function prototype and a call to the function.

/* Illegal Dual Memory Support Keywords & Calls To Prototyped
Functions */

extern int foo(int pm*);
/* declare function foo() which expects a pointer to an int
residing in pm as its argument and which returns an int */

int x; /* define int x in dm */

foo(&x); /* call function foo() */
/* using pm pointer (location of x) as the */
/* argument. cc219x FLAGS AS AN ERROR; this is an */

/* inconsistency between the function’s */
/* declared memory space argument and function */
/* call memory space argument */

Memory Keywords and Macros

Using macros when making memory space specification for variables or
pointers can make your code easier to maintain. If you must change the
definition of a variable or pointer (moving it to another memory space),
declarations that depend on the definition may need to be changed to
ensure consistency between different declarations of the same variable or
pointer.

To make changes of this kind easier, you can use C preprocessor macros to
define common memory spaces that must be coordinated. The following
listing shows two code segments that are equivalent after preprocessing.
1-82 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The following code segment demonstrates how you can redefine the mem-
ory space specifications by redefining the macros SPACE1 and SPACE2.

/* Dual Memory Support Keywords & Macros */
#define SPACE1 pm
#define SPACE2 dm

char pm * foo (char dm *) char SPACE1 * foo (char SPACE2 *)
char pm *x; char SPACE1 *x;
char dm y; char SPACE2 y;

x = foo(&y); x = foo(&y);

PM and DM Compiler Support for Standard C Library Functions

There are a number of functions defined in the standard C library that
take pointer input parameter types. These functions, which include for
example strlen(), are implemented differently when the pointer input is
to program memory (PM) or data memory (DM). The different imple-
mentations are called automatically by the compiler because it has specific
in-built knowledge about the standard C functions that require pointer
parameters. The support requires that the normal standard header file, for
example string.h, is included prior to use of the function requiring PM
and DM variants. The default library function variants are DM should the
include file not be used.

Placement Support Keyword (section)
The section keyword directs the compiler to place an object or function
in an assembly .SECTION, in the compiler’s intermediate assembly output
file. You name the assembly .SECTION with section()’s string literal
parameter. If you do not specify a section() for an object or function
declaration, the compiler uses a default section. The .LDF file supplied to
the linker must also be updated to support the additional named sections.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-83
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Applying section() is only meaningful when the data item is something
that the compiler can place in the named section.

Apply section() only to top-level, named objects that have static duration
(they are explicitly static) or are given as external-object definitions.
The example shows the declaration of a static variable that is placed in
the section called bingo.

static section("bingo") int x;

Boolean Type Support Keywords (bool, true, false)
The bool, true, and false keywords are extensions to ANSI C that sup-
port the C++ Boolean type. The bool keyword is a unique signed integral
type. There are two built-in constants of this type: true and false. When
converting a numeric or pointer value to bool, a zero value becomes
false; a nonzero value becomes true. A bool value may be converted to
int by promotion, taking true to one and false to zero. A numeric or
pointer value is automatically converted to bool when needed.

These keywords behave more or less as if the declaration that follows had
appeared at the beginning of the file, except that assigning a nonzero inte-
ger to a bool type always causes it to take on the value true.

typedef enum { false, true } bool;

Pointer Class Support Keyword (restrict)
The restrict operator keyword is an extension that supports restricted
pointer features. The use of restrict is limited to the declaration of a
pointer and specifies that the pointer provides exclusive initial access to
the object to which it points. More simply, restrict is a way that you can
identify that a pointer does not create an alias. Also, two different
restricted pointers can not designate the same object and therefore are not
1-84 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
aliases. The compiler is free to use the information about restricted point-
ers and aliasing in order to better optimize C or C++ code that uses
pointers.

The restrict keyword is most useful when applied to function parameters
about which the compiler would otherwise have little information.

void fir (short *in,short *c,short *restrict out,int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers except for the following cases:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

If your program uses a restricted pointer in a way that it does not uniquely
refer to storage, then the behavior of the program is undefined.

Variable Length Array Support
The compiler supports variable-length automatic arrays. Unlike other
automatic arrays, variable-length ones are declared with a non-constant
length. This means that the space is allocated when the array is declared,
and deallocated when the brace-level is exited.

The compiler does not allow jumping into the brace-level of the array and
produces a compile time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-85
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
You can use variable-length arrays as function arguments, as shown in the
following example.

struct entry
var_array (int array_len, char data[array_len][array_len])
{
...

}

The compiler calculates the length of an array at the time of allocation. It
then remembers the array length until the brace-level is exited and can
return it as the result of the sizeof() function performed on the array.

Because variable length arrays must be stored on the stack, it is impossible
to have variable length arrays in Program Memory (pm). The compiler
issues an error if an attempt is made to use a variable length array in pm.

As an example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the
same size as input matrices. Declaring automatic variable size matrix is
much easier then explicitly allocating it in a heap.

The expression declares an array with a size that is computed at run time.
The length of the array is computed on entry to the block and saved in
case sizeof() is applied to the array. For multidimensional arrays, the
boundaries are also saved for address computation. After leaving the block
all the space allocated for the array and size information will be
deallocated.

For example, the following program prints 40, not 50:

#include <stdio.h>
void foo(int);

main ()
{

foo(40);
}

1-86 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
void foo (int n)
()
{

char c[n];
n = 50;

printf("%d", sizeof(c));

}

Non-Constant Aggregate Initializer Support
The compiler includes extended support for aggregate initializers. The
compiler does not require the elements of an aggregate initializer for an
automatic variable to be constant expressions. The following example
shows an initializer with elements that vary at run time:

void initializer (float a, float b)
{

float the_array[2] = { a-b, a+b };
}

All automatic structures can be initialized by arbitrary expressions involv-
ing literals, previously declared variables and functions.

Indexed Initializer Support
ISO/ANSI Standard C and C++ requires the elements of an initializer to
appear in a fixed order, the same as the order of the elements in the array
or structure being initialized. The cc219x compiler, by comparison, sup-
ports labeling elements for array initializers. This feature lets you specify
array or structure elements in any order by specifying the array indices or
structure field names to which they apply. All index values must be con-
stant expressions, even in automatic arrays.

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index to be initialized by that value. Subse-
quent initializer elements are then applied to sequentially following
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-87
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
elements of the array, unless another use of the [INDEX] syntax appears.
The index values must be constant expressions, even if the array being ini-
tialized is automatic.

The following example shows equivalent array initializers—the first ini-
tializer is in ISO/ANSI standard C/C++; the second initializer uses the
cc219x compiler.

� The [index] precedes the value being assigned to that element.

/* Example 1 Standard & cc219x C/C++ Array Initializer */
/* Standard Array Initializer */

int a[6] = { 0, 0, 115, 0, 29, 0 };

/* equivalent cc219x C/C++ array initializer */

int a[6] = { [2] 115, [4] 29 };

You can combine this technique of naming elements with standard C/C++
initialization of successive elements. The standard and cc219x instructions
below are equivalent. Note that any unlabeled initial value is assigned to
the next consecutive element of the structure or array.

/* Example 2 Standard & cc219x C/C++ Array Initializer */

/* Standard Array Initializer */

int a[6] = { 0, v1, v2, 0, v4, 0 };

/* equivalent cc219x C/C++ array initializer that uses
indexed elements */

int a[6] = { [1] v1, v2, [4] v4 };
1-88 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The following example shows how to label the array initializer elements
when the indices are characters or an enum type.

/* Example 3 Array Initializer With enum Type Indices */
/* cc219x C/C++ array initializer */

int whitespace[256] =
{

[' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1
};

In a structure initializer, specify the name of a field to initialize with field
name before the element value. The standard C/C++ and cc219x C/C++
struct initializers in the example below are equivalent.

/* Example 4 Standard & cc219x C/C++ struct Initializer */

/* Standard struct Initializer */

struct point {int x, y;};
struct point p = {xvalue, yvalue};

/* Equivalent cc219x C/C++ struct Initializer With
Labeled Elements */

struct point {int x, y;};
struct point p = {y: yvalue, x: xvalue};

Aggregate Constructor Expression Support
Extended initializer support in cc219x C/C++ includes support for aggre-
gate constructor expressions. These expressions enable you to assign values
to large structure types without requiring each element’s value to be indi-
vidually assigned.

The following example shows an ISO/ANSI standard struct usage fol-
lowed by equivalent cc219x code that has been simplified using an
constructor expression.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-89
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
/* Standard struct & cc219x C/C++ Constructor struct */
/* Standard struct */

struct foo {int a; char b[2];};
struct foo make_foo(int x, char *s)
{

struct foo temp;
temp.a = x;
temp.b[0] = s[0];
if (s[0] != '\0')

temp.b[1] = s[1];
else

temp.b[1] = '\0';
return temp;

}

/* Equivalent cc219x C/C++ constructor struct */

struct foo make_foo(int x, char *s)
{

return((struct foo) {x, {s[0], s[0] ? s[1] : '\0'}});
}

Fractional Type Support
While in C++ mode, the cc219x compiler supports fractional (fixed-point)
arithmetic that provides a way of computing with non-integral values
within the confines of the fixed-point representation. The representation
on which the fractional support is based is that of a 16-bit integral type. In
this release of the compiler, there is no underlying C++ support for 32-bit
fractional arithmetic. The ADSP-219x processors provide hardware sup-
port for the 16-bit fractional arithmetic.

Fractional values are declared with the fract data type. Ensure that your
program includes the fract header file. fract is a C++ class that supports
a set of standard arithmetic operators used in arithmetic expressions. Frac-
tional values are represented as signed values in a range of [-1 … 1] with a
1-90 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
binary point immediately after the sign bit. Other value ranges are
obtained by scaling or shifting. In addition to the arithmetic, assignment,
and shift operations, fract provides several type-conversion operations.

For more information about supported fractional arithmetic operators, see
“Fractional Arithmetic Operations” on page 1-92. For sample programs
demonstrating the use of the fract type, see Listing 1-1 on page 1-177,
Listing 1-2 on page 1-178, and Listing 1-3 on page 1-178.

� The current release of the software does not provide for automatic
scaling of fractional values.

Format of Fractional Literals

Fractional literals use the floating-point representation with an “r” suffix
to distinguish them from floating-point literals, for example, 0.5r. The
cc219x compiler validates fractional literal values at run time to ensure
they reside within the valid range of values.

Fractional literals are written with the “r” suffix to avoid certain precision
loss. Literals without an “r” are of the type double, and are implicitly con-
verted to fract as needed.

Conversions Involving Fractional Values

The following notes apply to type-conversion operations:

• Conversion between a fractional value and a floating value is sup-
ported. The conversion to the floating-point type may result in
some precision loss.

• Conversion between a fractional value and an integer value is sup-
ported. The conversion is not recommended because the only
common values are 0 and –1.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-91
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Fractional Arithmetic Operations

The following notes summarize information about fractional arithmetic
operators supported by the cc219x compiler:

• Standard arithmetic operations on two fract items include addi-
tion, subtraction, and multiplication.

• Assignment operations include +=, -=, and *=.

• Shift operations include left and right shifts. A left shift is imple-
mented as a logical shift and a right shift is an arithmetic shift.
Shifting left by a negative amount is not recommended.

• Comparison operations are supported between two fract items.

• Mixed-mode arithmetic has a preference for fract. For more infor-
mation about the mixed-mode arithmetic, see on page 1-92.

• Multiplication of a fractional and an integer produces an integer
result or a fractional result. The program context determines which
variant is generated following the conversion algorithm of C++.
When the compiler does not have enough context, it generates an
ambiguous operator message. For example,

error:more than one operator "*" matches these operands:

If this error occurs, cast the result of the multiply to the desired
type.

Mixed Mode Operations

Most operations supported for fractional values, are supported for mixed
fractional/float or fractional/double arithmetic expressions. At run time, a
floating-point value is converted to a fractional value, and the operation is
completed using fractional arithmetic.
1-92 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The assignment operations, such as +=, are the exception to the rule. The
logic of an assignment operation is defined by the type of a variable posi-
tioned on the left side of the expression.

Floating-point operations require an explicit cast of a fractional value to
the desired floating type.

Saturated Arithmetic

The cc219x compiler supports saturated arithmetic for fractional data in
the saturated arithmetic mode.

Whenever a calculation results in a bigger value than the fract data type
represents, the result is truncated (wrapped around). An overflow flag is
set to warn the program that the value has exceeded its limits. To prevent
the overflow and to get the result as the maximum representable value
when processing signal data, use saturated arithmetic. Saturated arithmetic
forces an overflowed value to become the maximum representable value.

The mode is set to be saturated or default with the set_saturate_mode()
and reset_saturate_mode() functions. Each arithmetic operator has its
corresponding variant effected in the saturated mode. For example,
add_sat, sub_sat, neg_sat, ….

Preprocessor Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text on the remainder of the line
that follows #warning is used as the warning message.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-93
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
C++ Style Comments
The compiler accepts C++ style comments, beginning with // and ending
at the end of the line, in C programs. This is essentially compatible with
standard C, except for the following case.

a = b

//* highly unusual */ c

which a standard C compiler processes as:

a = b/c;

Compiler Built-In Functions
The compiler supports intrinsic functions that enable efficient use of
hardware resources. Knowledge of these functions is built into the cc219x
compiler. Your program uses them via normal function call syntax. The
compiler notices the invocation and generates one or more machine
instructions, just as it does for normal operators, such as + and *.

Built-in functions have names which begin with __builtin_. Note that
identifiers beginning with double underlines (__) are reserved by the C
standard, so these names will not conflict with user program identifiers.

The header files also define more readable names for the built-in functions
without the __builtin_ prefix. These additional names are disabled if the
-no-builtin switch is used (on page 1-34).

The cc219x compiler provides built-in versions of some of the C library
functions as described in “Using the Compiler’s Built-In C Library Func-
tions” on page 3-5.
1-94 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The sysreg.h header file defines a set of functions that provide efficient
system access to registers, modes and addresses not normally accessible
from C source. These functions are specific to individual architectures and
this section lists the built-in functions supported at this time on
ADSP-219x DSPs.

The compiler supports:

• “Access to System Registers” on page 1-95

• “I/O Space Read or Write” on page 1-97

• “Interrupt Control” on page 1-98

• “Mode Control” on page 1-99

• “Near and Far Type Qualifiers” on page 1-99

• “Circular Buffer Built-In Functions” on page 1-103

Access to System Registers

The inclusion of sysreg.h allows the use of functions that will generate
efficient inline instructions to implement read and write of values from
and to general register set and system control set system registers.

General Register set:

ASTAT SSTAT MSTAT ICNTL IMASK IRPTL DMPG1 DMPG2 IOPG

System Control Register set:

B0 B1 B2 B3 B4 B5 B6 B7 SYSCTL CACTL

DBGCTRL DBGSTAT CNT0 CNT1 CNT2 CNT3

Also any 8-bit value used as a register identifier.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-95
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
The prototypes for these functions are, as defined in sysreg.h:

void sysreg_write(const int sysreg, const int value);

int sysreg_read(const int sysreg);

The sysreg parameter for these functions can be a member of the SysReg
enumeration defined in sysreg.h. This enumerations is used to map the
actual registers to a small constant defined as a user friendly name.

The SysReg enumeration has the following definitions:

/* General Register set */

sysreg_ASTAT = 0x0, // ASTAT register - arithmetic status

sysreg_SSTAT = 0x1, // SSTAT register - shifter status

sysreg_MSTAT = 0x2, // MSTAT register - multiplier status

sysreg_ICNTL = 0x3, // ICNTL register - interrupt control

sysreg_IMASK = 0x4, // IMASK register - interrupts enabled mask

sysreg_IRPTL = 0x5, // Interrupt Latch register

sysreg_DMPG1 = 0x6, // DMPG1 high address register

sysreg_DMPG2 = 0x7, // DMPG2 high address register

sysreg_IOPG = 0x8, // IOPG I/O page register

/* System Control Register set */

sysreg_B0 = 0x9, // B0 base register

sysreg_B1 = 0xa, // B1 base register

sysreg_B2 = 0xb, // B2 base register

sysreg_B3 = 0xc, // B3 base register

sysreg_B4 = 0xd, // B4 base register

sysreg_B5 = 0xe, // B5 base register

sysreg_B6 = 0xf, // B6 base register

sysreg_B7 = 0x10, // B7 base register

sysreg_SYSCTL = 0x11, // SYSCTL register

sysreg_CACTL = 0x12, // Cache Control register
1-96 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The sysreg parameter can also be any 8-bit value used to represent a sys-
tem control register, since each variant of the ADSP-219x DSPs may have
a differing System Control Register set. The compiler does not validate
the sysreg parameter, instead it relies on the assembler to fault erroneous
values.

An example use of sysreg_read to get the value of IMASK might be:

#include <sysreg.h>

int read_imask(){

int value = sysreg_read(sysreg_IMASK);

return value;

}

An example use of sysreg_write to set the value of IMASK might be:

#include <sysreg.h>

void write_imask(int val8bit) {

sysreg_write(sysreg_IMASK, val8bit);

}

I/O Space Read or Write

The inclusion of sysreg.h allows the use of functions that will generate
efficient inline instructions to implement read and write of values from
and to I/O space addresses.

The prototypes for these functions are, as defined in sysreg.h:

void io_space_write(const unsigned int, const unsigned int);
int io_space_read(const unsigned int addr);

These functions are described in “io_space_read” on page 3-67 and
“io_space_write” on page 3-69, respectively.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-97
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
An example use of io_space_read to read from address zero might be:

#include <sysreg.h>
int read_io_zero(){

int value = io_space_read(0);
return value;

}

An example use of io_space_write to write to address zero might be:

#include <sysreg.h>
void write_io_zero(int val) {

io_space_write(0, val);
}

Interrupt Control

The inclusion of sysreg.h allows the use of functions that generate the
instructions to enable and disable interrupts.

The prototypes for these functions are, as defined in sysreg.h:

void enable_interrupts(void);

void disable_interrupts(void);

The following code provides an example of the use of enable_interrupts
and disable_interrupts to disable and enable interrupts around a call to
printf:

#include <sysreg.h>
#include <stdio.h>
void interrupt_safe_iprint(int val) {

disable_interrupts();
printf("%d\n",val);
enable_interrupts();

}

1-98 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Mode Control

The inclusion of sysreg.h allows the use of a function that generates the
instructions to enable and disable a series of modes using the zero latency
mode control instructions.

The prototype for this function is, as defined in sysreg.h:

void mode_change(const int _mode_spec);

The _mode_spec parameter is a bitmask of mode definitions defined in
sysreg.h. These definitions are:

__MODE_ENA_AV_LATCH =0x1,
__MODE_ENA_AR_SAT =0x2,
__MODE_ENA_M_MODE =0x4,
__MODE_ENA_TIMER =0x8,
__MODE_DIS_AV_LATCH =0x100,
__MODE_DIS_AR_SAT =0x200,
__MODE_DIS_M_MODE =0x400,
__MODE_DIS_INT =0x1000,

Near and Far Type Qualifiers

The ADSP-219x processors can have external memory which will not by
default, for reasons of efficiency, be addressable in 16-bits from C/C++
source. The compiler provides an extension to support access to external
memory which allows use of external memory in C applications without
degrading performance when accessing internal memory. This extension is
enabled using a C type qualifiers, “far” and “near”.

Declarations

This extension is enabled using a “far” and “near” type qualifier in
C/C++ variable declarations. The following are example uses of the “far”
and “near”type qualifiers.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-99
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
int near * near nn1; /* declares nn1 to be a pointer which
resides in near memory and points to a near memory integer */

int * nn2; /* declares nn2 to be a pointer which
resides in near memory and points to a near memory integer */

int far * near nf1; /* declares nf1 to be a pointer which
resides in near memory and points to a far memory integer */

int far * nf2; /* declares nf2 to be a pointer which
resides in near memory and points to a far memory integer */

section("some_far_section")

int far * far ff; /* declares ff to be a pointer which
resides in far memory and points to a far memory integer */

The “near” qualifier is a default and may be omitted when declaring types
for variable which will normally reside in internal memory. The compiler
will treat accesses to “near” qualified variable types exactly as if the “near”
qualifier had not been used.

The “far” qualifier will normally be used in conjunction with the section
placement specifier on static or global scope variables. Use of “far” with
automatic declarations will result in a compiler warning indication that
the “far” qualifier is unnecessary.

The compiler will issue an error if both “near” and “far” are used in a
conflicting way.

Sizes of Far and Near Qualified Types

The size of a “far” pointer is 32 bits (the actual address width required,
24 bits, cannot be stored on the data stack). The size of “near” qualified
data is as normal given that “near” will be ignored. The sizeof operator
will return 1 for near pointers and 2 for far pointers. For example,

#include <assert.h>
1-100 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
section("some_far_section")
int far abc[100];

int near def[100];

main() {
assert(sizeof(&abc)==2 && sizeof(&def)==1);

}

Conversions Between Far and Near Pointers

Conversions between far and near pointers are valid. The compiler will
truncate the Most Significant Word (MSW) of a far pointer when con-
verting a far pointer to a near pointer. The conversion from a
near-pointer will be done by making the MSW of the output far-pointer
the same as that of the internal data area.

Care should be taken to avoid de-referencing truncated far pointers as the
data accessed will be in the internal memory area. The compiler will gen-
erate a warning when it sees a conversion from a far pointer to a near
pointer.

For example,

int near * near_iptr;

int far * far_iptr;

void trunc_far (int far *i) {
near_iptr = i; /* truncate MSW leaving LSW -

will cause a compiler warning */
}

void extend_far (int near *i) {
far_iptr = i; /* extend MSW with value of internal memory

addresses */
}

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-101
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Addressing “Far” Data

The result of the address operator, “&”, when used to generate the address
of data which is declared as being in “far” memory will be a far pointer
type.

C++ Function Overloading

The compiler, in C++ mode, will allow function overloading of parame-
ters types for different “far” and “near” qualified parameters and return
types.

Library Support for “Far" Pointers

All standard library functions that normally have pointer parameters cur-
rently only support near pointer parameters. Passing a far pointer
parameter to a standard library function will cause the far pointer to be
truncated. The compiler will generate a warning when this occurs assum-
ing the correct standard include file has been included before the call to
the library.

Legacy Support

Previous releases of VisualDSP++ only supported external memory
through compiler intrinsics which had to be passed the full address to be
loaded or stored. These intrinsics are still supported although superseded
in terms of functionality and flexibility by use of “far” qualified types.

The inclusion of sysreg.h allows the use of functions that will generate
inline instructions to implement read and write of values from and to
external memory.

The prototypes of the functions are defined in sysreg.h:

int external_memory_read(int DMPG_val, int* addr);
void external_memory_write(int DMPG_val, int* addr, int val);
1-102 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
int __builtin_external_vol_memory_read(int,
 volatile void* addr);

void __builtin_external_vol_memory_write(int,
volatile void* addr, int);

The DMPG_val parameter is the value of the upper 8 bits of the 24-bit
external memory address. The addr parameter is a pointer to the external
memory. The val parameter to external_memory_write is the value to be
written to external memory. The variants where addr is a volatile pointer
should be used when the accessed memory is changed by interrupts of
peripherals in a way that may not be visible to the compiler. For example,

#include <sysreg.h>

section("external_memory_section")
static int GlobalTable[256];

int main() {
int page, read_value, value_to_write = 0;
asm("%0 = PAGE(GlobalTable); " : "=e"(page): :);
external_memory_write(page, &GlobalTable[0], value_to_write);
read_value = external_memory_read(page, &GlobalTable[1]);
return read_value;

}

Circular Buffer Built-In Functions

The C/C++ compiler provides the following built-in functions for using
the ADSP-219x processor’s circular buffer mechanisms. You should
include the builtins.h file before using these functions. Failure to do so
leads to unresolved symbols at link time.

Automatic Circular Buffer Generation

If optimization is enabled, the compiler will automatically attempt to use
circular buffer mechanisms where appropriate. For example,

void func(int *array, int n, int incr)
{

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-103
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
int i;
for (i = 0; i < n; i++)

array[i % 10] += incr;
}

The compiler will recognize that the “array[i % 10]” expression is a cir-
cular reference, and will use a circular buffer if possible.

There are cases where the compiler will not be able to verify that the mem-
ory access is always within the bounds of the buffer. The compiler is
conservative in such cases, and does not generate circular buffer accesses.
The compiler can be instructed to still generate circular buffer accesses
even in such cases, by specifying “-force-circbuf” on page 1-27.

The compiler also provides built-in functions which can explicitly gener-
ate circular buffer accesses, subject to available hardware resources. The
built-in functions provide circular indexing, and circular pointer refer-
ences. Both built-in functions are defined in the builtins.h header file.

Circular Buffer Increment of an Index

The following operation performs a circular buffer increment of an index.

int __builtin_circindex(int index, int incr, unsigned int nitems);

The operation is equivalent to:

index += incr;
if (index < 0)

index += nitems;
else if (index >= nitems)

index -= nitems;

An example of this built-in function is:

void func(int *array, int n, int incr, int len)
{

int i, idx = 0;
for (i = 0; i < n; i++) {
1-104 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
array[idx] += incr;
idx = __builtin_circindex(idx, incr, len);

}
}

Circular Buffer Increment of a Pointer

The following operation performs a circular buffer increment of a pointer.

void *__builtin_circptr(const void *ptr,
unsigned size_t incr,
const void * base,

size_t buflen);

Both incr and buflen are specified in bytes, since the operation deals in
void pointers.

The operation is equivalent to:

ptr += incr;
if (ptr < base)

ptr += buflen;
else if (ptr >= (base+buflen))

ptr -= buflen;

An example of this built-in function is:

void func(int *array, int n, int incr, int len)
{

int i, idx = 0;
int *ptr = array;

// scale increment and length by size
// of item pointed to.
incr *= sizeof(*ptr);
len *= sizeof(*ptr);

for (i = 0; i < n; i++) {
*ptr += incr;
ptr = __builtin_circptr(ptr, incr, array, len);

}
}

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-105
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
ETSI Support
The ETSI (European Telecommunications Standards Institute) support
for ADSP-219x processors is a collection of functions that provides high
performance implementations for operations commonly required by DSP
applications. These operations provided by the ETSI library
(libetsi.dlb) and compiler built-in functions (defined in
ETSI_fract_arith.h) include support for fractional, or fixed-point, arith-
metic. The results obtained from of use of these operations have well
defined overflow and saturation conditions. The ETSI support operations
are Analog Devices extensions to ANSI C standard.

The ETSI support contains functions that you can call from your source
program. The following topics describe how to use this support.

• “ETSI Support Overview” on page 1-106

• “Calling ETSI Library Functions” on page 1-108

• “Using the ETSI Built-In Functions” on page 1-109

• “Linking ETSI Library Functions” on page 1-109

• “Working with ETSI Library Source Code” on page 1-110

• “ETSI Support for Data Types” on page 1-110

• “ETSI Header File” on page 1-111

ETSI Support Overview

The use of fractional arithmetic is vital for many applications on DSP pro-
cessors as information can be held more compactly than in floating point.
It would take 24 bits in floating-point format to match the precision of
16-bit fractional data. Also, control of normalization and precision is
more complex with floating point. Many DSPs do not include hardware
support for floating-point arithmetic and these operations are therefore
very expensive in both code size and performance terms for such DSPs.
1-106 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Fractional data has a representation similar to that of integers except that
while an integer value is considered to have a decimal point to the right of
the least significant bit, a fractional value is considered to have a decimal
point to the left of the most significant bit. Fractional values are usually
held in 16-bit or 32-bit “containers”. In each case, signed values are in the
range [-1.0, +1.0).

The bit operations on fractional data are identical to those on integer data,
but there are three aspects of the result that are normally treated
differently:

1. MSB extraction. Multiplication is a widening operation, thus mul-
tiplying a 16-bit value by another 16-bit value produces a 32-bit
result. If a 16-bit integer result is required then this is taken to be
the least significant 16 bits of the result, and the upper 16 bits are
regarded as overflow. For a fractional operation the upper 16 bits
would represent a 16-bit result, and the lower 16 bits would be
regarded as an underflow.

2. Duplicate sign bit elimination. Following a multiplication of two
16-bit values the nature of the representation results in two “sign
bits” in the result. For normal integer arithmetic this causes no
problem, but for fractional arithmetic a shift left by one is required
to normalize the result.

3. Saturation. If we perform an arithmetic operation that would cause
us to overflow, it can be useful to return the maximum (appropri-
ately signed) number that can be represented in the result register.
The alternatives which include firing an interrupt, saying the result
is undefined and is some other number, usually look less attractive
to DSP programmers.

 These fractional operations can often be done at no extra cost to normal
integer operations on DSPs using special instructions or modes of
operation.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-107
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
The C programming language does not include a basic type for fractional
data, and rather than introduce a non-standard type, Analog Devices
defines fract16andfract32 in terms of appropriately-sized integer data
types and provides sets of basic intrinsic functions which perform the
required operations. These look like library function calls, but are spe-
cially recognized by the compilers, which generate short sequences or
single instructions, exploiting any specialized features, which may be avail-
able on the architecture. An important aspect of this is that the compiler
optimizer is not inhibited in any way by the use of these intrinsics.

Because of the varying nature of the architectures the basic intrinsic func-
tions just discussed cannot be standardized across all the architectures.
However, a set of standard functions for manipulating fractional data has
been defined by the ITU (International Telecommunications Union) and
ETSI (European Telecommunications Standards Institute).

Referred to as the ETSI Standard Functions, these have been very widely
used to implement Telecommunications packages such as GSM, EFR and
AMR Vocoders, and have become a de-facto industry standard. These
functions have been implemented on ADSP-219x DSPs.

The ETSI standard is aimed at DSP processors with 16-bit inputs, satu-
rated arithmetic and 32-bit accumulators.

Calling ETSI Library Functions

To use an ETSI function, call the function by name and give the appropri-
ate arguments. The names and arguments for each function appear on the
function’s reference page. The names and arguments for each function
appear in the section “ETSI Header File” on page 1-111.

Like other functions you use, ETSI functions should be declared. Declara-
tions are supplied in the header file ETSI_fract_arith.h, which must be
included in any source files where ETSI functions are called. The function
names are C function names. If you call C run-time library functions from
an assembly language program, you must use the assembly version of the
1-108 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
function name—prefix an underscore on the name. For more information
on naming conventions, see the section “C/C++ and Assembly Language
Interface” on page 1-169.

Several of the ETSI routines are provided with carry and overflow check-
ing. Where overflow or carry occurs, the global variables Carry and
Overflow will be set. It is your responsibility to reset these variables in
between operations. The Carry and Overflow variables are represented by
integers and are prototyped in the libetsi.h system header file. With the
ETSI functions provided by Analog Devices, this can be switched off by
compiling with __NO_ETSI_FLAGS defined in the compiler command line.

In fact, this is the default for the ADSP-219x DSP implementation. If the
user wishes to keep track of these flags, for debugging purposes, they
should compile with __NO_ETSI_FLAGS set to zero. This will mean that the
user is using the functions in accordance with the ETSI standard, but this
will result in a reduced performance.

Using the ETSI Built-In Functions

Some of the ETSI functions have been implemented as part of cc219x
compiler’s set of built-in functions. For information on how to use these
functions, refer to “Compiler Built-In Functions” on page 1-94. These
built-in implementations will be automatically defined when header file
ETSI_fract_arith.h is included.

Linking ETSI Library Functions

When your C/C++ code calls an ETSI function that is not implemented
using a compiler built-in, the call creates a reference that the linker
resolves when linking. This requires the linker to be directed to link with
the ETSI library, libetsi.dlb, in the 219x\lib directory, which is a sub-
directory of the VisualDSP++ installation directory. This is done
automatically when using the default Linker Description File (LDF) for
ADSP-219x processor targets, as these specify that libetsi.dlb will be on
each link line.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-109
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
If not using default .LDF files, then either add libetsi.dlbto the.LDF file
which is being used, or alternatively use the compiler’s -letsi switch to
specify that libetsi.dlb is to be added to the link line.

Working with ETSI Library Source Code

The source code for functions and macros in the ETSI library is provided
with your VisualDSP++ software. By default, the installation program
copies the source code to a subdirectory of the directory where the
run-time libraries are kept named 219x\lib\src\libetsi_src. Each func-
tion is kept in a separate file. The file name is the name of the function
with the extension .asm. If you do not intend to modify any of the func-
tions, you can delete this directory and its contents to conserve disk space.

The source code is provided so you can customize specific functions for
your own needs.

To modify these files, you need proficiency in ADSP-219x assembly lan-
guage and an understanding of the run-time environment, as explained in
“C/C++ and Assembly Language Interface” on page 1-169.

Before you make any modifications to the source code, copy the source
code to a file with a different file name and rename the function itself.
Test the function before you use it in your system to verify that it is func-
tionally correct.

Analog Devices only supports the run-time library functions as provided.

ETSI Support for Data Types

ETSI functions support fract16 and fract32 data types as follows:

• fract16 is a 16-bit fractional data type (1.15 format) having a
range of [-1.0, +1.0). This is defined in the C/C++ language as

typedef short fract16
1-110 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
• fract32 is a 32-bit fractional data type (1.31 format) having a
range of [-1.0, +1.0). This is defined in the C/C++ language as

typedef long fract32

ETSI Header File

The following are summary descriptions of the functions provided by the
ETSI library, as defined in the header file ETSI_fract_arith.h.

Short absolute

fract16 abs_s (fract16)

This function returns the 16-bit value that is the absolute value of the
input parameter. Where the input is 0x8000, saturation occurs and 0x7fff
is returned.

Short add

fract16 add (fract16, fract16)

This function returns the 16-bit result of addition of the two fract16
input parameters. Saturation occurs with the result being set to 0x7fff for
overflow and 0x8000 for underflow.

Short division

fract16 div_s (fract16, fract16)

This function returns the 16-bit result of the fractional integer division of
f1 by f2. f1 and f2 must both be positive fractional values with f2 greater
than f1.

Long division

fract16 div_l (fract32, fract16)
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-111
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
This function produces a result which is the fractional integer division of
the first parameter by the second. Both inputs must be positive and the
least significant word of the second parameter must be greater or equal to
the first; the result is positive (leading bit equal to 0) and truncated to 16
bits.

Extract high (most significant 16 bits)

fract16 extract_h (fract32)

This function returns the 16 most significant bits if the 32-bit fract
parameter provided.

Extract low (least significant 16 bits)

fract16 extract_l (fract32)

This function returns the 16 least significant bits of the 32-bit fract
parameter provided.

Multiply and accumulate with rounding

fract16 mac_r (fract32, fract16, fract16)

This function performs an L_mac operation using the three parameters
provided. The result is the rounded 16 most significant bits of the 32-bit
results from the L_mac operation.

Multiply and subtract with rounding

fract16 msu_r (fract32, fract16, fract16)

This function performs an L_msu operation using the three parameters
provided. The result is the rounded 16 most significant bits of the 32-bit
result from the L_msu operation.

Short multiply

fract16 mult (fract16, fract16)
1-112 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
This function returns the 16-bit result of the fractional multiplication of
the input parameters. The result is saturated.

Multiply with rounding

fract16 mult_r (fract16, fract16)

This function performs a 16-bit multiply with rounding of the result of
the fractional multiplication of the two input parameters.

Short negate

fract16 negate (fract16)

This function returns the 16-bit result of the negation of the input param-
eter. If the input is 0x8000, saturation occurs and 0x7fff is returned.

Long normalize

fract16 norm_l (fract16)

This function returns the number of left shifts required to normalize the
input variable for positive values on the interval with minimum of
0x40000000 and maximum of 0x7fffffff, and for negative values on the
interval with minimum of 0x80000000 and maximum of 0xc0000000.

Short normalize

fract16 norm_s (fract16)

This function returns the number of left shifts required to normalize the
input 16 bit variable for positive values on the interval with minimum of
0x4000 and maximum of 0x7fff, and for negative values on the interval
with minimum of 0x8000 and maximum of 0xc000.

Round

fract16 round (fract32)
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-113
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
This function rounds the lower 16-bits of the 32-bit input parameter into
the most significant 16 bits with saturation. The resulting bits are shifted
right by 16.

Saturate

fract16 saturate (fract32)

This function returns the 16 most significant bits of the input parameter.
If the input parameter is greater than 0x7fff, 0x7fff is returned. If the
input parameter is less than 0x8000, 0x8000 is returned.

Short shift left

fract16 shl (fract16, fract16)

This function arithmetically shifts the first parameter left by second
parameter bits. The empty bits are zero filled. If second parameter is nega-
tive the operation shifts right.

Short shift right

fract16 shr (fract16, fract16)

This function arithmetically shifts the first parameter right by second
parameter bits with sign extension. If second parameter is negative the
operation shifts left.

Shift right with rounding

fract16 shr_r (fract16, fract16)

This function performs a shift to the right as per the shr() operation with
additional rounding and saturation of the result.

Short subtract

fract16 sub (fract16, fract16)
1-114 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
This function returns the 16-bit result of the subtraction of the two
parameters. Saturation occurs with the result being set to 0x7fff for over-
flow and 0x8000 for underflow.

Long absolute

fract32 L_abs (fract32)

This function returns the 32-bit absolute value of the input parameter. In
cases where the input is equal to 0x80000000, saturation occurs and
0x7fffffff is returned.

Long add

fract32 L_add (fract32, fract32)

This function returns the 32-bit saturated result of the addition of the two
input parameters.

Long add with carry

fract32 L_add_c (fract32, fract32)

This function performs 32-bit addition of the two input parameters. Uses
the Carry flag as additional input when using the ETSI flag variables.

16-bit variable -> most significant bits (least significant bits zeroed)

fract32 L_deposit_h (fract16)

This function deposits the 16-bit parameter into the 16 most significant
bits of the 32-bit result. The least 16 bits are zeroed.

16-bit variable -> least significant bits (sign extended)

fract32 L_deposit_l (fract16)

This function deposits the 16-bit parameter into the 16 least significant
bits of the 32-bit result. The most significant bits are set to sign extension
for the input.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-115
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Multiply and accumulate

fract32 L_mac (fract32, fract16, fract16)

This function performs a fractional multiplication of the two 16-bit
parameters and returns the saturated sum of the multiplication result with
the 32-bit parameter.

Multiply and accumulate without saturation

fract32 L_macNs (fract32, fract16, fract16)

This function performs a non-saturating version of the L_mac operation.

Multiply both the most significant bits and the least significant bits of a
long, by the same short

fract32 L_mls (fract32, fract16)

Multiply and subtract

fract32 L_msu (fract32, fract16, fract16)

This function performs a fractional multiplication of the two 16-bit
parameters and returns the saturated subtraction of the multiplication
result with the 32-bit parameter.

Multiply and subtract without saturation

fract32 L_msuNs (fract32, fract16, fract16)

This function performs a non-saturating version of the L_msu operation.

Long multiply

fract32 L_mult (fract16, fract16)

This function returns the 32-bit result of the fractional multiplication of
the two 16-bit parameters.

Long negate

fract32 L_negate (fract32)
1-116 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
This function returns the 32-bit result of the negation of the parameter.
Where the input parameter is 0x80000000 saturation occurs and
0x7fffffff is returned.

Long saturation

fract32 L_sat (fract32)

The resultant variable is set to 0x80000000 if Carry and Overflow ETSI
flags are set (underflow condition), else if Overflow is set, the resultant is
set to 0x7fffffff. The default revision of the library simply returns as no
checking or setting of the Overflow and Carry flags is performed.

Long shift left

fract32 L_shl (fract32, fract16)

This function arithmetically shifts the 32-bit first parameter to the left by
the value given in the 16-bit second parameter. The empty bits of the
32-bit result are zero filled.

If the second parameter is negative, the shift performed is to the right with
sign-extended. The result is saturated in cases of overflow and underflow.

Long shift right

fract32 L_shr (fract32, fract16)

This function arithmetically shifts the 32-bit first parameter to the right
by the value given in the 16-bit second parameter with sign extension. If
the shifting value is negative, the source is shifted to the left. The result is
saturated in cases of overflow and underflow.

Long shift right with rounding

fract32 L_shr_r (fract32, fract16)

This function performs the shift-right operation as per L_shr but with
rounding.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-117
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Long subtract

fract32 L_sub (fract32, fract32)

This function returns the 32-bit saturated result of the subtraction of two
32-bit parameters (first-second).

Long subtract with carry

fract32 L_sub_c (fract32, fract32)

This function performs 32-bit subtraction of the two input parameters.
Uses the Carry flag as additional input when using the ETSI flag variables.

Compose long

fract32 L_Comp (fract16, fract16)

This function composes a fract32 type value from the given fract16 high
(first parameter) and low (second parameter) components. The sign is
provided with the low half, the result is calculated to be:

high<<16 + low<<1

Multiply two longs

fract32 Mpy_32 (fract16, fract16, fract16, fract16)

This function performs the multiplication of two fract32 type variables,
provided as high and low half parameters. The result returned is calculated
as:

Res = L_mult(hi1,hi2);

Res = L_mac(Res, mult(hi1,lo2),1);

Res = L_mac(Res, mult(lo1,hi2),1);

Multiply short by a long

fract32 Mpy_32_16 (fract16, fract16, fract16)
1-118 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Extract a long from two shorts

void L_Extract(fract32 src,fract16 *hi,fract16 *lo)

This function extracts low and high halves of fract32 type value into
fract16 variables pointed to by the parameters hi and lo. The values cal-
culated are:

Hi = bit16 to bit31 of src

Lo = (src - hi<<16)>>1

Fract integer division of two longs

fract32 Div_32(fract32 L_num,fract16 denom_hi,fract16 denom_lo)

This is 32-bit fractional divide operation. The result returned is the
fract32 representation of L_num divided by L_denom (represented by
demon_hi and denom_lo). L_num and L_denom must both be positive frac-
tional values and L_num must be less that L_denom to ensure that the result
falls within the fractional range.

Pragmas
The compiler supports a number of pragmas. Pragmas are implementa-
tion-specific directives that modify the compiler’s behavior. There are two
types of pragma usage: pragma directives and pragma operators.

Pragma directives have the following syntax:

#pragma pragma-directive pragma-directive-operands new-line

Pragma operators have the following syntax:

_Pragma (string-literal)

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-119
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
#pragma linkage_name mylinkname

can also be equivalently be expressed using the following pragma operator

_Pragma ("linkage_name mylinkname")

The examples in this manual use the directive form.

The C compiler supports pragmas for:

• Arranging alignment of data

• Defining functions that can act as interrupt handlers

• Changing the optimization level, midway through a module

• Changing how an externally visible function is linked

• Header file configurations and properties

• Giving additional information about loop usage to improve
optimizations

The following sections describe the pragmas that support these features.

• “Data Alignment Pragmas” on page 1-121

• “Interrupt Handler Pragmas” on page 1-122

• “Loop Optimization Pragmas” on page 1-123

• “General Optimization Pragmas” on page 1-125

• “Linking Control Pragmas” on page 1-126

• “Function Side-Effect Pragmas” on page 1-128

• “Template Instantiation Pragmas” on page 1-134

• “Header File Control Pragmas” on page 1-136
1-120 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The compiler will issue a warning when it encounters an unrecognized
pragma directive or pragma operator. The compiler will not expand any
pre-processor macros used within any pragma directive or pragma
operator.

Data Alignment Pragmas

The data alignment pragmas include align and pad pragmas. Alignments
specified using these pragmas must be a power of two. The compiler will
reject uses of those pragmas that specify alignments that are not powers of
two.

#pragma align num

The align num pragma may be used before variable and field declarations.
It applies to the variable or field declaration that immediately follows the
pragma. Use of this pragma causes the compiler to generate the next vari-
able or field declaration aligned on a boundary specified by num.

The align pragma is useful for declaring arrays that need to be on a circu-
lar boundary. Such arrays might be required to make use of a bit-reversal
sorting algorithm that is implemented using the ADSP-219x processor’s
DAG1 bit reversal mode.

#pragma align 256

int arr[128];

#pragma pad (alignopt)

The #pragma pad (alignopt) may be applied to struct definitions. It
applies to struct definitions that follow, until the default alignment is
restored by omitting alignopt, for example, by #pragma pad() with empty
parentheses.

This pragma is effectively a shorthand for placing #pragma align before
every field within the struct definition.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-121
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
The following example shows how to use #pragma pad().

#pragma pad(4)
struct {

int i;
int j;

} s = {1,2};
#pragma pad()

Interrupt Handler Pragmas

The interrupt pragma s include interrupt and altregisters pragmas.

#pragma interrupt

The interrupt pragma may be used before a function declaration or defi-
nition. It applies to the function declaration or definition that
immediately follows the pragma. Use of this pragma causes the compiler
to generate the function code so that it may be used as a self dispatching
interrupt handler.

The compiler arranges for the function to save its context above and
beyond the usual caller-preserved set of registers, and to restore the con-
text upon exit. The function will return using a return from interrupt
(RTI) instruction.

#pragma interrupt
void field_SIG()
{
/* ISR code */
}

#pragma altregisters

The altregisters pragma may be used in conjunction to the interrupt
pragma to indicate that the compiler can optimize the saving and restoring
of registers through use of the secondary register sets. Note the use of the
altregisters pragma is not safe when nested interrupts are enabled.
1-122 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
For example,

#pragma interrupt
#pragma altregisters
void field_SIG()
{
/* ISR code */
}

Loop Optimization Pragmas

Loop optimization pragmas give the compiler additional information
about usage within a particular loop, which allows the compiler to per-
form more aggressive optimization. The pragmas are placed before the
loop statement, and apply to the statement that immediately follows,
which must be a for, while or do statement to have effect. In general, it is
most effective to apply loop pragmas to inner-most loops, since the com-
piler can achieve the most savings there.

The optimizer always attempts to vectorize loops when it is safe to do so.
The optimizer exploits the information generated by the interprocedural
analysis (see “Interprocedural Analysis” on page 1-57) to increase the cases
where it knows it is safe to do so. Consider the following code:

void copy(short *a, short *b) {
int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

If you call copy with two calls, say copy(x,y) and later copy(y,z), the
interprocedural analysis will not be able to tell that “a” never aliases “b”.
Therefore, the optimizer cannot be sure that one iteration of the loop is
not dependent on the data calculated by the previous iteration of the loop.
If it is known that each iteration of the loop is not dependent on the pre-
vious iteration, then the vector_for pragma can be used to explicitly
notify the compiler that this is the case.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-123
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
#pragma loop_count(min, max, modulo)

The loop_count(min, max, modulo) pragma appears just before the loop
it describes. It asserts that the loop will iterate at least min times, no more
than max times, and a multiple of modulo times. This information enables
the optimizer to omit loop guards, to decide whether the loop is worth
completely unrolling, and whether code need be generated for odd itera-
tions. The last two arguments can be omitted if they are unknown.

For example,

int i;
#pragma loop_count(24, 48, 8)
for (i=0; i < n; i++)

#pragma vector_for

The #pragma vector_for notifies the optimizer that it is safe to execute
two iterations of the loop in parallel. The vector_for pragma does not
force the compiler to vectorize the loop; the optimizer checks various
properties of the loop and does not vectorize it if it believes it is unsafe or
if it cannot deduce that the various properties necessary for the vectoriza-
tion transformation are valid.

Strictly speaking, the pragma simply disables checking for loop-carried
dependencies.

void copy(short *a, short *b) {
int i;
#pragma vector_for

for (i=0; i<100; i++)
a[i] = b[i];

}

In cases where vectorization is impossible (for example, if array a were
aligned on a word boundary, but array b was not), the information given
in the assertion made by vector_for may still be put to good use in aiding
other optimizations.
1-124 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
#pragma no_alias

Use the #pragma no_alias to tell the compiler the following has no loads
or stores that conflict due to references to the same location through dif-
ferent pointers, known as “aliases”. In this example,

void vadd(int *a, int *b, int *out, int n) {
int i;

#pragma no_alias
for (i=0; i < n; i++)

out[i] = a[i] + b[i];
}

the use of #pragma no_alias just before the loop informs the compiler
that the pointers a, b and out point to different arrays, so no load from b
or a will be using the same address as any store to out. Therefore, a[i] or
b[i] is never an alias for out[i].

Using the no_alias pragma can lead to better code because it allows the
loads and stores to be reordered and any number of iterations to be per-
formed concurrently, thus providing better software pipelining by the
optimizer.

General Optimization Pragmas

There are three pragmas which can change the optimization level while a
given module is being compiled. These pragmas must be used at global
scope, immediately prior to a function definition. The pragmas do not
just apply to the immediately-following function; they remain in effect
until the end of the compilation, or until superceded by a following
optimize_ pragma.

The pragmas are:

• #pragma optimize_off

This pragma turns off the optimizer, if it was enabled. This
pragma has no effect if IPA is enabled.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-125
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
• #pragma optimize_for_space

This pragma turns the optimizer back on, if it was disabled, or sets
focus to give reduced code size a higher priority than high perfor-
mance, where these conflict.

• #pragma optimize_for_speed

This pragma turns the optimizer back on, if it was disabled, or sets
focus to give high performance a higher priority than reduced code
size, where these conflict.

• #pragma optimize_as_cmd_line

This pragma resets the optimization settings to be those specified
on the cc219x command line when the compiler was invoked.

The following shows example uses of these pragmas.

#pragma optimize_off
void non_op() { /* non-optimized code */ }

#pragma optimize_for_space
void op_for_si() { /* code optimized for size */ }

#pragma optimize_for_speed
void op_for_sp() { /* code optimized for speed */ }
/* subsequent functions declarations optimized for speed */

Linking Control Pragmas

Linking pragmas change how a given global function or variable is viewed
during the linking stage. These pragmas are: linkage_name, retain_name,
and weak_entry.

#pragma linkage_name identifier

The #pragma linkage_name associates the identifier with the next exter-
nal function declaration. It ensures that identifier is used as the external
reference, instead of following the compiler’s usual conventions.
1-126 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
If identifier is not a valid function name, as could be used in normal func-
tion definitions, the compiler will generate an error. See also the asm
keyword (described on page 1-145).

The following shows an example use of this pragma.

#pragma linkage_name realfuncname
void funcname ();
void func() {

funcname(); /* compiler will generate a call to
realfuncname */

}

 #pragma retain_name

The #pragma retain_name indicates that the external function or variable
declaration that follows the pragma is not removed even though Interpro-
cedural Analysis (IPA) sees that it is not used. Use this pragma for C
functions that are only called from assembler routines, such as the startup
code sequence invoked before main().

The following example shows how to use this pragma.

int delete_me(int x) {
return x-2;

}

#pragma retain_name
int keep_me(int y) {

return y+2;
}

int main(void) {
return 0;

}

Since the program has no uses of either delete_me() or keep_me(), the
compiler will remove delete_me(), but will keep keep_me() because of the
pragma. You do not need to specify retain_name for main().
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-127
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
For more information on IPA, see “Interprocedural Analysis” on
page 1-57.

 #pragma weak_entry

The #pragma weak_entry may be used before a static variable or function
declaration or definition. It applies to the function or variable declaration
or definition that immediately follows the pragma. Use of this pragma
causes the compiler to generate the function or variable definition with
weak linkage.

The following are example uses of the pragma weak_entry directive.

#pragma weak_entry
int w_var = 0;

#pragma weak_entry
void w_func(){}

Function Side-Effect Pragmas

The function side-effect pragmas are used before a function declaration to
give the compiler additional information about the function in order to
enable it to improve the code surrounding the function call. These prag-
mas should be placed before a function declaration and apply to that
function. For example,

#pragma pure

long dot(short*, short*, int);

The function side-effect pragmas are: alloc, pure, const,
regs_clobbered, and result_alignment.
1-128 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
#pragma alloc

The #pragma alloc tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly allocated object.
An important property of these functions is that the pointer returned by
the function does not point at any other object in the context of the call.

In the example,

#pragma alloc
int *new_buf(void);
int *vmul(int *a, int *b) {

int *out = new_buf();
for (i = 0; i < N; ++i)

out[i] = a[i] * b[i];
return out;

}

the compiler can reorder the iterations of the loop because the #pragma
alloc tells it that a and b cannot overlap out.

The GNU attribute malloc is also be supported with the same meaning.

#pragma pure

The #pragma pure tells the compiler that the function does not write to
any global variables, and does not read or write any volatile variables. Its
result, therefore, is a function of its parameters or of global variables. If
any of the parameters are pointers the function may read the data they
point at but it may not write it.

As this means the function call will have the same effect every time it is
called, between assignments to global variables, the compiler need not
generate the code for every call. Therefore, in this example,

#pragma pure

long sdot(short *, short *, int);

long tendots(short *a, short *b, int n) {
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-129
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
int i;
long s = 0;

for (i = 1; i < 10; ++i)
s += sdot(a, b, n); // call can get hoisted out of loop

return s;}

the compiler can replace the ten calls to sdot with a single call made
before the loop.

#pragma const

The #pragma const is a more restrictive form of the pure pragma. It tells
the compiler that the function does not read from global variables as well
as not writing to them or reading or writing volatile variables. The result
of the function is therefore a function of its parameters. If any of the
parameters are pointers, the function may not even read the data they
point at.

#pragma regs_clobbered string

The #pragma regs_clobbered string may be used with a function decla-
ration or definition to specify which registers are modified (or clobbered)
by that function. The string contains a list of registers and is
case-insensitive.

When used with an external function declaration, this pragma acts as an
assertion telling the compiler something it would not be able to discover
for itself. In the example,

#pragma regs_clobbered ar m7
void f(void);

the compiler will know that only registers ar and m7 may be modified by
the call to f, so it may keep local variables in other registers across that
call.
1-130 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The regs_clobbered pragma may also be used with a function definition,
or a declaration preceding a definition, when it acts as a command to the
compiler to generate register saves and restores on entry and exit from the
function to ensure it only modifies the registers in string. For example,

#pragma regs_clobbered "ar m7"
int g(int a) {

return a+3;
}

The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both are specified, a warning is issued and the
regs_clobbered pragma is ignored.

To obtain best results with the pragma, it is best to restrict the clobbered
set to be a subset of the default scratch registers. The compiler is likely to
produce more efficient code this way than if the scratch set is changed to
use the same number of registers but which does not make a subset of the
default volatile set usually scratch.

When considering when to apply the regs_clobbered pragma, it may be
useful to look at the output of the compiler to see how many scratch regis-
ters were used. Restricting the volatile set to these registers will produce no
impact on the code produced for the function but may free up registers for
the caller to allocate across the call site.

String Syntax
A regs_clobbered string consists of a list of registers, register ranges, or
register sets that are clobbered. The list is separated by spaces, commas, or
semicolons.

A register is a single register name, which is the same as that which may be
used in an assembly file.

A register range consists of start and end registers which both reside in the
same register class, separated by a hyphen. All registers between the two
(inclusive) are clobbered.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-131
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
A register set is a name for a specific set of commonly clobbered registers
that is predefined by the compiler. The following register sets are defined,

When the compiler detects an illegal string, a warning is issued and the
default volatile set as defined in this compiler manual is used instead.

Unclobberable and Must Clobber Registers
There are certain caveats as to what registers may or must be placed in the
clobbered set.

On ADSP-219x processors, the registers I4, I5, DMPG2, MSTAT, and M_MODE
may not be specified in the clobbered set, as the correct operation of the
function call requires their value to be preserved. If the user specifies them
in the clobbered set, a warning will be issued and they will be removed
from the specified clobbered set.

Set Registers

CCset ASTAT, condition codes

MR MR0 - MR2

SR SR0 - SR2

B1set DAG1 B-registers

B2set DAG2 B-registers

Bset B1set union B2set

DAG1scratch Members of dag1 I, L, B and M-registers that are scratch by default

DAG2scratch Members of dag2 I, L, B and M-registers that are scratch by default

DAGscratch DAG1scratch union DAG2scratch

Dscratch Members of D-registers that are scratch by default

ALLscratch Entire default volatile set
1-132 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The registers AR and M7 are always clobbered. If the user specifies a func-
tion definition with the regs_clobbered pragma which does not contain
these registers, a warning is issued and these registers are added to the
clobbered set.

However, if the compiler sees an external function declaration with a
regs_clobbered pragma that does not contain the AR and M7 registers, a
warning will not be issued because an assembly function may have been
written which genuinely does not modify these registers.

Registers from these classes,

D, I, B, ASTAT, CNTR, PX, DMPG1, STACKA, STACKP, IJPG, IOPG, SB, SE

may be specified in clobbered set and code will be generated to save them
as necessary.

The L-registers are required to be zero on entry and exit from a function.
A user may specify that a function clobbers the L-registers. If it is a com-
piler-generated function, then it will in fact leave the L-registers as zero at
the end of the function. If it is an assembly function, then it may clobber
the L-registers. In that case, the L-registers are re-zeroed after any call to
that function. The registers M1, M2, M6 and M7 have their required value set
in an analogous manner.

� The IMASK, ICNTL, IRPTL, SSTAT, SYSCTL, CACTL, CCODE, LPSTACKA,
and LPSTACKP registers are never used by the compiler and are never
preserved.

User Reserved Registers
User reserved registers will never be preserved in the function wrappers
whether in the clobbered set or not.

Function Results
The registers in which a function returns its result must always be clob-
bered by the callee and retain their new value in the caller. They may
appear in the clobbered set of the callee but it will make no difference to
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-133
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
the generated code; the return register will not be saved and restored.
Only the return register used by the particular function return type is spe-
cial. Return registers used by different return types will be treated in the
clobbered list in the convention way.

For example,

typedef struct { int x, int y } Point;

typedef struct { int x[10] } Big;
int f(); // Result in AX1. SR1, SR0 and I0 may be preserved

across call.
Point g(); // Result in SR1 and SR0. AX1 and I0 may be

preserved across call.
Big f(); // Result pointer in I0. AX1, SR1 and SR0 may be

preserved across call

#pragma result_alignment (n)

The #pragma result_alignment (n) asserts that the pointer or integer
returned by the function has a value that is a multiple of n.

This pragma is often used in conjunction with the #pragma alloc of cus-
tom allocation functions that return pointers that are more strictly aligned
than be deduced from their type.

Template Instantiation Pragmas

The template instantiation pragmas give fine grain control over where
(that is, in which object file) the individual instances of template func-
tions, and member functions and static members of template classes are
created. The creation of these instances from a template is known in C++
speak as instantiation. As templates are a feature of C++ these pragmas are
only allowed in -c++ mode.

These pragmas take the name of an instance as a parameter, as shown in
Table 1-11
1-134 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
If instantiation pragmas are not used, the compiler will chose object files
in which to instantiate all required instances automatically during the
prelinking process.

#pragma instantiate instance

The #pragma instantiate instance requests the compiler to instantiate
instance in the current compilation. For example,

#pragma instantiate class Stack<int>

will cause all static members and member functions for the int instance of
a template class Stack to be instantiated, whether they are required in this
compilation or not.

The example,

#pragma instantiate void Stack<int>::push(int)

will cause only the individual member function Stack<int>::push(int)
to be instantiated.

Table 1-11. Instance Names

Name Parameter

a template class name A<int>

a template class declaration class A<int>

a member function name A<int>::f

a static data member name A<int>::I

a static data declaration int A<int>::I

a member function declaration void A<int>::f(int, char)

a template function declaration char* f(int, float)
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-135
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
#pragma do_not_instantiate instance

The #pragma do_not_instantiate instance directs the compiler not to
instantiate instance in the current compilation. For example,

#pragma do_not_instantiate int Stack<float>::use_count

will prevent the compiler from instantiating the static data member
Stack<float>::use_count in the current compilation.

#pragma can_instantiate instance

The #pragma can_instantiate instance tells the compiler that, if
instance is required anywhere in the program, it should be instantiated in
this compilation.

� Currently, this pragma forces the instantiation even if it is not
required anywhere in the program. Therefore, it has the same effect
as #pragma instantiate.

Header File Control Pragmas

The header file control pragmas help the compiler to handle header files.
These pragmas are hdrstop, no_pch, once, and system_header.

#pragma hdrstop

The #pragma hdrstop is used in conjunction with the -pch (precompiled
header) switch (on page 1-40). The switch tells the compiler to look for a
precompiled header (.pch file), and, if it cannot find one, to generate a file
for use on a later compilation. The .pch file contains a snapshot of all the
code preceding the header stop point.

By default, the header stop point is the first non-preprocessing token in
the primary source file. The #pragma hdrstop can be used to set the point
earlier in the source file.
1-136 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
In the example,

#include "standard_defs.h"
#include "common_data.h"
#include "frequently_changing_data.h"

int i;

the default header stop point is start of the declaration of i. This might
not be a good choice, as in this example, “frequently_changing_data.h”
might change frequently, causing the .pch file to be regenerated often,
and, therefore, losing the benefit of precompiled headers.

The hdrstop pragma can be used to move the header stop to a more
appropriate place. In this case,

#include "standard_defs.h"

#include "common_data.h"
#pragma hdrstop
#include "frequently_changing_data.h"

int i;

the precompiled header file would not include the contents of
frequently_changing_data.h, as it is included after the hdrstop pragma.
Therefore, the precompiled header file would not need to be regenerated
each time frequently_changing_data.h was modified.

#pragma no_pch

The #pragma no_pch overrides the -pch (precomiled headers) switch
(on page 1-40) for a particular source file. It directs the compiler not to
look for a .pch file and not to generate one for the specified source file.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-137
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
#pragma once

The #pragma once, which should appear at the beginning of a header file,
tells the compiler that the header is written in such a way that including it
several times has the same effect as including it once. For example,

#pragma once
#ifndef FILE_H
#define FILE_H
... contents of header file ...
#endif

� In this example, the #pragma once is actually optional because the
compiler recognizes the #ifndef/#define/#endif idiom and will
not reopen a header that uses it.

#pragma system_header

The #pragma system_header identifies an include file as the file supplied
with VisualDSP++. The pragma tells the compiler that every function and
variable declared in the file (but not in files included in the file) is the vari-
able or function with that name from the VDSP++ library.

The compiler will take advantage of any special knowledge it has of the
behavior of the library.

GCC Compatibility Extensions
The compiler provides compatibility with the C dialect accepted by ver-
sion 3.2 of the GNU C Compiler. Many of these features are available in
the C99 ANSI Standard. A brief description of the extensions is included
in this section. For more information, refer to the following web address:

http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions
1-138 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Statement Expressions

A statement expression is a compound statement enclosed in parentheses.
A compound statement itself is enclosed in braces { }, so this construct is
enclosed in parentheses-brace pairs ({ }).

The value computed by a statement expression is the value of the last
statement which should be an expression statement. The statement expres-
sion may be used where expressions of its result type may be used. But
they are not allowed in constant expressions.

Statement expressions are useful in the definition of macros as they allow
the declaration of variables local to the macro.

In the following example,

#define min(a,b) ({ \
short __x=(a),__y=(b),__res; \
if (__x > __y) \

__res = __y; \
else \
__res = __x; \
__res; \

})

int use_min() {
return min(foo(), thing()) + 2;

}

The foo() and thing() statements get called once each because they are
assigned to the variables __x and __y which are local to the statement
expression that min expands to and min() can be used freely within a larger
expression because it expands to an expression.

Labels local to a statement expression can be declared with the __label__
keyword. For example,

({
__label__ exit;
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-139
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
int i;
for (i=0; p[i]; ++i) {

int d = get(p[i]);
if (!check(d)) goto exit;
process(d);

}
exit:

tot;
})

� Statement expressions are not supported in C++ mode.

� Statement expressions are an extension to C originally imple-
mented in the GCC compiler. Analog Devices support the
extension primarily to aid porting code written for that compiler.
When writing new code consider using inline functions, which are
compatible with ANSI/ISO standard C++ and C99, and are as effi-
cient as macros when optimization is enabled.

Type Reference Support Keyword (Typeof)

The typeof(expression) construct can be used as a name for the type
of expression without actually knowing what that type is. It is useful for
making source code that is interpreted more than once such as macros or
include files more generic.

The typeof keyword may be used where ever a typedef name is permitted
such as in declarations and in casts.

This example,

#define abs(a) ({ \
typeof(a) __a = a; \
if (__a < 0) __a = - __a; \
__a; \

})

shows typeof used in conjunction with a statement expression to define a
“generic” macro with a local variable declaration.
1-140 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The argument to typeof may also be a type name. Because typeof itself is
a type name, it may be used in another typeof(type-name) construct.
This can be used to restructure the C type declaration syntax, such as:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

array (pointer (char), 4) y;

declares y to be an array of four pointers to char.

� The typeof keyword is not supported in C++ mode.

� The typeof keyword is an extension to C originally implemented
in the GCC compiler. It should be used with caution because it is
not compatible with other dialects of C or C++ and has not been
adopted by the more recent C99 standard.

GCC Generalized Lvalues

A cast is an lvalue (may appear on the left hand side of an assignment) if
its operand is an lvalue. This is an extension to C, provided for compati-
bility with GCC. It is not allowed in C++ mode.

A comma operator is an lvalue if its right operand is an lvalue. This is an
extension to C, provided for compatibility with GCC. It is a standard fea-
ture of C++.

A conditional operator is an lvalue if its last two operands are lvalues of
the same type. This is an extension to C, provided for compatibility with
GCC. It is a standard feature of C++.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-141
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Conditional Expressions with Missing Operands

The middle operand of a conditional operator can be left out. If the con-
dition is non-zero (true), then the condition itself is the result of the
expression. This can be used for testing and substituting a different value
when a pointer is NULL. The condition is only evaluated once; therefore,
repeated side effects can be avoided. For example,

printf("name = %s\n", lookup(key)?:"-");

calls lookup() once, and substitutes the string “-” if it returns NULL. This
is an extension to C, provided for compatibility with GCC. It is not
allowed in C++ mode.

Hexadecimal Floating-Point Numbers

C99 style hexadecimal floating-point constants are accepted. They have
the following syntax.

hexadecimal-floating-constant:

{0x|0X} hex-significand binary-exponent-part [floating-suffix]

hex-significand: hex-digits [. [hex-digits]]

binary-exponent-part: {p|P} [+|-] decimal-digits

floating-suffix: { f | l | F | L }

The hex-significand is interpreted as a hexadecimal rational number. the
digit sequence in the exponent part is interpreted as a decimal integer. The
exponent indicates the power of two by which the significand is to be
scaled. The floating suffix has the same meaning it does for decimal float-
ing constants: a constant with no suffix is of type double, a constant with
suffix F is of type float, and a constant with suffix L is of type long
double.

Hexadecimal floating constants enable the programmer to specify the
exact bit pattern required for a floating-point constant. For example, the
declaration
1-142 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
float f = 0x1p-126f;

causes f to be initialized with the value 0x800000.

� Hexadecimal floating constants are not supported in C++ mode.

Zero Length Arrays

Arrays may be declared with zero length. This is an anachronism sup-
ported to provide compatibility with GCC. Use variable length array
members instead.

Variable Argument Macros

The final parameter in a macro declaration may be followed by ... to indi-
cate the parameter stands for a variable number of arguments.

For example,

#define trace(msg, args...) fprintf (stderr, msg, ## args);

can be used with differing numbers of arguments,

trace("got here\n");

trace("i = %d\n", i);

trace("x = %f, y = %f\n", x, y);

The ## operator has a special meaning when used in a macro definition
before the parameter that expands the variable number of arguments: if
the parameter expands to nothing then it removes the preceding comma.

� The variable argument macro syntax comes from GCC. It is not
compatible with C99 variable argument macros and is not sup-
ported in C++ mode.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-143
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
Line Breaks in String Literals

String literals may span many lines. The line breaks do not need to be
escaped in any way. They are replaced by the character \n in the generated
string. This extension is not supported in C++ mode. The extension is not
compatible with many dialects of C including ANSI/ISO C89 and C99.
However, it is useful in asm statements, which are intrinsically
non-portable.

Arithmetic on Pointers to Void and Pointers to Functions

Addition and subtraction is allowed on pointers to void and pointers to
functions. The result is as if the operands had been cast to pointers to
char. The sizeof operator returns one for void and function types.

Cast to Union

A type cast can be used to create a value of a union type, by casting a value
of one of the unions member's types.

Ranges in Case Labels

A consecutive range of values can be specified in a single case, by separat-
ing the first and last values of the range with For example,

case 200 ... 300:

Declarations mixed with Code

In C mode the compiler will accept declarations in the middle of code as
in C99 and C++. This allows the declaration of local variables to be placed
at the point where they are required. Therefore, the declaration can be
combined with initialization of the variable.
1-144 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
For example, in the following function

void func(Key k) {
Node *p = list;
while (p && p->key != k)

p = p->next;
if (!p)

return;
Data *d = p->data;
while (*d)

process(*d++);
}

the declaration of d is delayed until its initial value is available, so that no
variable is uninitialized at any point in the function.

Escape Character Constant

The character escape '\e' may be used in character and string literals and
maps to the ASCII Escape code, 27.

Alignment Inquiry Keyword (__alignof__)

The __alignof__ (type-name) construct evaluates to the alignment
required for an object of a type. The __alignof__ expression construct
can also be used to give the alignment required for an object of the
expression type.

If expression is an lvalue (may appear on the left hand side of an assign-
ment), the alignment returned takes into account alignment requested by
pragmas and the default variable allocation rules.

Keyword for Specifying Names in Generated Assembler
(asm)

The asm keyword can be used to direct the compiler to use a different
name for a global variable or function (see also “#pragma linkage_name
identifier” on page 1-126).
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-145
for ADSP-219x DSPs

C/C++ Compiler Language Extensions
For example,

int N asm("C11045");

tells the compiler to use the label C11045 in the assembly code it gener-
ates wherever it needs to access the source level variable N. By default the
compiler would use the label _N.

The asm keyword can also be used in function declarations but not func-
tion definition. However, a definition preceded by a declaration has the
desired effect.

For example,

extern int f(int, int) asm("func");

int f(int a, int b) {
. . .
}

Function, Variable and Type Attribute Keyword (__attribute__)

The __attribute__ keyword can be used to specify attributes of functions,
variables and types, as in these examples.

void func(void) __attribute__ ((section("fred")));

int a __attribute__ ((aligned (8)));

typedef struct {int a[4];} __attribute__((aligned (4))) Q;

The __attribute__ keyword is supported, and therefore code, written for
GCC, can be ported. All attributes accepted by GCC on ix86 are
accepted. The ones that are actually interpreted by the compiler are
described in the sections of this manual describing the corresponding
pragmas (see “Pragmas” on page 1-119).
1-146 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Preprocessor Features
The cc219x compiler provides standard preprocessor functionality, as
described in any C text. The following extensions to standard C are also
supported:

 // end of line (C++-style) comments

 #warning directive

For more information about these extensions, refer to “Preprocessor Gen-
erated Warnings” on page 1-93 and “C++ Style Comments” on page 1-94.

This section contains:

• “Predefined Preprocessor Macros”

• “Header Files” on page 1-149

• “Writing Preprocessor Macros” on page 1-149

• “Preprocessing of .IDL Files” on page 1-151

Predefined Preprocessor Macros
The cc219x compiler defines a number of macros to produce information
about the compiler, source file, and options specified. These macros can
be tested, using the #ifdef and related directives, to support your pro-
gram’s needs. Similar tailoring is done in the system header files.

Macros such as __DATE__ can be useful to incorporate in text strings. The
“#” operator with a macro body is useful in converting such symbols into
text constructs.

Table 1-12 describes the predefined preprocessor macros.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-147
for ADSP-219x DSPs

Preprocessor Features
Table 1-12. Predefined Macro Listing

Macro Function

__ADSP21XX__ Always defines __ADSP21XX__ and __ADSP219X__ as 1

__ADSP2191__ Defines __ADSP2191__ as 1 when you compile with the -proc
ADSP-2191 command-line switch

__ADSP2192_12__ Defines __ADSP2192_12__ as 1 when you compile with the -proc
ADSP-2192-12 command-line switch

__ANALOG_EXTENSIONS__ Defines __ANALOG_EXTENSIONS__ as 1, unless you compile with
-pedantic or -pedantic-errors

__cplusplus Defines __cplusplus as 199711L when compiling in C++ mode

__DATE__ The preprocessor expands this macro into the current date as a
string constant. The date string constant takes the form
mm dd yyyy (ANSI standard).

__DOUBLES_ARE_FLOATS__ Always defines __DOUBLES_ARE_FLOATS__ as 1

__ECC__ Always defines __ECC__ as 1

__EDG__ Always defines __EDG__ as 1. This signifies that an Edison Design
Group front end is being used

__EDG_VERSION__ Always defines __EDG_VERSION__ as an integral value representing
the version of the compiler’s front end

__FILE__ The preprocessor expands this macro into the current input file
name as a string constant. The string matches the name of the file
specified on the cc219x command line or in a preprocessor
#include command (ANSI standard).

_LANGUAGE_C Always defines _LANGUAGE_C as 1 when compiling C or C++ source

__LINE__ The preprocessor expands the __LINE__ macro into the current
input line number as a decimal integer constant (ANSI standard)

__NO_BUILTIN Defines __NO_BUILTIN as 1 when you compile with the
-no-builtin command-line switch

_NO_LONG_LONG Always defines _NO_LONG_LONG as 1 for C and C++ source. This
definition signifies no support is present for the long long int
type.
1-148 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Header Files
A header file contains C or C++ declarations and macro definitions. Use
the #include preprocessor directive to access header files for your pro-
gram. Header file names have an .h extension. There are two main
categories of header files:

• System header files declare the interfaces to the libraries supplied
with the ADSP-219x product. Include them in your program for
the definitions and declarations you need to access. Use angle
brackets to indicate a system header file: #include <file>

• User header files contain declarations for interfaces between the
source files of your program. Use double quotes to indicate a user
header file: #include "file"

Writing Preprocessor Macros
A macro is a name of a block of text that the preprocessor substitutes. Use
the #define preprocessor command to create a macro definition. When a
macro definition has arguments, the block of text the preprocessor substi-
tutes can vary with each new set of arguments.

__SIGNED_CHARS__ Defines __SIGNED_CHARS__ as 1 unless you compile with the
-unsigned-char command-line switch

__STDC__ Defines __STDC__ as 1

__STDC_VERSION__ Defines __STDC_VERSION__ as 199409L

__TIME__ The preprocessor expands this macro into the current time as a
string constant. The time string constant takes the form hh:mm:ss
(ANSI standard).

__VERSION__ Defines __VERSION__ as a string constant giving the version num-
ber of the compiler used to compile this module.

Table 1-12. Predefined Macro Listing (Cont’d)

Macro Function
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-149
for ADSP-219x DSPs

Preprocessor Features
Multi-statement Macros

Whenever possible, use inline functions rather than multi-statement mac-
ros. If multi-statement macros are necessary, define such macros to allow
invocation like function calls. This will make your source code easier to
read and maintain.

The following two code segments define two versions of the macro
SKIP_SPACES.

/* SKIP_SPACES, regular macro */
#define SKIP_SPACES (p, limit) \{

char *lim = (limit); \
while ((p) != lim) { \

if (*(p)++ != ' ') { \
(p)--; \
break; \

} \
} \

}
/* SKIP_SPACES, enclosed macro */
#define SKIP_SPACES (p, limit) \

do { \
char *lim = (limit); \
while ((p) != lim) { \

if (*(p)++ != ' ') { \
(p)--; \
break; \

} \
} \

} while (0)

The second definition is the same as the first, except that it is enclosed in a
do {...} while (0) construct. Enclosing the definition within the do {…}
while (0) pair means that the macro can be invoked more like a function.
With the first definition, sometimes you would have to follow the macro
with a semi-colon, and sometimes you would not. Whereas with the sec-
ond definition, the do {...} while (0) pair means that the macro is
followed by a semi-colon.
1-150 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
With the do {…} while (0) construct, you can treat the macro as a func-
tion and put the semicolon after it.

For example,

 /* SKIP_SPACES, enclosed macro, ends without ‘;’ */
 if (*p != 0)
 SKIP_SPACES (p, lim);
 else …

This expands to

 if (*p != 0)
 do {
 ...
 } while (0);
 else …

Without the do {…} while (0) construct, the expansion would be:

 if (*p != 0)
 {
 ,,,
 }; /* Probably not intended syntax */

else

Preprocessing of .IDL Files
Every VisualDSP++ Interface Definition Language (VIDL) specification is
analyzed by the C++ language preprocessor prior to syntax analysis. For
more information, refer to the VisualDSP++ Component Software Engi-
neering User’s Guide.

The #include directive is used to control the inclusion of additional
VIDL source text from a secondary input file that is named in the direc-
tive. Two available forms of #include are shown in Figure 1-2.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-151
for ADSP-219x DSPs

Preprocessor Features
The file identified by the file name is located by searching a list of directo-
ries. When the name is delimited by quote characters, the search begins in
the directory containing the primary input file, then proceeds with the list
of directories specified by the -I command-line switch. When the name is
delimited by angle-bracket characters, the search proceeds directly with
the directories specified by -I. If the file is not located within any direc-
tory on the search list, the search may be continued in one or more
platform dependent system directories.

Figure 1-2. #INCLUDE Syntax Diagram

“ “

#include

VIDL file name

< >VIDL file name
1-152 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
C/C++ Run-Time Model and
Environment

This section provides a full description of the ADSP-219x DSP run-time
model and run-time environment. The run-time model, which applies to
compiler-generated code, includes descriptions of the layout of the stack,
data access, and call/entry sequence. The C/C++ run-time environment
includes the conventions that C/C++ routines must follow to run on
ADSP-219x DSPs. Assembly routines linked to C/C++ routines must fol-
low these conventions.

� ADI recommends that assembly programmers maintain stack
conventions.

This section contains:

• “Using the Run-Time Header” on page 1-154

• “Interrupt Table and Interface” on page 1-154

• “Stack Frame” on page 1-155

• “Stack Frame Description” on page 1-157

• “Miscellaneous Information” on page 1-161

• “Register Classification” on page 1-161

• “File I/O Support” on page 1-166
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-153
for ADSP-219x DSPs

C/C++ Run-Time Model and Environment
Using the Run-Time Header
The run-time header is an assembly language procedure that initializes the
processor and sets up processor features to support the C run-time envi-
ronment. The default run-time header source code for the ADSP-219x
processors is in the 219x_hdr.asm file. This run-time header performs the
following operations:

• Initializes the C run-time environment

• Calls your main routine

• Calls exit routine, defined in the C run-time library (libc.dlb), if
main returns.

• Defines system halt instruction called from exit routine.

Interrupt Table and Interface
The interrupt table is an assembly language set of functions defined in
named sections. These sections get placed appropriately in the Linker
Description File (LDF) to be executed at interrupt vector addresses. The
default code for the ADSP-219x DSP’s interrupt table is defined in
219x_int_tab.asm.

The default interrupt table uses the following external symbols:

The 219x_int_tab file contains a section of code for each hardware inter-
rupt. The .LDF file places these code sections in the correct interrupt
vector slots for each interrupt.

_lib_int_table Static table holding interrupt information defined in the C
run-time library

__lib_int_determiner An interrupt dispatcher defined in the C run-time library

_____system_start C run-time initialization defined in the run-time header
1-154 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
If an interrupt occurs, program execution begins at the interrupt vector
addresses. Program execution causes a jump to __lib_int_determiner in
the default vector code. If __lib_int_determiner finds (by inspecting
__lib_int_table) a handler set for the interrupt, it will call the handler.
__lib_int_determiner saves and restores all scratch registers around the
handler call. The function __lib_int_determiner terminates by executing
a return from interrupt (RTI) instruction, which restores program execu-
tion to the point at which the interrupt was raised.

A handler for an interrupt or signal is set using the interrupt or signal C
run-time library functions. These functions pass the signal name and a
handler function pointer as parameters. The signal macro names are
defined in signal.h.

The default interrupt vector code may be replaced with custom code by
modifying or creating a new piece of code to be placed at the vector
addresses. This is usually done by copying the default 219x_int_tab.asm
file and .LDF file into your project and modifying them as required.

An interrupt pragma defined function can be placed in the interrupt vec-
tor code directly or be jumped to from the vector if it does not fit in the
interrupt vector space (see “Interrupt Handler Pragmas” on page 1-122).

� The reset vector code, which is placed at address zero (0) and does
a jump to _____system_start, should not be replaced.

Stack Frame
The stack frame (or activation record) provides for the following activities:

• space for local variables for the current procedure. For the com-
piler, this includes temporary storage as well as that required for
explicitly declared user automatic variables.

• place to save linkage information such as return addresses, location
information for the previous caller’s stack frame, and to allow this
procedure to return to its caller
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-155
for ADSP-219x DSPs

C/C++ Run-Time Model and Environment
• space to save information that must be preserved and restored

• arguments passed to the current procedure

In addition, if this is not a leaf procedure (if it is going to call other proce-
dures), its stack frame also contains outgoing linkage and parameter space:

• space for the arguments to the called procedure.

• space for the callee to save basic linkage information.

Figure 1-3 provides a general overview of the stack. Note that the stack
grows downward on the page. Because the stacks grow towards smaller
addresses, higher addresses are found in the upwards direction. “Stack
Frame Description” on page 1-157

The stack resides in primary Data Memory (DM). It is controlled by a pair
of pointers: a Stack Pointer (SP), which identifies the boundary of the
in-use portion of the stack space, and a Frame Pointer (FP), which pro-
vides stable addressing to the current frame.

Figure 1-3. ADSP-219x DSP Stack

Incoming
Arguments

Linkage
Information

Linkage

and Temporaries
Save Area

(for caller info)
Outgoing Arguments

Free Space

Information

FP

SP
1-156 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
For increased efficiency the ADSP-219x DSP run-time model assumes 32
words past the stack pointer are available for use within a leaf function
(functions that make no calls) and are protected from changes by an inter-
rupt handler. This provides easy access to temporary space for use within
simple leaf functions without the overhead of establishing a stack frame.

Stack Frame Description
This section describes the stack, as shown in Figure 1-3 on page 1-156.

Incoming Arguments

The memory area for incoming arguments begins at the FP value
+1. Argument words are mapped by ascending addresses, so the sec-
ond argument word is mapped at FP+2.

Linkage Information

The return address is saved on the hardware stack by the CALL
instruction. In the called function, the address can then be popped
from the hardware stack and saved as part of the stack frame. This
information is used by the debugger to generate call stack debug
information for source level debugging. Saving the return address
on the stack frame is also useful in avoiding overflowing the finite
hardware call stack, when using recursion for example. The value
stored on the stack gets pushed back on the hardware call stack
before the return of the function. The compiler detects recursive
routines and also offers a switch to avoid overflowing the hardware
call stack, called -no_hardware_pc_stack, which might be required
for highly nested software.

Local Variables and Temporaries

Space for a register save area and local variables/temporaries is allo-
cated on the stack by the function prologue. Local variables and
temporaries are typically placed first in this area so they can be
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-157
for ADSP-219x DSPs

C/C++ Run-Time Model and Environment
addressed with the smallest offsets from FP. The register save area is
located at the farthest end of this area and can be accessed by
SP-relative addressing.

Outgoing Arguments

Outgoing arguments are located at the top of the stack prior to the
call. Space may be pre-allocated or claimed at the time of each call.

Free Space

Space below SP is normally considered free and unprotected; it is
available for use (in growing the stack) at any time, synchronously
or asynchronously (the latter for interrupt handling). However, on
the ADSP-219x DSPs, the 32 words past the SP are reserved as a
protected temporary space for use within a procedure.

General System-Wide Specifications

Some general specifications that apply to the stacks are:

• The stacks grow down in memory from higher to lower addresses.

• The current frames’ “base” is addressed by the FP register.

• The first free word in each stack is addressed by the SP register.

� Data can be pushed onto the stack by executing an instruction like
the following one for the ADSP-219x DSPs:

DM (I4 += M5) = rej.

• The return address of the caller is stored at offsets -1 and -2 from
the address carried by the current FP, if it is stored on the stack.

• The linkage back to the previous stack frame is stored at offset 0
from the current FP.
1-158 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
At a procedure call, the following must be true:

• For the ADSP-219x DSPs, no space beyond the SP must be in use.

• There must be at least one free slot on the PC stack to hold the
return address.

At an interrupt, the following must be true:

• Space beyond the SP must be available.

• For the ADSP-219x DSPs, the first 32 words beyond the SP must
be protected; the interrupt routine should decrement the SP by 32
and then restore the original value of SP prior to return.

Return Values

Return values always use registers. Single word return values come back in
register AX1. Double word return values are stored in SR1:0, with the most
significant part in SR1.

If the return value is larger than two words, then the caller must allocate
space and pass the address in, as a “hidden argument”. The register I0 is
used for this purpose.

Procedure Call and Return

To call a procedure:

1. Evaluate the arguments and push them onto the stack.

2. Call the procedure.

3. On return, remove arguments if desired.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-159
for ADSP-219x DSPs

C/C++ Run-Time Model and Environment
On Entry:

1. Save the old FP and set FP to current SP.

2. If -no_hardware_pc_stack is specified (for debugging), pop the PC
stack and store it on the main stack.

3. Move the SP to create space for the new frame.

4. If -g is specified but -no_hardware_pc_stack is not specified, push
the return address back onto the hardware stack.

After this step, the new frame is officially in place.

5. Continue saving registers, and then executing the procedure.

A leaf procedure which does not require much stack space might choose to
omit steps (1) and (2), operating without its own stack frame. On the
ADSP-219x DSPs, the 32 words of protected space beyond the SP can be
used for temporary storage.

To Return from a Procedure:

1. If the hardware PC stack is not used, the return address must be
loaded from the stack and restored.

2. Restore miscellaneous saved registers.

3. Place the return value in the correct register (if not there already).

4. Restore FP for the previous frame.

5. Reset SP to remove the frame for procedure.

6. Return to the caller.
1-160 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Miscellaneous Information
This section contains a number of miscellaneous aspects of the design that
may be helpful in understanding stack functionality.

• Procedures without prototypes can be called successfully, provided
the argument types correspond properly. Prototypes are always
good programming practice. Programs that call library subroutines
should always include header files.

• There is no special interface for calling system library functions.
They use the standard calling convention.

Register Classification
This section describes all of the ADSP-219x processor registers. Registers
are listed in order of preferred allocation by the compiler

Callee Preserved Registers (�Preserved�)

Registers I2, I3, I7, M0, M2 and M4 are preserved. A subroutine which
uses any of these registers must save (preserve) it and restore it.

Dedicated Registers

Certain registers have dedicated purposes and will not be used for other
things. Compiled code and libraries expect the dedicated registers to be
correct.

Caller Save Registers (�Scratch�)

All registers not preserved or dedicated are scratch. A subroutine may use a
scratch register without having to save it.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-161
for ADSP-219x DSPs

C/C++ Run-Time Model and Environment
Circular Buffer Length Registers

Registers L0 through L7 are the circular buffer length registers. The com-
piler assumes that these registers contain zero, which disables circular
buffering. They must be set to zero when compiled code is executing to
avoid incorrect behavior. There is no restriction on the value of an L regis-
ter when the corresponding I register has been reserved from compiler use.
See “-reserve register[, register …]” on page 1-43 for information on
reserving registers.

Mode Status (MSTAT) Register

The C runtime initializes the MSTAT register as part of the run-time header
code. The compiler and run-time libraries assume to be running in these
preset modes. If you change any of the modes listed in Table 1-13, ensure
that they are reverted before calling C/C++ compiled functions or func-
tions from the C run-time library. Failure to revert to the default modes
may cause applications to fail when running.

Table 1-13. MSTAT Register Modes

Mode Description State

SEC_REG Secondary Data Registers disabled

BIT_REV Bit-reversed address output disabled

AR_SAT ALU saturation mode disabled

M_MODE MAC result mode Integer Mode, 16.0 format

SEC_DAG Secondary DAG registers disabled
1-162 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Complete List of Registers

The following tables describe all of the registers for the ADSP-219x DSPs.

• Table 1-14 lists the data register’s file registers

• Table 1-15 lists the DAG1 registers

• Table 1-16 lists the DAG2 registers

• Table 1-17 lists miscellaneous registers

� You must always specify all parts of the SR and MR register groups.
For example, either MR1 or SR0 is valid, but either SR or MR by itself
is not valid.

Table 1-14. List of Data Register File Registers

Register Description Notes

AX0 scratch

AX1 scratch; single-word return

AY0 scratch

AY1 scratch

AR scratch;

AF scratch

MX0 scratch

MX1 scratch

MY0 scratch

MY1 scratch

MR1:0 scratch

MR2 scratch
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-163
for ADSP-219x DSPs

C/C++ Run-Time Model and Environment
PX scratch

SB scratch

SE scratch

SI scratch

SR1:0 scratch; double-word return

SR2 scratch

Table 1-15. List of DAG1 Registers

Register Description

I0 scratch

I1 scratch

I2 preserved

I3 preserved

M0 preserved

M1 scratch

M2 preserved

M3 scratch

L0-3 not used, must be zero

B0-3 not used

DMPG1 preserved

Table 1-14. List of Data Register File Registers (Cont’d)

Register Description Notes
1-164 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Table 1-16. List of DAG2 Registers

Register Description

I4 Dedicated: SP

I5 Dedicated: FP

I6 scratch

I7 preserved

M4 preserved

M5 dedicated: -1

M6 scratch

M7 scratch

L4-7 not used, must be zero

B4-7 not used

DMPG2 dedicated, must not change

Table 1-17. Miscellaneous Registers

Register Description

ASTAT scratch

CCODE preserved; (0x8 ALU result sign default in C/C++ code)

CNTR scratch

ICNTL scratch

IJPG scratch

IMASK scratch

IRPTL scratch

LPSTACKA scratch
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-165
for ADSP-219x DSPs

C/C++ Run-Time Model and Environment
File I/O Support
The VisualDSP++ environment provides access to files on a host system,
using stdio functions. File I/O support is provided through a set of
low-level primitives that implement the open, close, read, write, and
seek operations.The stdio functions make use of these primitives to pro-
vide conventional C input and output facilities. The source files for the
I/O primitives are available under the VisualDSP++ installation in the
sub-directory 219x\lib\src\libio_src.

Refer to “stdio.h” on page 3-13 for more information.

Extending I/O Support To New Devices

The I/O primitives are implemented using an extensible device driver
mechanism. The default start-up code includes a device driver that can
perform I/O through the VisualDSP++ simulator and EZ-KIT Lite. Other
device drivers may be registered and then used through the normal stdio
functions.

A device driver is a set of primitive functions, grouped together into a
DevEntry structure. This structure is defined in device.h:

struct DevEntry {
int DeviceID;
void *data;

LPSTACKP scratch

MSTAT scratch

STACKA scratch

STACKP scratch

STACKA scratch

Table 1-17. Miscellaneous Registers (Cont’d)
1-166 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
int (*init)(struct DevEntry *entry);
int (*open)(const char *name, int mode);
int (*close)(int fd);
int (*write)(int fd, unsigned char *buf, int size);
int (*read)(int fd, unsigned char *buf, int size);
long (*seek)(long fd, long offset, int whence);

}

typedef struct DevEntry DevEntry;
typedef struct DevEntry *DevEntry_t;

The DeviceID field is a unique identifier for the device, known to the user.
Device IDs are used globally across an application. The data field is a
pointer for any private data the device may need; it is not used by the
run-time libraries. The function pointed to by the init field is invoked by
the run-time library when the device is first registered. It returns a nega-
tive value for failure, positive value for success.

The functions pointed to by the open, close, write and read fields are the
functions that provide the same functionality used in the default I/O
device. Seek is another function at the same level, for those devices which
support such functionality. If a device does not support an operation (such
as seeking, writing on read-only devices or reading write-only devices),
then a function pointer must still be provided; the function must arrange
to always return failure codes when the operation is attempted.

A new device can be registered with the following call:

int add_devtab_entry(DevEntry_t entry);

If the device is successfully registered, the init() routine of the device is
called, with entry as its parameter. add_devtab_entry() returns the
DeviceID of the device registered.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-167
for ADSP-219x DSPs

C/C++ Run-Time Model and Environment
If the device is not successfully registered, a negative value is returned.
Reasons for failure include, but are not limited to:

• The DeviceID is the same as another device, already registered

• There are no more spaces left in the device registry table

• The DeviceID is less than zero

• Some of the function pointers are NULL

• The device's init() routine returned a failure result

Once a device is registered, it can be made the default device, using the
following function:

void set_default_io_device(int);

The user passes the DeviceID. There is a corresponding function for
retrieving the current default device:

int get_default_io_device(void);

The default device is used by fopen() when a file is first opened. The
fopen() function passes the open request to the open() function of the
device indicated by get_default_io_device(). The device file identifier
(dfid) returned by the open() function is private to the device; other
devices may simultaneously have other files open which use the same iden-
tifier. An open file is uniquely identified by the combination of DeviceID
and dfid.

The fopen() function records the DeviceID and dfid in the global open
file table, and allocates its own internal fid to this combination. All future
operations on the file reads, writes, seeks and close —use this fid to
retrieve the DeviceID—and thus direct the request to the appropriate
device's primitive functions, passing the dfid along with other parameters.
Once a file has been opened by fopen(), the current value of
get_default_io_device() is irrelevant to that file.
1-168 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
C/C++ and Assembly Language
Interface

This section describes how to call assembly language subroutines from
within C or C++ programs and C or C++ functions from within assembly
language programs.

� Before attempting to perform either of these calls, be sure to famil-
iarize yourself with the information about the C/C++ run-time
model (including details about the stack, data types, and how argu-
ments are handled) contained in “C/C++ Run-Time Model and
Environment” on page 1-153.

This section contains:

• “Calling Assembly Subroutines from C/C++ Programs” on
page 1-170

• “Calling C/C++ Functions from Assembly Programs” on
page 1-172

• “Using Mixed C/C++ and Assembly Naming Conventions” on
page 1-174

• “C++ Programming Examples” on page 1-176

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-169
for ADSP-219x DSPs

C/C++ and Assembly Language Interface
Calling Assembly Subroutines from C/C++
Programs

Before calling an assembly language subroutine from a C/C++ program,
create a prototype to define the arguments for the assembly language sub-
routine and the interface from the C/C++ program to the assembly
language subroutine. Even though it is legal to use a function without a
prototype in C/C++, prototypes are a strongly recommended practice for
good software engineering. When the prototype is omitted, the compiler
cannot perform argument type checking and assumes that the return value
is of type integer and uses K&R promotion rules instead of ANSI promo-
tion rules.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. Scratch registers can be used within the
assembly language program without worrying about their previous con-
tents. If more room is needed (or an existing code is used) and you wish to
use the preserved registers, you must save their contents and then restore
those contents before returning.

Do not use the dedicated or stack registers for other than their intended
purpose; the compiler, libraries, debugger, and interrupt routines depend
on having a stack available as defined by those registers.

The compiler also assumes the machine state does not change during exe-
cution of the assembly language subroutine.

� Do not change any machine modes (for example, certain registers
may be used to indicate circular buffering when those register val-
ues are nonzero).

The compiler prefaces the name of any external entry point with an
underscore. Therefore, declare your assembly language subroutine’s name
with a leading underscore. If you're using the function from assembly pro-
1-170 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
grams as well, you might want your function's name to be just as you write
it. Then you'll also need to tell the C/C++ compiler that it's an asm func-
tion, by placing 'extern "asm" {}' around the prototype.

The C/C++ runtime determines that all function parameters are passed on
the stack. A good way to observe and understand how arguments are
passed is to write a dummy function in C or C++ and compile it using the
-save-temps command-line switch (see on page 1-44). The resulting com-
piler generated assembly file (.s) can then be viewed.

The following example includes the global volatile variable assignments to
indicate where the arguments can be found upon entry to asmfunc.

// Sample file for exploring compiler interface...

// global variables ... assign arguments there just so

// we can track which registers were used

// (type of each variable corresponds to one of arguments)

int global_a;

float global_b;

int * global_p;

// the function itself

int asmfunc(int a, float b, int * p, int d, int e) {

//do some assignments so .s file will show where args are

global_a = a;

global_b = b;

global_p = p;

//value gets loaded into the return register

return 12345;

}

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-171
for ADSP-219x DSPs

C/C++ and Assembly Language Interface
When compiled with the -save-temps option set, this produces the fol-
lowing code.

_asmfunc:

AX1 = DM(I4 + 2);

SI = DM(I4 + 1);

AX0 = DM(I4 + 3);

DM(ADDRESS(_global_b)) = AX1;

AY0 = DM(I4 + 4);

DM(ADDRESS(_global_a)) = SI;

DM(ADDRESS(_global_b+1)) = AX0;

RTS (DB);

DM(ADDRESS(_global_p)) = AY0;

AX1 = 12345;

_asmfunc.end:

.global _asmfunc;

.type _asmfunc,STT_FUNC;

� For a more complicated function, you might find it useful to fol-
low the general run-time model, and use the run-time stack for
local storage, etc. A simple C program, passed through the com-
piler, will provide a good template to build on. Alternatively, you
may find it just as convenient to use local static storage for
temporaries.

Calling C/C++ Functions from Assembly Programs
You may want to call a C/C++ callable library and other functions from
within an assembly language program. As discussed in “Calling Assembly
Subroutines from C/C++ Programs” on page 1-170, you may want to cre-
ate a test function to do this in C/C++, and then use the code generated by
the compiler as a reference when creating your assembly language program
and the argument setup. Using volatile global variables may help clarify
the essential code in your test function.
1-172 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
The run-time model defines some registers as scratch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C/C++ function. If the assembly
language program needs the contents of any of those registers, you must
save their contents before the call to the C/C++ function and then restore
those contents after returning from the call.

Do not use the dedicated registers for other than their intended purpose;
the compiler, libraries, debugger, and interrupt routines all depend on
having a stack available as defined by those registers.

Preserved registers can be used; their contents will not be changed by call-
ing a C/C++ function. The function will always save and restore the
contents of preserved registers if they are going to change.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. Explore how arguments are passed between
an assembly language program and a function by writing a dummy func-
tion in C/C++ and compiling it with the save temporary files option
(the “-save-temps” command-line switch). By examining the contents of
volatile global variables in *.s file, you can determine how the C/C++
function passes arguments, and then duplicate that argument setup pro-
cess in the assembly language program.

The stack must be set up correctly before calling a C/C++ callable func-
tion. If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger. The easiest way to do this is to define a
C/C++ main program to initialize the run-time system; maintain the stack
until it is needed by the C/C++ function being called from the assembly
language program; and then continue to maintain that stack until it is
needed to call back into C/C++. However, make sure the dedicated regis-
ters are correct. You do not need to set the FP prior to the call; the caller’s
FP is never used by the recipient.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-173
for ADSP-219x DSPs

C/C++ and Assembly Language Interface
Using Mixed C/C++ and Assembly Naming
Conventions

It is necessary to be able to use C/C++ symbols (function names or vari-
able names) in assembly routines and use assembly symbols in C routines.
This section describes how to name C/C++ and assembly symbols and
shows how to use C/C++ and assembly symbols.

To name an assembly symbol that corresponds to a C/C++ symbol, add an
underscore prefix to the C/C++ symbol name when declaring the symbol
in assembly. For example, the C/C++ symbol main becomes the assembly
symbol _main.

To use a C/C++ function or variable in your assembly routine, declare it as
global in the C/C++ program and import the symbol into the assembly
routine by declaring the symbol with the .EXTERN assembler directive.

The C++ language performs name mangling on function names it defines
according to the output and input parameter types of the function. If call-
ing into a C++ defined function from assembly code, the .EXTERN symbol
will need to be the mangled C++ output name. This is best retrieved by
looking at the compiler’s assembly output for the C++ source that defines
the required function.

To use an assembly function or variable in your C/C++ program, declare
the symbol with the .GLOBAL assembler directive in the assembly routine
and import the symbol by declaring the symbol as extern in the C/C++
program.

Alternatively, the cc219x compiler provides an “asm” linkage specifier
(used similarly to the “C” linkage specifier of C++), which when used,
removes the need to add an underscore prefix to the symbol that is defined
in assembly.

Table 1-18 shows several examples of the C/C++ and assembly interface
naming conventions.
1-174 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
Table 1-18. C/C++ Naming Conventions for Symbols

In C/C++ Program In Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;

void c_func(); /* in C code */ .extern _c_func;

void cpp_func(void); /* in C++
source */

.extern _cpp_func__Fv;

extern int asm_var; .global _asm_var;

extern void asm_func(); .global _asm_func;
_asm_func:

extern "asm" void asm_func(); .global asm_func;
asm_func:
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-175
for ADSP-219x DSPs

C/C++ and Assembly Language Interface
C++ Programming Examples
This section shows examples of the features specific to C++. These exam-
ples are:

• “Using Fract Type Support” on page 1-176

• “Using Complex Number Support” on page 1-177

By default, the cc219x compiler runs in C mode. To run the compiler in
C++ mode, use the corresponding option on the command line, or select
the option in the Project Options dialog box in the VisualDSP++
environment.

For example, the following command line

cc219x -c++ source.cpp -proc ADSP-2191

runs cc219x with:

-c++
Specifies that the following source file is written in ANSI/ISO
standard C++ extended with the Analog Devices keywords.

source.cpp
Specifies the source file for your program.

-proc ADSP-2191

Specifies that the compiler should produce code suitable for the
ADSP-2191 DSP.

Using Fract Type Support

Listing 1-1 on page 1-177 demonstrates the compiler support for the
fract type and associated arithmetic operators, such as + and *. The dot
product algorithm is expressed using the standard arithmetic operators.
The code demonstrates how two variable-length arrays are initialized with
fractional literals.
1-176 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler
For more information abut the fractional data type and arithmetic, see
“Fractional Type Support” on page 1-90.

Listing 1-1. Example Code: Using Fract Data Type — C++ code

#include <fract>
#define N 20
fract x[N] = {.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,

.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r};
fract y[N] = {0,.1r,.2r,.3r,.4r,.5r,.6r,.7r,.8r,.9r,.10r,.1r,

.2r,.3r,.4r,.5r,.6r,.7r,.8r,.9r};
fract fdot(int N, fract *x, fract *y)
{

int j;
fract s;
s = 0;
for (j=0; j<N; j++)
{
s += x[j] * y[j];
}
return s;

}
int main(void)
{

fdot(N,x,y);
}

Using Complex Number Support

The Mandelbrot fractal set is defined by the following iteration on com-
plex numbers:

z := z * z + c

The c values belong to the set for which the above iteration does not
diverge to infinity. The canonical set is defined when z starts from zero.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 1-177
for ADSP-219x DSPs

C/C++ and Assembly Language Interface
Listing 1-2 demonstrates the Mandelbrot generator expressed in a simple
algorithm using the C++ library complex class:

Listing 1-2. Mandelbrot Generator Example — C++ code

#include <complex>
int iterate (complex<double> c, complex<double> z, int max)
{
int n;

for (n = 0; n<max && abs(z)<2.0; n++)
{

z = z * z + c;
}
return (n == max ? 0 : n);

}

Listing 1-3 shows a C version of the inner computational function of the
Mandelbrot generator extracts performance and programming penalties
(compared with the C++ version).

Listing 1-3. Mandelbrot Generator Example — C Code

int iterate (double creal, double cimag,
double zreal, double zimag, int max)
{
double real, imag;

int n;
real = zreal * zreal;
imag = zimag * zimag;
for (n = 0; n<max && (real+imag)<4.0; n++)
{

zimag = 2.0 * zreal * zimag + cimag;
zreal = real - imag + creal;
real = zreal * zreal;
imag = zimag * zimag;

}
return (n == max ? 0 : n);

}

1-178 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

2 ACHIEVING OPTIMAL
PERFORMANCE FROM
C/C++ SOURCE CODE

This chapter provides guidance to help you to tune your application to

achieve the best possible code from the compiler. Some implementation
choices are available when coding an algorithm, and understanding their
impact is crucial to attaining optimal performance.

The focus of what follows is on how to obtain maximal code performance
from the compiler. Most of these guidelines also apply when optimizing
for minimum code size, although some techniques specific to that goal are
also discussed. The first section looks at some general principles, and how
the compiler can lend the most help to your optimization effort. Optimal
coding styles are then considered in detail. Special features such as com-
piler switches, built-in functions, and pragmas are also discussed. The
chapter ends with a short example to demonstrate how the optimizer
works.

Small examples are included throughout this chapter to demonstrate
points being made. Some show recommended coding styles, others iden-
tify styles to be avoided or code that it may be possible to improve. These
are marked as “Good” and “Bad”, respectively.

This chapter contains:

• “General Guidelines” on page 2-3

• “Loop Guidelines” on page 2-17

• “Using Built-In Functions in Code Optimization” on page 2-25

• “Smaller Applications: Optimizing for Code Size” on page 2-29
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-1
for ADSP-219x DSPs

• “Pragmas” on page 2-31

• “Useful Optimization Switches” on page 2-37
2-2 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
General Guidelines
It is useful to bear in mind the following basic strategy when writing an
application:

1. Try to choose an algorithm that is suited to the architecture being
targeted. For example, there may be a trade-off between memory
usage and algorithm complexity that may be influenced by the tar-
get architecture.

2. Code the algorithm in a simple, high-level generic form. Keep the
target in mind, especially with respect to choices of data types.

3. You can then turn your attention towards code tuning. For critical
code sections, think more carefully about the strengths of the target
platform, and make any non-portable changes where necessary.

� Tip: Choose the language as appropriate.

As the programmer your first decision is to choose whether to implement
your application in C or C++. This decision may be influenced by perfor-
mance considerations. C++ code using only C features will have very
similar performance to pure C source. Many higher-level C++ features (for
example those resolved at compile-time, such as namespaces, overloaded
functions and inheritance) have no performance cost. However, use of
some other features may degrade performance, and so the performance
loss must be weighed against the richness of expression available in C++.
Examples of features that may degrade performance are virtual functions
or using classes to implement basic data types.

This section contains:

• “How the Compiler Can Help” on page 2-4

• “Data Types” on page 2-7

• “Getting the Most from IPA” on page 2-9
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-3
for ADSP-219x DSPs

General Guidelines
• “Indexed Arrays vs. Pointers” on page 2-12

• “Function Inlining” on page 2-13

• “Using Inline asm Statements” on page 2-14

• “Memory Usage” on page 2-15

How the Compiler Can Help
The compiler provides many facilities designed to help the programmer.

Using the Compiler Optimizer

There is a vast difference in performance between code compiled opti-
mized and code compiled non-optimized. In some cases optimized code
can run ten or twenty times faster. Optimization should always be used
when measuring performance or shipping code as product.

The optimizer in the C/C++ compiler is designed to generate efficient
code from source that has been written in a straightforward manner. The
basic strategy for tuning a program is to present the algorithm in a way
that gives the optimizer excellent visibility of the operations and data, and
hence the greatest freedom to safely manipulate the code. Future releases
of the compiler will continue to enhance the optimizer, and expressing
algorithms simply will provide the best chance of benefiting from such
enhancements.

Note that the default setting (or “debug” mode within the VisualDSP++
IDDE) is for non-optimized compilation in order to assist programmers
in diagnosing problems with their initial coding. The optimizer is enabled
in VisualDSP++ by checking the Enable optimization checkbox under the
Project Options ->Compile tab. This adds the -O (enable optimization)
switch (on page 1-37) to the compiler invocation. A “release” build from
within VisualDSP++ will automatically enable optimization.
2-4 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
 Using the Statistical Profiler

Tuning an application begins with an understanding of which areas of the
application are most frequently executed and therefore where improve-
ments would provide the largest gains. The statistical profiling feature
provided in VisualDSP++ is an excellent means for finding these areas.
More details about how to use it may be found in the VisualDSP++ 3.5
User’s Guide.

The particular advantage of statistical profiling is that it is completely
unobtrusive. Other forms of profiling insert instrumentation into the
code, perturbing the original optimization, code size and register alloca-
tion to some degree.

The best methodology is usually to compile with both optimization and
debug information generation enabled. In this way, you can obtain a pro-
file of the optimized code while retaining function names and line number
information. This will give you accurate results that correspond directly to
the C/C++ source. Note that the compiler optimizer may have moved
code between lines.

You can obtain a more accurate view of your application if you build it
optimized but without debug information generation. You will then
obtain statistics that relate directly to the assembly code. The only prob-
lem with doing this may be in relating assembly lines to the original
source. Do not strip out function names when linking, since keeping func-
tion names means you can scroll through the assembly window to
instructions of interest.

In very complicated code, you can locate the exact source lines by count-
ing the loops, unless they are unrolled. Looking at the line numbers in the
assembly file (use the -save-temps switch (on page 1-44) to retain com-
piler generated assembly files, which will have the .s filename extension)
may also help. The compiler optimizer may have moved code around so
that it does not appear in the same order as in your original source.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-5
for ADSP-219x DSPs

General Guidelines
Using Interprocedural Optimization

To obtain the best performance, the optimizer often requires information
that can only be determined by looking outside the function that it is
working on. For example, it helps to know what data can be referenced by
pointer parameters, or whether a variable actually has a constant value.
The -ipa compiler switch (on page 1-30) enables interprocedural analysis
(IPA), which can make this available. When this switch is used the com-
piler will be called again from the link phase to recompile the program
using additional information obtained during previous compilations.

Because it only operates at link time, the effects of IPA will not be seen if
you compile with the -S switch (on page 1-43). To see the assembly file
when IPA is enabled, use the -save-temps switch (on page 1-44), and look
at the .s file produced after your program has been built.

As an alternative to IPA, you can achieve many of the same benefits by
adding pragma directives and other declarations such as
__builtin_aligned to provide information to the compiler about how
each function interacts with the rest of the program.

These directives are further described “Using Built-In Functions in Code
Optimization” on page 2-25 and “Pragmas” on page 2-31.
2-6 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Data Types
The compiler directly supports the following scalar data types.

Fractional data types are represented using the integer types. Manipula-
tion of these is best done by use of built-in functions, described in
“System Support Built-In Functions” on page 2-26.

Single-Word Fixed-Point Data Types: Native Arithmetic

char 16-bit signed integer

unsigned char 16-bit unsigned integer

short 16-bit signed integer

unsigned short 16-bit unsigned integer

int 16-bit signed integer

unsigned int 16-bit unsigned integer

Double-Word Fixed-Point Data Types: Emulated Arithmetic

long 32-bit signed integer

unsigned long 32-bit unsigned integer

Floating-Point Data Types: Emulated Arithmetic

double 32-bit float

float 32-bit float
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-7
for ADSP-219x DSPs

General Guidelines
Avoiding Emulated Arithmetic

Arithmetic operations for some types are implemented by library func-
tions because the DSP hardware does not directly support these types.
Consequently, operations for these types are far slower than native opera-
tions-sometimes by a factor of a hundred-and also produce larger code.
These types are marked as “Emulated Arithmetic” in “Data Types” on
page 2-7.

The hardware does not provide direct support for division, so division and
modulus operations are almost always multi-cycle operations, even on
integral type inputs. If the compiler has to issue a full division operation,
it will usually need to generate a call to a library function. One notable sit-
uation in which a library call is avoided is for integer division when the
divisor is a compile-time constant and is a power of two. In that case the
compiler generates a shift instruction. Even then, a few fix-up instructions
are needed after the shift if the types are signed. If you have a signed divi-
sion by a power of two, consider whether you can change it to unsigned in
order to obtain a single-instruction operation.

When the compiler has to generate a call to a library function for one of
these arithmetic operators that are not supported by the hardware, perfor-
mance will suffer not only because the operation will take multiple cycles,
but also because the effectiveness of the compiler optimizer will be
reduced.

For example, such an operation in a loop can prevent the compiler from
making use of efficient zero-overhead hardware loop instructions. Also,
calling the library to perform the required operation can change values
held in scratch registers before the call, so the compiler will have to gener-
ate more stores and loads from the data stack to keep values required after
the call returns. Emulated arithmetic operators should therefore be
avoided where possible, especially in loops.
2-8 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Getting the Most from IPA
Interprocedural analysis (IPA) is designed to try to propagate information
about the program to parts of the optimizer that can use it. This section
looks at what information is useful, and how to structure your code to
make this information easily accessible to the analysis.

Initializing Constants Statically

IPA will identify variables that have only one value and replace them with
constants, resulting in a host of benefits for the optimizer's analysis. For
this to happen a variable must have a single value throughout the pro-
gram. If the variable is statically initialized to zero, as all global variables
are by default, and is subsequently assigned some other value at another
point in the program, then the analysis sees two values and will not con-
sider the variable to have a constant value.

For example,

#include <stdio.h>
int val; // initialized to zero
void init() {

val = 3; // re-assigned
}
void func() {

printf("val %d",val);
}
int main() {

init();
func();

}

Bad: IPA cannot see that val is a constant

is better written as

#include <stdio.h>
const int val = 3; // initialized once
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-9
for ADSP-219x DSPs

General Guidelines
void init() {
}
void func() {

printf("val %d",val);
}
int main() {

init();
func();

}

Good: IPA knows val is 3.

Avoiding Aliases

It may seem that the iterations may be performed in any order in the fol-
lowing loop:

void fn(char a[], char b[], int n) {
int i;
for (i = 0; i < n; ++i)

a[i] = b[i];
}

Bad: a and b may alias each other.

but a and b are both parameters, and, although they are declared with [],
they are in fact pointers, which may point to the same array. When the
same data may be reachable through two pointers, they are said to alias
each other.

If IPA is enabled, the compiler will look at the call sites of fn and try to
determine whether a and b can ever point to the same array.

Even with IPA, it is quite easy to create what appear to the compiler as
aliases. The analysis works by associating pointers with sets of variables
that they may refer to at some point in the program. If the sets for two
pointers are found to intersect, then both pointers are assumed to point to
the union of the two sets.
2-10 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
If fn above were called in two places with global arrays as arguments, then
IPA would have the results shown below:

fn(glob1, glob2, N);

fn(glob1, glob2, N);

Good: sets for a and b do not intersect: a and b are not aliases.

fn(glob1, glob2, N);

fn(glob3, glob4, N);

Good: sets for a and b do not intersect: a and b are not aliases.

fn(glob1, glob2, N);

fn(glob3, glob1, N);

Bad: sets intersect - both a and b may access glob1; a and b may be
aliases.

The third case arises because IPA considers the union of all calls at once,
rather than considering each call individually, when determining whether
there is a risk of aliasing. If each call were considered individually, IPA
would have to take flow control into account and the number of permuta-
tions would make compilation time impracticably long.

The lack of control flow analysis can also create problems when a single
pointer is used in multiple contexts. For example, it is better to write:

int *p = a;
int *q = b;

// some use of p
// some use of q

Good: p and q do not alias.

than

int *p = a;
// some use of p
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-11
for ADSP-219x DSPs

General Guidelines
p = b;
// some use of p

Bad: uses of p in different contexts may alias.

because the latter may cause extra apparent aliases between the two uses.

Indexed Arrays vs. Pointers
C allows a program to access data from an array in two ways: either by
indexing from an invariant base pointer, or by incrementing a pointer.
These two versions of vector addition illustrate the two styles:

Style 1: using indexed arrays

void va_ind(const short a[], const short b[], short out[], int n) {
int i;
for (i = 0; i < n; ++i)

out[i] = a[i] + b[i];
}

Style 2: using pointers

void va_ptr(const short a[], const short b[], short out[], int n) {
int i;
short *pout = out;
const short *pa = a, *pb = b;
for (i = 0; i < n; ++i)

*pout++ = *pa++ + *pb++;
}

Trying Pointer and Indexed Styles

One might hope that the chosen style would not make any difference to
the generated code, but this is not always the case. Sometimes, one version
of an algorithm will generate better optimized code than the other, but it
is not always the same style that is better.

� Tip: Try both pointer and index styles.
2-12 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
The pointer style introduces additional variables that compete with the
surrounding code for resources during the compiler optimizer's analysis.
Array accesses, on the other hand, must be transformed to pointers by the
compiler and sometimes it does not do the job as well as you could do by
hand.

The best strategy is to start with array notation. If the generated code
looks unsatisfactory, try using pointers. Outside the critical loops, use the
indexed style, since it is easier to understand.

Function Inlining
The function inlining may be used in two ways

• By annotating functions in the source code with the inline key-
word. In this case, function inlining is only performed when
optimization is enabled.

• By turning on automatic inlining with the -Oa switch
(on page 1-37). This switch automatically enables optimization.

� Tip: Inline small, frequently executed functions.

You can use the compiler's inline keyword to indicate that functions
should have code generated inline at the point of call. Doing this avoids
various costs such as program flow latencies, function entry and exit
instructions and parameter passing overheads. Using an inline function
also has the advantage that the compiler can optimize through the inline
code and does not have to assume that scratch registers and condition
states are modified by the call. Prime candidates for inlining are small, fre-
quently used functions because they will cause the least code-size increase
while giving most performance benefit.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-13
for ADSP-219x DSPs

General Guidelines
As an example of the usage of the inline keyword, the function below
sums two input parameters and returns the result.

inline int add(int a, int b) {

return (a+b);

}

Good: use of the inline keyword.

Inlining has a code-size to performance trade-off that should be consid-
ered when it is used. With -Oa, the compiler will automatically inline
small functions where possible. If the application has a tight upper
code-size limit, the resulting code-size expansion may be too great. It is
worth considering using automatic inlining in conjunction with the -Ov n
switch (on page 1-38) to restrict inlining (and other optimizations with a
code-size cost) to parts of the application that are performance-critical.
This will be considered in more detail later in this chapter.

Using Inline asm Statements
The compiler allows use of inline asm statements to insert small sections of
assembly into C code.

� Tip: Avoid use of inline asm statements where built-in functions
may be used instead

The compiler does not intensively optimize code that contains inline asm
statements because it has little understanding about what the code in the
statement does. In particular, use of an asm statement in a loop may
inhibit useful transformations.

The compiler has been enhanced with a large number of built-in func-
tions. These generate specific hardware instructions and are designed to
allow the programmer to more finely tune the code produced by the com-
2-14 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
piler, or to allow access to system support functions. A complete list of
compiler’s built-in functions is given in “Compiler Built-In Functions” on
page 1-94.

Use of these builtins is much preferred to using inline asm statements.
Since the compiler knows what each builtin does, it can easily optimize
around them. Conversely, since the compiler does not parse asm state-
ments, it does not know what they do, and so is hindered in optimizing
code that uses them. Note also that errors in the text string of an asm state-
ment will be caught by the assembler and not the compiler.

Examples of efficient use of built-in functions are given in “System Sup-
port Built-In Functions” on page 2-26.

Memory Usage
The compiler, in conjunction with the use of the linker description file
(.LDF), allows the programmer control over where data is placed in mem-
ory. This section describes how to best lay out data for maximum
performance.

� Tip: Try to put arrays into different memory sections.

The DSP hardware can support two memory operations on a single
instruction line, combined with a compute instruction. However, two
memory operations will only complete in one cycle if the two addresses are
situated in different memory blocks; if both access the same block, then a
stall will be incurred.

Take as an example the dot product loop below. Because data is loaded
from both array a and array b in every iteration of the loop, it may be use-
ful to ensure that these arrays are located in different blocks.

for (i=0; i<100; i++)

sum += a[i] * b[i];
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-15
for ADSP-219x DSPs

General Guidelines
Bad: compiler assumes that two memory accesses together may give
a stall.

This is done by using the compiler extension described in “Dual Memory
Support Keywords (pm dm)” on page 1-78. Placing a pm qualifier before
the type definition tells the compiler that the array is located in what is
notionally called “Program Memory” (PM). The memory of a ADSP-219x
DSP is in one unified address space and there is no restriction concerning
in which part of memory program code or data can be placed as on previ-
ous generations of DSP architectures like the ADSP-218x DSPs.
However, the default .LDF files ensure that pm qualified data is placed in a
different memory block than non-qualified (or dm qualified) data, thus
allowing two accesses to occur simultaneously without incurring a stall.

The array declaration of one of either a or b is modified to

pm int a[100];

and any pointers to the buffer a become, for example,

pm int *p = a;

to allow simultaneous accesses to the two buffers.

Note that the explicit placement of data in PM can only be done for global
data.
2-16 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Loop Guidelines
Loops are where an application will ordinarily spend the majority of its
time. It is therefore useful to look in detail at how to help the compiler to
produce the most efficient code possible for them.

Keeping Loops Short
For best code efficiency, loops should be as small as possible. Large loop
bodies are usually more complex and difficult to optimize. Additionally,
they may require register data to be stored in memory. This will cause a
decrease in code density and execution performance.

Avoiding Unrolling Loops

� Tip: Do not unroll loops yourself.

Not only does loop unrolling make the program harder to read but it also
prevents optimization by complicating the code for the compiler.

void va1(const short a[], const short b[], short c[], int n)
{

int i;
for (i = 0; i < n; ++i) {
c[i] = b[i] + a[i];
}

}

Good: the compiler will unroll if it helps.

void va2(const short a[], const short b[], short c[], int n)
{

short xa, xb, xc, ya, yb, yc;
int i;
for (i = 0; i < n; i+=2) {

xb = b[i]; yb = b[i+1];
xa = a[i]; ya = a[i+1];
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-17
for ADSP-219x DSPs

Loop Guidelines
xc = xa + xb; yc = ya + yb;
c[i] = xc; c[i+1] = yc;

}
}

Bad: harder for the compiler to optimize.

Avoiding Loop Rotation by Hand

� Tip: Do not rotate loops by hand.

Programmers are often tempted to “rotate” loops in DSP code by “hand”
attempting to execute loads and stores from earlier or future iterations at
the same time as computation from the current iteration. This technique
introduces loop-carried dependencies that prevent the compiler from rear-
ranging the code effectively. However, it is better to give the compiler a
“normalized” version, and leave the rotation to the compiler.

int ss(short *a, short *b, int n) {
int sum = 0;
int i;
for (i = 0; i < n; i++) {

sum += a[i] + b[i];
}
return sum;

}

Good: will be rotated by the compiler.

int ss(short *a, short *b, int n) {
short ta, tb;
int sum = 0;
int i = 0;
ta = a[i]; tb = b[i];
for (i = 1; i < n; i++) {

sum += ta + tb;
ta = a[i]; tb = b[i];

}
sum += ta + tb;
2-18 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
return sum;
}

Bad: rotated by hand—hard for the compiler to optimize.

By rotating the loop, the scalar variables ta and tb have been added, intro-
ducing loop-carried dependencies.

Avoiding Array Writes in Loops
Other dependencies can be caused by writes to array elements. In the fol-
lowing loop, the optimizer cannot determine whether the load from a
reads a value defined on a previous iteration or one that will be overwrit-
ten in a subsequent iteration.

for (i = 0; i < n; ++i)
a[i] = b[i] * a[c[i]];

Bad: has array dependency.

The optimizer can resolve access patterns where the addresses are expres-
sions that vary by a fixed amount on each iteration. These are known as
“induction variables”.

for (i = 0; i < n; ++i)
a[i+4] = b[i] * a[i];

Good: uses induction variables.

 Inner Loops vs. Outer Loops

� Tip: Inner loops should iterate more than outer loops.

The optimizer focuses on improving the performance of inner loops
because this is where most programs spend the majority of their time. It is
considered a good trade-off for an optimization to slow down the code
before and after a loop if it is going to make the loop body run faster.
Therefore, try to make sure that your algorithm also spends most of its
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-19
for ADSP-219x DSPs

Loop Guidelines
time in the inner loop; otherwise it may actually be made to run slower by
optimization. If you have nested loops where the outer loop runs many
times and the inner loop a small number of times, it may be possible to
rewrite the loops so that the outer loop has the fewer iterations.

Avoiding Conditional Code in Loops
If a loop contains conditional code, control-flow latencies may incur large
penalties if the compiler has to generate conditional jumps within the
loop. In some cases, the compiler will be able to convert IF-THEN-ELSE and
?: constructs into conditional instructions. In other cases, it will be able
to relocate the expression evaluation outside of the loop entirely. How-
ever, for important loops, linear code should be written where possible.

The compiler will not perform the loop transformation that interchanges
conditional code and loop structures. Instead of writing

for (i=0; i<100; i++) {
if (mult_by_b)

sum1 += a[i] * b[i];
else

sum1 += a[i] * c[i];
}

Bad: loop contains conditional code.

it is better to write

if (mult_by_b) {
for (i=0; i<100; i++)

sum1 += a[i] * b[i];
} else {

for (i=0; i<100; i++)
sum1 += a[i] * c[i];

}

Good: two simple loops can be optimized well.

if this is an important loop.
2-20 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Avoiding Placing Function Calls in Loops
The compiler will not usually be able to generate a hardware loop if the
loop contains a function call due to the expense of saving and restoring the
context of a hardware loop. In addition to obvious function calls, such as
printf(), hardware loop generation can also be prevented by operations
such as division, modulus, and some type coercions. These operations may
require implicit calls to library functions. For more details, see “Data
Types” on page 2-7.

 Avoiding Non-Unit Strides
If you write a loop such as:

for (i=0; i<n; i+=3) {

// some code

}

Bad: non-unit stride means division may be required.

then in order for the compiler to turn this into a hardware loop, it will
need to work out the loop trip count. To do so, it must divide n by 3. The
compiler will decide that this is worthwhile as it will speed up the loop,
but as discussed above, division is an expensive operation. Try to avoid
creating loop control variables with strides of non-unit magnitude.

Loop Control

� Tip: Use int types for loop control variables and array indices.

� Tip: Use automatic variables for loop control and loop exit test.

For loop control variables and array indices, it is always better to use
signed ints rather than any other integral type. The C standard requires
various type promotions and standard conversions that complicate the
code for the compiler optimizer. Frequently, the compiler is still able to
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-21
for ADSP-219x DSPs

Loop Guidelines
deal with such code and create hardware loops and pointer induction vari-
ables. However, it does make it more difficult for the compiler to optimize
and may occasionally result in under-optimized code.

The same advice goes for using automatic (local) variables for loop con-
trol. It is easy for a compiler to see that an automatic scalar, whose address
is not taken, may be held in a register during a loop. But it is not as easy
when the variable is a global or a function static. Therefore, code such as

for (i=0; i<globvar; i++)
a[i] = 10;

Bad: may need to reload globvar on every iteration.

may not create a hardware loop if the compiler cannot be sure that the
write into the array a does not change the value of the global variable. The
globvar must be re-loaded each time around the loop before performing
the exit test.

In this circumstance, the programmer can make the compiler's job easier
by writing:

int upper_bound = globvar;
for (i=0; i<upper_bound; i++)

a[i] = 10;

Good: easily becomes hardware loop.

Using the Restrict Qualifier
The restrict qualifier provides one way to help the compiler resolve
pointer aliasing ambiguities. Accesses from distinct restricted pointers
do not interfere with each other. The loads and stores in the following
loop

for (i=0; i<100; i++)
a[i] = b[i];
2-22 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Bad: possible alias of arrays a and b.

 may be disambiguated by writing

int * restrict p = a;
int * restrict q = b;
for (i=0; i<100; i++)

*p++ = *q++;

Good: restrict qualifier tells compiler that memory accesses do
not alias.

The restrict keyword is particularly useful on function parameters.

Using the Const Qualifier
By default, the compiler assumes that the data referenced by a pointer to
const type will not change. Therefore, another way to tell the compiler
that the two arrays a and b do not overlap is to use the const keyword.

void copy(short *a, const short *b) {
int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

Good: pointers disambiguated via const qualifier.

The use of const in the above example will have a similar effect on the
no_alias pragma (see in “#pragma no_alias” on page 2-36). In fact, the
const implementation is better since it also allows the optimizer to use the
fact that accesses via a and b are independent in other parts of the code,
not just the inner loop.

In C, it is legal, though bad programming practice, to use casts to allow
the data pointed to by pointers to const type to change. This should be
avoided since, by default, the compiler will generate code that assumes
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-23
for ADSP-219x DSPs

Loop Guidelines
const data does not change. If you have a program that modifies const
data through a pointer, you can generate standard-conforming code by
using the compile-time flag -const-read-write.

Avoiding Long Latencies
All pipelined machines will introduce stall cycles when you cannot execute
the current instruction until a prior instruction has exited the pipeline.

If a stall is seen empirically, but it is not obvious to you exactly why it is
occurring, a good way to learn about the cause is the Pipeline Viewer.
This can be accessed through Debug Windows -> Pipeline Viewer in the
VisualDSP++ 3.5 IDDE. By single-stepping through the program, you
will see where the stall occurs. Note that the Pipeline Viewer is only avail-
able within a simulator session.
2-24 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Using Built-In Functions in Code
Optimization

Built-in functions, also known as compiler intrinsics, provide a method
for the programmer to efficiently use low-level features of the DSP hard-
ware while programming in C. Although this section does not cover all the
built-in functions available (for more information, refer to “Compiler
Built-In Functions” on page 1-94), it presents some code examples where
implementation choices are available to the programmer.

Fractional Data
Fractional data, represented as an integral type, can be manipulated in two
ways: one way is the use of long promoted shifts and multiply constructs,
and the other is the use of compiler built-in functions. The built-in func-
tions are recommended as they give you the most control over your data.
Let’s consider the fractional dot product algorithm. This may be written
as:

long dot_product (short *a, short *b) {

int i;
long sum=0;
for (i=0; i<100; i++) {
/* this line is performance critical */

sum += (((long)a[i]*b[i]) << 1);
}
return sum;

}

Bad: uses shifts to implement fractional multiplication.

This presents some problems to the optimizer. Normally, the code gener-
ated here would be a multiply, followed by a shift, followed by an
accumulation. However, the DSP hardware has a fractional multiply/accu-
mulate instruction that performs all these tasks in one cycle.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-25
for ADSP-219x DSPs

Using Built-In Functions in Code Optimization
In the example code, the compiler recognizes this idiom and replaces the
multiply followed by shift with a fractional multiply. In more complicated
cases, where perhaps the multiply is further separated from the shift, the
compiler may not detect the possibility of using a fractional multiply.

The recommended coding style is to use built-in functions. In the follow-
ing example, a builtin is used to multiply fractional 16-bit data.

#include <math.h>
fract32 dot_product(fract16 *a, fract16 *b) {

int i;
fract32 sum=0;
for (i=0; i<100; i++) {

/* this line is performance critical */
sum += __builtin_mult_fr1x32(a[i],b[i]);

}
return sum;

}

Good: uses builtins to implement fractional multiplication.

Note that the fract16 and fract32 types used in the example above are
merely typedefs to C integer types used by convention in standard
include files. The compiler does not have any in-built knowledge of these
types and treats them exactly as the integer types that they are typedefed to.

System Support Built-In Functions
Built-in functions are also provided to perform low-level system manage-
ment, in particular for the manipulation of system registers (defined in
sysreg.h). It is usually better to use these built-in functions rather than
inline asm statements. The built-in functions cause the compiler to gener-
ate efficient inline instructions and their use often results in better
optimization of the surrounding code at the point where they are used.
Using builtins will also usually result in improved code-readability. For
more information on built-in functions supported by the compiler, refer
to “Compiler Built-In Functions” on page 1-94.
2-26 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Examples of the two styles are:

int read_io(int iopg_val) {
int ret_val;
("IOPG=%1 ; %0=IO(0x20);" : "=e"(ret_val) : "e"(iopg_val) : "IOPG");
return ret_val;

}

Bad: uses inline asm statement.

#include <sysreg.h>
#define ADDR 0x20
int read_io(int iopg_val) {

sysreg_write(sysreg_IOPG, iopg_val);
return sysreg_read(reg_CYCLES);

}

Good: uses sysreg.h.

This example reads and returns the CYCLES register.

Using Circular Buffers
Circular buffers are often extremely useful in DSP code. They can be used
in several ways. Consider the C code:

for (i=0; i<1000; i++) {
sum += a[i] * b[i%20];

}

Good: the compiler knows that b is accessed as a circular buffer.

Clearly the access to array b is a circular buffer. When optimization is
enabled the compiler will produce a hardware circular buffer instruction
for this access.

Consider the slightly more complicated example:

for (i=0; i<1000; i+=n) {
sum += a[i] * b[i%20];

}

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-27
for ADSP-219x DSPs

Using Built-In Functions in Code Optimization
Bad: may not be able to use circular buffer to access b.

In this case, the compiler does not know if n is positive and less than 20. If
it is, then the access may be correctly implemented as a hardware circular
buffer. On the other hand, if it is greater than 20, a circular buffer incre-
ment may not yield the same results as the C code.

The programmer has two options here. One is to compile with the
-force-circbuf switch (on page 1-27). This tells the compiler that any
access of the form a[i%n] should be considered as a circular buffer. Before
using this switch, you should check that this assumption is valid for your
application.

The preferred option, however, is to use builtins to perform the circular
buffering. Two are provided for this purpose. To make it clear to the com-
piler that a circular buffer should be used, you may write either

for (i=0, j=0; i<1000; i+=n) {
sum += a[i] * b[j];
j = __builtin_circindex(j, n, 20);

}

Good: explicit use of circular buffer via __builtin_circindex.

or

int *p = b;
for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * (*p);
p = __builtin_circptr(p, n, b, 20);

}

Good: explicit use of circular buffer via __builtin_circptr.

For more information, see “Compiler Built-In Functions” on page 1-94.
2-28 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Smaller Applications: Optimizing for
Code Size

The same ethos for producing fast code also applies to producing small
code. You should present the algorithm in a way that gives the optimizer
excellent visibility of the operations and data, and hence the greatest free-
dom to safely manipulate the code to produce small applications.

Once the program is presented in this way, the optimization strategy will
depend on the code-size constraint that the program must obey. The first
step should be to optimize the application for full performance, using -O
or -ipa switches. If this obeys the code-size constraints, then no more
need be done.

The “optimize for space” switch -Os (on page 1-37). which may be used in
conjunction with IPA, will perform every performance-enhancing trans-
formation except those that increase code-size. In addition, the -e linker
switch (-flags-link -e if used from the compiler command line) may be
helpful (on page 1-27). This performs section elimination in the linker to
remove unneeded data and code. If the code produced with -Os and -e
does not meet the code-size constraint, some analysis of the source code
will be required to try to reduce the code-size further.

Note that loop transformations such as unrolling and software pipelining
increase code size. But it is these loop transformations that also give the
greatest performance benefit. Therefore, in many cases compiling for min-
imum code size will produce significantly slower code than optimizing for
speed.

The compiler provides a way to balance between the two extremes of -O
and -Os. This is the sliding-scale -Ov num switch (adjustable using the
optimization slider bar under Project Options in the VisualDSP++
IDDE), described on page 1-38. The num is a value between 0 and 100,
where the lower value corresponds to minimum code size and the upper to
maximum performance. A value in between will try to optimize the fre-
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-29
for ADSP-219x DSPs

Smaller Applications: Optimizing for Code Size
quently executed regions of code for maximum performance, while
keeping the infrequently executed parts as small as possible. The switch is
most reliable when using profile-guided optimization, since the execution
counts of the various code regions have been measured experimentally.
Without PGO, the execution counts are estimated, based on the depth of
loop nesting.

� Tip: Avoid the use of inline code.

Avoid using the inline keyword to inline code for functions that are used
a number of times, especially if they not very small functions. The -Os
switch does not have any effect on the use of the inline keyword. It does,
however, prevent automatic inlining (using the -Oa switch) from increas-
ing the code size. Macro functions can also cause code expansion and
should be used with care.
2-30 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Pragmas
Pragmas can assist optimization by allowing the programmer to make
assertions or suggestions to the compiler. This section looks at how they
can be used to finely tune source code. Refer to “Pragmas” on page 1-119
for full details of how each pragma works; the emphasis here will be in
considering under what circumstances they are useful during the optimi-
zation process.

In most cases, the pragmas serve to give the compiler information which it
is unable to deduce for itself. It must be emphasized that the programmer
is responsible for making sure that the information given by the pragma is
valid in the context in which it is used. Use of a pragma to assert that a
function or loop has a quality that it does not in fact have is likely to result
in incorrect code and hence a malfunctioning application.

An advantage of the use of pragmas is that they allow code to remain por-
table, since they will normally be ignored by a compiler that does not
recognize them.

Function Pragmas
Function pragmas include #pragma const, #pragma pure, #pragma alloc,
#pragma result_alignment, #pragma regs_clobbered, and
#pragma optimize_{off|for_speed|for_space|as_cmd_line}.

#pragma const

The pragma const pragma asserts to the compiler that a function does not
have any side effects (such as modifying global variables or data buffers),
and the result returned is only a function of the parameter values. The
pragma may be applied to a function prototype or definition. It helps the
compiler since two calls to the function with identical parameters will
always yield the same result. This way, calls to #pragma const functions
may be hoisted out of loops if their parameters are loop independent.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-31
for ADSP-219x DSPs

Pragmas
#pragma pure

Like #pragma const, this pragma asserts to the compiler that a function
does not have any side effects (such as modifying global variables or data
buffers). However, the result returned may be a function of both the
parameter values and any global variables. The pragma may be applied to a
function prototype or definition. Two calls to the function with identical
parameters will always yield the same result provided that no global vari-
ables have been modified between the calls. Hence, calls to #pragma pure
functions may be hoisted out of loops if their parameters are loop inde-
pendent and no global variables are modified in the loop.

#pragma alloc

The pragma alloc pragma asserts that the function behaves like the
malloc library function. In particular, it returns a pointer to new memory
that cannot alias any pre-existing buffers. In the following code,

#pragma alloc
int *new_buf(void);
int *vmul(int *a, int *b) {

int i;
int *out = new_buf();
for (i=0; i<100; i++)

out[i] = a[i] * b[i];
}

Good: uses #pragma alloc to disambiguate out from a and b.

the use of the pragma allows the compiler to be sure that the write into
buffer out does not modify either of the two input buffers a or b, and,
therefore, the iterations of the loop may be re-ordered.
2-32 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
#pragma regs_clobbered

The regs_clobbered pragma is a useful way to improve the performance
of code that makes function calls. The best use of the pragma is to increase
the number of call-preserved registers available across a function call.
There are two complementary ways in which this may be done.

First of all, suppose that you have a function written in assembly that you
wish to call from C source code. The regs_clobbered pragma may be
applied to the function prototype to specify which registers are “clob-
bered” by the assembly function, that is, which registers may have
different values before and after the function call. Consider for example an
simple assembly function to add two integers and mask the result to fit
into 8 bits:

_add_mask:
AY1 = DM(I4 + 1);
AX1 = DM(I4 + 2);
AY0 = 255;
AR = AX1 + AY1;
RTS (DB);
AR = AR AND AY0;
AX1 = AR;

._add_mask.end

Clearly the function does not modify the majority of the scratch registers
available and thus these could instead be used as call-preserved registers.
In this way fewer spills to the stack would be needed in the caller function.
Using the prototype

#pragma regs_clobbered "AX1, AY0, AY1, AR, ASTAT"

int add_mask(int, int);

Good: uses regs_clobbered to increase call-preserved register set.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-33
for ADSP-219x DSPs

Pragmas
the compiler is told which registers are modified by a call to the add_mask
function. The registers not specified by the pragma are assumed to pre-
serve their values across such a call and the compiler may use these spare
registers to its advantage when optimizing the call sites.

The pragma is also powerful when all of the source code is written in C. In
the above example, a C implementation might be:

int add_mask(int a, int b) {
return ((a+b)&255);

}

Bad: function thought to clobber entire volatile register set.

Since this function will not need many registers when compiled, it can be
defined using:

#pragma regs_clobbered "AX1, AY0, AY1, AR, M7, CCset"
int add_mask(int a, int b) {

return ((a+b)&255);
}

Good: function compiled to preserve most registers.

to ensure that any other registers aside from AX1, AY0, AY1, AR, M7 and the
condition codes will not be modified by the function. If any other regis-
ters are used in the compilation of the function, they will be saved and
restored during the function prologue and epilogue.

In general, it is not very helpful to specify any of the condition codes as
call-preserved as they are difficult to save and restore and are usually clob-
bered by any function. Moreover, it is usually of limited benefit to be able
to keep them live across a function call. Therefore, it is better to use CCset
(all condition codes) rather than ASTAT in the clobbered set above. For
more information, refer to “#pragma regs_clobbered string” on
page 1-130.
2-34 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
#pragma optimize_{off|for_speed|for_space|as_cmd_line}

The optimize_ pragma may be used to change the optimization setting on
a function-by-function basis. In particular, it may be useful to optimize
functions that are rarely called (for example, error handling code) for
space (using #pragma optimize_for_space), whereas functions critical to
performance should be compiled for maximum speed
(#pragma optimize_for_speed). The #pragma optimize_off is useful for
debugging specific functions without increasing the size or decreasing the
performance of the overall application unnecessarily.

For more information, refer to “General Optimization Pragmas” on
page 1-125.

Loop Optimization Pragmas
Many pragmas are targeted towards helping to produce optimal code for
inner loops. These are the loop_count and no_alias pragmas.

#pragma loop_count

The loop_count pragma enables the programmer to inform the compiler
about a loop's iteration count. The compiler is able to make more reliable
decisions about the optimization strategy for a loop if it knows the itera-
tion count range. If you know that the loop count is always a multiple of
some constant, this can also be useful as it allows a loop to be partially
unrolled or vectorized without the need for conditionally-executed itera-
tions. Knowledge of the minimum trip count may allow the compiler to
omit the guards that are usually required after software pipelining. Any of
the parameters of the pragma that are unknown may be left blank.

An example of the use of the loop_count pragma might be:

#pragma loop_count(/*minimum*/ 40, /*maximum*/ 100, /*modulo*/ 4)
for (i=0; i<n; i++)

a[i] = b[i];
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-35
for ADSP-219x DSPs

Pragmas
Good: the loop_count pragma gives compiler helpful information to
assist optimization.

For more information, refer to “#pragma loop_count(min, max, modulo)”
on page 1-124.

#pragma no_alias

When immediately preceding a loop, the no_alias pragma asserts that no
load or store in the loop accesses the same memory as any other. This
helps to produce shorter loop kernels as it permits instructions in the loop
to be rearranged more freely.

See “#pragma no_alias” on page 1-125 for more information.
2-36 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Achieving Optimal Performance from C/C++ Source Code
Useful Optimization Switches
Table 2-1 lists the compiler switches useful during the optimization
process.

Table 2-1. C/C++ Compiler Optimization Switches

Switch Name Description

-const-read-write
on page 1-24

Specifies that data accessed via a pointer to const data may be modi-
fied elsewhere.

-flags-link -e
on page 1-27

Specifies linker section elimination.

-force-circbuf
on page 1-27

Treats array references of the form array[i%n] as circular buffer
operations.

-ipa
on page 1-30

Turns on inter-procedural optimization. Implies use of -O.
May be used in conjunction with -Os or -Ov.

-no-fp-associative
on page 1-34

Does not treat floating-point multiply and addition as an associative.

-O
on page 1-37

Enables code optimizations and optimizes the file for speed.

-Os
on page 1-37

Optimizes the file for size.

-Ov num
on page 1-38

Controls speed vs. size optimizations (sliding scale).

-save-temps
on page 1-44

Saves intermediate files (for example, .s).
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 2-37
for ADSP-219x DSPs

Useful Optimization Switches
2-38 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

3 C/C++ RUN-TIME LIBRARY

The C and C++ run-time libraries are collections of functions, macros,

and class templates that you can call from your source programs. The
libraries provide a broad range of services including those that are basic to
the languages such as memory allocation, character and string conversions,
and math calculations. Using the library simplifies your software develop-
ment by providing code for a variety of common needs.

This chapter contains

• “C and C++ Run-Time Library Guide” on page 3-3
It provides introductory information about the ANSI/ISO stan-
dard C and C++ libraries. It also provides information about the
ANSI standard header files and built-in functions that are included
with this release of the cc219x compiler.

• “Documented Library Functions” on page 3-23
It tabulates the functions that are defined by ANSI standard header
files.

• “C Run-Time Library Reference” on page 3-26“
It provides reference information about the C run-time library
functions included with this release of the cc219x compiler.

The cc219x compiler provides a broad collection of library functions
including those required by the ANSI standard and functions supplied by
Analog Devices that are of value in signal processing applications. In addi-
tion to the Standard C Library, this release of the compiler software
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-1
for ADSP-219x DSPs

includes the abridged C++ library, a conforming subset of the standard
C++ library. The abridged C++ library includes the embedded C++ and
embedded standard template libraries.

This chapter describes the standard C/C++ library functions in the current
release of the run-time library. Chapter 4, “DSP Run-Time Library”
describes a number of signal processing, matrix, and statistical functions
that assist DSP code development.

� For more information on the C standard library, see The Standard
C Library by P.J. Plauger, Prentice Hall, 1992. For more informa-
tion on the algorithms on which many of the C library’s math
functions are based, see Cody, W. J. and W. Waite, Software Man-
ual for the Elementary Functions, Englewood Cliffs, New Jersey:
Prentice Hall, 1980. For more information on the C++ library por-
tion of the ANSI/ISO Standard for C++, see Plauger, P. J.
(Preface), The Draft Standard C++ Library, Englewood Cliffs, New
Jersey: Prentice Hall, 1994, (ISBN: 0131170031).

The C++ library reference information in HTML format is included on
the software distribution CD-ROM. To access the reference files from
VisualDSP++, use the Help Topics command (Help menu) and select the
Reference book icon. From the Online Manuals topic, you can open any
of the library files. You can also manually access the HTML files using a
web browser.
3-2 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
C and C++ Run-Time Library Guide
The C and C++ run-time libraries contain routines that you can call from
your source program. This section describes how to use the libraries and
provides information on the following topics:

• “Calling Library Functions” on page 3-4

• “Using the Compiler’s Built-In C Library Functions” on page 3-5

• “Linking Library Functions” on page 3-6

• “Working With Library Header Files” on page 3-8

• “Abridged C++ Library Support” on page 3-16

For information on the C library’s contents, see “Documented Library
Functions” on page 3-23. For information on the Abridged C++ library’s
contents, see “Abridged C++ Library Support” on page 3-16 and on-line
Help.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-3
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
Calling Library Functions
To use a C/C++ library function, call the function by name and give the
appropriate arguments. The name and arguments for each function appear
on the function’s reference page. The reference pages appear in the “Doc-
umented Library Functions” on page 3-23 and in the C++ Run-Time
Library topic of the on-line Help.

Like other functions you use, library functions should be declared. Decla-
rations are supplied in header files. For more information about the
header files see “Working With Library Header Files” on page 3-8.

Function names are C/C++ function names. If you call a C or C++
run-time library function from an assembler program, you must use the
assembly version of the function name.

• For C functions, this is an underscore at the beginning of the C
function name. For example, the C function main() is referred to
as _main from assembler.

• Functions in C++ modules are normally compiled with an encoded
function name. Function names in C++ contain abbreviations for
the parameters to the function and also the return type. As such,
they can become very large. The compiler “mangles” these names
to a shorter form. You can instruct the C++ compiler to use the sin-
gle-underscore convention from C, as shown by the following
example.

extern "C" {
int myfunc(int); // external name is _myfunc

}

Alternatively, compile C++ files to assembler, and see how the function
has been declared in the assembly file.
3-4 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
It may not be possible to call inline functions from an assembler program
as the compiler may have removed the definition of the function if all calls
to the function are inlined. Global static variables cannot be referred to in
assembly routines as their names are encrypted. For more information on
the naming conventions, see “C/C++ and Assembly Language Interface”
on page 1-169.

� You can use elfar (the archiver), described in the VisualDSP++
3.5 Linker and Utilities Manual for 16-Bit Processors, to build
library archive files of your own functions.

Using the Compiler�s Built-In C Library Functions
The C/C++ compiler’s built-in functions are a set of functions that the
compiler immediately recognizes and replaces with inline assembly code
instead of a function call. Typically, in-line assembly code is faster than an
library routine, and it does not incur the calling overhead.

To use built-in functions, your source must include the required standard
include file. For the abs functions this would require stdlib.h to be
included. There are built-in functions used to define some ANSI C
math.h, string.h and stdlib.h functions. There are also built-in func-
tions to support various ANALOG extensions to the ANSI standard
defined in the include file math_builtins.h. Not all built-in functions
have a library alternate definition. Therefore, the failure to use the
required include files can result in your program build failing to link.

If you want to use the C run-time library functions of the same name,
compile with the -no-builtin compiler switch (on page 1-34).
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-5
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
Linking Library Functions
The C/C++ run-time library is organized as several libraries which are cat-
alogued in Table 3-1. The libraries and start-up files are installed within
the subdirectory ...\219x\lib of your VisualDSP++ installation.

Several library files are built twice: once for single-threaded environments,
and once for multi-threaded environments. The multi-threaded versions
have a "mt" suffix. Another variant for some of the libraries is also pro-
vided that avoids a hardware anomaly involving instruction type 32a; these
libraries have a "_type32aworkaround" suffix.

When you call a run-time library function, the call creates a reference that
the linker resolves. One way to direct the linker to the library's location is
to use the default Linker Description File (ADSP-21<your_target>.ldf).

� If you are not using the default .LDF file, then either add the appro-
priate library/libraries to the .LDF file used for your project, or use
the compiler's -l switch (“-l library” on page 1-31) to specify the
library to be added to the link line.

For example, the switches -lc -letsi will add the C library
libc.dlb and the ETSI support library libetsi.dlb to the list of
libraries to be searched by the linker. For more information on the
.LDF file, see the VisualDSP++ 3.5 Linker and Utilities Manual for
16-Bit Processors.

Table 3-1 briefly describes the ADSP-219x DSP library functions.

Table 3-1. C and C++ Library Files

219x\lib Directory Description

2192-12_int_tab.doj Default interrupt vector code for ADSP-2192-12 DSP

219x_int_tab.doj Default interrupt vector code for ADSP-219x DSPs

219x_hdr.doj Startup file — set-up routines and call main()
3-6 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
� Ensure that the C++ library of run-time routines, libcpprt.dlb, is
the last library specified on the link line.

219x_cpp_hdr.doj
219x_cpp_mt_hdr.doj

C++ startup file — set-up routines and call main()

219x_exit.doj Dummy exit object for backwards compatibility.

219x_ezkit_hdr.doj Startup file — set-up routines, call main(), and
enable use of the EZ-kit monitor program

219x_cpp_ezkit_hdr.doj
219x_cpp_mt_ezkit_hdr.doj

C++ start-up file — set-up routines, call main(), and
enable use of the EZ-kit monitor program

libc.dlb
libcmt.dlb
libc_type32aworkaround.dlb
libcmt_type32aworkaround.dlb

C run-time library

libcpp.dlb
libcppmt.dlb
libcpp_type32aworkaround.dlb
libcppmt_type32aworkaround.dlb

C++ run-time library

libcpprt.dlb
libcpprtmt.dlb
libcpprt_type32aworkaround.dlb
libcpprtmt_type32aworkaround.dlb

C++ run-time support library

libdsp.dlb
libdsp_type32aworkaround.dlb

DSP library

libetsi.dlb ETSI run-time library

libio.dlb
ibiomt.dlb
libio_type32aworkaround.dlb
libiomt_type32aworkaround.dlb

I/O library

libsim.dlb Simulator library support

Table 3-1. C and C++ Library Files (Cont’d)

219x\lib Directory Description
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-7
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
� If all the objects supplied to the driver have been built as C, but are
referencing a C++ object which is in a library, the standard C++
libraries are not searched and the linker may issue an error concern-
ing unresolved symbol(s). This can be avoided by using the
flags-link switch (see on page 1-27), which ensures that that the
C++ libraries are linked from the default .LDF files.

For example,

flags-link -MD__cplusplus=1

Note that this problem will only occur if the C++ object is in a
library. If it is in an object file, the compiler will recognize it as a
C++ object and link with the C++ libraries.

Working With Library Header Files
When you use a library function in your program, you should also include
the function’s header file with the #include preprocessor command. The
header file for each function is identified in the Synopsis section of the
function’s reference page. Header files contain function prototypes. The
compiler uses these prototypes to check that each function is called with
the correct arguments.

A list of the header files that are supplied with this release of the cc219x
compiler appears in Table 3-2. You should use a C standard text to aug-
ment the information supplied in this chapter.

Table 3-2. C Run-Time Library Header Files

Header Purpose Standard

assert.h Diagnostics ANSI

ctype.h Character Handling ANSI

def2191.h Memory Map Register and System Defini-
tions for ADSP-2191 DSPs

C Extension
3-8 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
The following sections provide descriptions of the header files contained
in the C library. The header files are listed in alphabetical order.

assert.h

The assert.h header file contains the assert macro.

ctype.h

The ctype.h header file contains functions for character handling, such as
isalpha, tolower, etc.

def2192-12.h Memory Map Register and System Defini-
tions for ADSP-2192-12 DSPs

C Extension

def219x.h Memory Map Definitions C Extension

errno.h Error Handling ANSI

float.h Floating Point ANSI

iso646.h Boolean Operators ANSI

limits.h Limits ANSI

locale.h Localization ANSI

math.h Mathematics ANSI

setjmp.h Non-Local Jumps ANSI

signal.h Signal Handling ANSI

stdarg.h Variable Arguments ANSI

stddef.h Standard Definitions ANSI

stdio.h Input/Output ANSI

stdlib.h Standard Library ANSI

string.h String Handling ANSI

sysreg.h Efficient system access C Extension

Table 3-2. C Run-Time Library Header Files (Cont’d)

Header Purpose Standard
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-9
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
def2191.h � Memory Map Definitions

The def2191.h header file contains macro definitions for the ADSP-2191
processor's system addresses, and system register bits. These symbolic
names can be used in programs to access specific system registers and sys-
tem register bits in the ADSP-2191 DSP.

def2192-12.h � Memory Map Definitions

The def2192-12.h header file contains macro definitions for the
ADSP-2191-12 processor's system addresses, and system register bits.
These symbolic names can be used in programs to access specific system
registers and system register bits in the ADSP-2191-12 DSP.

def219x.h� Memory Map Definitions

The def219x.h header file contains macro definitions for a ADSP-219x
processor's system addresses, and system register bits. These symbolic
names can be used in programs to access specific system registers and sys-
tem register bits in ADSP-219x DSPs.

errno.h

The errno.h header file provides access to errno. This facility is not, in
general, supported by the rest of the library.

float.h

The float.h file defines the format of floating-point data types. The
FLT_ROUNDS macro, defined in the header file, is set to the C run-time
environment definition of the rounding mode for float variables, which
is round-towards-nearest.
3-10 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
iso646.h

The iso646.h header file defines symbolic names for certain C operators;
the symbolic names and their associated value are shown in Table 3-3.

� The symbolic names have the same name as the C++ keywords that
are accepted by the compiler when the -alttok switch (see
on page 1-23) is specified.

limits.h

The limits.h header file contains definitions of maximum and minimum
values for each C data type other than floating-point.

Table 3-3. Symbolic Names Defined in iso646.h

Symbolic Name Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-11
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
locale.h

The locale.h header file contains definitions for expressing numeric,
monetary, time, and other data.

math.h

This category includes the floating-point mathematical functions of the C
run-time library. The mathematical functions are ANSI standard. The
math.h header file contains prototypes for functions used to calculate
mathematical properties of single-precision floating type variables. On the
ADSP-219x processors, double and float are both single-precision float-
ing point types. Additionally, some functions support a 16-bit fractional
data type.

The math.h file also defines the macro HUGE_VAL. HUGE_VAL evaluates to
the maximum positive value that the type double can support. The macros
EDOM and ERANGE, defined in errno.h, are used by math.h functions to
indicate domain and range errors.

Some of the functions in this header file exist as both integer and floating
point. The floating-point functions typically have an f prefix. Make sure
you are using the correct one.

� The C language provides for implicit type conversion, so the fol-
lowing sequence produces surprising results with no warnings:

float x,y;

y = abs(x);

The value in x is truncated to an integer prior to calculating the
absolute value, then reconverted to floating point for the assign-
ment to y .
3-12 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
setjmp.h

The setjmp.h header file contains setjmp and longjmp for non-local
jumps.

signal.h

The signal.h header file provides function prototypes for the standard
ANSI signal.h routines and also for several ADSP-219x DSP’s extensions
such as interrupt() and clear_interrupt().

The signal handling functions process conditions (hardware signals) that
can occur during program execution. They determine the way that your C
program responds to these signals. The functions are designed to process
such signals as external interrupts and timer interrupts.

stdarg.h

The stdarg.h header file contains definitions needed for functions that
accept a variable number of arguments. Programs that call such functions
must include a prototype for the functions referenced.

stddef.h

The stddef.h header file contains a few common definitions useful for
portable programs, such as size_t.

stdio.h

The stdio.h header file defines a set of functions, macros, and data types
for performing input and output. Applications that use the facilities of
this header file should link with the I/O library libio.dlb in the same way
as linking with the C run-time library libc.dlb. The library is thread-safe
but it is not interrupt-safe and should not therefore be called either
directly or indirectly from an interrupt service routine.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-13
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
The implementation of the stdio.h routines is based on a simple interface
with a device driver that provides a set of low-level primitives for open,
close, read, write, and seek operations. By default, these operations are
provided by the VisualDSP++ simulator and EZ-KIT Lite systems. How-
ever, alternative device drivers may be registered (see “Extending I/O
Support To New Devices” on page 1-166) that can then be used through
the stdio.h functions.

The following restrictions apply to this software release:

• Functions tmpfile() and tmpnam() are not available,

• Functions rename() and remove() are only supported under the
default device driver supplied by the VisualDSP++ simulator and
EZ-kits, and they only operate on the host file system,

• Positioning within a file that has been opened as a text stream is
only supported if the lines within the file are terminated by the
character sequence \r\n.

When using the default device driver, all I/O operations are channeled
through the C function _primIO(). The assembly label has two under-
scores, __primIO. The _primIO() function accepts no arguments. Instead,
it examines the I/O control block at label _primIOCB. Without external
intervention by a host environment, the _primIO routine simply returns,
which indicates failure of the request.

When the host environment is providing I/O support, the host places a
breakpoint at the start of _primIO(). Upon entry to _primIO(), the data
for the request will reside in a control block at the label _primIOCB. The
host arranges to intercept control when it enters the _primIO() routine,
and, after servicing the request, returns control to the calling routine. See
“File I/O Support” on page 1-166 for more information.
3-14 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
At program termination, the host environment will close down any physi-
cal connection between the application and an opened file. However, the
I/O library will not implicitly close any opened streams to avoid an unnec-
essary overheads (particularly with respect to memory occupancy).

Therefore, unless explicit action is taken by an application any unflushed
output may be lost. Any output generated by printf is always flushed but
output generated by other library functions, such as putchar, fwrite,
fprintf, will not be automatically flushed. Applications should therefore
arrange to close down any streams that they open. Note that the function
reference fflush (NULL); will flush the buffers of all opened streams.

stdlib.h

The stdlib.h header file contains general utilities specified by the C stan-
dard. These include some integer math functions, such as abs, div, and
rand; general string-to-numeric conversions; memory allocation functions,
such as malloc and free, and termination functions, such as exit. This
header file also contains prototypes for miscellaneous functions such as
bsearch and qsort.

string.h

The string.h header file contains string handling functions, including
strcpy and memcpy.

sysreg.h

The sysreg.h header file defines a set of functions that provide efficient
system access to registers, modes and addresses not normally accessible
from C source. See “Compiler Built-In Functions” on page 1-94 for more
information on these functions.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-15
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
Abridged C++ Library Support
When in C++ mode, the cc219x compiler can call a large number of func-
tions from the Abridged Library, a conforming subset of the C++ library.

The Abridged Library has two major components—embedded C++ library
(EC++) and embedded standard template library (ESTL). The embedded
C++ library is a conforming implementation of the Embedded C++
library, as specified by the Embedded C++ Technical Committee.

This section lists and briefly describes the following components of the
Abridged Library:

• “Embedded C++ Library Header Files” on page 3-16

• “C++ Header Files for C Library Facilities” on page 3-19

• “Embedded Standard Template Library Header Files” on
page 3-20

For more information on the Abridged Library, see online Help.

Embedded C++ Library Header Files

The following sections provide a brief description of the header files in the
embedded C++ library

complex

The complex header file defines a template class complex and a set of asso-
ciated arithmetic operators. Predefined types include complex_float and
complex_long_double.

This implementation does not support the full set of complex operations
as specified by the C++ standard. In particular, it does not support either
the transcendental functions or the I/O operators << and >>.
3-16 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
The complex header and the C library header file complex.h refer to two
different and incompatible implementations of the complex data type.

exception

The exception header defines the exception and bad_exception classes
and several functions for exception handling.

fract

The fract header defines the fract data type, which supports fractional
arithmetic, assignment, and type-conversion operations. The header file is
fully described under “Fractional Type Support” on page 1-90, and an
example that demonstrates its use appears under “C++ Programming
Examples” on page 1-176.

fstream

The fstream header defines the filebuf, ifstream, and ofstream classes
for external file manipulations.

iomanip

The iomanip header declares several iostream manipulators. Each manip-
ulator accepts a single argument.

ios

The ios header defines several classes and functions for basic iostream
manipulations.

� Most of the iostream header files include ios.

iosfwd

The iosfwd header declares forward references to various iostream tem-
plate classes defined in other standard headers.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-17
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
iostream

The iostream header declares most of the iostream objects used for the
standard stream manipulations.

istream

The istream header defines the istream class for iostream extractions.

� Most of the iostream header files include istream.

new

The new header declares several classes and functions for memory alloca-
tions and deallocations.

ostream

The ostream header defines the ostream class for iostream insertions.

sstream

The sstream header defines the stringbuf, istringstream, and
ostringstream classes for various string object manipulations.

stdexcept

The stdexcept header defines a variety of classes for exception reporting.

streambuf

The streambuf header defines the streambuf classes for basic operations of
the iostream classes.

� Most of the iostream header files include streambuf.
3-18 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
string

The string header defines the string template and various supporting
classes and functions for string manipulations.

� Objects of the string type should not be confused with the
null-terminated C strings.

strstream

The strstream header defines the strstreambuf, istrstream, and
ostream classes for iostream manipulations on allocated, extended, and
freed character sequences.

C++ Header Files for C Library Facilities

For each C standard library header there is a corresponding standard C++
header. If the name of a C standard library header file is foo.h, then the
name of the equivalent C++ header file will be cfoo. For example, the C++
header file cstdio provides the same facilities as the C header file stdio.h.

Normally, the C standard headers files may be used to define names in the
C++ global namespace while the equivalent C++ header files define names
in the standard namespace. However, the standard namespace is not sup-
ported in this release of the compiler, and the effect of including one of
the C++ header files listed in Table 3-4 is the same as including the equiv-
alent C standard library header file.

Table 3-4 lists the C++ header files that provide access to the C library
facilities.

Table 3-4. C++ Header Files for C Library Facilities

Header Description

cassert Enforces assertions during function executions.

cctype Classifies characters.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-19
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
Embedded Standard Template Library Header Files

Templates and the associated header files are not part of the embedded
C++ standard, but they are supported by the cc219x compiler in C++
mode.

The embedded standard template library headers are:

algorithm

The algorithm header defines numerous common operations on
sequences.

deque

The deque header defines a deque template container.

cerrno Tests error codes reported by library functions.

cfloat Tests floating-point type properties.

climits Tests integer type properties.

clocale Adapts to different cultural conventions.

cmath Provides common mathematical operations.

csetjmp Executes non-local goto statements.

csignal Controls various exceptional conditions.

cstdarg Accesses a variable number of arguments.

cstddef Defines several useful data types and macros.

cstdio Performs input and output.

cstdlib Performs a variety of operations

cstring Manipulates several kinds of strings

Table 3-4. C++ Header Files for C Library Facilities (Cont’d)

Header Description
3-20 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
functional

The functional header defines numerous function objects.

hash_map

The hash_map header defines two hashed map template containers.

hash_set

The hash_set header defines two hashed set template containers.

iterator

The iterator header defines common iterators and operations on
iterators.

list

The list header defines a list template container.

map

The map header defines two map template containers.

memory

The memory header defines facilities for managing memory.

numeric

The numeric header defines several numeric operations on sequences.

queue

The queue header defines two queue template container adapters.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-21
for ADSP-219x DSPs

C and C++ Run-Time Library Guide
set

The set header defines two set template containers.

stack

The stack header defines a stack template container adapter.

utility

The utility header defines an assortment of utility templates.

vector

The vector header defines a vector template container.

The embedded C++ library also includes several headers for compatibility
with traditional C++ libraries, such as:

fstream.h

The fstream.h header defines several iostreams template classes that
manipulate external files.

iomanip.h

The iomanip.h header declares several iostreams manipulators that take a
single argument.

iostream.h

The iostream.h header declares the iostreams objects that manipulate the
standard streams.

new.h

The new.h header declares several functions that allocate and free storage.
3-22 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
Documented Library Functions
The following tables list the library functions documented in this chapter.

� These tables list the functions by the header file in which they are
located, whereas the“C Run-Time Library Reference” on page 3-26
presents the functions in alphabetic order.

Table 3-5. Documented Library Functions in the ctype.h Header File

isalnum isalpha iscntrl

isdigit isgraph islower

isprint ispunct isspace

isupper isxdigit tolower

toupper

Table 3-6. Documented Library Functions in the math.h Header File

acos asin atan

atan2 ceil cos

cosh exp fabs

floor fmod frexp

isinf isnan ldexp

log log10 modf

pow sin sinh

sqrt tan tanh

Table 3-7. Documented Library Functions in the setjmp.h Header File

longjmp setjmp
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-23
for ADSP-219x DSPs

Documented Library Functions
Table 3-8. Documented Library Functions in the signal.h Header File

clear_interrupt interrupt raise

signal

Table 3-9. Documented Library Functions in the stdarg.h Header File

va_arg va_end va_start

Table 3-10. Supported Library Functions in the stdio.h Header File

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fprintf

fputc fputs fopen

fread freopen fscanf

fseek fsetpos ftell

fwrite getc getchar

gets perror putc

putchar puts remove

rename rewind scanf

setbuf setvbuf sprintf

sscanf ungetc vfprintf

vprintf vsprintf

Table 3-11. Documented Library Functions in stdlib.h Header File

abort abs atexit

atof atoi atol

bsearch calloc div

exit free labs
3-24 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
ldiv malloc qsort

rand realloc srand

strtod strtodf strtol

strtoul

Table 3-12. Documented Library Functions in string.h Header File

memchr memcmp memcpy

memcpy_from_shared memcpy_to_shared memmove

memset strncat strchr

strcmp strcoll strcpy

strcspn strerror strlen

strncat strncmp strncpy

strpbrk strrchr strspn

strstr strtok strxfrm

Table 3-13. Documented Library Functions in sysreg.h Header File

disable_interrupts enable_interrupts external_memory_read

external_memory_write io_space_read io_space_write

mode_change sysreg_read sysreg_write

Table 3-11. Documented Library Functions in stdlib.h Header File
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-25
for ADSP-219x DSPs

C Run-Time Library Reference
C Run-Time Library Reference
The C run-time library is a collection of functions that you can call from
your C programs.

� The information that follows applies to all of the functions in the
library.

Notation Conventions
An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

Reference Format
Each function in the library has a reference page. These pages have the fol-
lowing format:

Name and Purpose of the function

Synopsis—Required header file and functional prototype

Description—Function specification

Error Conditions—How the function indicates an error

Example—Typical function usage

See Also—Related functions
3-26 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
abort

abnormal program end

Synopsis

#include <stdlib.h>

void abort(void);

Description

The abort function causes an abnormal program termination by raising
the SIGABRT signal. If the SIGABRT handler returns, abort() calls exit() to
terminate the program with a failure condition.

Error Conditions

The abort function does not return.

Example

#include <stdlib.h>

extern int errors;

if(errors) /* terminate program if */

abort(); /* errors are present */

See Also

atexit, exit
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-27
for ADSP-219x DSPs

C Run-Time Library Reference
abs

absolute value

Synopsis

#include <stdlib.h>

int abs(int j);

Description

The abs function returns the absolute value of its int input. The abs
function is implemented through a built-in. The built-in causes the com-
piler to emit an inline instruction to perform the required function at the
point where abs is called.

� abs(INT_MIN) returns INT_MIN.

Error Conditions

The abs function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = abs(-5); /* i == 5 */

See Also

fabs, labs
3-28 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
acos

arc cosine

Synopsis

#include <math.h>

double acos(double x);

float acosf (float x);

fract16 acos_fr16 (fract16 x);

Description

The acos function returns the arc cosine of the argument. The input must
be in the range [-1, 1]. The output, in radians, is in the range [0, π].

The acos_fr16 function is only defined for input values between 0 and
0.9 (=0x7333). The input argument is in radians. Output values range
from acos(0)*2/π (=0x7FFF) to acos(0.9)*2/π (=0x24C1).

Error Conditions

The acos function returns a zero if the input is not in the defined range.

Example

#include <math.h>

double y;

y = acos(0.0); /* y = π/2 */

See Also

cos
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-29
for ADSP-219x DSPs

C Run-Time Library Reference
asin

arc sine

Synopsis

#include <math.h>

double asin(double x);

float asinf (float x);

fract16 asin_fr16(fract16 x);

Description

The asin function returns the arc sine of the argument. The input must
be in the range [-1, 1]. The output, in radians, is in the range -π/2 to π/2.

The asin_fr16 function is only defined for input values between -0.9
(=0x8ccd) and 0.9 (=0x7333). The input argument is in radians. Output
values range from asin(-0.9)*2/π (=0xa4C1) to asin(0.9)*2/π (=0x5B3F).

Error Conditions

The asin function returns a zero if the input is not in the defined range.

Example

#include <math.h>

double y;

y = asin(1.0); /* y = π/2 */

See Also

sin
3-30 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
atan

arc tangent

Synopsis

#include <math.h>

double atan(double x);

float atanf (float x);

fract16 atan_fr16 (fract16 x);

Description

The atan function returns the arc tangent of the argument. The output, in
radians, is in the range -π/2 to π/2.

The atan_fr16 function covers the output range from -π/4 (input value
0x8000, output value 0x9B78) to π/4 (input value 0x7FFF, output value
0x6488). The input argument is in radians.

Error Conditions

The atan function does not return an error condition.

Example

#include <math.h>

double y;

y = atan(0.0); /* y = 0.0 */

See Also

atan2, tan
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-31
for ADSP-219x DSPs

C Run-Time Library Reference
atan2

arc tangent of quotient

Synopsis

#include <math.h>

double atan2 (double x, double y);

float atan2f (float x, float y);

fract16 atan2 (fract16 x, fract16 y);

Description

The atan2 function computes the arc tangent of the input value x divided
by input value y. The output, in radians, is in the range [-π, π].

The atan2_fr16 function uses the full range from -π/4 to π/4
(0x8000 to 0x7FFF) for both input and output arguments. This corre-
sponds to a scaling by π compared to the floating-point function. The
input argument is in radians.

Error Conditions

The atan2 function returns a zero if x = 0 and y <> 0.

Example

#include <math.h>

double a;
float b;

a = atan2 (0.0, 0.5); /* the error condition: a = 0.0 */
b = atan2f (1.0, 0.0); /* b = π/2 */

See Also

atan, tan
3-32 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
atexit

register a function to call at program termination

Synopsis

#include <stdlib.h>

int atexit(void (*func)(void));

Description

The atexit function registers a function to be called at program termina-
tion. Functions are called once for each time they are registered, in the
reverse order of registration. Up to 32 functions can be registered using
atexit.

Error Conditions

The atexit function returns a non-zero value if the function cannot be
registered.

Example

#include <stdlib.h>

extern void goodbye(void);

if (atexit(goodbye))

exit(1);

See Also

abort, exit
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-33
for ADSP-219x DSPs

C Run-Time Library Reference
atof

convert string to a double

Synopsis

#include <stdlib.h>
double atof(const char *nptr);

Description

The atof function converts a character string into a floating-point value
of type double, and returns its value. The character string is pointed to by
the argument nptr and may contain any number of leading whitespace
characters (as determined by the function isspace) followed by a
floating-point number. The floating-point number may either be of the
form of a decimal floating-point number or a hexadecimal floating-point
number.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]
3-34 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X . This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P , an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number will stop the
scan.

Error Conditions

The atof function returns a zero if no conversion could be made. If the
correct value results in an overflow, a positive or negative (as appropriate)
HUGE_VAL is returned. If the correct value results in an underflow, 0.0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Notes

The function reference atof (pdata) is functionally equivalent to:

strtod (pdata, (char *) NULL);

and therefore, if the function returns zero, it is not possible to determine
whether the character string contained a (valid) representation of 0.0 or
some invalid numerical string.

Example

#include <stdlib.h>

double x;

x = atof("5.5"); /* x == 5.5 */
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-35
for ADSP-219x DSPs

C Run-Time Library Reference
See Also

atoi, atol, strtod
3-36 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
atoi

convert string to integer

Synopsis

#include <stdlib.h>

int atoi(const char *nptr);

Description

The atoi function converts a character string to an integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

Error Conditions

The atoi function returns a zero if no conversion can be made.

Example

#include <stdlib.h>

int i;

i = atoi("5"); /* i == 5 */

See Also

atol, atof, strtod, strtol, strtoul
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-37
for ADSP-219x DSPs

C Run-Time Library Reference
atol

convert string to long integer

Synopsis

#include <stdlib.h>

long atol(const char *nptr);

Description

The atol function converts a character string to a long integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

� There is no way to determine if a zero is a valid result or an indica-
tor of an invalid string.

Error Conditions

The atol function returns a zero if no conversion can be made.

Example

#include <stdlib.h>

long int i;

i = atol("5"); /* i == 5 */

See Also

atoi, atof, strtod, strtol, strtoul
3-38 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
bsearch

perform binary search in a sorted array

Synopsis

#include <stdlib.h>

void *bsearch(const void *key, const void *base,

size_t nelem, size_t size,

int (*compare)(const void *, const void *));

Description

The bsearch function executes a binary search operation on a pre-sorted
array, where:

• key is a pointer to the element to search for

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array

• *compare points to the function used to compare two elements. It
takes as parameters a pointer to the key and a pointer to an array
element and should return a value less than, equal to, or greater
than zero, according to whether the first parameter is less than,
equal to, or greater than the second.

The bsearch function returns a pointer to the first occurrence of key in
the array.

Error Conditions

The bsearch function returns a null pointer if the key is not found in the
array.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-39
for ADSP-219x DSPs

C Run-Time Library Reference
Example

#include <stdlib.h>

char *answer;

char base[50][3];

answer = bsearch("g", base, 50, 3, strcmp);

See Also

qsort
3-40 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
calloc

allocate and initialize memory

Synopsis

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

Description

The calloc function dynamically allocates a range of memory and initial-
izes all locations to zero. The number of elements (the first argument)
multiplied by the size of each element (the second argument) is the total
memory allocated. The memory may be deallocated with the free
function.

Error Conditions

The calloc function returns a null pointer if unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *) calloc(10, sizeof(int));

/* ptr points to a zeroed array of length 10 */

See Also

free, malloc, realloc
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-41
for ADSP-219x DSPs

C Run-Time Library Reference
ceil

ceiling

Synopsis

#include <math.h>

double ceil(double);

float ceilf(float);

Description

The ceil functions return the smallest integral value, that is not less than
its input.

Error Conditions

The ceil functions do not return an error condition.

Example

#include <math.h>

double y;

y = ceil (1.05); /* y = 2.0 */

y = ceilf (-1.05); /* y = -1.0 */

See Also

floor
3-42 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
clear_interrupt

clear a pending signal

Synopsis

#include <signal.h>

int clear_interrupt(int sig);

Description

The clear_interrupt function clears the signal sig in the IRPTL register.
The sig argument must be one of the processor signals shown below for
the ADSP-219x DSPs.

Table 3-14. ADSP-219x Signals

Sig Value Definition

SIG_PWRDWN power down interrupt

SIG_STACKINT PC, LOOP, or COUNTER overflow on push, or on pop when empty

SIG_KERNEL kernel interrupt

SIG_INT4 user-assignable

SIG_INT5 user-assignable

SIG_INT6 user-assignable

SIG_INT7 user-assignable

SIG_INT8 user-assignable

SIG_INT9 user-assignable

SIG_INT10 user-assignable

SIG_INT11 user-assignable

SIG_INT12 user-assignable

SIG_INT13 user-assignable
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-43
for ADSP-219x DSPs

C Run-Time Library Reference
Error Conditions

The clear_interrupt function returns a 1 if the interrupt was pending, a
-1 if the parameter is not a valid signal, or 0 is returned otherwise.

Example

#include <signal.h>

clear_interrupt(SIG_PWRDWN);

/* clear the interrupt 2 latch */

See Also

interrupt, raise, signal
3-44 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
cos

cosine

Synopsis

#include <math.h>

double cos(double);

float cosf (float);

fract16 cos_fr16 (fract16);

Description

The cos function returns the cosine of the argument. The input is inter-
preted as radians; the output is in the range [-1, 1].

The cos_fr16 function inputs a fractional value in the range [-1.0, 1.0)
corresponding to [-π/2, π/2]. The domain represents half a cycle which
can be used to derive a full cycle if required (see Notes below). The result,
in radians, is in the range [-1.0, 1.0).

Error Conditions

The cos function does not return an error condition.

Example

#include <math.h>

double y;

y = cos(3.14159); /* y = -1.0 */
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-45
for ADSP-219x DSPs

C Run-Time Library Reference
Notes

The domain of the cos_fr16 function is restricted to the fractional range
[0x8000, 0x7fff] which corresponds to half a period from –(π /2) to π/2.
It is possible however to derive the full period using the following proper-
ties of the function.

cosine [0, π/2] = -cosine [π, 3/2 π]
cosine [-π/2, 0] = -cosine [π/2, π]

The function below uses these properties to calculate the full period (from
0 to 2π) of the cosine function using an input domain of [0, 0x7fff].

#include <math.h>

fract16 cos2pi_fr16 (fract16 x)
{

if (x < 0x2000) { /* <0.25 */
/* first quadrant [0..π/2): */
/* cos_fr16([0x0..0x7fff]) = [0..0x7fff) */
return cos_fr16(x * 4);

} else if (x < 0x6000) { /* < 0.75 */
/* if (x < 0x4000) */
/* second quadrant [π/2..π): */
/* -cos_fr16([0x8000..0x0)) = [0x7fff..0) */
/* */
/* if (x < 0x6000) */
/* third quadrant [π..3/2π): */
/* -cos_fr16([0x0..0x7fff]) = [0..0x8000) */
return -cos_fr16((0xc000 + x) * 4);

} else {
/* fourth quadrant [3/2π..π): */
/* cos_fr16([0x8000..0x0)) = [0x8000..0) */
return cos_fr16((0x8000 + x) * 4);

}
}

3-46 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
See Also

acos, sin
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-47
for ADSP-219x DSPs

C Run-Time Library Reference
cosh

hyperbolic cosine

Synopsis

#include <math.h>

double cosh(double);

float coshf (float);

Description

The cosh function returns the hyperbolic cosine of its argument.

Error Conditions

The cosh function returns the IEEE constant +Inf if the argument is out-
side the domain.

Example

#include <math.h>

double x,y;

y = cosh(x);

See Also

sinh
3-48 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
disable_interrupts

disable interrupts

Synopsis

#include <sysreg.h>

void disable_interrupts(void)

Description

The disable_interrupts function causes the compiler to emit an instruc-
tion to disable hardware interrupts.

This function is implemented as a compiler built-in. The emitted instruc-
tion will be inlined at the point of its use. The inclusion of the sysreg.h
include file is mandatory when using disable_interrupts.

The disable_interrupts function does not return a value.

Error Conditions

The disable_interrupts function does not return, raise, or set any error
conditions.

Example

#include <sysreg.h>
main(){

disable_interrupts(); // emits "DIS INTS;"
// instruction inline

}

See Also

enable_interrupts, io_space_read, io_space_write, mode_change,
sysreg_read, sysreg_write
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-49
for ADSP-219x DSPs

C Run-Time Library Reference
div

division

Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

Description

The div function divides numer by denom, both of type int, and returns a
structure of type div_t. The type div_t is defined as

typedef struct {
int quot;
int rem;

} div_t

where quot is the quotient of the division and rem is the remainder, such
that if result is of type div_t,

result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the div function is undefined.

Example

#include <stdlib.h>
div_t result;

result = div(5, 2); /* result.quot=2, result.rem=1 */

See Also

ldiv, fmod, modf
3-50 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
enable_interrupts

enable interrupts

Synopsis

#include <sysreg.h>

void enable_interrupts(void)

Description

The enable_interrupts function causes the compiler to emit an instruc-
tion to enable hardware interrupts.

The enable_interrupts function is implemented as a compiler built-in.
The emitted instruction will be inlined at the point of enable_interrupts
use. The inclusion of the sysreg.h include file is mandatory when using
enable_interrupts.

The enable_interrupts function does not return a value.

Error Conditions

The enable_interrupts function does not return, raise or set any error
conditions.

Example

#include <sysreg.h>
main(){

enable_interrupts(); // emits "ENA INTS;"
// instruction inline

}

See Also

disable_interrupts, io_space_read, io_space_write, mode_change,
sysreg_read, sysreg_write
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-51
for ADSP-219x DSPs

C Run-Time Library Reference
exit

normal program termination

Synopsis

#include <stdlib.h>

void exit(int status);

Description

The exit function causes normal program termination. The functions
registered by the atexit function are called in reverse order of their regis-
tration and the microprocessor is put into the IDLE state. The status
argument is stored in register AX1, and control is passed to the label
___lib_prog_term, which is defined in the run-time startup file.

Error Conditions

The exit function does not return an error condition.

Example

#include <stdlib.h>

exit(EXIT_SUCCESS);

See Also

abort, atexit
3-52 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
exp

exponential

Synopsis

#include <math.h>

double exp(double);

float expf (float);

Description

The exp function computes the exponential value e to the power of its
argument. The argument must be in the range [-87.9 , 88.6].

Error Conditions

The exp function returns the value HUGE_VAL and stores the value ERANGE
in errno when there is an overflow error. In the case of underflow, the exp
function returns a zero.

Example

#include <math.h>

double y;

y = exp(1.0); /* y = 2.71828...*/

See Also

alog, log, pow
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-53
for ADSP-219x DSPs

C Run-Time Library Reference
external_memory_read

read from external memory

Synopsis

#include <sysreg.h>

void external_memory_read(int, void*)

Description

The external_memory_read function causes the compiler to emit instruc-
tions to read from external memory at the address passed as two
parameters and set the value read from that address as a return value. The
first parameter is the value of the top eight bits of the 24-bit external
memory address to read. The second parameter is the lower 16 bits of the
address of the external memory to read.

This function is implemented as a compiler built-in. The emitted instruc-
tions will be inlined at the point of external_memory_read use. The
inclusion of the sysreg.h include file is mandatory when using
external_memory_read.

Error Conditions

The external_memory_read function does not return, raise, or set any
error conditions.

Example

#include <sysreg.h>

section("external_memory_section")

static int GlobalTable[256];

int main() {

int page, read_value;

asm("%0 = PAGE(GlobalTable);" : "=e"(page): :);
3-54 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
read_value = external_memory_read(page, &GlobalTable[1]);

return read_value;

}

See Also

external_memory_write, disable_interrupts, enable_interrupts,
io_space_read, io_space_write, mode_change, sysreg_read, sysreg_write
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-55
for ADSP-219x DSPs

C Run-Time Library Reference
external_memory_write

write to external memory

Synopsis

#include <sysreg.h>

void external_memory_write(int, void*, int)

Description

The external_memory_write function causes the compiler to emit instruc-
tions to write to external memory at the address passed in the first two
parameters with the value passed in the last parameter. The first parameter
is the value of the top eight bits of the 24-bit external memory address to
write. The second parameter is the lower 16-bits of the address of the
external memory to write.

This function is implemented as a compiler built-in. The emitted instruc-
tions will be inlined at the point of external_memory_write use. The
inclusion of the sysreg.h include file is mandatory when using
external_memory_write.

Error Conditions

The external_memory_write function does not return, raise, or set any
error conditions.

Example

#include <sysreg.h>

section("external_memory_section")

static int GlobalTable[256];

int main() {

int page, value_to_write = 0;

asm("%0 = PAGE(GlobalTable);" : "=e"(page): :);
3-56 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
external_memory_write(page, &GlobalTable[1], value_to_write);

}

See Also

external_memory_read, disable_interrupts, enable_interrupts,
io_space_read, io_space_write, sysreg_read, sysreg_write
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-57
for ADSP-219x DSPs

C Run-Time Library Reference
fabs

float absolute value

Synopsis

#include <math.h>

double fabs(double f);

float fabsf(float f);

Description

The fabs function returns the absolute value of the argument.

Error Conditions

The fabs function does not return an error condition.

Example

#include <math.h>

double y;

y = fabs(-2.3); /* y = 2.3 */

y = fabs(2.3); /* y = 2.3 */

See Also

abs, labs
3-58 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
floor

floor

Synopsis

#include <math.h>

double floor(double);

float floorf (float);

Description

The floor function returns the largest integral value that is not greater
than its input.

Error Conditions

The floor function does not return an error condition.

Example

#include <math.h>

double y;

y = floor(1.25); /* y = 1.0 */

y = floor(-1.25); /* y = -2.0 */

See Also

ceil
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-59
for ADSP-219x DSPs

C Run-Time Library Reference
fmod

floating-point modulus

Synopsis

#include <math.h>

double fmod(double numer, double denom);

float fmodf(float numer, float denom);

Description

The fmod function computes the floating-point remainder that results
from dividing the first argument into the second argument. This value is
less than the second argument and has the same sign as the first argument.
If the second argument is equal to zero, fmod returns a zero.

Error Conditions

The fmod function does not return an error condition.

Example

#include <math.h>

double y;

y = fmod(5.0, 2.0); /* y = 1.0 */

See Also

div, ldiv, modf
3-60 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
free

deallocate memory

Synopsis

#include <stdlib.h>

void free(void *ptr);

Description

The free function deallocates a pointer previously allocated to a range of
memory (by calloc or malloc) to the free memory heap. If the pointer
was not previously allocated by calloc, malloc or realloc, the behavior is
undefined.

The free function returns the allocated memory to the heap from which it
was allocated.

Error Conditions

The free function does not return an error condition.

Example

#include <stdlib.h>

char *ptr;

ptr = malloc(10); /* Allocate 10 words from heap */

free(ptr); /* Return space to free heap */

See Also

calloc, malloc, realloc
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-61
for ADSP-219x DSPs

C Run-Time Library Reference
frexp

separate fraction and exponent

Synopsis

#include <math.h>

double frexp(double f, int *expptr);

float frexpf(float f, int *expptr);

Description

The frexp function separates a floating-point input into a normalized
fraction and a (base 2) exponent. The function returns the first argument
as a fraction in the interval [½, 1), and stores a power of 2 in the integer
pointed to by the second argument. If the input is zero, then the fraction
and exponent will both be set to zero.

Error Conditions

The frexp function does not return an error condition.

Example

#include <math.h>

double y;

int exponent;

y = frexp(2.0, &exponent); /* y=0.5, exponent=2 */

See Also

modf
3-62 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
interrupt

define interrupt handling

Synopsis

#include <signal.h>

void (*interrupt (int sig, void(*func)(int))) (int);

void (*interruptf(int sig, void(*func)(int))) (int);

void (*interrupts(int sig, void(*func)(int))) (int);

Description

These functions are Analog Devices extensions to the ANSI standard.

The interrupt function determines how a signal received during program
execution is handled. The interrupt function executes the function
pointed to by func at every interrupt sig; the signal function executes the
function only once.

The different variants of the interrupt functions differentiate between
handler dispatching functions. The variants will be appropriate for some
applications and provide improved efficiency. The default interrupt
function dispatcher saves and restores all scratch registers and modes on
the data stack around a call to the handler (func) when servicing an inter-
rupt. This dispatcher will pass the interrupt ID (for example, SIG_PWRDWN)
to the handler as its parameter.

The interruptf interrupt dispatcher is similar to interrupt, except that it
switches between primary and secondary register sets to save and restore
registers instead of using the data stack. The interruptf function cannot
be used in applications where nested interrupts are enabled. This interrupt
dispatcher will pass the interrupt ID to the handler as its parameter.

The interrupts interrupt dispatcher saves and restores only the smallest
number of registers and modes required to determine if a handler has been
registered and to call that handler. The handler passed as input to
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-63
for ADSP-219x DSPs

C Run-Time Library Reference
interrupts must be declared using the #pragma interrupt directive (see
on page 1-122). The #pragma altregisters directive (see on page 1-122)
may be used in conjunction with the interrupt pragma in the definition
of the handler. This dispatcher will not pass the interrupt ID to the
handler.

The sig argument must be one of the signals listed in priority order in
Table 3-15.

Table 3-15. Interrupt Function Signals - Values and Meanings

Sig Value Definition

SIG_PWRDWN power down interrupt

SIG_STACKINT PC, LOOP, or COUNTER overflow on push, or on pop when empty

SIG_KERNEL kernel interrupt

SIG_INT4 user-assignable

SIG_INT5 user-assignable

SIG_INT6 user-assignable

SIG_INT7 user-assignable

SIG_INT8 user-assignable

SIG_INT9 user-assignable

SIG_INT10 user-assignable

SIG_INT11 user-assignable

SIG_INT12 user-assignable

SIG_INT13 user-assignable

SIGABRT software interrupt

SIGILL software interrupt

SIGINT software interrupt

SIGSEGV software interrupt
3-64 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
The interrupt functions cause the receipt of the signal number sig to be
handled in one of the following ways:

• SIG_DFL—The default action is taken.

• SIG_IGN—The signal is ignored.

• Function Address—The function pointed to by func is executed.

The function pointed to by func is executed each time the interrupt is
received. The interrupt function must be called with the SIG_IGN argu-
ment to disable interrupt handling.

� Interrupts are not nested by the default start-up file.

Error Conditions

The interrupt functions return SIG_ERR and set errno equal to SIG_ERR if
the requested interrupt is not recognized.

Example

include <signal.h>

void handler (int sig) { /* Interrupt Service Routine (ISR) */
}

main () {
/* enable power down interrupt and register ISR */
interrupt(SIG_PWRDWN, handler);

/* disable power down interrupt */

SIGTERM software interrupt

SIGFPE software interrupt

Table 3-15. Interrupt Function Signals - Values and Meanings (Cont’d)

Sig Value Definition
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-65
for ADSP-219x DSPs

C Run-Time Library Reference
interrupt(SIG_PWRDWN, SIG_IGN);

/* enable power down interrupt and register ISR */
interruptf(SIG_PWRDWN, handler);

/* disable power down interrupt */
interruptf(SIG_PWRDWN, SIG_IGN);

}

See Also

signal, raise
3-66 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
io_space_read

read I/O space

Synopsis

#include <sysreg.h>
int io_space_read(const int)

Description

The io_space_read function returns the value read from I/O memory
space at the address specified by the parameter.

The function is implemented as a compiler built-in. If the input argument
is a constant literal value the compiler will emit a Type 34 instruction that
will be inlined at the point of io_space_read use. For non-literal inputs
the compiler will call a library compiler support routine to perform the
required read.

Error Conditions

The io_space_read function does not return, raise, or set any error
conditions.

Example

#include <sysreg.h>

int addr = 0xA;

main(){

int v1 = io_space_read(0xA); /* inline instruction

will be generated */

int v2 = io_space_read(addr); /* library support routine

will be called */

}

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-67
for ADSP-219x DSPs

C Run-Time Library Reference
See Also

disable_interrupts, enable_interrupts, io_space_write, mode_change,
sysreg_read,sysreg_write
3-68 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
io_space_write

write I/O space

Synopsis

#include <sysreg.h>

void io_space_write(const int address, const unsigned int value)

Description

The io_space_write function stores the value passed as the second param-
eter to I/O memory space at the address passed as the first parameter.

This function is implemented as a compiler built-in. If the address param-
eter is a constant literal value the compiler will emit a Type 34 instruction
that will be inlined at the point of io_space_write use. For non-literal
addresses, the compiler will call a library compiler support routine to per-
form the required write.

The inclusion of the sysreg.h include file is mandatory when using
io_space_write.

Error Conditions

The io_space_write function does not return, raise or set any error
conditions.

Example

#include <sysreg.h>
int addr = 0xA;
int val = 0xA;

main(){
int v1 = io_space_write(0xA, val); /* inline instruction

will be generated */
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-69
for ADSP-219x DSPs

C Run-Time Library Reference
int v2 = io_space_write(addr, 0xFF); /* support routine
will be called */

}

See Also

disable_interrupts, enable_interrupts, io_space_read, mode_change,
sysreg_read, sysreg_write
3-70 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
isalnum

detect alphanumeric character

Synopsis

#include <ctype.h>

int isalnum(int c);

Description

The isalnum function determines if the argument is an alphanumeric
character (A-Z, a-z, or 0-9). If the argument is not alphanumeric,
isalnum returns a zero. If the argument is alphanumeric, isalnum returns a
non-zero value.

Error Conditions

The isalnum function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isalnum(ch) ? "alphanumeric" : "");

putchar(‘\n’);

}

See Also

isalpha, isdigit
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-71
for ADSP-219x DSPs

C Run-Time Library Reference
isalpha

detect alphabetic character

Synopsis

#include <ctype.h>

int isalpha(int c);

Description

The isalpha function determines if the input is an alphabetic character
(A-Z or a-z). If the input is not alphabetic, isalpha returns a zero. If the
input is alphabetic, isalpha returns a non-zero value.

Error Conditions

The isalpha function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isalpha(ch) ? "alphabetic" : "");

putchar(‘\n’);

}

See Also

isdigit, isalnum
3-72 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
iscntrl

detect control character

Synopsis

#include <ctype.h>

int iscntrl(int c);

Description

The iscntrl function determines if the argument is a control character
(0x00-0x1F or 0x7F). If the argument is not a control character, iscntrl
returns a zero. If the argument is a control character, iscntrl returns a
non-zero value.

Error Conditions

The iscntrl function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", iscntrl(ch) ? "control" : "");

putchar(‘\n’);

}

See Also

isalnum, isgraph
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-73
for ADSP-219x DSPs

C Run-Time Library Reference
isdigit

detect decimal digit

Synopsis

#include <ctype.h>

int isdigit(int c);

Description

The isdigit function determines if the input character is a decimal digit
(0-9). If the input is not a digit, isdigit returns a zero. If the input is a
digit, isdigit returns a non-zero value.

Error Conditions

The isdigit function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isdigit(ch) ? "digit" : "");

putchar(‘\n’);

}

See Also

isalpha, isalnum, isxdigit
3-74 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
isgraph

detect printable character, not including white space

Synopsis

#include <ctype.h>

int isgraph(int c);

Description

The isgraph function determines if the argument is a printable character,
not including a white space (0x21-0x7e). If the argument is not a printable
character, isgraph returns a zero. If the argument is a printable character,
isgraph returns a non-zero value.

Error Conditions

The isgraph function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isgraph(ch) ? "graph" : "");

putchar(‘\n’);

}

See Also

isalnum, iscntrl, isprint
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-75
for ADSP-219x DSPs

C Run-Time Library Reference
isinf

test for infinity

Synopsis

#include <math.h>

int isinff(float x);

int isinf(double x);

Description

The isinf function returns a zero if the argument is not set to the IEEE
constant for +Infnity or -Infinity; otherwise, the function will return a
non-zero value.

Error Conditions

The isinf function does not return or set any error conditions.

Example

#include <stdio.h>

#include <math.h>

static int fail=0;

main(){

/* test int isinf(double) */

union {

double d; float f; unsigned long l;

} u;

#ifdef __DOUBLES_ARE_FLOATS__

u.l=0xFF800000L; if (isinf(u.d)==0) fail++;

u.l=0xFF800001L; if (isinf(u.d)!=0) fail++;
3-76 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
u.l=0x7F800000L; if (isinf(u.d)==0) fail++;

u.l=0x7F800001L; if (isinf(u.d)!=0) fail++;

#endif

/* test int isinff(float) */

u.l=0xFF800000L; if (isinff(u.f)==0) fail++;

u.l=0xFF800001L; if (isinff(u.f)!=0) fail++;

u.l=0x7F800000L; if (isinff(u.f)==0) fail++;

u.l=0x7F800001L; if (isinff(u.f)!=0) fail++;

/* print pass/fail message */

if (fail==0)

printf("Test passed\n");

else

printf("Test failed: %d\n", fail);

}

See Also

isnan
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-77
for ADSP-219x DSPs

C Run-Time Library Reference
islower

detect lowercase character

Synopsis

#include <ctype.h>

int islower(int c);

Description

The islower function determines if the argument is a lowercase character
(a-z). If the argument is not lowercase, islower returns a zero. If the argu-
ment is lowercase, islower returns a non-zero value.

Error Conditions

The islower function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", islower(ch) ? "lowercase" : "");

putchar(‘\n’);

}

See Also

isalpha, isupper
3-78 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
isnan

test for not-a-number (NAN)

Synopsis

#include <math.h>

int isnanf(float x);

int isnan(double x);

Description

The isnan function returns a zero if the argument is not set to an IEEE
NaN (Not a Number); otherwise, the function will return a non-zero value.

Error Conditions

The isnan function does not return or set any error conditions.

Example

#include <stdio.h>

#include <math.h>

static int fail=0;

main(){

/* test int isnan(double) */

union {

double d; float f; unsigned long l;

} u;

#ifdef __DOUBLES_ARE_FLOATS__

u.l=0xFF800000L; if (isnan(u.d)!=0) fail++;

u.l=0xFF800001L; if (isnan(u.d)==0) fail++;

u.l=0x7F800000L; if (isnan(u.d)!=0) fail++;
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-79
for ADSP-219x DSPs

C Run-Time Library Reference
u.l=0x7F800001L; if (isnan(u.d)==0) fail++;

#endif

/* test int isnanf(float) */

u.l=0xFF800000L; if (isnanf(u.f)!=0) fail++;

u.l=0xFF800001L; if (isnanf(u.f)==0) fail++;

u.l=0x7F800000L; if (isnanf(u.f)!=0) fail++;

u.l=0x7F800001L; if (isnanf(u.f)==0) fail++;

/* print pass/fail message */

if (fail==0)

printf("Test passed\n");

else

printf("Test failed: %d\n", fail);

}

See Also

isinf
3-80 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
isprint

detect printable character

Synopsis

#include <ctype.h>

int isprint(int c);

Description

The isprint function determines if the argument is a printable character
(0x20-0x7E). If the argument is not a printable character, isprint returns
a zero. If the argument is a printable character, isprint returns a non-zero
value.

Error Conditions

The isprint function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isprint(ch) ? "printable" : "");

putchar(‘\n’);

}

See Also

isgraph, isspace
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-81
for ADSP-219x DSPs

C Run-Time Library Reference
ispunct

detect punctuation character

Synopsis

#include <ctype.h>

int ispunct(int c);

Description

The ispunct function determines if the argument is a punctuation charac-
ter. If the argument is not a punctuation character, ispunct returns a zero.
If the argument is a punctuation character, ispunct returns a non-zero
value.

Error Conditions

The ispunct function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", ispunct(ch) ? "punctuation" : "");

putchar(‘\n’);

}

See Also

isalnum
3-82 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
isspace

detect whitespace character

Synopsis

#include <ctype.h>

int isspace(int c);

Description

The isspace function determines if the argument is a blank whitespace
character (0x09-0x0D or 0x20). This includes space, form feed (\f), new
line (\n), carriage return (\r), horizontal tab (\t) and vertical tab (\v).

If the argument is not a blank space character, isspace returns a zero. If
the argument is a blank space character, isspace returns a non-zero value.

Error Conditions

The isspace function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isspace(ch) ? "space" : "");

putchar(‘\n’);

}

See Also

iscntrl, isgraph
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-83
for ADSP-219x DSPs

C Run-Time Library Reference
isupper

detect uppercase character

Synopsis

#include <ctype.h>

int isupper(int c);

Description

The isupper function determines if the argument is an uppercase charac-
ter (A-Z). If the argument is not an uppercase character, isupper returns a
zero. If the argument is an uppercase character, isupper returns a
non-zero value.

Error Conditions

The isupper function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isupper(ch) ? "uppercase" : "");

putchar(‘\n’);

}

See Also

isalpha, islower
3-84 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
isxdigit

detect hexadecimal digit

Synopsis

#include <ctype.h>

int isxdigit(int c);

Description

The isxdigit function determines if the argument is a hexadecimal digit
character (A-F, a-f, or 0-9). If the argument is not a hexadecimal digit,
isxdigit returns a zero. If the argument is a hexadecimal digit, isxdigit
returns a non-zero value.

Error Conditions

The isxdigit function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isxdigit(ch) ? "hexadecimal" : "");

putchar(‘\n’);

}

See Also

isalnum, isdigit
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-85
for ADSP-219x DSPs

C Run-Time Library Reference
labs

long integer absolute value

Synopsis

#include <stdlib.h>

long int labs(long int j);

Description

The labs function returns the absolute value of its integer input.

Error Conditions

The labs function does not return an error condition.

Example

#include <stdlib.h>

long int j;

j = labs(-285128); /* j = 285128 */

See Also

abs, fabs
3-86 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
ldexp

multiply by power of 2

Synopsis

#include <math.h>

double ldexp(double x, int n);

float ldexpf(float x, int n);

Description

The ldexp function returns the value of the floating-point input multi-
plied by 2 raised to the power of n. It adds the value of the second
argument n to the exponent of the first argument x.

Error Conditions

If the result overflows, ldexp returns a NaN. If the result underflows,
ldexp returns a zero.

Example

#include <math.h>

double y;

y = ldexp(0.5, 2); /* y = 2.0 */

See Also

exp, pow
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-87
for ADSP-219x DSPs

C Run-Time Library Reference
ldiv

long division

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

Description

The ldiv function divides numer by denom, and returns a structure of type
ldiv_t. The type ldiv_t is defined as:

typedef struct {

long int quot;

long int rem;

} ldiv_t

where quot is the quotient of the division and rem is the remainder, such
that if result is of type ldiv_t, then

result.quot * denom + result.rem = numer

Error Conditions

If denom is zero, the behavior of the ldiv function is undefined.

Example

#include <stdlib.h>

ldiv_t result;

result = ldiv(7, 2); /* result.quot=3, result.rem=1 */

See Also

div, fmod
3-88 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
log

natural logarithm

Synopsis

#include <math.h>

double log(double);

float logf(float);

Description

The log function computes the natural (base e) logarithm of its input.

Error Conditions

The log function returns a zero and sets errno to EDOM if the input value is
negative.

Example

#include <math.h>

double y;

y = log(1.0); /* y = 0.0 */

See Also

alog, exp, log10
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-89
for ADSP-219x DSPs

C Run-Time Library Reference
log10

base 10 logarithm

Synopsis

#include <math.h>

double log10(double);

float log10f(float);

Description

The log10 function returns the base 10 logarithm of its input.

Error Conditions

The log10 function indicates a domain error (sets errno to EDOM) and
returns a zero if the input is negative.

Example

#include <math.h>

double y;

y = log10(100.0); /* y = 2.0 */

See Also

alog10, log, pow
3-90 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
longjmp

second return from setjmp

Synopsis

#include <setjmp.h>

void longjmp(jmp_buf env, int return_val);

Description

The longjmp function causes the program to execute a second return from
the place where setjmp (env) was called (with the same jmp_buf
argument).

The longjmp function takes as its arguments a jump buffer that contains
the context at the time of the original call to setjmp. It also takes an inte-
ger, return_val, which setjmp returns if return_val is non-zero.
Otherwise, setjmp returns a 1.

If env was not initialized through a previous call to setjmp or the function
that called setjmp has since returned, the behavior is undefined. Also,
automatic variables that are local to the original function calling setjmp,
that do not have volatile-qualified type, and that have changed their
value prior to the longjmp call, have indeterminate value.

Error Conditions

The longjmp function does not return an error condition.

Example

#include <setjmp.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-91
for ADSP-219x DSPs

C Run-Time Library Reference
jmp_buf env;
int res;

if ((res == setjmp(env)) != 0) {
printf ("Problem %d reported by func ()", res);
exit (EXIT_FAILURE);

}
func ();

void func (void)
{

if (errno != 0) {
longjmp (env, errno);

}
}

See Also

setjmp
3-92 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
malloc

allocate memory

Synopsis

#include <stdlib.h>

void *malloc(size_t size);

Description

The malloc function returns a pointer to a block of memory of length
size. The block of memory is uninitialized.

Error Conditions

The malloc function returns a null pointer if it is unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *)malloc(10); /* ptr points to an */

/* array of length 10 */

See Also

calloc, free, realloc
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-93
for ADSP-219x DSPs

C Run-Time Library Reference
memchr

find first occurrence of character

Synopsis

#include <string.h>

void *memchr(const void *s1, int c, size_t n);

Description

The memchr function compares the range of memory pointed to by s1 with
the input character c and returns a pointer to the first occurrence of c. A
null pointer is returned if c does not occur in the first n characters.

Error Conditions

The memchr function does not return an error condition.

Example

#include <string.h>

char *ptr;

ptr= memchr("TESTING", ‘E’, 7);
/* ptr points to the E in TESTING */

See Also

strchr, strrchr
3-94 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
memcmp

compare objects

Synopsis

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the objects pointed
to by s1 and s2. It returns a positive value if the s1 object is lexically
greater than the s2 object, a negative value if the s2 object is lexically
greater than the s1 object, and a zero if the objects are the same.

Error Conditions

The memcmp function does not return an error condition.

Example

#include <string.h>

char string1 = "ABC";

char string2 = "BCD";

int result;

result = memcmp (string1, string2, 3); /* result < 0 */

See Also

strcmp, strcoll, strncmp
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-95
for ADSP-219x DSPs

C Run-Time Library Reference
memcpy

copy characters from one object to another

Synopsis

#include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2
into the object pointed to by s1. The behavior of memcpy is undefined if
the two objects overlap.

The memcpy function returns the address of s1.

Error Conditions

The memcpy function does not return an error condition.

Example

#include <string.h>
char *a = "SRC";
char *b = "DEST";
memcpy (b, a, 3); /* *b="SRCT" */

See Also

memmove, memcpy_from_shared, memcpy_to_shared, strcpy, strncpy
3-96 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
memcpy_from_shared

copy characters from an object in the ADSP-2192-12 processor’s shared
memory (0x20000-0x20FFF) to non-shared memory in default data area.

Synopsis

#include <string.h>

void *memcpy_from_shared(void *s1, void *s2, size_t n);

Description

The memcpy_from_shared function copies n characters from the object
pointed to by s2 into the object pointed to by s1.

The s2 parameter must be an object in the ADSP-2192-12 processor’s
shared memory (0x20000-0x20FFF).

Error Conditions

The memcpy_from_shared function does not return, raise, or set any error
conditions.

See Also

memcpy, memcpy_to_shared
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-97
for ADSP-219x DSPs

C Run-Time Library Reference
memcpy_to_shared

copy characters from object in default data area to an object in the
ADSP-2192-12 processor’s shared memory (0x20000-0x20FFF).

Synopsis

#include <string.h>

void *memcpy_to_shared(void *s1, void *s2, size_t n);

Description

The memcpy_to_shared function copies n characters from the object
pointed to by s2 into the object pointed to by s1.

The s1 parameter must be an object in the ADSP-2192-12 processor’s
shared memory (0x20000-0x20FFF).

Error Conditions

The memcpy_to_shared function does not return, raise, or set any error
conditions.

See Also

memcpy, memcpy_from_shared
3-98 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
memmove

copy characters between overlapping objects

Synopsis

#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2
into the object pointed to by s1. The entire object is copied correctly even
if the objects overlap.

The memmove function returns a pointer to s1.

Error Conditions

The memmove function does not return an error condition.

Example

#include <string.h>

char *ptr, *str = "ABCDE";

ptr = str + 2;

memmove(str, str, 3); /* *ptr = "ABC", *str = "ABABC */

See Also

memcpy, strcpy, strncpy
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-99
for ADSP-219x DSPs

C Run-Time Library Reference
memset

set range of memory to a character

Synopsis

#include <string.h>

void *memset(void *s1, int c, size_t n);

Description

The memset function sets a range of memory to the input character c. The
first n characters of s1 are set to c.

The memset function returns a pointer to s1.

Error Conditions

The memset function does not return an error condition.

Example

#include <string.h>

char string1[50];

memset(string1, ‘\0’, 50); /* set string1 to 0 */

See Also

memcpy
3-100 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
mode_change

change selected system modes

Synopsis

#include <sysreg.h>

void mode_change(const int);

Description

The mode_change function causes the compiler to emit instructions to
enable and disable a series of modes using the zero latency mode control
instructions.

The mode_change function takes as a parameter a constant integer bitmask
that the compiler converts into a series of enable and disable mode
settings.

The sysreg.h include file defines each mode bit setting value as a sym-
bolic variable that can be used as a parameter to mode_change. These
definitions are:

__MODE_ENA_AV_LATCH =0x1,

__MODE_ENA_AR_SAT =0x2,

__MODE_ENA_M_MODE =0x4,

__MODE_ENA_TIMER =0x8,

__MODE_ENA_INT =0x10,

__MODE_DIS_AV_LATCH =0x100,

__MODE_DIS_AR_SAT =0x200,

__MODE_DIS_M_MODE =0x400,

__MODE_DIS_TIMER =0x800,

__MODE_DIS_INT =0x1000,

The mode_change function is implemented as a compiler built-in and the
emitted instructions will be inlined at the point of mode_change use.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-101
for ADSP-219x DSPs

C Run-Time Library Reference
The inclusion of the sysreg.h include file is mandatory when using
mode_change.

Error Conditions

The mode_change function does not return, raise, or set any error
conditions.

Example

#include <sysreg.h>

main(){

/* enable TIMER and disable AR saturation */

mode_change(__MODE_ENA_TIMER | __MODE_DIS_AR_SAT);

}

See Also

disable_interrupts, enable_interrupts, io_space_read, io_space_write,
sysreg_read, sysreg_write
3-102 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
modf

separate integral and fractional parts

Synopsis

#include <math.h>

double modf(double f, double *fraction);

float modff (float f, float *fraction);

Description

The modf function separates the first argument into integral and fractional
portions. The fractional portion is returned and the integral portion is
stored in the object pointed to by the second argument. The integral and
fractional portions have the same sign as the input.

Error Conditions

The modf function does not return an error condition.

Example

#include <math.h>

double y, n;

y = modf(-12.345, &n); /* y = -0.345, n = -12.0 */

See Also

frexp
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-103
for ADSP-219x DSPs

C Run-Time Library Reference
pow

raise to a power

Synopsis

#include <math.h>

double pow(double, double);

float powf(float, float);

Description

The pow function computes the value of the first argument raised to the
power of the second argument.

Error Conditions

A domain error occurs if the first argument is negative and the second
argument cannot be represented as an integer. If the first argument is zero,
the second argument is less than or equal to zero, and the result cannot be
represented, EDOM is stored in errno.

Example

#include <math.h>

double z;

z = pow(4.0, 2.0); /* z = 16.0 */

See Also

exp, ldexp
3-104 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
qsort

quicksort

Synopsis

#include <stdlib.h>

void qsort(void *base, size_t nelem, size_t size,

int (*compare) (const void *, const void *));

Description

The qsort function sorts an array of nelem objects, pointed to by base.
The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compare, which is called with two
arguments that point to the objects being compared. The function shall
return an integer less than, equal to, or greater than zero if the first argu-
ment is considered to be respectively less than, equal to, or greater than
the second.

If two elements compare as equal, their order in the sorted array is unspec-
ified. The qsort function executes a binary search operation on a
pre-sorted array. Note that:

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array

• compare is a pointer to a function that is called by qsort to com-
pare two elements of the array. The function should return a value
less than, equal to, or greater than zero, according to whether the
first argument is less than, equal to, or greater than the second.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-105
for ADSP-219x DSPs

C Run-Time Library Reference
Return Value

The qsort function returns no value.

Example

#include <stdlib.h>

float a[10];

int compare_float (const void *a, const void *b)

{

float aval = *(float *)a;

float bval = *(float *)b;

if (aval < bval)

return -1;

else if (aval == bval)

return 0;

else

return 1;

}

qsort (a, sizeof (a)/sizeof (a[0]), sizeof (a[0]), compare_float);

See Also

bsearch
3-106 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
raise

force a signal

Synopsis

#include <signal.h>

int raise(int sig);

Description

The raise function sends the signal sig to the executing program. The
raise function forces interrupts wherever possible and simulates an inter-
rupt otherwise. The sig argument must be one of the signals listed in
priority order in Table 3-16

Table 3-16. Raise Function Signals - Values and Meanings

Sig Value Definition

SIG_PWRDWN power down interrupt

SIG_STACKINT PC, LOOP, or COUNTER overflow on push, or on pop when empty

SIG_KERNEL kernel interrupt

SIG_INT4 user-assignable

SIG_INT5 user-assignable

SIG_INT6 user-assignable

SIG_INT7 user-assignable

SIG_INT8 user-assignable

SIG_INT9 user-assignable

SIG_INT10 user-assignable

SIG_INT11 user-assignable

SIG_INT12 user-assignable

SIG_INT13 user-assignable
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-107
for ADSP-219x DSPs

C Run-Time Library Reference
� Interrupts are not nested by the default start-up file.

Error Conditions

The raise function returns a zero if successful, a non-zero value if it fails.

Example

#include <signal.h>

raise(SIGABRT);

See Also

interrupt, signal

SIGABRT software interrupt

SIGILL software interrupt

SIGINT software interrupt

SIGSEGV software interrupt

SIGTERM software interrupt

SIGFPE software interrupt

Table 3-16. Raise Function Signals - Values and Meanings (Cont’d)

Sig Value Definition
3-108 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
rand

random number generator

Synopsis

#include <stdlib.h>

int rand(void);

Description

The rand function returns a pseudo-random integer value in the range
[0, 215 – 1].

For this function, the measure of randomness is its periodicity, the num-
ber of values it is likely to generate before repeating a pattern. The output
of the pseudo-random number generator has a period in the order of
215 – 1.

Error Conditions

The rand function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = rand();

See Also

srand
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-109
for ADSP-219x DSPs

C Run-Time Library Reference
realloc

change memory allocation

Synopsis

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description

The realloc function changes the memory allocation of the object
pointed to by ptr to size. Initial values for the new object are taken from
those in the object pointed to by ptr. If the size of the new object is
greater than the size of the object pointed to by ptr, then the values in the
newly allocated section are undefined.

If ptr is a non-null pointer that was not allocated with malloc or calloc,
the behavior is undefined. If ptr is a null pointer, realloc imitates
malloc. If size is zero and ptr is not a null pointer, realloc imitates free.

Error Conditions

If memory cannot be allocated, ptr remains unchanged and realloc
returns a null pointer.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *)malloc(10); /* intervening code */

ptr = (int *)realloc(ptr, 20); /* the size is now 20 */

See Also

calloc, free, malloc
3-110 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
setjmp

define a run-time label

Synopsis

#include <setjmp.h>

int setjmp(jmp_buf env);

Description

The setjmp function saves the calling environment in the jmp_buf argu-
ment. The effect of the call is to declare a run-time label that can be
jumped to via a subsequent call to longjmp.

When setjmp is called, it immediately returns with a result of zero to indi-
cate that the environment has been saved in the jmp_buf argument. If, at
some later point, longjmp is called with the same jmp_buf argument,
longjmp will restore the environment from the argument. The execution
will then resume at the statement immediately following the correspond-
ing call to setjmp. The effect is as if the call to setjmp has returned for a
second time but this time the function will return a non-zero result.

The effect of calling longjmp will be undefined if the function that called
setjmp has returned in the interim.

Error Conditions

The setjmp function does not return an error condition.

Example

See code example for “longjmp” on page 3-91.

See Also

longjmp
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-111
for ADSP-219x DSPs

C Run-Time Library Reference
signal

define signal handling

Synopsis

#include <signal.h>

void (*signal(int sig, void (*func)(int))) (int);

void (*signalf(int sig, void (*func)(int))) (int);

void (*signals(int sig, void (*func)(int))) (int);

Description

These functions are Analog Devices extensions to the ANSI standard.

The signal function determines how a signal received during program
execution is handled. The signal functions cause a single execution the
function pointed to by func; the interrupt functions cause the function
to be executed for every interrupt.

The different variants of the signal functions differentiate between han-
dler dispatching functions. The variants will be appropriate for some
applications and provide improved efficiency. The default signal func-
tion dispatcher saves and restores all scratch registers and modes on the
data stack around a call to the handler (func) when servicing an interrupt.
This dispatcher will pass the interrupt ID (for example, SIG_PWRDWN) to
the handler as its parameter.

The signalf interrupt dispatcher is similar to interrupt, except that it
switches between primary and secondary register sets to save and restore
registers instead of using the data stack. The signalf function cannot be
used in applications where nested interrupts are enabled. This interrupt
dispatcher will pass the interrupt ID to the handler as its parameter.

The signals interrupt dispatcher saves and restores only the smallest
number of registers and modes required to determine if a handler has been
registered and to call that handler. The handler passed as input to signals
3-112 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
must be declared using the #pragma interrupt directive (see
on page 1-122). The altregisters directive (see on page 1-122) may be
used in conjunction with the interrupt pragma in the definition of the
handler. This dispatcher will not pass the interrupt ID to the handler.

The sig argument must be one of the signals listed in highest to lowest
priority of interrupts in Table 3-17.

Table 3-17. Signal Function Signals - Values and Meanings

Sig Value Definition

SIG_PWRDWN power down interrupt

SIG_STACKINT PC, LOOP, or COUNTER overflow on push, or on pop when empty

SIG_KERNEL kernel interrupt

SIG_INT4 user-assignable

SIG_INT5 user-assignable

SIG_INT6 user-assignable

SIG_INT7 user-assignable

SIG_INT8 user-assignable

SIG_INT9 user-assignable

SIG_INT10 user-assignable

SIG_INT11 user-assignable

SIG_INT12 user-assignable

SIG_INT13 user-assignable

SIGABRT software interrupt

SIGILL software interrupt

SIGINT software interrupt

SIGSEGV software interrupt

SIGTERM software interrupt

SIGFPE software interrupt
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-113
for ADSP-219x DSPs

C Run-Time Library Reference
The signal function causes the receipt of the signal number sig to be
handled in one of the following ways:

• SIG_DFL—The default action is taken.

• SIG_IGN—The signal is ignored.

• Function address—The function pointed to by func is executed.
The function pointed to by func is executed once when the signal
is received. Handling is then returned to the default state.

� Interrupts are not nested by the default start-up file.

Error Conditions

The signal function returns SIG_ERR and sets errno to SIG_ERR if it does
not recognize the requested signal.

Example

#include <signal.h>

void handler (int sig) { /* Interrupt Service Routine (ISR) */
}

main () {

/* enable power down interrupt and register ISR */
signal(SIG_PWRDWN, handler);

/* disable power down interrupt */
signal(SIG_PWRDWN, SIG_IGN);

/* enable power down interrupt and register ISR */
signalf(SIG_PWRDWN, handler);

/* disable power down interrupt */
signalf(SIG_PWRDWN, SIG_IGN);

}

3-114 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
See Also

interrupt, raise
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-115
for ADSP-219x DSPs

C Run-Time Library Reference
sin

sine

Synopsis

#include <math.h>

double sin(double x);

float sinf (float x);

fract16 sin_fr16 (fract16 x);

Description

The sin function returns the sine of the argument x. The input is inter-
preted as a radian; the output is in the range [-1, 1].

The sin_fr16 function inputs a fractional value in the range [-1.0, 1.0)
corresponding to [-π/2, π/2]. The domain represents half a cycle which
can be used to derive a full cycle if required (see Notes below). The result,
in radians, is in the range [-1.0, 1.0).

Error Conditions

The sin function does not return an error condition.

Example

#include <math.h>

double y;

y = sin(3.14159); /* y = 0.0 */

Notes

The domain of the sin_fr16 function is restricted to the fractional range
[0x8000, 0x7fff] which corresponds to half a period from –(π /2) to π/2.
It is possible however to derive the full period using the following proper-
ties of the function.
3-116 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
sine [0, π/2] = -sine [π, 3/2 π]

sine [-π/2, 0] = -sine [π/2, π]

The function below uses these properties to calculate the full period (from
0 to 2π) of the sine function using an input domain of [0, 0x7fff].

#include <math.h>

fract16 sin2pi_fr16 (fract16 x)
{

if (x < 0x2000) { /* <0.25 */
/* first quadrant [0..π/2): */
/* sin_fr16([0x0..0x7fff]) = [0..0x7fff) */
return sin_fr16(x * 4);

} else if (x < 0x6000) { /* < 0.75 */
/* if (x < 0x4000) */
/* second quadrant [π/2..π): */
/* -sin_fr16([0x8000..0x0)) = [0x7fff..0) */
/* */
/* if (x < 0x6000) */
/* third quadrant [π..3/2π): */
/* -sin_fr16([0x0..0x7fff]) = [0..0x8000) */
return -sin_fr16((0xc000 + x) * 4);

} else {
/* fourth quadrant [3/2π..π): */
/* sin_fr16([0x8000..0x0)) = [0x8000..0) */
return sin_fr16((0x8000 + x) * 4);

}
}

See Also

asin, cos
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-117
for ADSP-219x DSPs

C Run-Time Library Reference
sinh

hyperbolic sine

Synopsis

#include <math.h>

double sinh(double x);

float sinhf (float x);

Description

The sinh function returns the hyperbolic sine of the argument x.

Error Conditions

The sinh function returns the IEEE constant +Inf if the argument is out-
side the domain

Example

#include <math.h>

double x,y;

y = sinh(x);

See Also

cosh
3-118 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
sqrt

square root

Synopsis

#include <math.h>

double sqrt(double x);

float sqrtf (float x);

fract16 sqrt_fr16 (fract16 x);

Description

The sqrt function returns the positive square root of the argument.

Error Conditions

The sqrt function returns a zero for a negative input.

Example

#include <math.h>

double y;

y = sqrt(2.0); /* y = 1.414..... */

See Also

rsqrt
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-119
for ADSP-219x DSPs

C Run-Time Library Reference
srand

random number seed

Synopsis

#include <stdlib.h>

void srand(unsigned int seed);

Description

The srand function is used to set the seed value for the rand function.
A particular seed value always produces the same sequence of
pseudo-random numbers.

Error Conditions

The srand function does not return an error condition.

Example

#include <stdlib.h>

srand(22);

See Also

rand
3-120 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strcat

concatenate strings

Synopsis

#include <string.h>

char *strcat(char *s1, const char *s2);

Description

The strcat function appends a copy of the null-terminated string pointed
to by s2 to the end of the null-terminated string pointed to by s1. It
returns a pointer to the new s1 string, which is null-terminated. The
behavior of strcat is undefined if the two strings overlap.

Error Conditions

The strcat function does not return an error condition.

Example

#include <string.h>

char string1[50];

string1[0] = ‘A’;

string1[1] = ‘B’;

string1[2] = ‘\0’;

strcat(string1, "CD"); /* new string is "ABCD" */

See Also

strncat
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-121
for ADSP-219x DSPs

C Run-Time Library Reference
strchr

find first occurrence of character in string

Synopsis

#include <string.h>

char *strchr(const char *s1, int c);

Description

The strchr function returns a null pointer to the first location in s1, a
null-terminated string, that contains the character c.

Error Conditions

The strchr function returns a null pointer if c is not part of the string.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strchr(ptr1, ‘E’);

/* ptr2 points to the E in TESTING */

See Also

memchr, strrchr
3-122 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strcmp

compare strings

Synopsis

#include <string.h>

int strcmp(const char *s1, const char *s2);

Description

The strcmp function lexicographically compares the null-terminated
strings pointed to by s1 and s2. It returns a positive value if the s1 string
is greater than the s2 string, a negative value if the s2 string is greater than
the s1 string, and a zero if the strings are the same.

Error Conditions

The strcmp function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcmp(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

memcmp, strncmp
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-123
for ADSP-219x DSPs

C Run-Time Library Reference
strcoll

compare strings

Synopsis

#include <string.h>

int strcoll(const char *s1, const char *s2);

Description

The strcoll function compares the string pointed to by s1 with the string
pointed to by s2. The comparison is based on the locale macro,
LC_COLLATE. Because only the C locale is defined in the ADSP-219x DSP
environment, the strcoll function is identical to the strcmp function.
The function returns a positive value if the s1 string is greater than the s2
string, a negative value if the s2 string is greater than the s1 string, and a
zero if the strings are the same.

Error Conditions

The strcoll function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcoll(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

strrchr, strncmp
3-124 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strcpy

copy from one string to another

Synopsis

#include <string.h>

void *strcpy(char *s1, const char *s2);

Description

The strcpy function copies the null-terminated string pointed to by s2
into the space pointed to by s1. Memory allocated for s1 must be large
enough to hold s2, plus one space for the null character (‘\0’). The behav-
ior of strcpy is undefined if the two objects overlap or if s1 is not large
enough. The strcpy function returns the new s1.

Error Conditions

The strcpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strcpy(string1, "SOMEFUN");
/* SOMEFUN is copied into string1 */

See Also

memcpy, memmove, strncpy
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-125
for ADSP-219x DSPs

C Run-Time Library Reference
strcspn

length of character segment in one string but not the other

Synopsis

#include <string.h>

size_t strcspn(const char *s1, const char *s2);

Description

The strcspn function returns the length of the initial segment of s1 which
consists entirely of characters not in the string pointed to by s2. The
string pointed to by s2 is treated as a set of characters. The order of the
characters in the string is not significant.

Error Conditions

The strcspn function does not return an error condition.

Example

#include <string.h>

char *ptr1, *ptr2;

size_t len;

ptr1 = "Tried and Tested";

ptr2 = "aeiou";

len = strcspn (ptr1, ptr2); /* len = 2 */

See Also

strlen, strspn
3-126 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strerror

get string containing error message

Synopsis

#include <string.h>

char *strerror(int errnum);

Description

The strerror function returns a pointer to a string containing an error
message by mapping the number in errnum to that string.

Error Conditions

The strerror function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = strerror(1);

See Also

No references to this function.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-127
for ADSP-219x DSPs

C Run-Time Library Reference
strlen

string length

Synopsis

#include <string.h>

size_t strlen(const char *s1);

Description

The strlen function returns the length of the null-terminated string
pointed to by s1 (not including the terminating null character).

Error Conditions

The strlen function does not return an error condition.

Example

#include <string.h>

size_t len;

len = strlen("SOMEFUN"); /* len = 7 */

See Also

No references to this function.
3-128 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strncat

concatenate characters from one string to another

Synopsis

#include <string.h>

char *strncat(char *s1, const char *s2, size_t n);

Description

The strncat function appends a copy of up to n characters in the null-ter-
minated string pointed to by s2 to the end of the null-terminated string
pointed to by s1. It returns a pointer to the new s1 string.

The behavior of strncat is undefined if the two strings overlap. The new
s1 string is terminated with a null (‘\0’).

Error Conditions

The strncat function does not return an error condition.

Example

#include <string.h>

char string1[50], *ptr;

string1[0]=’\0';

strncat(string1, "MOREFUN", 4);

/* string1 equals "MORE" */

See Also

strcat
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-129
for ADSP-219x DSPs

C Run-Time Library Reference
strncmp

compare characters in strings

Synopsis

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

Description

The strncmp function lexicographically compares up to n characters of the
null-terminated strings pointed to by s1 and s2. It returns a positive value
if the s1 string is greater than the s2 string, a negative value if the s2 string
is greater than the s1 string, and a zero if the strings are the same.

Error Conditions

The strncmp function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = "TEST1";

if (strncmp(ptr1, "TEST", 4) == 0)
printf("%s starts with TEST \n", ptr1);

See Also

memcmp, strcmp
3-130 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strncpy

copy characters from one string to another

Synopsis

#include <string.h>

char *strncpy(char *s1, const char *s2, size_t n);

Description

The strncpy function copies up to n characters of the null-terminated
string pointed to by s2 into the space pointed to by s1. If the last character
copied from s2 is not a null, the result does not end with a null. The
behavior of strncpy is undefined when the two objects overlap. The
strncpy function returns the new s1.

If the s2 string contains fewer than n characters, the s1 string is padded
with the null character until all n characters have been written.

Error Conditions

The strncpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strncpy(string1, "MOREFUN", 4);

/* MORE is copied into string1 */

string1[4] = ‘\0’; /* must null-terminate string1 */

See Also

memcpy, memmove, strcpy
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-131
for ADSP-219x DSPs

C Run-Time Library Reference
strpbrk

find character match in two strings

Synopsis

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

Description

The strpbrk function returns a pointer to the first character in s1 that is
also found in s2. The string pointed to by s2 is treated as a set of charac-
ters. The order of the characters in the string is not significant.

Error Conditions

In the event that no character in s1 matches any in s2, a null pointer is
returned.

Example

#include <string.h>

char *ptr1, *ptr2, *ptr3;

ptr1 = "TESTING";

ptr2 = "SHOP"

ptr3 = strpbrk(ptr1, ptr2);

/* ptr3 points to the S in TESTING */

See Also

strspn
3-132 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strrchr

find last occurrence of character in string

Synopsis

#include <string.h>

char *strrchr(const char *s1, int c);

Description

The strrchr function returns a pointer to the last occurrence of character
c in the null-terminated input string s1.

Error Conditions

The strrchr function returns a null pointer if c is not found.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";
ptr2 = strrchr(ptr1, ‘T’);

/* ptr2 points to the second T of TESTING */

See Also

memchr, strchr
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-133
for ADSP-219x DSPs

C Run-Time Library Reference
strspn

length of segment of characters in both strings

Synopsis

#include <string.h>

size_t strspn(const char *s1, const char *s2);

Description

The strspn function returns the length of the initial segment of s1 which
consists entirely of characters in the string pointed to by s2. The string
pointed to by s2 is treated as a set of characters. The order of the charac-
ters in the string is not significant.

Error Conditions

The strspn function does not return an error condition.

Example

#include <string.h>

size_t len;

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = "ERST";

len = strspn(ptr1, ptr2); /* len = 4 */

See Also

strcspn, strlen
3-134 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strstr

find string within string

Synopsis

#include <string.h>

char *strstr(const char *s1, const char *s2);

Description

The strstr function returns a pointer to the first occurrence in the string
pointed to by s1 of the characters in the string pointed to by s2. This
excludes the terminating null character in s1.

Error Conditions

If the string is not found, strstr returns a null pointer. If s2 points to a
string of zero length, s1 is returned.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strstr(ptr1, ‘E’);

/* ptr2 points to the E in TESTING */

See Also

strchr
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-135
for ADSP-219x DSPs

C Run-Time Library Reference
strtod

convert string to double

Synopsis

#include <stdlib.h>
double strtod(const char *nptr, char **endptr)

Description

The strtod function extracts a value from the string pointed to by nptr,
and returns the value as a double. The strtod function expects nptr to
point to a string that represents either a decimal floating-point number or
a hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).
3-136 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number will stop the
scan. If endptr is not NULL, a pointer to the character that stopped the
scan is stored at the location pointed to by endptr. If no conversion can be
performed, the value of nptr is stored at the location pointed to by
endptr.

Error Conditions

The strtod function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
ate) HUGE_VAL is returned. If the correct value results in an underflow, 0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>
char *rem;
double dd;

dd = strtod ("2345.5E4 abc",&rem);
/* dd = 2.3455E+7, rem = "abc" */

dd = strtod ("-0x1.800p+9,123",&rem);
/* dd = -768.0, rem = ",123" */

See Also

atof, strtol, strtoul
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-137
for ADSP-219x DSPs

C Run-Time Library Reference
strtodf

convert string to float

Synopsis

#include <stdlib.h>

float strtodf(const char *nptr, char **endptr)

Description

The strtodf function extracts a value from the string pointed to by nptr,
and returns the value as a float. The strtodf function expects nptr to
point to a string that represents either a decimal floating-point number or
a hexadecimal floating-point number. Either form of number may be pre-
ceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and dig-
its are one or more decimal digits. The sequence of digits may contain a
decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (–) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).
3-138 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number will stop the
scan. If endptr is not NULL, a pointer to the character that stopped the
scan is stored at the location pointed to by endptr. If no conversion can be
performed, the value of nptr is stored at the location pointed to by
endptr.

Error Conditions

The strtodf function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
ate) HUGE_VAL is returned. If the correct value results in an underflow, 0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>

char *rem;

float f;

f = strtodf ("2345.5E4 abc",&rem);

/* f = 2.3455E+7, rem = "abc" */

f = strtodf ("-0x1.800p+9,123",&rem);

/* f = -768.0, rem = ",123 */

See Also

atof, strtol, strtoul
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-139
for ADSP-219x DSPs

C Run-Time Library Reference
strtok

convert string to tokens

Synopsis

#include <string.h>

char *strtok(char *s1, const char *s2);

Description

The strtok function returns successive tokens from the string s1, where
each token is delimited by characters from s2.

A call to strtok, with s1 not NULL, returns a pointer to the first token in
s1, where a token is a consecutive sequence of characters not in s2. s1 is
modified in place to insert a null character at the end of the token
returned. If s1 consists entirely of characters from s2, NULL is returned.

Subsequent calls to strtok with s1 equal to NULL will return successive
tokens from the same string. When the string contains no further tokens,
NULL is returned. Each new call to strtok may use a new delimiter
string, even if s1 is NULL, in which case the remainder of the string is
tokenized using the new delimiter characters.

Error Conditions

The strtok function returns a null pointer if there are no tokens remain-
ing in the string.

Example

#include <string.h>

static char str[] = "a phrase to be tested, today";

char *t;

t = strtok(str, " "); /* t points to "a" */
3-140 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
t = strtok(NULL, " "); /* t points to "phrase" */

t = strtok(NULL, ","); /* t points to "to be tested" */

t = strtok(NULL, "."); /* t points to " today" */

t = strtok(NULL, "."); /* t = NULL */

See Also

No references to this function.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-141
for ADSP-219x DSPs

C Run-Time Library Reference
strtol

convert string to long integer

Synopsis

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

Description

The strtol function returns as a long int the value that was represented
by the string nptr. If endptr is not a null pointer, strtol stores a pointer
to the unconverted remainder in *endptr.

The strtol function breaks down the input into three sections: white
space (as determined by isspace), initial characters, and unrecognized
characters, including a terminating null character. The initial characters
may comprise an optional sign character, 0x or 0X, when base is 16, and
those letters and digits which represent an integer with a radix of base.
The letters (a-z or A-Z) are assigned the values 10 to 35 and are permitted
only when those values are less than the value of base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading char-
acters, base 10 is used. If base is between 2 and 36, it is used as a base for
conversion.

Error Conditions

The strtol function returns a zero if no conversion can be made and the
invalid string is stored in the object pointed to by endptr. If the correct
value results in an overflow, positive or negative (as appropriate) LONG_MAX
is returned. If the correct value results in an underflow, LONG_MIN is
returned. ERANGE is stored in errno in the case of either overflow or
underflow.
3-142 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
Example

#include <stdlib.h>

#define base 10

char *rem;

long int i;

i = strtol("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoi, atol, strtoul
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-143
for ADSP-219x DSPs

C Run-Time Library Reference
strtoul

convert string to unsigned long integer

Synopsis

#include <stdlib.h>

unsigned long int strtoul(const char *nptr,

char **endptr, int base);

Description

The strtoul function returns as an unsigned long int the value repre-
sented by the string nptr. If endptr is not a null pointer, strtoul stores a
pointer to the unconverted remainder in *endptr.

The strtoul function breaks down the input into three sections:

• white space (as determined by isspace)

• initial characters

• unrecognized characters including a terminating null character

The initial characters may comprise an optional sign character, 0x or 0X,
when base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10 to
35, and are permitted only when those values are less than the value of
base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading char-
acters, base 10 is used. If base is between 2 and 36, it is used as a base for
conversion.
3-144 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
Error Conditions

The strtoul function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, ULONG_MAX is returned. ERANGE is
stored in errno in the case of overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long int i;

i = strtoul("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

 atoi, atol, strtol
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-145
for ADSP-219x DSPs

C Run-Time Library Reference
strxfrm

transform string using LC_COLLATE

Synopsis

#include <string.h>

size_t strxfrm(char *s1, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 using the
locale specific category LC_COLLATE, and copies no more than n characters
of the transformed string into the string pointed to by s1. The resultant
string will include the terminating null character.

The function returns the length of the transformed string (not including
the terminating null character). If n is zero and s1 is set to the null
pointer, then strxfrm will return the number of characters required for
the transformed string. Overlapping strings are not supported

� The transformation is such that strcmp will return the same result
for two transformed strings as strcoll would for the same original
strings. However, because only the C locale is defined in the
ADSP-219x DSP environment, the strxfrm function is similar to
the strncpy function except that the null character is always
appended at the end of the output string.

Error Conditions

The strxfrm function does not return an error condition.

Example

#include <string.h>

char string1[50];
3-146 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
strxfrm(string1, "SOMEFUN", 49);

/* SOMEFUN is copied into string1 */

See Also

strcmp, strcoll, strncpy
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-147
for ADSP-219x DSPs

C Run-Time Library Reference
sysreg_read

read from non-memory-mapped register

Synopsis

#include <sysreg.h>

int sysreg_read(const int)

Description

The sysreg_read function causes the compiler to emit instructions to read
the non-memory-mapped register passed as a parameter and set the value
read from that register as a return value.

The input parameter for sysreg_read can be one of the symbolic variable
constants of the enumerated data type SysReg defined in sysreg.h or any
valid 8-bit value used to represent a system control register.

The symbolic definitions in sysreg.h are listed below.

General Register set:

sysreg_ASTAT arithmetic status
sysreg_SSTAT shifter status
sysreg_MSTAT multiplier status
sysreg_ICNTL interrupt control
sysreg_IMASK interrupts enabled mask
sysreg_IRPTL Interrupt Latch register
sysreg_DMPG1 DMPG1 high address register
sysreg_DMPG2 DMPG2 high address register
sysreg_IOPG IOPG I/O page register

System Control Register set:

sysreg_B0 B0 base register
sysreg_B1 B1 base register
sysreg_B2 B2 base register
3-148 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
sysreg_B3 B3 base register
sysreg_B4 B4 base register
sysreg_B5 B5 base register
sysreg_B6 B6 base register
sysreg_B7 B7 base register

sysreg_SYSCTL SYSCTL register

Cache Control Register:

sysreg_CACTL CACTL register

Emulation Debug Control Register:

sysreg_DBGCTRL DBGCTRL register

Emulation Debug Status Register:

sysreg_DBGSTAT DBGSTAT register

Cycle Counter Registers

sysreg_CNT0 CNT0 register
sysreg_CNT1 CNT1 register
sysreg_CNT2 CNT2 register
sysreg_CNT3 CNT3 register

The sysreg_read function is implemented as a compiler built-in and the
emitted instructions will be inlined at the point of sysreg_read use.

The inclusion of the sysreg.h include file is mandatory when using
sysreg_read.

Error Conditions

The sysreg_read function does not return, raise, or set any error condi-
tions. The compiler will not validate the input, instead it will rely on the
assembler to fault erroneous values.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-149
for ADSP-219x DSPs

C Run-Time Library Reference
Example

#include <sysreg.h>

main(){

int value = sysreg_read(sysreg_IMASK);

}

See Also

disable_interrupts, enable_interrupts, io_space_read, io_space_write,
mode_change, sysreg_write
3-150 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
sysreg_write

write to non-memory-mapped register

Synopsis

#include <sysreg.h>

void sysreg_write(const int, const unsigned int)

Description

The sysreg_write function causes the compiler to emit instructions to
write the non-memory-mapped register, which is passed as the first param-
eter, with the value passed as the second parameter.

The first parameter for sysreg_write can be one of the symbolic variable
constants of the enumerated data type SysReg defined in sysreg.h or any
valid 8-bit value used to represent a system control register. The second
parameter is unsigned.

The symbolic definitions in sysreg.h are listed below.

General Register set:

sysreg_ASTAT arithmetic status
sysreg_SSTAT shifter status
sysreg_MSTAT multiplier status
sysreg_ICNTL interrupt control
sysreg_IMASK interrupts enabled mask
sysreg_IRPTL Interrupt Latch register
sysreg_DMPG1 DMPG1 high address register
sysreg_DMPG2 DMPG2 high address register
sysreg_IOPG IOPG I/O page register

System Control Register set:

sysreg_B0 B0 base register
sysreg_B1 B1 base register
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-151
for ADSP-219x DSPs

C Run-Time Library Reference
sysreg_B2 B2 base register
sysreg_B3 B3 base register
sysreg_B4 B4 base register
sysreg_B5 B5 base register
sysreg_B6 B6 base register
sysreg_B7 B7 base register

sysreg_SYSCTL SYSCTL register

Cache Control Register:

sysreg_CACTL CACTL register

Emulation Debug Control Register:

sysreg_DBGCTRL DBGCTRL register

Emulation Debug Status Register:

sysreg_DBGSTAT DBGSTAT register

Cycle Counter Registers

sysreg_CNT0 CNT0 register
sysreg_CNT1 CNT1 register
sysreg_CNT2 CNT2 register
sysreg_CNT3 CNT3 register

The sysreg_write function is implemented as a compiler built-in. The
emitted instructions will be inlined at the point of sysreg_write use.

The inclusion of the sysreg.h include file is mandatory when using
sysreg_write.

Error Conditions

The sysreg_write function does not return, raise, or set any error
conditions.
3-152 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
Example

#include <sysreg.h>

main(){

sysreg_write(sysreg_IMASK,0x1);

}

See Also

disable_interrupts, enable_interrupts, io_space_read,io_space_write,
mode_change, sysreg_read
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-153
for ADSP-219x DSPs

C Run-Time Library Reference
tan

tangent

Synopsis

#include <math.h>

double tan(double x);

float tanf(float x);

fract16 tan_fr16(fract16 x);

Description

The tan function returns the tangent of the argument x. The input, in
radians, must be in the range [-9099, 9099].

The tan_fr16 function is only defined for input values between -π/4
(=0x9B78) and π/4 (=0x6488). The input argument is in radians. Output
values range from 0x8000 to 0x7FFF. The library function returns 0 for any
input argument that is outside the defined domain.

Error Conditions

The tan function returns zero if the input argument is outside the defined
domain.

Example

#include <math.h>

double y;

y = tan(3.14159/4.0); /* y = 1.0 */

See Also

atan, atan2
3-154 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
tanh

hyperbolic tangent

Synopsis

#include <math.h>

double tanh(double x);

float tanhf (float x)

Description

The tanh function returns the hyperbolic tangent of the argument x.

Error Conditions

The tanh function does not return an error condition.

Example

#include <math.h>

double x,y;

y = tanh(x);

See Also

cosh, sinh
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-155
for ADSP-219x DSPs

C Run-Time Library Reference
tolower

convert from uppercase to lowercase

Synopsis

#include <ctype.h>

int tolower(int c);

Description

The tolower function converts the input character to lowercase if it is
uppercase; otherwise, it returns the character.

Error Conditions

The tolower function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(isupper(ch))

printf("tolower=%#04x", tolower(ch));

putchar(‘\n’);

}

See Also

islower, isupper, toupper
3-156 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
toupper

convert from lowercase to uppercase

Synopsis

#include <ctype.h>

int toupper(int c);

Description

The toupper function converts the input character to uppercase if it is in
lowercase; otherwise, it returns the character.

Error Conditions

The toupper function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(islower(ch))

printf("toupper=%#04x", toupper(ch));

putchar(‘\n’);

}

See Also

islower, isupper, tolower
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-157
for ADSP-219x DSPs

C Run-Time Library Reference
va_arg

get next argument in variable-length list of arguments

Synopsis

#include <stdarg.h>
void va_arg(va_list ap, type);

Description

The va_arg macro is used to walk through the variable length list of argu-
ments to a function.

After starting to process a variable-length list of arguments with va_start,
call va_arg with the same va_list variable to extract arguments from the
list. Each call to va_arg returns a new argument from the list.

Substitute a type name corresponding to the type of the next argument for
the type parameter in each call to va_arg. After processing the list, call
va_end.

The header file stdarg.h defines a pointer type called va_list that is used
to access the list of variable arguments.

The function calling va_arg is responsible for determining the number
and types of arguments in the list. It needs this information to determine
how many times to call va_arg and what to pass for the type parameter
each time. There are several common ways for a function to determine
this type of information. The standard C printf function reads its first
argument looking for %-sequences to determine the number and types of
its extra arguments. In the example below, all of the arguments are of the
same type (char*), and a termination value (NULL) is used to indicate the
end of the argument list. Other methods are also possible.

If a call to va_arg is made after all arguments have been processed, or if
va_arg is called with a type parameter that is different from the type of the
next argument in the list, the behavior of va_arg is undefined.
3-158 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
Error Conditions

The va_arg macro does not return an error condition.

Example

#include <stdarg.h>
#include <string.h>
#include <stdlib.h>

char *concat(char *s1,...)
{

int len = 0;
char *result;
char *s;
va_list ap;

va_start (ap,s1);
s = s1;
while (s){

len += strlen (s);
s = va_arg (ap,char *);

}
va_end (ap);

result = malloc (len +7);
if (!result)

return result;
*result = '';
va_start (ap,s1);
s = s1;
while (s){

strcat (result,s);
s = va_arg (ap,char *);

}
va_end (ap);
return result;

}

See Also

va_end, va_start
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-159
for ADSP-219x DSPs

C Run-Time Library Reference
va_end

finish variable-length argument list processing

Synopsis

#include <stdarg.h>

void va_end(va_list ap);

Description

The va_end macro can only be used after the va_start macro has been
invoked. A call to va_end concludes the processing of a variable-length list
of arguments that was begun by va_start.

Error Conditions

The va_end macro does not return an error condition.

Example

See “va_arg” on page 3-158.

See Also

va_arg, va_start
3-160 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

C/C++ Run-Time Library
va_start

initialize the variable-length argument list processing

Synopsis

#include <stdarg.h>

void va_start(va_list ap, parmN);

Description

The va_start macro is used in a function declared to take a variable num-
ber of arguments to start processing those variable arguments. The first
argument to va_start should be a variable of type va_list, which is used
by va_arg to walk through the arguments.

The second argument is the name of the last named parameter in the func-
tion's parameter list; the list of variable arguments immediately follows
this parameter. The va_start macro must be invoked before either the
va_arg or va_end macro can be invoked.

Error Conditions

The va_start macro does not return an error condition.

Example

See “va_arg” on page 3-158.

See Also

va_arg, va_end
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 3-161
for ADSP-219x DSPs

C Run-Time Library Reference
3-162 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

4 DSP RUN-TIME LIBRARY

This chapter describes the DSP run-time library which contains a broad

collection of functions that are commonly required by signal processing
applications. The services provided by the library include support for gen-
eral purpose signal processing such as companders, filters, and Fast
Fourier Transform (FFT) functions. All these services are Analog Devices
extensions to ANSI standard C. These functions are in addition to the
C/C++ run-time library functions that are described in Chapter 3,
“C/C++ Run-Time Library”.

For more information on the algorithms on which many of DSP run-time
library’s math functions are based, see the Cody and Waite text “Software
Manual for the Elementary Functions” from Prentice Hall (1980).

This chapter contains:

• “DSP Run-Time Library Guide” on page 4-2
It contains information about the library and provides a descrip-
tion of the DSP header files that are included with this release of
the cc219x compiler.

• “DSP Run-Time Library Reference” on page 4-22
It provides the complete reference for each DSP run-time library
function provided with this release of the cc219x compiler.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-1
for ADSP-219x DSPs

DSP Run-Time Library Guide
DSP Run-Time Library Guide
The DSP run-time library contains functions that you can call from your
source program. This section describes how to use the library and provides
information on the following topics:

• “Calling DSP Library Functions”

• “Linking DSP Library Functions” on page 4-3

• “Working with Library Source Code” on page 4-3

• “DSP Header Files” on page 4-4

Calling DSP Library Functions
To use a DSP library function, call the function by name and give the
appropriate arguments. The names and arguments for each function are
described in the function's reference page in the section “DSP Run-Time
Library Reference” on page 4-22.

Like other functions you use, library functions should be declared. Decla-
rations are supplied in header files, as described in the section, “Working
With Library Header Files” on page 3-8.

� The function names are C function names. If you call C run-time
library functions from an assembly language program, you must
use the assembly version of the function name, which is the func-
tion name prefixed with an underscore. For more information on
naming conventions, see the section, “C/C++ and Assembly Lan-
guage Interface” on page 1-169.

� You can use the archiver, described in the VisualDSP++ 3.5 Linker
and Utilities Manual for 16-Bit Processors, to build library archive
files of your own functions.
4-2 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
Linking DSP Library Functions
When your C/C++ code calls a DSP run-time library function, the call
creates a reference that the linker resolves when linking your program.
This requires the linker to be directed to link with the DSP run-time
library, libdsp.dlb, in the 219x\lib directory, which is a subdirectory of
the VisualDSP++ installation directory. The default Linker Description
File (LDF) will do this automatically as it specifies that libdsp.dlb will be
included in every link. If an application uses a customized.LDF file, then
either add libdsp.dlb to the customized.LDF file, or alternatively use the
compiler's -ldsp switch to specify that libdsp.dlb is to be added to the
link line.

Working with Library Source Code
The source code for the functions in the C and DSP run-time libraries is
provided with your VisualDSP++ software. By default, the installation
program copies the source code to a subdirectory of the directory where
the run-time libraries are kept, named 219x\lib\src. The directory con-
tains the source for the C run-time library, the DSP run-time library, the
ETSI functions, and for the I/O run-time library, as well as the source for
the main program start-up functions. If you do not intend to modify any
of the run-time library functions, you can delete this directory and its con-
tents to conserve disk space.

The source code is provided so you can customize specific functions for
your own needs. Each function is kept in a separate file. The file name is
the name of the function with the appropriate extension for C or assem-
bler source. To modify these files, you need proficiency in ADSP-219x
DSP assembly language and an understanding of the run-time environ-
ment, as explained in“C/C++ and Assembly Language Interface” on
page 1-169. Before you make any modifications to the source code, copy
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-3
for ADSP-219x DSPs

DSP Run-Time Library Guide
the source code to a file with a different filename and rename the function
itself. Test the function before you use it in your system to verify that it is
functionally correct.

� Analog Devices only supports the run-time library functions as
provided.

DSP Header Files
The DSP header files contains prototypes for all the DSP library func-
tions. When the appropriate #include preprocessor command is included
in your source, the compiler will use the prototypes to check that each
function is called with the correct arguments. The DSP header files
included in this release of the cc219x compiler are:

• “complex.h — Basic Complex Arithmetic Functions” on page 4-4

• “filter.h — DSP Filters and Transformations” on page 4-6

• “math.h — Math Functions” on page 4-10

• “matrix.h — Matrix Functions” on page 4-12

• “stats.h — Statistical Functions” on page 4-16

• “vector.h — Vector Functions” on page 4-17

• “window.h — Window Generators” on page 4-20

complex.h � Basic Complex Arithmetic Functions

The complex.h header file contains type definitions and basic arithmetic
operations for variables of type complex_float, complex_double, and
complex_fract16. The complex functions defined in the complex.h header
file are listed in Table 4-1 on page 4-5.
4-4 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The following structures are used to represent complex numbers in rectan-
gular coordinates:

typedef struct
{

float re;
float im;

} complex_float;

typedef struct
{

double re;
double im;

} complex_double;

typedef struct
{

fract16 re;
fract16 im;

} complex_fract16

Details of the basic complex arithmetic functions are included in “DSP
Run-Time Library Reference” on page 4-22.

Table 4-1. Complex Functions

Description Prototype

Complex Absolute
Value

double cabs (complex_double a);
float cabsf (complex_float a);
fract16 cabs_fr16 (complex_fract16 a);

Complex Addition complex_double cadd (complex_double a, complex_double b);
complex_float caddf (complex_float a, complex_float b);
complex_fract16 cadd_fr16 (complex_fract16 a,

complex_fract16 b);

Complex
Subtraction

complex_double csub (complex_double a, complex_double b);
complex_float csubf (complex_float a, complex_float b);
complex_fract16 csub_fr16 (complex_fract16 a,

complex_fract16 b);
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-5
for ADSP-219x DSPs

DSP Run-Time Library Guide
filter.h � DSP Filters and Transformations

The filter.h header file contains filters used in signal processing. It also
includes the A-law and µ-law companders that are used by voice-band
compression and expansion applications.

The header file also contains functions that perform key transformations
used in DSPs, including FFTs and convolution.

Complex Multiply complex_double cmlt (complex_double a, complex_double b);
complex_float cmltf (complex_float a, complex_float b);
complex_fract16 cmlt_fr16 (complex_fract16 a,

complex_fract16 b);

Complex Division complex_double cdiv (complex_double a, complex_double b);
complex_float cdivf (complex_float a, complex_float b);
complex_fract16 cdiv_fr16 (complex_fract16 a,

complex_fract16 b);

Get Phase of
Complex Number

double arg (complex_double a);
float argf (complex_float a);
fract16 arg_fr16 (complex_fr16 a);

Complex Conjugate complex_double conj (complex_double a);
complex_float conjf (complex_float a);
complex_fract16 conj_fr16 (complex_fract16 a);

Convert Cartesian to
Polar Coordinates

double cartesian (complex_double a, double* phase)
float cartesianf (complex_float a, float* phase)
fract16 cartesian_fr16 (complex_fract16 a, fract16* phase)

Convert Polar to
Cartesian Coordinates

complex_double polar (double mag, double phase);
complex_float polarf (float mag, float phase);
complex_fract16 polar_fr16 (fract16 mag, fract16 phase);

Complex Exponential complex_double cexp (double a);
complex_float cexpf (float a);

Normalization complex_double norm (complex_double a);
complex_float normf (complex_float a);

Table 4-1. Complex Functions (Cont’d)

Description Prototype
4-6 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
Various forms of the FFT function are provided by the library correspond-
ing to radix-2, radix-4, and two-dimensional FFTs. The number of points
is provided as an argument. The twiddle table for the FFT functions is
supplied as a separate argument and is normally calculated once during
program initialization.

Library functions are provided to initialize a twiddle table. A table can
accommodate several FFTs of different sizes by allocating the table at
maximum size, and then using the stride argument of the FFT function to
specify the step size through the table. If the stride argument is set to 1,
the FFT function will use all the table; if the FFT uses only half the num-
ber of points of the largest, the stride should be 2.

The functions defined in the filter.h header file are listed in Table 4-2
and Table 4-3 and are described in detail in “DSP Run-Time Library Ref-
erence” on page 4-22.

Table 4-2. Filter Library

Description Prototype

Finite Impulse
Response Filter

void fir_fr16
(const fract16 x[], fract16 y[],
int n, fir_state_fr16 *s);

Infinite Impulse
Response Filter

void iir_fr16
(const fract16 x[], fract16 y[],
int n, iir_state_fr16 *s);

FIR Decimation
Filter

void fir_decima_fr16
(const fract16 x[], fract16 y[],
int n, fir_state_fr16 *s);

FIR Interpolation
Filter

void fir_interp_fr16
(const fract16 x[], fract16 y[],
int n, fir_state_fr16 *s);

Complex Finite Impulse
Response Filter

void cfir_fr16
(const complex_fract16 x[], complex_fract16 y[],
int n, cfir_state_fr16 *s);
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-7
for ADSP-219x DSPs

DSP Run-Time Library Guide
Table 4-3. Transformation Functions

Description Prototype

Fast Fourier Transform

Generate FFT
Twiddle Factor

void twidfft_fr16
(complex_fract16 w[], int n);

Generate FFT Twiddle
Factors for Radix 2 FFT

void twidfftrad2_fr16
(complex_fract16 w[], int n);

Generate FFT Twiddle
Factors for Radix 4 FFT

void twidfftrad4_fr16
(complex_fract16 w[], int n);

Generate FFT Twiddle
Factors for 2-D FFT

void twidfft2d_fr16
(complex_fract16 w[], int n);

N Point Radix 2
Complex Input FFT

void cfft_fr16
(const complex_fract16 *in,

complex fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);

N Point Radix 2
Real Input FFT

void rfft_fr16
(const fract16 *in, complex_fract16 *t,

complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);

N Point Radix 2
Inverse Input FFT

void ifft_fr16
(const complex_fract *in,

complex_fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);

N Point Radix 4
Complex Input FFT

void cfftrad4_fr16
(const complex_fract16 *in,

complex fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);

N Point Radix 4
Real Input FFT

void rfftrad4_fr16
(const fract16 *in, complex_fract16 *t,

complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);
4-8 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
N Point Radix 4
Inverse Input FFT

void ifftrad4_fr16
(const complex_fract *in,

complex_fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);

Nxn Point 2-D
Complex Input FFT

void cfft2d_fr16
(const complex_fract16 *in,

complex fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);

Nxn Point 2-D
Real Input FFT

void rfft2d_fr16
(const fract16 *in, complex_fract16 *t,

complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);

Nxn Point 2-D Inverse
FFT

void ifft2d_fr16
(const complex_fract *in,

complex_fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int *block_exponent, int scale_method);

Convolutions

Convolution void convolve_fr16
(const fract16 cin1[], int clen1,

const fract16 cin2[], int clen2,
fract16 cout[]);

2-D Convolution void conv2d_fr16
(const fract16 *cin1, int crow1, int ccol1,

const fract16 *cin2, int crow2, int ccol2,
fract16 *cout);

2-D Convolution
3x3 Matrix

void conv2d3x3_fr16
(const fract16 *cin, int crow1, int ccol1,

const fract16 cin2 [3] [3], fract16 *cout);

Compression/Expansion

A-law Compression void a_compress
(const short in[], short out[], int n);

Table 4-3. Transformation Functions (Cont’d)

Description Prototype
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-9
for ADSP-219x DSPs

DSP Run-Time Library Guide
math.h � Math Functions

The standard math functions have been augmented by implementations
for the float data type, and in some cases for the fract16 data type.

Table 4-4 provides a summary of the functions defined by the math.h
header file. Descriptions of these functions are given under the name of
the double version in the “C Run-Time Library Reference” on page 3-26.

This header also provides prototypes for a number of additional math
functions clip, copysign, max, min, and an integer function countones.
These functions are described in “DSP Run-Time Library Reference” on
page 4-22. .

A-law Expansion void a_expand
(const short in[], short out[], int n);

µ-law Compression void mu_compress
(const short in[], short out[], int n);

µ-law Expansion void mu_expand
(const char in[], short out[], int n);

Table 4-4. Math Library

Description Prototype

Anti-log double alog (double x);
float alogf (float x);

Base 10 Anti-log double alog10 (double x);
float alog10f (float x);

Arc Cosine double acos (double x);
float acosf (float x);
fract16 acos_fr16 (fract16 x);

Table 4-3. Transformation Functions (Cont’d)

Description Prototype
4-10 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
Arc Sine double asin (double x);
float asinf (float x);
fract16 asin_fr16 (fract16 x);

Arc Tangent double atan (float x);
float atanf (float x);
fract16 atan_fr16 (fract16 x);

Arc Tangent of
Quotient

double atan2 (double x, double y);
float atan2f (float x, float y);
fract16 atan2_fr16 (fract16 x, fract16 y);

Ceiling double ceil (double x);
float ceilf (float x);

Cosine double cos (double x);
float cosf (float x);
fract16 cos_fr16 (fract16 x);

Hyperbolic Cosine double cosh (double x);
float coshf (float x);

Cotangent double cot (double x);
float cotf (float x);

Exponential double exp (double x);
float expf (float x);

Floor double floor (double x);
float floorf (float x);

Floating Point
Remainder

double fmod (double x, double y);
float fmodf (float x, float y);

Get Mantissa and
Exponent

double frexp (double x, int *n);
float frexpf (float x, int *n);

Multiply by Power of 2 double ldexp (double x, int n);
float ldexpf (float x, int n);

Natural Logarithm double log (double x);
float logf (float x);

Table 4-4. Math Library (Cont’d)

Description Prototype
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-11
for ADSP-219x DSPs

DSP Run-Time Library Guide
matrix.h � Matrix Functions

The matrix.h header file contains matrix functions for operating on real
and complex matrices, both matrix-scalar and matrix-matrix operations.
See “complex.h — Basic Complex Arithmetic Functions” on page 4-4 for
definition of the complex types.

Logarithm Base 10 double log10 (double x);
float log10f (float x);

Get Fraction and
Integer

double modf (double x, double *i);
float modff (float x, float *i);

Power double pow (double x, double y);
float powf (float x, float y);

Sine double sin (double x);
float sinf (float x);
fract16 sin_fr16 (fract16 x);

Hyperbolic Sine double sinh (double x);
float sinhf (float x);

Square Root double sqrt (double x);
float sqrtf (float x);
fract16 sqrt_fr16 (fract16 x);

Reciprocal of Square Root double rsqrt (double x);
float rsqrtf (float x);

Tangent double tan (double x);
float tanf (float x);
fract16 tan_fr16 (fract16 x);

Hyperbolic
Tangent

double tanh (double x);
float tanhf (float x);

Table 4-4. Math Library (Cont’d)

Description Prototype
4-12 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The matrix functions defined in the matrix.h header file are listed in
Table 4-5. In most of the function prototypes:

*a is a pointer to input matrix a [] []

*b is a pointer to input matrix b [] []

b is an input scalar

n is the number of rows

m is the number of columns

*c is a pointer to output matrix c [] []

In the matrix*matrix functions, n and k are the dimensions of matrix a
and k and m are the dimensions of matrix b.

The functions described by this header assume that input array arguments
are constant; that is, their contents do not change during the course of the
routine. In particular, this means the input arguments do not overlap with
any output argument.

Table 4-5. Matrix Functions

Description Prototype

Real
Matrix + Scalar
Addition

void matsadd (const double *a, const double b, int n, int m,
double *c);

void matsaddf (const float *a, const float b, int n, int m,
float *c);

void matsadd_fr16 (const fract16 *a, const fract16 b, int n,
int m, fract16 *c);

Real
Matrix – Scalar
Subtraction

void matssub (const double *a, const double b, int n, int m,
double *c);

void matssubf (const float *a, const float b, int n, int m,
float *c);

void matssub_fr16 (const fract16 *a, const fract16 b, int n,
int m, fract16 *c);
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-13
for ADSP-219x DSPs

DSP Run-Time Library Guide
Real
Matrix * Scalar
Multiplication

void matsmlt (const double *a, double b, int n, int m,
double *c);

void matsmltf (const float *a, float b, int n,
int m, float *c);

void matsmlt_fr16 (const fract16 *a,
fract16 b, int n, int m, fract16 *c);

Real
Matrix + Matrix
Addition

void matmadd (const double *a, const double *b, int n, int m,
double *c);

void matmaddf (const float *a, const float *b, int n, int m,
float *c);

void matmadd_fr16 (const fract16 *a, const fract16 *b, int n,
int m, fract16 *c);

Real
Matrix – Matrix
Subtraction

void matmsub (const double *a, const double *b, int n, int m,
double *c);

void matmsubf (const float *a, const float *b, int n, int m,
float *c);

void matmsub_fr16 (const fract16 *a, const fract16 *b, int n,
int m, fract16 *c);

Real
Matrix * Matrix
Multiplication

void matmmlt (const double *a, int n, int k, const double *b,
int m, double *c);

void matmmltf (const float *a, int n, int k, const float *b,
int m, float *c);

void matmmlt_fr16 (const fract16 *a, int n, int k,
const fract16 *b, int m, fract16 *c);

Complex
Matrix + Scalar
Addition

void cmatsadd (const complex_double *a, complex_double b,
int n, int m, complex_double *c);

void cmatsaddf (const complex_float *a, complex_float b, int n,
int m, complex_float *c);

void cmatsadd_fr16 (const complex_fract16 *a,
complex_fract16 b, int n, int m, complex_fract16 *c);

Complex
Matrix – Scalar
Subtraction

void cmatssub (const complex_double *a, complex_double b,
int n, int m, complex_double *c);

void cmatssubf (const complex_float *a, complex_float b, int n,
int m, complex_float *c);

void cmatssub_fr16 (const complex_fract16 *a,
complex_fract16 b, int n, int m, complex_fract16 *c);

Table 4-5. Matrix Functions (Cont’d)

Description Prototype
4-14 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
Complex
Matrix * Scalar
Multiplication

void cmatsmlt (const complex_double *a, complex_double b,
int n, int m, complex_double *c);

void cmatsmltf (const complex_float *a, complex_float b, int n,
int m, complex_float *c);

void cmatsmlt_fr16 (const complex_fract16 *a,
complex_fract16 b, int n, int m, complex_fract16 *c);

Complex
Matrix + Matrix
Addition

void cmatmadd (const complex_double *a,
const complex_double *b, int n, int m, complex_double *c);

void cmatmaddf (const complex_float *a, const complex_float *b,
int n, int m, complex_float *c);

void cmatmadd_fr16 (const complex_fract16 *a,
const complex_fract16 *b, int n, int m, complex_fract16 *c);

Complex
Matrix – Matrix
Subtraction

void cmatmsub (const complex_double *a,
const complex_double *b, int n, int m, complex_double *c);

void cmatmsubf (const complex_float *a, const complex_float *b,
int n, int m, complex_float *c);

void cmatmsub_fr16 (const complex_fract16 *a,
const complex_fract16 *b, int n, int m, complex_fract16 *c);

Complex
Matrix * Matrix
Multiplication

void cmatmmlt (const complex_double *a, int n, int k,
const complex_double *b, int m, complex_double *c);

void cmatmmltf (const complex_float *a, int n, int k,
const complex_float *b, int m, complex_float *c);

void cmatmmlt_fr16 (const complex_fract16 *a, int n, int k,
const complex_fract16 *b, int m, complex_fract16 *c);

Transpose void transpm (const double *a, int n, int m, double *c);
void transpmf (const float *a, int n, int m, float *c);
void transpm_fr16 (const fract16 *a, int n, int m, fract16 *c);

Table 4-5. Matrix Functions (Cont’d)

Description Prototype
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-15
for ADSP-219x DSPs

DSP Run-Time Library Guide
stats.h � Statistical Functions

Table 4-6 lists the statistical functions defined in the stats.h header file
that are described in “DSP Run-Time Library Reference” on page 4-22.

Table 4-6. Stats Functions

Description Prototype

Autocoherence void autocohf (const float a[], int n,
int m, float c[]);

void autocoh_fr16 (const fract16 a[], int n,
int m, fract16 c[]);

Autocorrelation void autocorrf (const float a[], int n,
int m, float c[]);

void autocorr_fr16 (const fract16 a[], int n,
int m, fract16 c[]);

Cross-coherence void crosscohf (const float a[], const float b[], int n,
int m, float c[]);

void crosscoh_fr16 (const fract16 a[], const fract16 b[],
int n, int m, fract16 c[]);

Cross-correlation void crosscorrf (const float a[], const float b[], int n,
int m, float c[]);

void crosscorr_fr16 (const fract16 a[], const fract16 b[],
int n, int m, fract16 c[]);

Histogram void histogramf (const float a[], int c[], float max,
float min, int n, int m);

void histogram_fr16 (const fract16 a[], int c[],
fract16 max, fract16 min, int n, int m);

Mean float meanf (const float a[], int n);
fract16 mean_fr16 (const fract16 a[], int n);

Root Mean Square float rmsf (const float a[], int n);
fract16 rms_fr16 (const fract16 a[], int n);

Variance float varf (const float a[], int n)
fract16 var_fr16 (const fract16 a[], int n);

Count Zero
Crossing

float zero_crossf (const float a[], int n);
fract16 zero_cross_fr16 (const fract16 a[], int n);
4-16 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
vector.h � Vector Functions

The vector.h header file contains functions for operating on real and
complex vectors, both vector-scalar and vector-vector operations. See
“complex.h — Basic Complex Arithmetic Functions” on page 4-4 for the
definition of the complex types.

The functions in the vector.h header file are listed in Table 4-7. In the
Prototype column, a[] and b[] are input vectors, b is an input scalar, c[]
is an output vector and n is the number of elements.

The functions described by this header assume that input array arguments
are constant—their contents will not change during the course of the rou-
tine. In particular, this means the input arguments do not overlap with
any output argument.

Table 4-7. Vector Functions

Description Prototype

Real
Vector + Scalar
Addition

void vecsadd (const double a [], double b, double c [],
int n);

void vecsaddf (const float a[], float b, float c [],
int n);

void vecsadd_fr16 (const fract16 a [], fract16 b,
fract16 c [], int n);

Real
Vector – Scalar
Subtraction

void vecssub (const double a [], double b, double c [],
int n);

void vecssubf (const float a [], float b, float c [],
int n);

void vecssub_fr16 (const fract16 a [], fract16 b,
fract16 c [], int n);

Real
Vector * Scalar
Multiplication

void vecsmlt (const double a [], double b, double c [],
int n);

void vecsmltf (const float a [], float b, float c [],
int n);

void vecsmlt_fr16 (const fract16 a [], fract16 b,
fract16 c [], int n);
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-17
for ADSP-219x DSPs

DSP Run-Time Library Guide
Real
Vector + Vector
Addition

void vecvadd (const double a [], const double b [],
double c [], int n);

void vecvaddf (const float a [], const float b [],
float c [], int n);

void vecvadd_fr16 (const fract16 a [], const fract16 b[],
fract16 c [], int n);

Real
Vector – Vector
Subtraction

void vecvsub (const double a [], const double b [],
double c [], int n);

void vecvsubf (const float a [], const float b [],
float c [], int n);

void vecvsub_fr16 (const fract16 a [], const fract16 b [],
fract16 c [], int n);

Real
Vector * Vector
Multiplication

void vecvmlt (const double a [], const double b [],
double c [], int n);

void vecvmltf (const float a [], const float b [],
float c [], int n);

void vecvmlt_fr16 (const fract16 a [], const fract16 b [],
fract16 c [], int n);

Maximum Value of
Vector Elements

double vecmax (const double a [], int n);
float vecmaxf (const float a [], int n);
fract16 vecmax_fr16 (const fract 16 a [], int n);

Minimum Value of
Vector Elements

double vecmin (const double a [], int n);
float vecminf (const float a [], int n);
fract16 vecmin_fr16 (const fract16 a [], int n);

Index of
Maximum Value of
Vector Elements

int vecmaxloc (const double a [], int n);
int vecmaxlocf (const float a [], int n);
int vecmaxloc_fr16 (const fract16 a [], int n);

Index of Minimum
Value of Vector
Elements

int vecminloc (const double a [], int n);
int vecminlocf (const float a [], int n);
int vecminloc_fr16 (const fract16 a [], int n);

Table 4-7. Vector Functions (Cont’d)

Description Prototype
4-18 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
Complex
Vector + Scalar
Addition

void cvecsadd (const complex_double a [], complex_double b,
complex_double c [], int n);

void cvecsaddf (const complex_float a [], complex_float b,
complex_float c [], int n);

void cvecsadd_fr16 (const complex_fract16 a [],
complex_fract16 b, complex_fract16 c [], int n);

Complex
Vector – Scalar
Subtraction

void cvecssub (const complex_double a [], complex_double b,
complex_double c [], int n);

void cvecssubf (const complex_float a [], complex_float b,
complex_float c [], int n);

void cvecssub_fr16 (const complex_fract16 a [],
complex_fract16 b, complex_fract16 c [], int n);

Complex
Vector * Scalar
Multiplication

void cvecsmlt (const complex_double a [], complex_double b,
complex_double c [], int n);

void cvecsmltf (const complex_float a [], complex_float b,
complex_float c [], int n);

void cvecsmlt_fr16 (const complex_fract16 a [],
complex_fract16 b, complex_fract16 c [], int n);

Complex
Vector + Vector
Addition

void cvecvadd (const complex_double a [],
const complex_double b [], complex_double c [], int n);

void cvecvaddf (const complex_float a [],
const complex_float b [], complex_float c [], int n);

void cvecvadd_fr16 (const complex_fract16 a [],
const complex_fract16 b [], complex_fract16 c [], int n);

Complex
Vector – Vector
Subtraction

void cvecvsub (const complex_double a [],
const complex_double b [], complex_double c [], int n);

void cvecvsubf (const complex_float a [],
const complex_float b [], complex_float c [], int n);

void cvecvsub_fr16 (const complex_fract16 a [],
const complex_fract16 b [], complex_fract16 c [], int n);

Complex
Vector * Vector
Multiplication

void cvecvmlt (const complex_double a [],
const complex_double b [], complex_double c [], int n);

void cvecvmltf (const complex_float a [],
const complex_float b [], complex_float c [], int n);

void cvecvmlt_fr16 (const complex_fract16 a [],
const complex_fract16 b [], complex_fract16 c [], int n);

Table 4-7. Vector Functions (Cont’d)

Description Prototype
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-19
for ADSP-219x DSPs

DSP Run-Time Library Guide
window.h � Window Generators

The window.h header file contains various functions to generate windows
based on various methodologies. The functions defined in the window.h
header file are listed in Table 4-8 and are described in detail in “DSP
Run-Time Library Reference” on page 4-22.

For all window functions, a stride parameter a can be used to space the
window values. The window length parameter n equates to the number of
elements in the window. Therefore, for a stride a of 2 and a length n of 10,
an array of length 20 is required, where every second entry is untouched.

Real Vector Dot
Product

double vecdot (const double a [],
const double b [], int n);

float vecdotf (const float a [],
const float b [], int n);

fract16 vecdot_fr16 (const fract16 a [],
const fract16 b [], int n);

Complex Vector
Dot Product

complex_double cvecdot (const complex_double a [],
const complex_double b [], int n);

complex_float cvecdotf (const complex_float a [],
const complex_float b [], int n);

complex_fract16 cvecdot_fr16 (const complex_fract16 a [],
const complex_fract16 b [], complex_fract16 c [], int n);

Table 4-8. Window Generator Functions

Description Prototype

Generate Bartlett
Window

void gen_bartlett_fr16 (fract16 w[], int a, int n);

Generate Blackman
Window

void gen_blackman_fr16 (fract16 w[], int a, int n);

Generate Gaussian
Window

void gen_gaussian_fr16 (fract16 w[], float alpha, int a, int n);

Table 4-7. Vector Functions (Cont’d)

Description Prototype
4-20 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
Generate Hamming
Window

void gen_hamming_fr16 (fract16 w[], int a, int n);

Generate Hanning
Window

void gen_hanning_fr16 (fract16 w[], int a, int n);

Generate Harris
Window

void gen_harris_fr16 (fract16 w[], int a, int n);

Generate Kaiser
Window

void gen_kaiser_fr16 (fract16 w[], float beta, int a, int n);

Generate Rectangular
Window

void gen_rectangular_fr16 (fract16 w[], int a, int n);

Generate Triangle
Window

void gen_triangle_fr16 (fract16 w[], int a, int _n);

Generate Vonhann
Window

void gen_vonhann_fr16 (fract16 _w[], int a, int n);

Table 4-8. Window Generator Functions (Cont’d)

Description Prototype
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-21
for ADSP-219x DSPs

DSP Run-Time Library Reference
DSP Run-Time Library Reference
This section provides descriptions of the DSP run-time library functions.

Notation Conventions
An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

The reference pages for the library functions use the following format.

• Name and purpose of the function

• Synopsis — Required header file and functional prototype. When
the functionality is provided for several data types (for example,
float, double, or fract16), several prototypes are given.

• Description — Function specification

• Algorithm — High level mathematical representation of the
function

• Domain — Range of values supported by the function

• Notes — Other miscellaneous notations

For some functions, the interface is presented using the “K&R” style for
ease of documentation. An ANSI C prototype is provided in the header
file.
4-22 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
a_compress

A-law compression

Synopsis

#include <filter.h>

void a_compress(in, out, n)

const short in[]; /* Input array */

short out[]; /* Output array */

int n; /* Number of elements to be compressed */

Description

The a_compress function takes a vector of linear 13-bit signed speech
samples and performs A-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by out.

Algorithm

C(k)=a-law compression of A(k)

for k=0 to n-1

Domain

content of input array: -4096 to 4095
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-23
for ADSP-219x DSPs

DSP Run-Time Library Reference
a_expand

A-law expansion

Synopsis

#include <filter.h>

void a_expand(in, out, n)

const short in[]; /* Input array */

short out[]; /* Output array */

int n; /* Number of elements to be expanded */

Description

The a_expand function inputs a vector of 8-bit compressed speech sam-
ples and expands them according to ITU recommendation G.711. Each
input value is expanded to a linear 13-bit signed sample in accordance
with the A-law definition and is returned in the vector pointed to by out.

Algorithm

C(k)=a-law expansion of A(k)

for k=0 to n-1

Domain

content of input array: 0 to 255
4-24 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
alog

anti-log

Synopsis

#include <math.h>

double alog(double x);
float alogf (float x);

Description

The alog function calculates the natural (base e) anti-log of its argument.
An anti-log function performs the reverse of a log function and is there-
fore equivalent to exponentiation.

The input argument x must be in the range [-87.9 , 88.6]. The function
will return HUGE_VAL if x is greater than the domain, and it will return 0.0
if x is less than the domain.

Algorithm

c = e x

Domain

x = [-87.9 , 88.6] for alog(), alogf()

Example

#include <math.h>

double y;

y = alog(1.0); /* y = 2.71828... */
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-25
for ADSP-219x DSPs

DSP Run-Time Library Reference
alog10

base 10 anti-log

Synopsis

#include <math.h>

double alog10(double x);
float alog10f (float x);

Description

The alog function calculates the base 10 anti-log of its argument. An
anti-log function performs the reverse of a log function and is therefore
equivalent to exponentiation. Therefore, alog10(x) is equivalent to
exp(x * log(10.0)).

If the argument x is greater than the domain of [-38.2 , 38.5], the func-
tion will return HUGE_VAL. For input values less than the domain, the
function will return 0.0.

Algorithm

c = e(x * log(10.0))

Domain

x = [-38.2 , 38.5] for alog10(), alog10f()

Example

#include <math.h>

double y;

y = alog10(1.0); /* y = 10.0 */
4-26 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
arg

get phase of a complex number

Synopsis

#include <complex.h>

float argf (complex_float a);

double arg (complex_double a);

fract16 arg_fr16 (complex_fract16 a);

Description

This function computes the phase associated with a Cartesian number rep-
resented by the complex argument a, and returns the result.

� Refer to the description of the polar_fr16 function which explains
how a phase, represented as a fractional number, is interpreted in
polar notation (see “polar” on page 4-91).

Algorithm

Domain

-3.4 x 1038 to +3.4 x 1038 for argf(), arg()

-1.0 to +1.0 for arg_fr16()

Note

Im (a) /Re (a) < =1 for arg_fr16()

c atan a
a

=










Im()
Re()
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-27
for ADSP-219x DSPs

DSP Run-Time Library Reference
autocoh

autocoherence

Synopsis

#include <stats.h>

void autocohf(a,n,m,c)
const float a[]; /* Input vector a */
int n; /* Input samples */
int m; /* Lag count */
float c[]; /* Output vector c */
void autocoh_fr16 (a,n,m,c)
const fract16 a[]; /* Input vector a */
int n; /* Input samples */
int m; /* Lag count */
fract16 c[]; /* Output vector c */

Description

This function computes the autocoherence of the input elements con-
tained within input vector a, and stores the result to output vector c.

Algorithm

where k={0,1,...,m-1} and a is the mean value of input vector a.

Domain

-3.4 x 1038 to +3.4 x 1038 for autocohf()

-1.0 to 1.0 for autocoh_fr16()

c
n

a a a ak j j k
j

n k

= − −+
=

− −

∑
1

0

1

* (() * ())
4-28 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
autocorr

autocorrelation

Synopsis

#include <stats.h>

void autocorrf(a,n,m,c)
const float a[]; /* Input vector a */
int n; /* Number of input samples */
int m; /* Lag count */
float c[]; /* Output vector c */
void autocorr_fr16 (a,n,m,c)
const fract16 a[]; /* Input vector a */
int n; /* Number of input samples */
int m; /* Lag count */
fract16 c[]; /* Output vector c */

Description

This function computes the autocorrelation of the input elements con-
tained within input vector a, and stores the result to output vector c. The
autocorr function is used in digital signal processing applications such as
speech analysis.

Algorithm

where k={0,1,...,m-1}

Domain

-3.4 x 1038 to +3.4 x 1038 for autocorrf()

-1.0 to + 1.0 for autocorr_fr16()

c
n

a ak j j k
j

n k

= +
=

− −

∑
1

0

1

*(*)
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-29
for ADSP-219x DSPs

DSP Run-Time Library Reference
cabs

complex absolute value

Synopsis

#include <complex.h>

float cabsf (complex_float a)

double cabs (complex_double a)

fract16 cabs_fr16 (complex_fract16 a)

Description

This function computes the complex absolute value of a complex input
and returns the result.

Algorithm

Domain

Re2 (a) + Im2 (a) <= 3.4 x 1038 for cabsf(), cabs()

Re2 (a) + Im2 (a) <= 1.0 for cabs_fr16()

Note

The minimum input value for both real and imaginary parts can be less
than 1/256 for cabs_fr16 but the result may have bit error of 2 to 3 bits.

 c a a= +Re () Im ()2 2
4-30 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
cadd

complex addition

Synopsis

#include <complex.h>

complex_float caddf (complex_float a, complex_float b)

complex_double cadd (complex_double a, complex_double b)

complex_fract16 cadd_fr16 (complex_fract16 a, complex_fract16 b)

Description

This function computes the complex addition of two complex inputs: a,
and b, and returns the result.

Algorithm

Re(c) = Re(a) + Re(b)

Im(c) = Im(a) + Im(b)

Domain

-3.4 x 1038 to +3.4 x 1038 for caddf(), cadd()

-1.0 to +1.0 for cadd_fr16()
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-31
for ADSP-219x DSPs

DSP Run-Time Library Reference
cartesian

convert Cartesian to polar notation

Synopsis

#include <complex.h>

float cartesianf (complex_float a, float *phase);

double cartesian (complex_double a, double *phase);

fract16 cartesian_fr16 (complex_fract16 a, fract16 *phase);

Description

This function transforms a complex number from Cartesian notation to
polar notation. The Cartesian number is represented by the argument a
that the function converts into a corresponding magnitude, which it
returns as the function’s result, and a phase that is returned via the second
argument phase .

� Refer to the description of the polar_fr16 function which explains
how a phase, represented as a fractional number, is interpreted in
polar notation (see “polar” on page 4-91).

Algorithm

magnitude = cabs(a)

phase = arg(a)

Domain

-3.4 x 1038 to +3.4 x 1038 for cartesianf (), cartesian ()

-1.0 to +1.0 for cartesian_fr16 ()
4-32 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
Example

#include <complex.h>

complex_float point = {-2.0 , 0.0};

float phase;

float mag;

mag = cartesianf (point,&phase); /* mag = 2.0, phase = π */
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-33
for ADSP-219x DSPs

DSP Run-Time Library Reference
cdiv

complex division

Synopsis

#include <complex.h>

complex_float cdivf (complex_float a, complex_float b)
complex_double cdiv (complex_double a, complex_double b)
complex_fract16 cdiv_fr16 (complex_fract16 a, complex_fract16 b)

Description

This function computes the complex division of two complex inputs: a
and b, and returns the result.

Algorithm

Domain

-3.4 x 1038 to +3.4 x 1038 for cdivf(), cdiv()

-1.0 to 1.0 for cdiv_fr16()

)(Im)(Re
)Re(*)Im()Im(*)Re()Im(

)(Im)(Re
)Im(*)Im()Re(*)Re()Re(

22

22

bb
ababc

bb
babac

+
−=

+
+=
4-34 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
cexp

complex exponential

Synopsis

#include <complex.h>

complex_float cexpf (float a)

complex_double cexp (double a)

Description

This function computes the complex exponential of real input a and
returns the result.

Algorithm

Re(c) = cos(a)

Im(c) = sin(a)

Domain

a = [-9099 ... 9099] for cexpf(), cexp()
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-35
for ADSP-219x DSPs

DSP Run-Time Library Reference
cfft

N point complex input FFT

Synopsis

#include <filter.h>

void cfft_fr16(in[], t[], out[], w[], wst, n, block_exponent,
scale_method)

const complex_fract16 in[] /* input sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* output sequence */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int *block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired 0-none,

1-static, 2-dynamic */

Description

This function transforms the time domain complex input signal sequence
to the frequency domain by using the radix-2 Fast Fourier Transform
(FFT).

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
The function does not impose any special memory alignment require-
ments on the arrays. However, benefits in run-time performance will be
realized if the output array is allocated on an address boundary that is a
multiple of twice the FFT size. If the input data can be overwritten, then
optimum memory usage can be achieved by specifying the input array as
either the output array or as the temporary array. Specifying the input
array as the temporary array will also result in increased run-time
performance.
4-36 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle factors. The function twidfftrad2_fr16 may be used to ini-
tialize the array. If the twiddle table contains more factors than needed for
a particular call on cfft_fr16, then the stride factor has to be set appro-
priately; otherwise it should be 1.

The argument scale_method controls how the function should scale the
output to avoid overflow. If no scaling is selected by setting scale_method
to zero, then the input signal should be sufficiently conditioned to avoid
overflow. The block_exponent argument will be set to zero.

The function will perform static scaling if scale_method is set to 1. For
static scaling, the function will scale intermediate results to prevent over-
flow. The final output will be scaled by 1/n, and block_exponent will be
set to log2(n).

If scale_method is set to 2, then the function will select dynamic scaling.
Under dynamic scaling, the function will inspect the intermediate results
and will only scale to avoid overflow. Dynamic scaling therefore mini-
mizes loss of precision but at the possible cost of slightly reduced
performance. The block_exponent argument will be set to a value between
0 (which indicates that no scaling was performed) and log2(n) (as if static
scaling was performed).

Algorithm

When the sequence length, n, equals power of four, the cfftrad4 algo-
rithm is also available.

Domain

Input sequence length n must be a power of two and at least 16.

X k x n W
n

N

N
n k() ()=

=

−

∑
0

1

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-37
for ADSP-219x DSPs

DSP Run-Time Library Reference
cfftrad4

N point complex input FFT

Synopsis

#include <filter.h>

void cfftrad4_fr16 (in[], t[], out[], w[], wst, n,
block_exponent, scale_method)

const complex_fract16 in[]; /* input sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* output sequence */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int *block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired

0-none, 1-static, 2-dynamic */

Description

This function transforms the time domain complex input signal sequence
to the frequency domain by using the radix-4 Fast Fourier Transform. The
cfftrad4_fr16 function will decimate in frequency by the radix-4 FFT
algorithm.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
The function does not impose any special memory alignment require-
ments on the arrays. However, benefits in run-time performance will be
realized if the output array is allocated on an address boundary that is a
multiple of twice the FFT size. If the input data can be overwritten, then
optimum memory usage can be achieved by specifying the input array as
either the output array or as the temporary array. Specifying the input
array as the temporary array will also result in increased run-time
performance.
4-38 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
¾n twiddle coefficients. The function twidfftrad4_fr16 may be used to
initialize the array. If the twiddle table contains more coefficients than
needed for a particular call on cfftrad4_fr16, then the stride factor has to
be set appropriately; otherwise it should be one.

The argument scale_method controls how the function should scale the
output to avoid overflow. If no scaling is selected by setting scale_method
to zero, then the input signal should be sufficiently conditioned to avoid
overflow. The block_exponent argument will be set to zero.

The function will perform static scaling if scale_method is set to 1. For
static scaling, the function will scale intermediate results to prevent over-
flow. The final output will be scaled by 1/n, and block_exponent
argument will be set to log2(n).

If scale_method is set to 2, then the function will select dynamic scaling.
Under dynamic scaling, the function will inspect the intermediate results
and will only scale to avoid overflow. Dynamic scaling therefore mini-
mizes loss of precision but at the possible cost of slightly reduced
performance. The block_exponent argument will be set to a value between
0 (which indicates that no scaling was performed) and log2(n) (as if static
scaling was performed).

Algorithm

When the sequence length, n, is not a power of four, the radix2 method
must be used. See “cfft” on page 4-36 for more information.

Domain

Input sequence length n must be a power of four, and at least 16.

X k x n W
n

N

N
nk() ()=

=

−

∑
0

1

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-39
for ADSP-219x DSPs

DSP Run-Time Library Reference
cfft2d

NxN point 2-D complex input FFT

Synopsis

#include <filter.h>

void cfft2d_fr16(*in, *t, *out, w[], wst, n, block_exponent,
scale_method)

const complex_fract16 *in; /* pointer to input matrix a[n][n] */
complex_fract16 *t; /* pointer to working buffer t[n][n] */
complex_fract16 *out; /* pointer to output matrix c[n][n] */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int *block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired 0-none,

1-static, 2-dynamic */

Description

This function computes the two dimensional Fast Fourier Transform of
the complex input matrix a[n][n], and stores the result to the complex
output matrix c[n][n].

The size of the input array in, the output array out, and the temporary
working buffer t is n*n, where n represents the number of points in the
FFT. The function does not impose any special memory alignment
requirements on the arrays. However, benefits in run-time performance
will be realized if the output array is allocated on an address boundary that
is a multiple of twice the FFT size.

The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle factors. The function twidfft2d_fr16 may be used to initial-
ize the array. If the twiddle table contains more factors than needed for a
particular call on cfft2d_fr16, then the stride factor has to be set appro-
priately; otherwise it should be 1.
4-40 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The arguments block_exponent and scale_method have been added for
future expansion. However, the current version of the function ignores the
argument and always scales the output by n*n; this is equivalent to static
scaling. The function will also set block_exponent to log2(n).

Algorithm

where i={0,1,...,n -1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must be a power of two and at least 16.

c i j a k l e j i k j l n

l

n

k

n

(,) (,)* (* *)/= − +

=

−

=

−

∑∑ 2

0

1

0

1
π

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-41
for ADSP-219x DSPs

DSP Run-Time Library Reference
cfir

complex finite impulse response filter

Synopsis

#include <filter.h>

void cfir_fr16(x,y,n,s)
const complex_fract16 x[]; /* Input sample vector x */
complex_fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
cfir_state_fr16 *s; /* Pointer to filter state

structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct
{
 int k; /* Number of coefficients */
 complex_fract16 *h; /* Filter coefficients */
 complex_fract16 *d; /* Start of delay line */
 complex_fract16 *p; /* Read/write pointer */
} cfir_state_fr16;

Description

The cfir_fr16 function implements a complex finite impulse response
(CFIR) filter. It generates the filtered response of the complex input data x
and stores the result in the complex output vector y.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
cfir_init, in the filter.h header file, is available to initialize the struc-
ture and is defined as:
4-42 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
 #define cfir_init(state, coeffs, delay, ncoeffs) \

 (state).h = (coeffs); \

 (state).d = (delay); \

 (state).p = (delay); \

 (state).k = (ncoeffs)

The characteristics of the filter (passband, stopband, etc.) are dependent
upon the number of complex filter coefficients and their values. A pointer
to the coefficients should be stored in s->h, and s->k should be set to the
number of coefficients.

Each filter should have its own delay line which is a vector of type
complex_fract16 and whose length is equal to the number of coefficients.
The vector should be cleared to zero before calling the function for the
first time and should not otherwise be modified by the user program. The
structure member s->d should be set to the start of the delay line, and the
function uses s->p to keep track of its current position within the vector.

Algorithm

Domain

-1.0 to +1.0

y k h i x k i k n
i

p

() () * () , , . . .= − =
=

−

∑
0

1

0 1 fo r
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-43
for ADSP-219x DSPs

DSP Run-Time Library Reference
clip

clip

Synopsis

#include <math.h>

int clip (int parm1, int parm2)

long int lclip (long int parm1, long int parm2)

float fclipf (float parm1, float parm2)

double fclip (double parm1, double parm2)

fract16 clip_fr16 (fract16 parm1, fract16 parm2)

Description

This function clips a value if it is too large.

Algorithm

if (|parm1| < |parm2|)

return(parm1)

else

return(|parm2| * signof(parm1))

Domain

Full range for various input parameter types.
4-44 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
cmlt

complex multiply

Synopsis

#include <complex.h>

complex_float cmltf (complex_float a, complex_float b)

complex_double cmlt (complex_double a, complex_double b)

complex_fract16 cmlt_fr16 (complex_fract16 a, complex_fract16 b)

Description

This function computes the complex multiplication of two complex
inputs a and b, and returns the result.

Algorithm

Re(c) = Re(a) * Re(b) - Im(a) * Im(b)

Im(c) = Re(a) * Im(b) + Im(a) * Re(b)

Domain

-3.4 x 1038 to +3.4 x 1038 for cmltf(), cmlt()

-1.0 to 1.0 for cmlt_fr16()
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-45
for ADSP-219x DSPs

DSP Run-Time Library Reference
conj

complex conjugate

Synopsis

#include <complex.h>

complex_float conjf (complex_float a, complex_float b)

complex_double conj (complex_double a, complex_double b)

complex_fract16 conj_fr16 (complex_fract16 a, complex_fract16 b)

Description

This function conjugates the complex input a and returns the result.

Algorithm

Re(c) = Re(a)

Im(c) = -Im(a)

Domain

�3.4 x 1038 to +3.4 x 1038 for conjf (), conj ()

�1.0 to 1.0 for conj_fr16 ()
4-46 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
convolve

convolution

Synopsis

#include <filter.h>

void convolve_fr16(cin1, clen1, cin2, clen2, cout)

const fract16 cin1[]; /* pointer to input sequence 1 */

int clen1; /* length of the input sequence 1 */

const fract16 cin2[]; /* pointer to input sequence 2 */

int clen2; /* length of the input sequence 2 */

float cout[]; /* pointer to output sequence */

Description

This function convolves two sequences pointed to by cin1 and cin2. If
cin1 points to the sequence whose length is clen1 and cin2 points to the
sequence whose length is clen2, then resulting sequence pointed to by
cout has length clen1 + clen2 - 1

Algorithm

Convolution between two sequences cin1 and cin2 is described as:

for n = 0 to clen1 + clen2-2.
(Values for cin1[j] are considered to be zero for j < 0 or j > clen1-1).

[] ()[] ()[]∑
−

=

−−•−−+=
12

0
12 1

clen

k
kclen2cin2clenkn1cinncout
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-47
for ADSP-219x DSPs

DSP Run-Time Library Reference
Example

Here is an example of a convolution where cin1 is of length 4 and cin2 is
of length 3. If we represent cin1 as “A” and cin2 as “B”, the elements of
the output vector are:

{A[0]*B[0],

A[1]*B[0] + A[0]*B[1],

A[2]*B[0] + A[1]*B[1] + A[0]*B[2],

A[3]*B[0] + A[2]*B[1] + A[1]*B[2],

A[3]*B[1] + A[2]*B[2],

A[3]*B[2]}

Domain

-1.0 to +1.0
4-48 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
conv2d

2-D convolution

Synopsis

#include <filter.h>

void conv2d_fr16(min1, mrow1, mcol1, min2, mrow2, mcol2, mout)

const fract16 *min1; /* pointer to input matrix 1 */

int mrow1; /* number of rows in matrix 1 */

int mcol1; /* number of columns in matrix 1 */

const fract16 *min2; /* pointer to input matrix 2 */

fract16 *mrow2; /* number of rows in matrix 1 */

int mcol2; /* number of columns in matrix 2 */

fract16 *mout; /* pointer to output matrix */

Description

This function computes the two-dimensional convolution of input matrix
min1 of size mrow1 x mcol1 and min2 of size mrow2 x mcol2 and stores the
result in matrix mout of dimension (mrow1 +mrow2-1) x (mcol1 + mcol2-1).

Algorithm

Two dimensional input matrix min1 is convolved with input matrix min2,
placing the result in a matrix pointed to by mout.

for c = 0 to mcol1+mcol2-1 and r = 0 to mrow2-1

Domain

-1.0 to +1.0

[] () ()]1 ,1[] ,[,
12

0

12

0

j2mrowi2mcolmin2jricmin1rcmout
mcol

i

mrow

j

−−−−•++= ∑ ∑
−

=

−

=

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-49
for ADSP-219x DSPs

DSP Run-Time Library Reference
conv2d3x3

2-D convolution

Synopsis

#include <filter.h>

void conv2d3x3_fr16(min1, mrow1, mcol1, min2, mout)

const fract16 *min1[]; /* pointer to input matrix 1 */

int mrow1; /* number of rows in matrix 1 */

int mcol1; /* number of columns in matrix 1 */

const fract16 *min2[]; /* pointer to input matrix 2 */

fract16 *mout[]; /* pointer to output matrix */

Description

This function computes the two-dimensional convolution of matrix min1
(size mrow1 x mcol1) with matrix min2 (size 3x3).

Algorithm

Two dimensional input matrix min1 is convolved with input matrix min2,
placing the result in a matrix pointed to by mout.

for c = 0 to mcol1+2 and r = 0 to mrow1+2

Domain

-1.0 to +1.0

[]]2 ,2[] ,[,
2

0

2

0
jimin2jricmin1rcmout

i j
−−•++= ∑ ∑

= =
4-50 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
copysign

copy the sign

Synopsis

#include <math.h>

float copysignf (float parm1, float parm2)

double copysign (double parm1, double parm2)

fract16 copysign_fr16 (fract16 parm1, fract16 parm2)

Description

This function copies the sign of the second argument to the first
argument.

Algorithm

return (|parm1| * copysignof(parm2))

Domain

Full range for type of parameters used.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-51
for ADSP-219x DSPs

DSP Run-Time Library Reference
cot

cotangent

Synopsis

#include <math.h>

float cotf (float a)

double cot (double a)

Description

This function calculates the cotangent of its argument a, which is mea-
sured in radians. If a is outside of the domain, the function returns 0.

Algorithm

 c = cot(a)

Domain

 x = [–9099 ... 9099] for cotf(), cot()
4-52 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
countones

count one bits in word

Synopsis

#include <math.h>

int countones(int parm)

int lcountones(long parm)

Description

This function counts the number of one bits in parm.

Algorithm

return = bit[j] of parm

where N is the number of bits in parm

∑
−=

=

1

0

Nj

j

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-53
for ADSP-219x DSPs

DSP Run-Time Library Reference
crosscoh

cross-coherence

Synopsis

#include <stats.h>

void crosscohf(a,b,n,m,c)
const float a[]; /* Input vector a */
const float b[]; /* Input vector b */
int n; /* Number of input samples */
int m; /* Lag count */
float c[]; /* Output vector c */
void crosscoh_fr16(a,n,m,c)
const fract16 a[]; /* Input vector a */
const fract16 b[]; /* Input vector b */
int n; /* Number of input samples */
int m; /* Lag count */
fract16 c[]; /* Output vector c */

Description

This function computes the cross-coherence of the input elements con-
tained within input vector a and input vector b, and stores the result to
output vector c.

Algorithm

where k={0,1,...,m-1}, a is the mean value of input vector a and b is the
mean value of input vector b.

Domain

-3.4 x 1038 to +3.4 x 1038 for crosscohf()

-1.0 to +1.0 for crosscoh_fr16()

))(*)((*1 1

0
∑

−−

=
+ −−=

kn

j
kjjk bbaa

n
c

4-54 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
crosscorr

cross-correlation

Synopsis

#include <stats.h>

void crosscorrf(a,b,n,m,c)
const float a[]; /* Input vector a */
const float b[]; /* Input vector b */
int n; /* Number of input samples */
int m; /* Lag count */
float c[]; /* Pointer to output vector c */

void crosscorr_fr16(a,b,n,m,c)
const fract16 a[]; /* Input vector a */
const fract16 b[]; /* Input vector b */
int n; /* Number of input samples */
int m; /* Lag count */
fract16 c[]; /* Pointer to output vector c */

Description

This function computes the cross-correlation of the input elements con-
tained within input vector a and input vector b, and stores the result to
output vector c.

Algorithm

where k={0,1,...,m-1}

Domain

-3.4 x 1038 to +3.4 x 1038 for crosscorrf()

-1.0 to +1.0 for crosscorr_fr16()

c
n

a bk j j k
j

n k

= +
=

− −

∑
1

0

1

*(*)
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-55
for ADSP-219x DSPs

DSP Run-Time Library Reference
csub

complex subtraction

Synopsis

#include <complex.h>

complex_float csubf (complex_float a, complex_float b)

complex_double csub (complex_double a, complex_double b)

complex_fract16 csub_fr16 (complex_fract16 a, complex_fract16 b)

Description

This function computes the complex subtraction of two complex inputs a
and b, and returns the result.

Algorithm

Re(c) = Re(a) – Re(b)
Im(c) = Im(a) – Im(b)

Domain

-3.4 x 1038 to +3.4 x 1038 for csubf(), csub()

-1.0 to 1.0 for csub_fr16()
4-56 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
fir

finite impulse response filter

Synopsis

#include <filter.h>

void fir_fr16(x,y,n,s)
 const fract16 x[]; /* Input sample vector x */
 fract16 y[]; /* Output sample vector y */
 int n; /* Number of input samples */
 fir_state_fr16 *s; /* Pointer to filter state structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct
{
 fract16 *h; /* Filter coefficients */
 fract16 *d; /* Start of delay line */
 fract16 *p; /* Read/Write pointer */
 int k; /* Number of coefficients */
 int l; /* Interpolation/decimation index */
} fir_state_fr16;

Description

The fir_fr16 function implements a finite impulse response (FIR) filter.
The function generates the filtered response of the input data x and stores
the result in the output vector y. The number of input samples and the
length of the output vector is specified by the argument n.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
fir_init, in the filter.h header file, is available to initialize the structure
and is defined as:
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-57
for ADSP-219x DSPs

DSP Run-Time Library Reference
 #define fir_init(state, coeffs, delay, ncoeffs. index) \

 (state).h = (coeffs); \

 (state).d = (delay); \

 (state).p = (delay); \

 (state).k = (ncoeffs); \

 (state).l = (index)

The characteristics of the filter (passband, stopband, and so on) are depen-
dent upon the number of filter coefficients and their values. A pointer to
the coefficients should be stored in s->h, and s->k should be set to the
number of coefficients.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients. The vector should
be initially cleared to zero and should not otherwise be modified by the
user program. The structure member s->d should be set to the start of the
delay line, and the function uses s->p to keep track of its current position
within the vector.

The structure member s->l is not used by fir_fr16. This field is nor-
mally set to an interpolation/decimation index before calling either the
fir_interp_fr16 or fir_decima_fr16 functions.

Algorithm

Domain

-1.0 to +1.0

1,...1,0for)-(*)()(
1

0
−==∑

−

=

nijixjhiy
k

j

4-58 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
fir_decima

FIR decimation filter

Synopsis

#include <filter.h>

void fir_decima_fr16(x,y,n,s)
const fract16 x[]; /* Input sample vector x */
fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
fir_state_fr16 *s; /* Pointer to filter state structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct
{
 fract16 *h; /* Filter coefficients */
 fract16 *d; /* Start of delay line */
 fract16 *p; /* Read/Write pointer */
 int k; /* Number of coefficients */
 int l; /* Interpolation/decimation index */
} fir_state_fr16;

Description

The fir_decima_fr16 function performs an FIR-based decimation filter.
It generates the filtered decimated response of the input data x and stores
the result in the output vector y. The number of input samples is specified
by the argument n, and the size of the output vector should be n/l where l
is the decimation index.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
fir_init, in the filter.h header file, is available to initialize the structure
and is defined as:
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-59
for ADSP-219x DSPs

DSP Run-Time Library Reference
 #define fir_init(state, coeffs, delay, ncoeffs, index) \

 (state).h = (coeffs); \

 (state).d = (delay); \

 (state).p = (delay); \

 (state).k = (ncoeffs); \

 (state).l = (index)

The characteristics of the filter are dependent upon the number of filter
coefficients and their values, and on the decimation index supplied by the
calling program. A pointer to the coefficients should be stored in s->h,
and s->k should be set to the number of coefficients. The decimation
index is supplied to the function in s->l.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients. The vector should
be initially cleared to zero and should not otherwise be modified by the
user program. The structure member s->d should be set to the start of the
delay line, and the function uses s->p to keep track of its current position
within the vector.

Algorithm

where i = 0,1,...,(n/l) - 1

Domain

-1.0 to + 1.0

∑
−

=

=
1

0j
)+1-(*) - *()(

k

jkhjlixiy
4-60 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
fir_interp

FIR interpolation filter

Synopsis

#include <filter.h>

void fir_interp_fr16(x,y,n,s)
const fract16 x[]; /* Input sample vector x */
fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
fir_state_fr16 *s; /* Pointer to filter state structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct
{
 fract16 *h; /* Filter coefficients */
 fract16 *d; /* Start of delay line */
 fract16 *p; /* Read/Write pointer */
 int k; /* Number of coefficients */
 int l; /* Interpolation/decimation index */
} fir_state_fr16;

Description

The fir_interp_fr16 function performs an FIR-based interpolation filter.
It generates the interpolated filtered response of the input data x and
stores the result in the output vector y. The number of input samples is
specified by the argument n, and the size of the output vector should be
n*l where l is the interpolation index.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
fir_init, in the filter.h header file, is available to initialize the structure
and is defined as:
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-61
for ADSP-219x DSPs

DSP Run-Time Library Reference
 #define fir_init(state, coeffs, delay, ncoeffs, index) \

 (state).h = (coeffs); \

 (state).d = (delay); \

 (state).p = (delay); \

 (state).k = (ncoeffs); \

 (state).l = (index)

The filter characteristics are dependent upon the number of polyphase fil-
ter coefficients and their values, and on the interpolation index supplied
by the calling program. A pointer to the coefficients should be stored in
s->h, and s->k should be set to the number of coefficients. The interpola-
tion index is supplied to the function in s->l.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients. The vector should
be cleared to zero before calling the function for the first time and should
not otherwise be modified by the user program. The structure member
s->d should be set to the start of the delay line, and the function uses s->p
to keep track of its current position within the vector.

Algorithm

where i = 0,1,...,n-1

Domain

-1.0 to +1.0

∑
−

=

−=
1

0
1-l0,1,..., = mfor)* +)+1-((*)() + *y(l

k

j
kmjkhjixmi
4-62 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
gen_bartlett

generate bartlett window

Synopsis

#include <window.h>

void gen_bartlett_fr16(w,a,N)

fract16 w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Bartlett window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

The Bartlett window is similar to the Triangle window (see “gen_triangle”
on page 4-72) but has the following different properties:

• The Bartlett window always returns a window with two zeros on
either end of the sequence, so that for odd n, the center section of
an N+2 Bartlett window equals an N Triangle window.

• For even n, the Bartlett window is still the convolution of two rect-
angular sequences. There is no standard definition for the Triangle
window for even n; the slopes of the Triangle window are slightly
steeper than those of the Bartlett window.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-63
for ADSP-219x DSPs

DSP Run-Time Library Reference
Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n
n N

N[] = −
− −

−1

1
2
1

2

4-64 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
gen_blackman

generate blackman window

Synopsis

#include <window.h>

void gen_blackman_fr16(w,a,N)

fract16 w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Blackman window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n n
N

n
N

[] . . cos . cos= −
−







 +

−






0 42 05 2

1
0 08 4

1
π π
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-65
for ADSP-219x DSPs

DSP Run-Time Library Reference
gen_gaussian

generate gaussian window

Synopsis

#include <window.h>

void gen_gaussian_fr16(w,alpha,a,N)

fract16 w[]; /* Window vector */

float alpha; /* Gaussian alpha parameter */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Gaussian window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Algorithm

where n = {0, 1, 2, ..., N-1} and α is an input parameter

Domain

a > 0; N > 0; α > 0.0



















 −−−=
2

2/
2/12/

2
1exp)(

N
Nnnw α
4-66 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
gen_hamming

generate hamming window

Synopsis

#include <window.h>

void gen_hamming_fr16(w,a,N)

fract16 w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Hamming window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n n
N

[] . . cos= −
−







0 54 0 46 2

1
π

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-67
for ADSP-219x DSPs

DSP Run-Time Library Reference
gen_hanning

generate hanning window

Synopsis

#include <window.h>

void gen_hanning_fr16(w,a,N)

fract16 w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Hanning window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a. This
window is also known as the Cosine window.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0










−
−=

1
2

cos5.05.0][
N

nnw π
4-68 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
gen_harris

generate harris window

Synopsis

#include <window.h>

void gen_harris_fr16(w,a,N)

fract16 w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Harris window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a. This
window is also known as the Blackman-Harris window.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0










−
−









−
+









−
−=

1
6cos*01168.0

1
4cos*14128.0

1
2cos*48829.035875.0][

N
n

N
n

N
nnw πππ
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-69
for ADSP-219x DSPs

DSP Run-Time Library Reference
gen_kaiser

generate kaiser window

Synopsis

#include <window.h>

void gen_kaiser_fr16(w,beta,a,N)

fract16 w[]; /* Window vector */

float beta; /* Kaiser beta parameter */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Kaiser window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a. The β
value is specified by parameter beta.

Algorithm

where n = {0, 1, 2, ..., N-1}, α = (N - 1) / 2, and I0(β) represents the
zeroth-order modified Bessel function of the first kind.

Domain

a > 0; N > 0; β > 0.0

()w n

I n

I
[]

/

=

− −






























0

2 1 2

0

1β α
α

β

4-70 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
gen_rectangular

generate rectangular window

Synopsis

#include <window.h>

void gen_rectangular_fr16(w,a,N)

fract16 w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Rectangular window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Algorithm

w[n] = 1

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-71
for ADSP-219x DSPs

DSP Run-Time Library Reference
gen_triangle

generate triangle window

Synopsis

#include <window.h>

void gen_triangle_fr16(w,a,N)

fract16 w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Triangle window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w.

Refer to the Bartlett window (on page 4-63) regarding the relationship
between it and the Triangle window.

Algorithm

For even n, the following equation applies:

where n = {0, 1, 2, ..., N-1}

w n

n
N

n N

N n
N

n N
[] =

+ <

− − >









2 1 2

2 2 1 2
4-72 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
 For odd n, the following equation applies:

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n

n
N

n N

N n
N

n N
[] =

+
+

<

−
+

>









2 2
1

2

2 2
1

2

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-73
for ADSP-219x DSPs

DSP Run-Time Library Reference
gen_vonhann

generate von hann window

Synopsis

#include <window.h>

void gen_vonhann_fr16(w,a,N)

fract16 w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function is identical to gen_hanning window (on page 4-68).

Domain

a > 0; N > 0
4-74 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
histogram

histogram

Synopsis

#include <stats.h>

void histogramf(a,c,max,min,n,m)
const float a[]; /* Pointer to input vector a */
int c[]; /* Pointer to output vector c */
float max; /* Maximum value of the bin */
float min; /* Minimum value of the bin */
int n; /* Number of input samples */
int m; /* Number of bins */

void histogram_fr16(a,c,max,min,n,m)
const fract16 a[]; /* Pointer to input vector a */
int c[]; /* Pointer to output vector c */
fract16 max; /* Maximum value of the bin */
fract16 min; /* Minimum value of the bin */
int n; /* Number of input samples */
int m; /* Number of bins */

Description

The histogram function computes a histogram of the input vector a that
contains n samples, and stores the result in the output vector c

The minimum and maximum value of any input sample is specified by
min and max, respectively. These values are used by the function to calcu-
late the size of each bin as (max – min) / m, where m is the size of the
output vector c.

Any input value that is outside the range [min, max) will exceed the
boundaries of the output vector and will be discarded.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-75
for ADSP-219x DSPs

DSP Run-Time Library Reference
� To preserve maximum performance while performing out of
bounds checking, the histogram_fr16 function allocates a tempo-
rary work area on the stack. The work area is allocated with (m +
2) elements and the stack may therefore overflow if the number of
bins is sufficiently large. The size of the stack may be adjusted by
making appropriate changes to the .LDF file.

Algorithm

Each input value is adjusted by min, multiplied by 1/binsize and is
rounded. The appropriate bin in the output vector is then incremented.

Domain

-3.4 x 1038 to +3.4 x 1038 for histogramf()

-1.0 to +1.0 for histogram_fr16()
4-76 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
ifft

N point inverse FFT

Synopsis

#include <filter.h>

void ifft_fr16(in[], t[], out[], w[], wst, n, block_exponent,
scale_method)

const complex_fract16 in[]; /* input sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* output sequence */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int *block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired 0-none,

1-static, 2-dynamic */

Description

This function transforms the frequency domain complex input signal
sequence to the time domain by using the radix-2 Fast Fourier Transform.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
The function does not impose any special memory alignment require-
ments on the arrays. However, benefits in run-time performance will be
realized if the output array is allocated on an address boundary that is
multiple of twice the FFT size. If the input data can be overwritten, then
optimum memory usage can be achieved by specifying the input array as
the output array.

The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle coefficients. The function twidfftrad2_fr16 may be used to
initialize the array. If the twiddle table contains more coefficients than
needed for a particular call on ifft_fr16, then the stride factor has to be
set appropriately; otherwise it should be 1.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-77
for ADSP-219x DSPs

DSP Run-Time Library Reference
The argument scale_method controls how the function should scale the
output to avoid overflow. If no scaling is selected by setting scale_method
to zero, then the input signal should be sufficiently conditioned to avoid
overflow. The block_exponent argument will be set to zero.

The function will perform static scaling if scale_method is set to 1. For
static scaling, the function will scale intermediate results to prevent over-
flow. The final output will be scaled by 1/n, and block_exponent will be
set to log2(n).

If scale_method is set to 2, then the function will select dynamic scaling.
Under dynamic scaling, the function will inspect the intermediate results
and will only scale to avoid overflow. Dynamic scaling therefore mini-
mizes loss of precision but at the possible cost of slightly reduced
performance. The block_exponent argument will be set to a value between
0 (which indicates that no scaling was performed) and log2(n) (as if static
scaling was performed).

Algorithm

The implementation uses core FFT functions. To get the inverse effect, it
first swaps the real and imaginary parts of the input, performs the direct
radix-2 transformation and finally swaps the real and imaginary parts of
the output.

Domain

Input sequence length n must be a power of two and at least 16.

nk
N

N

k
WkX

N
nx −

−

=
∑=

1

0
)(1)(
4-78 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
ifftrad4

N point inverse FFT

Synopsis

#include <filter.h>

void ifftrad4_fr16 (in[], t[], out[], w[], wst, n, block_exponent,
scale_method)

const complex_fract16 in[]; /* input sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* output sequence */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int *block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired 0-none,

1-static, 2-dynamic */

Description

This function transforms the frequency domain complex input signal
sequence to the time domain by using the radix-4 Inverse Fast Fourier
Transform.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
The function does not impose any special memory alignment require-
ments on the arrays. However, benefits in run-time performance will be
realized if the output array is allocated on an address boundary that is
multiple of twice the FFT size. If the input data can be overwritten, then
optimum memory usage can be achieved by specifying the input array as
the output array.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-79
for ADSP-219x DSPs

DSP Run-Time Library Reference
The twiddle table is passed in the argument w, which must contain at least
¾n twiddle factors. The function twidfftrad4_fr16 may be used to initial-
ize the array. If the twiddle table contains more factors than needed for a
particular call on ifftrad4_fr16, then the stride factor has to be set
appropriately; otherwise it should be 1.

The argument scale_method controls how the function should scale the
output to avoid overflow. If no scaling is selected by setting scale_method
to zero, then the input signal should be sufficiently conditioned to avoid
overflow. The block_exponent argument will be set to zero.

The function will perform static scaling if scale_method is set to 1. For
static scaling, the function will scale intermediate results to prevent over-
flow. The final output will be scaled by 1/n, and block_exponent will be
set to log2(n).

If scale_method is set to 2, then the function will select dynamic scaling.
Under dynamic scaling, the function will inspect the intermediate results
and will only scale to avoid overflow. Dynamic scaling therefore mini-
mizes loss of precision but at the cost of slightly reduced performance.
The block_exponent will be set to a value between 0 (which indicates that
no scaling was performed) and log2(n) (if static scaling was performed).

Algorithm

The implementation uses core FFT functions implemented as direct
radix-4 algorithm. To get the inverse effect, it first swaps the real and
imaginary parts of the input, performs the direct radix-4 transformation
and finally swaps the real and imaginary parts of the output.

Domain

Input sequence length n must be a power of four and at least 16.

x n
N

X k W
k

N

N
nk() ()=

=

−
−

∑
1

0

1

4-80 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
ifft2d

NxN point 2-D inverse input FFT

Synopsis

#include <filter.h>

void ifft2d_fr16(*in, *t, *out, w[], wst, n, block_exponent,
scale_method)

const complex_float *in; /* pointer to input matrix a[n][n] */
complex_fract16 *t; /* pointer to working buffer t[n][n] */
complex_fract16 *out; /* pointer to output matrix c[n][n] */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int *block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired 0-none,

1-static, 2-dynamic */

Description

This function computes a two-dimensional Inverse Fast Fourier Trans-
form of the complex input matrix a[n][n] and stores the result to the
complex output matrix c[n][n].

The size of the input array in, the output array out, and the temporary
working buffer t is n*n, where n represents the number of points in the
FFT. The function does not impose any special memory alignment
requirements on the arrays. However, benefits in run-time performance
will be realized if the output array is allocated on an address boundary that
is multiple of twice the FFT size. If the input data can be overwritten,
then optimum memory usage can be achieved by specifying the input
array as the output array.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-81
for ADSP-219x DSPs

DSP Run-Time Library Reference
The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle factors. The function twidfft2d_fr16 may be used to initial-
ize the array. If the twiddle table contains more factors than needed for a
particular call on ifft2d_fr16, then the stride factor has to be set appro-
priately; otherwise it should be 1.

The arguments block_exponent and scale_method have been added for
future expansion. However, the current version of the function ignores the
argument and always scales the output by n*n; this is equivalent to static
scaling. The function will also set block_exponent to log2(n).

Algorithm

where i={0,1,...,n -1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must be a power of two and at least 16.

c i j
n

a k l e j i k j l n

l

n

k

n

(,) (,) * (* *)/= +

=

−

=

−

∑∑
1

2
2

0

1

0

1
π

4-82 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
iir

infinite impulse response filter

Synopsis

#include <filter.h>

void iir_fr16(x,y,n,s)
const fract16 x[]; /* Input sample vector x */
fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
iir_state_fr16 *s /* Pointer to filter state structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct
{

fract16 *c; /* coefficients */
fract16 *d; /* start of delay line */
int k; /* number of bi-quad stages */

} iir_state_fr16;

Description

The iir_fr16 function implements a bi-quad, canonical form, infinite
impulse response (IIR) filter. It generates the filtered response of the input
data x and stores the result in the output vector y. The number of input
samples and the length of the output vector is specified by the argument n.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
iir_init, in the filter.h header file, is available to initialize the structure
and is defined as:

#define iir_init(state, coeffs, delay, stages) \
(state).c = (coeffs); \
(state).d = (delay); \
(state).k = (stages)
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-83
for ADSP-219x DSPs

DSP Run-Time Library Reference
The characteristics of the filter are dependent upon filter coefficients and
the number of stages. Each stage has five coefficients which must be stored
in the order B2, B1, B0, A2, A1. The value of A0 is implied to be 1.0 and A1
and A2 should be scaled accordingly. This requires that the value of the A0
coefficient is greater than both A1 and A2 for all the stages. A pointer to the
coefficients should be stored in s->c, and s->k should be set to the num-
ber of stages.

� The iir_fr16 function is implemented using a direct form II algo-
rithm. When importing coefficients from a filter design tool that
employs a transposed direct form II, the A1 and A2 coefficients have
to be negated. For example, if a filter design tool returns A = [1.0,
0.2, -0.9], then the A coefficients have to be modified to A =
[1.0, -0.2, 0.9].

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to twice the number of stages. The vector
should be initially cleared to zero and should not otherwise be modified by
the user program. The structure member s->d should be set to the start of
the delay line.

Algorithm

where

where m={0,1,2,...,n-1}

Domain

-1.0 to +1.0

H z
B B z B z

A z A z
() =

+ +
− −

− −

− −
0 1

1
2

2

1
1

2
21

D A D A D x
Y B D B D B D

m m m m

m m m m

= + +
= + +

− −

− −

2 2 1 1

2 2 1 1 0

* *
* * *
4-84 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
max

maximum

Synopsis

#include <math.h>

int max (int parm1, int parm2)

long int lmax (long int parm1, long int parm2)

float fmaxf (float parm1, float parm2)

double fmax (double parm1, double parm2)

fract16 max_fr16 (fract16 parm1, fract16 parm2)

Description

This function returns the larger of its two arguments.

Algorithm

if (parm1 > parm2)

return(parm1)

else

return(parm2)

Domain

Full range for type of parameters.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-85
for ADSP-219x DSPs

DSP Run-Time Library Reference
mean

mean

Synopsis

#include <stats.h>

fract16 mean_fr16(a,n)

const fract16 a[]; /* Input vector a */

int n; /* Number of input samples */

float meanf(a,n)

const float a[]; /* Input vector a */

int n; /* Number of input samples */

Description

This function computes the mean of the input elements contained within
input vector a and returns the result.

Algorithm

Domain

-3.4 x 1038 to +3.4 x 1038 for meanf()

-1.0 to +1.0 for mean_fr16()

c
n

ai
i

n

=
=

−

∑
1

0

1

* ()
4-86 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
min

minimum

Synopsis

#include <math.h>

int min (int parm1, int parm2)

long int lmin (long int parm1, long int parm2)

float fminf (float parm1, float parm2)

double fmin (double parm1, double parm2)

fract16 min_fr16 (fract16 parm1, fract16 parm2)

Description

This function returns the smaller of its two arguments.

Algorithm

if (parm1 < parm2)

return(parm1)

else

return(parm2)

Domain

Full range for type of parameters used.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-87
for ADSP-219x DSPs

DSP Run-Time Library Reference
mu_compress

µ-law compression

Synopsis

#include <filter.h>

void mu_compress(in, out, n)

const short in[]; /* Input array */

short out[]; /* Output array */

int n; /* Number of elements to be compressed */

Description

The mu_compress function takes a vector of linear 14-bit signed speech
samples and performs µ-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by out.

Algorithm

C(k)= mu_law compression of A(k)

for k=0 to n-1

Domain

Content of input array: -8192 to 8191
4-88 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
mu_expand

µ-law expansion

Synopsis

#include <filter.h>

void mu_expand(in, out, n)

const short in[]; /* Input array */

short out[]; /* Output array */

int n; /* Number of elements to be expanded */

Description

The mu_expand function inputs a vector of 8-bit compressed speech sam-
ples and expands them according to ITU recommendation G.711. Each
input value is expanded to a linear 14-bit signed sample in accordance
with the µ-law definition and is returned in the vector pointed to out.

Algorithm

C(k)= mu_law expansion of A(k)

for k=0 to n-1

Domain

Content of input array: 0 to 255
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-89
for ADSP-219x DSPs

DSP Run-Time Library Reference
norm

normalization

Synopsis

#include <complex.h>

complex_float normf (complex_float a)

complex_double norm (complex_double a)

Description

This function normalizes the complex input a and returns the result.

Algorithm

Domain

-3.4 x 1038 to +3.4 x 1038 for normf ()

Re()
Re()

Re () Im ()

Im()
Im()

Re () Im ()

c
a

a a

c
a

a a

=
+

=
+

2 2

2 2
4-90 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
polar

construct from polar coordinates

Synopsis

#include <complex.h>

complex_float polarf (float magnitude, float phase)

complex_double polar (double magnitude, double phase)

complex_fract16 polar_fr16 (fract16 magnitude, fract16 phase)

Description

This function transforms the polar coordinate, specified by the arguments
magnitude and phase, into a Cartesian coordinate and returns the result as
a complex number in which the x-axis is represented by the real part, and
the y-axis by the imaginary part. The phase argument is interpreted as
radians.

For the polar_fr16 function, the phase must be scaled by 2π and must be
in the range [0x8000, 0x7ff0]. The value of the phase may be either pos-
itive or negative. Positive values are interpreted as an anti-clockwise
motion around a circle with a radius equal to the magnitude as shown in
Table 4-9.

Table 4-9. Positive Phases

Phase Radians

 0.0 0

0.25 (0x2000) π/2

0.50 (0x4000) π

0.75 (0x6000) 3/2π

0.999 (0x7ff0) <2π
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-91
for ADSP-219x DSPs

DSP Run-Time Library Reference
Table 4-10 shows how negative values for the phase argument are inter-
preted as a clockwise movement around a circle.

Algorithm

Re(c) = r*cos(θ)
Im(c) = r*sin(θ)

where θ is the phase, and r is the magnitude

Domain

phase = [-9099 ... 9099] for polarf(), polar()

magnitude = -3.4 x 1038... +3.4 x 1038 for polarf(), polar()

phase = [-1.0 ...+0.999969] for polar_fr16()

magnitude = [-1.0 ... 1.0) for polar_fr16()

Example

#include <complex.h>

#define PI 3.14159265

complex_fract16 point;

float phase_float;

Table 4-10. Negative Phases

Phase Radians

-0.25 (0xe000) 3/2π

-0.50 (0xc000) π

-0.75 (0xa000) π/2

-1.00 (0x8000) 2π
4-92 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
fract16 phase_fr16;

fract16 mag_fr16;

phase_float = PI;

phase_fr16 = (phase_float / (2*PI)) * 32768.0;

mag_fr16 = 0x0200;

point = polar_fr16 (mag_fr16,phase_fr16);

/* point.re = 0xfe00 */

/* point.im = 0x0000 */
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-93
for ADSP-219x DSPs

DSP Run-Time Library Reference
rfft

N point real input FFT

Synopsis

#include <filter.h>

void rfft_fr16(in[], t[], out[], w[], wst, n, block_exponent,
scale_method)

const fract16 in[]; /* input/output sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* working buffer */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired 0-none,

1-static, 2-dynamic */

Description

This function transforms the time domain real input signal sequence to
the frequency domain by using the radix-2 FFT. The function takes
advantage of the fact that the imaginary part of the input equals zero,
which in turn eliminates half of the multiplications in the butterfly.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
The function does not impose any special memory alignment require-
ments on the arrays. However, benefits in run-time performance will be
realized if the output array is allocated on an address boundary that is
multiple of twice the FFT size. If the input data can be overwritten, then
optimum memory usage can be achieved by specifying the input array as
either the output array or as the temporary array provided that the mem-
ory size of the input array is at least 2*n. Specifying the input array as the
temporary array will also result in increased run-time performance.
4-94 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle factors. The function twidfftrad2_fr16 may be used to ini-
tialize the array. If the twiddle table contains more factors than needed for
a particular call on rfft_fr16, then the stride factor has to be set appro-
priately; otherwise it should be 1.

The argument scale_method controls how the function should scale the
output to avoid overflow. If no scaling is selected by setting scale_method
to zero, then the input signal should be sufficiently conditioned to avoid
overflow. The block_exponent argument will be set to zero.

The function will perform static scaling if scale_method is set to 1. For
static scaling, the function will scale intermediate results to prevent over-
flow. The final output will be scaled by 1/n, and block_exponent will be
set to log2(n).

If scale_method is set to 2, then the function will select dynamic scaling.
Under dynamic scaling, the function will inspect the intermediate results
and will only scale to avoid overflow. Dynamic scaling therefore mini-
mizes loss of precision but at the possible cost of slightly reduced
performance. The block_exponent argument will be set to a value between
0 (which indicates that no scaling was performed) and log2(n) (as if static
scaling was performed).

Algorithm

See cfft on page 4-36.

Domain

Input sequence length n must be a power of two and at least 16.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-95
for ADSP-219x DSPs

DSP Run-Time Library Reference
rfftrad4

N point real input FFT

Synopsis

#include <filter.h>

void rfftrad4_fr16(in[], t[], out[], w[], wst, n, block_exponent,
scale_method)

const fract16 in[]; /* input/output sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* working buffer */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int *block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired 0-none,

1-static, 2-dynamic */

Description

This function transforms the time domain real input signal sequence to
the frequency domain by using the radix-4 Fast Fourier Transform. The
rfftrad4_fr16 function takes advantage of the fact that the imaginary
part of the input equals zero, which in turn eliminates half of the multipli-
cations in the butterfly.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
The function does not impose any special memory alignment require-
ments on the arrays. However, benefits in run-time performance will be
realized if the output array is allocated on an address boundary that is
multiple of twice the FFT size. If the input data can be overwritten, then
optimum memory usage can be achieved by specifying the input array as
either the output array or as the temporary array provided that the mem-
ory size of the input array is at least 2*n. Specifying the input array as the
temporary array will also result in increased run-time performance.
4-96 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
¾n twiddle factors. The function twidfftrad4_fr16 may be used to ini-
tialize the array. If the twiddle table contains more factors than needed for
a particular call on rfftrad4_fr16, then the stride factor has to be set
appropriately; otherwise it should be one.

The argument scale_method controls how the function should scale the
output to avoid overflow. If no scaling is selected by setting scale_method
to zero, then the input signal should be sufficiently conditioned to avoid
overflow. The block_exponent argument will be set to zero.

The function will perform static scaling if scale_method is set to 1. For
static scaling, the function will scale intermediate results to prevent over-
flow. The final output will be scaled by 1/n, and block_exponent will be
set to log2(n).

If scale_method is set to 2, then the function will select dynamic scaling.
Under dynamic scaling, the function will inspect the intermediate results
and will only scale to avoid overflow. Dynamic scaling therefore mini-
mizes loss of precision but at the possible cost of slightly reduced
performance. The block_exponent argument will be set to a value between
0 (which indicates that no scaling was performed) and log2(n) (as if static
scaling was performed).

Algorithm

See cfftrad4_fr16 on page 4-38.

Domain

Input sequence length n must be a power of four and at least 16.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-97
for ADSP-219x DSPs

DSP Run-Time Library Reference
rfft2d

NxN point 2-D real input FFT

Synopsis

#include <filter.h>

void rfft2d_fr16(*in, *t, *out, w[], wst, n, block_exponent,
scale_method)

const fract16 *in; /* pointer to input matrix a[n][n] */
complex_fract16 *t; /* pointer to working buffer t[n][n] */
complex_fract16 *out; /* pointer to output matrix c[n][n] */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int *block_exponent; /* block exponent of output data */
int scale method; /* scaling method desired 0-none,

1-static, 2-dynamic */

Description

This function computes a two-dimensional Fast Fourier Transform of the
real input matrix a[n][n], and stores the result to the complex output
matrix c[n][n].

The size of the input array in, the output array out, and the temporary
working buffer t is n*n, where n represents the number of points in the
FFT. The function does not impose any special memory alignment
requirements on the arrays. However, benefits in run-time performance
will be realized if the output array is allocated on an address boundary that
is a multiple of twice the FFT size.

The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle coefficients. The function twidfft2d_fr16 may be used to ini-
tialize the array. If the twiddle table contains more coefficients than
needed for a particular call on rfft2d_fr16, then the stride factor has to
be set appropriately; otherwise it should be one.
4-98 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The arguments block_exponent and scale_method have been added for
future expansion. However, the current version of the function ignores the
argument and always scales the output by n*n; this is equivalent to static
scaling. The function will also set block_exponent to log2(n).

Algorithm

where i={0,1,...,n -1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must be a power of two and at least 16.

c i j a k l e j i k j l n

l

n

k

n

(,) (,)* (* *)/= − +

=

−

=

−

∑∑ 2

0

1

0

1
π

VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-99
for ADSP-219x DSPs

DSP Run-Time Library Reference
rms

root mean square

Synopsis

#include <stats.h>

float rmsf(a,n)

const float a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

fract16 rms_fr16(a,n)

const fract16 a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

Description

This function computes the root mean square of the input elements con-
tained within input vector a and returns the result.

Algorithm

Domain

-3.4 x 1038 to +3.4 x 1038 for rmsf()

-1.0 to +1.0 for rms_fr16()

c
a

n

i
i

n

= =

−

∑ 2

0

1

4-100 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
rsqrt

reciprocal square root

Synopsis

#include <math.h>

float rsqrtf (float a);

double rsqrt (double a);

Description

This function calculates the reciprocal of the square root of the number a.
If a is negative, the function returns 0.

Algorithm

Domain

[0.0 to +3.4 x 1038 for rsqrtf()
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-101
for ADSP-219x DSPs

DSP Run-Time Library Reference
twidfftrad2

generate FFT twiddle factors for radix-2 FFT

Synopsis

#include <filter.h>

void twidfftrad2_fr16 (complex_fract16 w[], int n)

Description

This function calculates complex twiddle coefficients for a radix-2 FFT
with n points and returns the coefficients in the vector w. The vector w,
known as the twiddle table, is normally calculated once and is then passed
to an FFT function as a separate argument. The size of the table must be
at least ½ of n, the number of points in the FFT.

FFTs of different sizes can be accommodated with the same twiddle table.
Simply allocate the table at the maximum size. Each FFT has an addi-
tional parameter, the “stride” of the twiddle table. To use the whole table,
specify a stride of 1. If the FFT uses only half the points of the largest
FFT, the stride should be 2 (this takes only every other element).

Algorithm

This function takes FFT length n as an input parameter and generates the
lookup table of complex twiddle coefficients. The samples are:

where k = {0, 1, 2, ..., n/2 - 1}

twid re k
n

k_ () cos= 







2π








−= k
n

kimtwid π2sin)(_
4-102 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
Domain

The FFT length n must be a power of two and at least 16.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-103
for ADSP-219x DSPs

DSP Run-Time Library Reference
twidfftrad4

generate FFT twiddle factors for radix-4 FFT

Synopsis

#include <filter.h>

void twidfftrad4_fr16 (complex_fract16 w[], int n)

void twidfft_fr16(complex_fract16 w[], int n)

Description

The twidfftrad4_fr16 function initializes a table with complex twiddle
factors for a radix-4 FFT. The number of points in the FFT are defined
by n, and the coefficients are returned in the twiddle table w.

The size of the twiddle table must be at least ¾n, the length of the FFT
input sequence. A table can accommodate several FFTs of different sizes
by allocating the table at maximum size, and then using the stride argu-
ment of the FFT function to specify the step size through the table. If the
stride is set to 1, the FFT function uses all the table; if your FFT has only
a quarter of the number of points of the largest FFT, the stride should be
4.

For efficiency, the twiddle table is normally generated once during pro-
gram initialization and is then supplied to the FFT routine as a separate
argument.

The twidfft_fr16 routine is provided as an alternative to the
twidfftrad4_fr16 routine and performs the same function.

Algorithm

This function takes FFT length n as an input parameter and generates the
lookup table of complex twiddle coefficients.
4-104 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
The samples generated are:

where k = {0, 1, 2, ..., ¾n - 1}

Domain

The FFT length n must be a power of four and at least 16.

twid re k
n

k_ () cos= 







2π








−= k
n

kimtwid π2sin)(_
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-105
for ADSP-219x DSPs

DSP Run-Time Library Reference
twidfft2d

generate FFT twiddle factors for 2-D FFT

Synopsis

#include <filter.h>

void twidfft2d_fr16 (complex_fract16 w[], int n)

Description

The twidfft2d_fr16 function generates complex twiddle factors for a 2-D
FFT. The size of the FFT input sequence is given by the argument n and
the function writes the twiddle factors to the vector w, known as the twid-
dle table.

The size of the twiddle table must be n/2, the number of points in the
FFT. Normally, the table is only calculated once and is then passed to an
FFT function as an argument. A twiddle table may be used to generate
several FFTs of different sizes by initializing the table for the largest FFT
and then using the stride argument of the FFT function to specify the step
size through the table. For example, to generate the largest FFT, the stride
would be set to 1; and to generate an FFT of half this size, the stride
would be set to 2.

Algorithm

This function takes FFT length n as an input parameter and generates the
lookup table of complex twiddle coefficients.

The samples generated are:

twid re k
n

k_ () cos= 







2π
4-106 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
where k = {0, 1, 2, ..., n/2 - 1}

Domain

The FFT length n must be a power of two and at least 16.








−= k
n

kimtwid π2sin)(_
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-107
for ADSP-219x DSPs

DSP Run-Time Library Reference
var

variance

Synopsis

#include <stats.h>

float varf(a,n)

const float a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

fract16 var_fr16(a, n)

const fract16 a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

Description

This function computes the variance of the input elements contained
within input vector a and returns the result.

Algorithm

Domain

-3.4 x 1038 to +3.4 x 1038 for varf()

-1.0 to +1.0 for var_fr16()

c
n a a

n n

i
i

n

i
i

n

=
−

−
=

−

=

−

∑ ∑* ()

()

2

0

1

0

1
2

1

4-108 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

DSP Run-Time Library
zero_cross

count zero crossings

Synopsis

#include <stats.h>

int zero_crossf(a,n)

const float a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

zero_cross_fr16 (a, n)

const fract16 a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

Description

This function computes the number of times that a signal crosses over the
zero line and returns the result. If all the input values are zero, the func-
tion returns a zero.

Algorithm

The actual algorithm is different from the one shown below because the
algorithm needs to handle the case where an element of the array is zero.
However, this example should give you a basic understanding.

if (a(i) > 0 && a(i+1) < 0)|| (a(i) < 0) && a(i+1) > 0)

the number of zeros is increased by one

Domain

-3.4 x 1038 to +3.4 x 1038 for zero_crossf()

-1.0 to +1.0 for zero_cross_fr16()
VisualDSP++ 3.5 C/C++ Compiler and Library Manual 4-109
for ADSP-219x DSPs

DSP Run-Time Library Reference
4-110 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

A COMPILER LEGACY
SUPPORT

The VisualDSP++ environment and tools provide several types of support

for legacy code that was developed with previous releases of the develop-
ment tools. For more information on legacy code support, see the
VisualDSP++3.5 Linker and Utilities Manual for 16-Bit Processors and
VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and
ADSP-219x DSPs.

Tools Differences
VisualDSP++ 3.5 includes an updated C/C++ compiler, linker, and
debugger, and a binary file format, ELF. Due to use of the VisualDSP++
Integrated Development and Debugging Environment (IDDE) and other
enhancements, VisualDSP++ 3.5 has significant differences from
Release 6.1 that you will need to be aware of. Most of these software dif-
ferences originated in VisualDSP++ 3.0 release. In some cases, you will
need to modify your sources to use the new tools.

Of the new features and enhancements, the following have the most
impact on your existing projects:

• Some tools switches have changed. If you use any of the modified
or obsolete switches, you must revise your command line scripts or
batch files in order to rebuild your project.

• The code generation tools no longer support AEXE-format DSP
executables (.EXE). They now generate ELF-format DSP executa-
bles (.DXE), and the debugger requires DSP executables to be in the
VisualDSP++ 3.5 C/C++ Compiler and Library Manual A-1
for ADSP-219x DSPs

Tools Differences
ELF/DWARF-2 format. As a result, AEXE-formatted files must be
recompiled or reassembled in order to be debugged under
VisualDSP++ 3.5. An ELF/DWARF-to-AEXE conversion utility is
available in VisualDSP++ 3.5 that will perform back-conversion.
An AEXE-to-ELF conversion utility performs forward conversion.

• Some assembly instructions and directives have changed from the
VisualDSP 6.1 syntax, but a -legacy assembler switch has been
provided to assemble files in the old syntax. You may need to
review diagnostic messages and revise your source code in order to
reassemble your source. Legacy syntax and the new syntax under
VisualDSP++ 3.5 cannot be used together in the same source file.
They can be mixed together within the same project, as long as
they are assembled in different source files.

• Some C compiler extensions to the ISO/ANSI standard have
changed. If you use any of the modified or removed extensions,
you must revise your code in order to rebuild your project.

• The run-time model has changed. If you call a VisualDSP Release
6.1 assembly language subroutine from your C/C++ program, you
must revise the assembly code to comply with the new rules for the
C/C++ run-time environment.

• The Architecture File (.ACH) is no longer supported. If you re-link
using your Release 6.1 object files or object libraries, you must cre-
ate a Linker Description File for each object or object library before
using the new Linker.

The remainder of this section describes these and other known differences
between VisualDSP Releases 6.1 and VisualDSP++ 3.5. It also provides
assistance when possible for making these required changes.
A-2 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler Legacy Support
C/C++ Compiler and Run-Time Library
The new cc219x compiler provided in VisualDSP++ 3.5 does not support
some switches and extensions that were available in the g21 compiler. As a
result, the compiler supports a set of new rules for the run-time environ-
ment. This section lists the extensions and switches that have been
removed, replaced, or whose function works differently than in
Release 6.1.

For further details about the cc219x compiler, see Chapter 1, “Compiler”.

Segment Placement Support Keyword Changed to
Section

The segment() placement keyword has changed to section(). The
section() construct now precedes the variable declaration, and its argu-
ment is a string. For example,

section("my_sec”) int myvar;

For more information about the section() construct, see “Placement
Support Keyword (section)” on page 1-83.

G21 Compatibility Call
The cc219x compiler provides a special G21 compatibility call that enables
use of existing libraries with the new compiler. The extern OldAsmCall
declaration can be added to the prototype(s) of the functions developed
under Release 6.1. Your programs will be faster, smaller, and more reliable
after the C code is upgraded to use the new compiler.

� This convention is similar to the C++/C linkage specification.
VisualDSP++ 3.5 C/C++ Compiler and Library Manual A-3
for ADSP-219x DSPs

C/C++ Compiler and Run-Time Library
Support for G21-Based Options And Extensions
The cc219x compiler supports most of the switches and extensions of the
previous GNU-based compiler release. For a list of absolute or modified
options, see “Compiler Switch Modifications” on page A-5.

ANSI C Extensions
The following extensions are no longer supported, or their functions have
been modified:

• typeof — This extension was used to define the type of an
expression.

• Complex types: complex, creal, cimag, and conj — These exten-
sions were used to define complex numbers. Although you cannot
write complex number literals, you can have a complex type
defined with real and imaginary components. These types need to
be managed by the programmer. Support for complex types using
such an approach is used in the libdsp definitions and use of vari-
ous complex types.

• Compound statements within expressions — This extension was
used to declare variables within an expression. You can achieve
these results using inline functions.

• Iterator types: iter and sum — These extensions created loop
expressions that were used as a shorthand for working with arrays.

• Assigning variables to specific registers: asm — This extension was
used to declare a variable and specify a machine register in which to
store it.

If you use any of these extensions in your C source code, revise that
source.
A-4 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler Legacy Support
Compiler Switch Modifications
The switches listed in Table A-1 have been removed or their actions have
been modified. If you use any of these switches to compile your C/C++
code, remove or replace the switch before recompiling the code with the
new cc219x compiler.

Table A-1. C/C++ Compiler — Obsolete and Replaced Switches

Release 6.1Switch Operation under Release 6.1 Change for VisualDSP++ 3.5

-a Specify Architecture File. Replaced with -T <Linker
Description File> in linker
command line.
Subsumed in VisualDSP++ build
process.

-dD, -dM, and -dN Output the results of prepro-
cessing and/or list of
#defines.

Removed.

-deps Instruct driver to rebuild only
components of a target that
have changed.

Removed.

-Fno-<high|med|low> Disable specified optimiza-
tion level.

Removed.
Optimization controlled with
-O switches.

-fcond-mismatch Allow conditional expression
mismatch.

Removed.

-finline-functions Force function inlining. Removed.

-fkeep-inline-funtions Force keeping of inlined
functions.

Removed.

-fno-asm Don’t recognize asm as a
keyword.

Replaced with
-no-extra-keywords
(see on page 1-34)

-fno-builtin Don’t recognize builtin
functions.

Replaced with -no-builtin
(see on page 1-34)
VisualDSP++ 3.5 C/C++ Compiler and Library Manual A-5
for ADSP-219x DSPs

C/C++ Compiler and Run-Time Library
-fsigned-bitfields
-funsigned-bitfields

Control whether bit field is
signed or unsigned.

Removed.
Bit field is signed or unsigned
based on the sign of the type defi-
nition declaring the bitfield.

-fno-signed-bitfields
-fno-unsigned-bit-
fields

Negative form of the
-fsigned-bitfield and
-funsigned-bitfield.

Removed.
Bit field is signed or unsigned
based on the sign of the type defi-
nition declaring the bitfield.

-fsigned-char
-funsigned-char

Specify whether to default to
signed or unsigned char type.

Replaced with -signed-char
and -unsigned-char.

-fsyntax-only Check syntax only; no out-
put.

Replaced with -syntax-only
(see on page 1-45)

-fwritable-strings Store string constants in the
writable data segment.

Removed.
String constants are placed in the
seg_data1 section. Definition in
the .LDF file can place this section
in RAM or ROM.

-imacros Process macro file. Removed.

-MD and -MMD Output rules for the make
utility; used with -E.

Removed.

-mboot-page= Specify boot page. Removed.
The ADSP-219x processors do
not support paging.

-mdmdata=
-mpmdata=
-mdcode=

Specify target architecture file
segments.

Removed.
You can control placement of
object file segments using the
SECTIONS command in the .LDF
file..

-mlistm Merge C code with
assembler-generated code.

Removed.

Table A-1. C/C++ Compiler — Obsolete and Replaced Switches (Cont’d)

Release 6.1Switch Operation under Release 6.1 Change for VisualDSP++ 3.5
A-6 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler Legacy Support
-mno-doloops Do not generate loop struc-
tures in assembled code.

Removed.
The compiler only generates do
loop control structures when it is
safe to do so and the compiler is
generating optimized code (-O,
-Os). Interrupt handling routines
should save and restore the loop
stack if they are to use the same
construct to avoid overflowing
the loop stacks.

-mno-inits Do not initialize variables in
assembled code.

Removed.

-mpjump Place the jump table in pm
memory.

Removed.

-mreserved= Instructs the compiler not to
use specified registers.

Replaced with -reserve
(see on page 1-43)

-mrom Make the module a ROM
module.

Removed.

-msmall-code Optimize for size, not for
speed.

Replaced with -Os
(see on page 1-37)

-mstatic-spill Use dm memory when all reg-
ister are used.

Removed.

-nostdinc Do not search standard sys-
tem directories for header
files.

Replaced with -no-std-inc
(see on page 1-35)

-nostdlib Do not use standard system
libraries and startup files
when linking.

Replaced with -no-std-lib
(see on page 1-36)

-runhdr Specify a particular runtime
header.

Removed.

-traditional-cpp Support some preprocessing
features.

Removed.

Table A-1. C/C++ Compiler — Obsolete and Replaced Switches (Cont’d)

Release 6.1Switch Operation under Release 6.1 Change for VisualDSP++ 3.5
VisualDSP++ 3.5 C/C++ Compiler and Library Manual A-7
for ADSP-219x DSPs

C/C++ Compiler and Run-Time Library
New and Obsolete Warnings
The VisualDSP++ 3.5 compiler includes several new warning switches.
These switches control the number and type of messages reported during a
given compilation. They are described in Table A-2 on page A-8.

The Release 6.1 warning switches that are no longer supported are listed
in Table A-3 on page A-8:

Table A-2. C/C++ Compiler — New Warning Switches

VisualDSP ++ 3.5
Warning Switch

Description

-warn-protos Produce a warning when a function is called without a
full prototype.

-Wdriver-limit number Set a maximum number of driver errors.

-Werror-limit number Set a maximum number of compiler errors.

-Wremarks Indicates that the compiler may issue remarks, which
are diagnostic messages even milder than warnings.

-Wterse Enable terse warnings.

-pedantic Causes the compiler to generate warnings for any con-
structs in a C or C++ source file that does not conform
to the ANSI standard.

-W<error|remark|
suppress|warn> <num> [, num ...]

Overrides the severity of specific compilation diagnos-
tic messages, where num is the number representing
the message to override.

Table A-3. C Compiler — Obsolete Warning Switches

-Wall -Wformat -Wswitch

-Wchar-subsripts -Wimplictit -Wtrigraphs

-Wcomment -Wparentheses -Wuninitialized

-Werror -Wreturn-type -Wunused
A-8 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

Compiler Legacy Support
See “Compiler Command-Line Switches” on page 1-12 for further infor-
mation on the compiler’s switch set.

Run-Time Model
The cc219x compiler in VisualDSP++ 3.5 produces code that is not fully
compatible with the Release 6.1 run-time model. VisualDSP++ 3.5 has
significant changes in the registers and stack usage. These changes are
especially important if you call an assembly language subroutine from a
C/C++ program, or a C/C++ function from an assembly language pro-
gram. For more information about the VisualDSP++ 3.5 run-time model,
see “C/C++ Run-Time Model and Environment” on page 1-153.

C/C++ Run-Time Library
This release includes a set of documented ANSI standard routines that
you can call from your C/C++ programs. Many of these routines have
been modified to provide better support for the improved performance
and code compilation of cc219x. For complete information on the library
contents, see Chapter 3, “C/C++ Run-Time Library”.

The cc219x compiler release now includes a complete documented DSP
library (libdsp.dlb) and associated include files, providing efficient stan-
dard functions required by DSP application designers. For details, refer to
Chapter 4, “DSP Run-Time Library”.

� Future cc219x compiler releases may include additional library
functions (refer to Chapter 3, “C/C++ Run-Time Library”).
VisualDSP++ 3.5 C/C++ Compiler and Library Manual A-9
for ADSP-219x DSPs

C/C++ Compiler and Run-Time Library
A-10 VisualDSP++ 3.5 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

I INDEX

Symbols #pragma regs_clobbered string 1-130

#pragma align num 1-121
#pragma alloc 1-129, 2-32
#pragma can_instantiate instance

1-136
#pragma const 1-130, 2-31
#pragma do_not_instantiate instance

1-136
#pragma hdrstop 1-136
#pragma instantiate instance 1-135
#pragma linkage_name 1-126
#pragma loop_count 2-35
#pragma loop_count(min, max,

modulo) 1-124
#pragma no_alias 1-125, 2-36
#pragma no_pch 1-137
#pragma once 1-138
#pragma

optimize_{off|for_speed|for_space
} 2-35

#pragma optimize_as_cmd_line 1-126
#pragma optimize_for_space 1-126
#pragma optimize_for_speed 1-126
#pragma optimize_off 1-125
#pragma pad (alignopt) 1-121
#pragma pure 1-129, 2-32
#pragma regs_clobbered 2-33

#pragma result_alignment 1-134
#pragma retain_name 1-127
#pragma system_header 1-138
#pragma vector_for 1-124
#pragma weak_entry 1-128
#pragrma altregisters 1-122
#pragrma interrupt 1-122
+†ebug-types compiler switch 1-25
.IDL files 1-151
@ filename (command file) compiler

switch 1-22
__alignof__ (type-name) construct

1-145
__attribute__ keyword 1-146
__builtin_aligned declaration 2-6
__builtin_circindex function 2-28
__builtin_circptr function 2-28
__GROUPNAME__ macro 1-46
__HOSTNAME__ macro 1-46
__MACHINE__ macro 1-46
__NO_BUILTIN preprocessor macro.

1-34
__NO_ETSI_FLAGS macro 1-109
__REALNAME__ macro 1-46
__SIGNED_CHARS__ macro 1-45
VisualDSP++ 3.0 C/C++ Compiler and Library Manual I-1
for ADSP-219x DSPs

INDEX
__SILICON_REVISION__ macro
1-44

__SYSTEM__ macro 1-46
__USERNAME__ macro 1-46
_ADI_THREADS macro 1-46
_primIO C function

breakpoint 3-14
channeling I/O operations 3-14

_primIOCB label 3-14
µ-law compression (mu_compress

function) 4-88
µ-law expansion (mu_expand

function) 4-89

Numerics
219x_int_tab file 1-154
2-D convolution (conv2d function)

4-49
2-D convolution (conv2d3x3

function) 4-50

A
-A (assert) compiler switch 1-22
a_compress (A-law compression)

function 4-23
a_expand (A-law expansion)

function 4-24
abend (see abort function)
abort (abnormal program end)

function 3-27
Abridged C++ Library

overview 3-2
support 3-16

abs (absolute value) function 3-28

acos (arc cosine) function 3-29
acos_fr16() function 3-29
activation record 1-155
ADSP-2192-12 processor

shared memory object 3-98
aggregate constructor expression

support 1-89
alias

avoiding 2-10
align num pragma 1-121
alignment inquiry keyword 1-145
allocate memory (see calloc, free,

malloc, realloc functions)
alphanumeric character test (see

isalnum function)
altregisters pragma 1-122
-alttok (alternative tokens) C++

mode compiler switch 1-23
-anach (enable C++ anachronisms)

compiler switch 1-52
anachronisms

default C++ mode 1-52
disabling in C++ mode 1-53

ANSI standard 3-1
compiler 1-26

ANSI/ISO standard C++ 1-21
anti-log base 10 function 4-26
anti-log function 4-25
arg (get phase of complex number)

function 4-27
arithmetic, saturated 1-93
array

variable
length 1-85, 1-143
I-2 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
array length 1-86
array search, binary (see bsearch

function)
arrays

zero length 1-143
ASCII string (see atof, atoi, atol

functions)
asin (arc sine) function 3-30
asin_fr16() function 3-30
asm

compiler keyword 1-60
keyword for specifying names in

generated assembler 1-145
statement 1-144, 2-14

asm compiler keyword (see also
Inline assembly language
support keyword (asm))

asm()
construct reordering 1-75
constructs flow control 1-77
operand constraints 1-71

assembly
construct operand 1-68
construct optimization 1-74
construct reordering 1-74
construct template 1-64
construct with input and output

operands 1-75
constructs

with multiple instructions 1-74
subroutines 1-169

assignments
memory 1-80

atan (arc tangent) function 3-31

atan_fr16() function 3-31
atan2 (arc tangent of quotient)

function 3-32
atan2, atan2f (arc tangent division)

functions 3-33
atan2_fr16() function 3-32
atexit (select exit function) function

3-33
atof (convert string to double)

function 3-34
atoi (convert string to integer)

function 3-37
atol (convert string to long integer)

function 3-38
attributes

functions, variables and types
1-146

autocoh (autocoherence) function
4-28

autocorr (autocorrelation) function
4-29

automatic
inlining 1-57, 2-13
loop control variables 2-21
variables 1-78

B
base 10 anti-log function 4-26
binary array search (see bsearch

function)
bitfields

signed 1-45
unsigned 1-47
I-3 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
bool (see Boolean type support
keywords (bool, true, false))

boolean type keywords 1-84
Boolean type support keywords

(bool, true, false) 1-60, 1-84
bsearch (binary search in sorted

array) function 3-39
-bss compiler switch 1-23
-build-lib (build library) compiler

switch 1-24
built-in functions 1-94, 1-95

circular buffer 1-103
system support 2-26

C
-C (comments) compiler switch

1-24
-c (compile only) compiler switch

1-24
C function

_primIO() 3-14
C language extensions 1-60

aggregate assignments 1-89
asm keyword 1-63
bool keyword 1-84
C++ style comments 1-61
compound statements 1-86
false keyword 1-60
indexed initializers 1-88
inline keyword 1-62
non-constant initializers 1-87
segment keyword 1-60
true keyword 1-60

C run-time

libc.dlb library 3-13
library 3-7
library function summary 3-23
library header files 3-8–3-15

C type functions
isalnum 3-71
iscntrl 3-73
isgraph 3-75
islower 3-76, 3-78
isprint 3-81
ispunct 3-82
isspace 3-83
isupper 3-84
isxdigit 3-85
tolower 3-156
toupper 3-157

C++
function overload 1-102

C++ header files
for library facilities 3-19

C++ mode compiler switches
-anach (enable C++

anachronisms) 1-52
-no-anach (disable C++

anachronisms) 1-53
-no-demangle 1-53

C++ programming examples 1-176
complex support 1-177
fract support 1-176

C++ run-time
library 3-7
support library 3-7

C++ startup file 3-7
C/C++ mode selection switches
I-4 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
-c++ (C++ mode) 1-21
-c89 1-21

C/C++ run-time
environment (See also mixed

C/C++/assembly
programming)

library files 3-6
library overview 3-3

C?C++ run-time
model 1-153

-c89 compiler switch 1-21
cabs (complex absolute value)

function 4-30
cache control register 3-149, 3-152
cadd (complex addition) function

4-31
CALL instruction 1-157
callee preserved registers 1-161
caller save registers 1-161
calling

assembly language subroutine
1-170

C/C++ library functions 3-4
DSP library functions 4-2
ETSI library functions 1-108

calloc (allocate and initialize
memory) function 3-41

cartesian (Cartesian to polar)
function 4-32

cdiv (complex division) function
4-34

ceil (ceiling) function 3-42
cexp (complex exponential)

function 4-35

cfft (N point complex input FFT)
function 4-36

cfft2d (NxN point 2-D complex
input FFT) 4-40

cfftrad4 (N point complex input
FFT) 4-38

cfir (complex FIR filter) function
4-42

cfir (finite impulse response filter)
function 4-42

character string search (see strchr
function)

character string search, recursive (see
strrchr function)

circular buffer length registers 1-162
circular buffers 2-27

accessing 1-104
automatic generation 1-103
increment of index. 1-104
increment of pointer 1-105
increments of index 1-104
switch setting 1-27

clear_interrupt (clear a pending
signal) function 3-43

clip (clip) function 4-44
clobber string specifiers 1-71
clobbered

register set 1-132
register set. 1-132
registers 1-65, 1-130, 1-132

close operation 3-14
cmlt (complex multiply) function

4-45
code optimization 1-56, 2-3
I-5 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
command-line interface 1-6–1-55
compiler

built-in C library functions 3-5
C extensions 1-60
code optimization 1-56, 2-3
command-line switch summaries

1-12
command-line syntax 1-7
file extensions 1-9
GCC compatibility 1-138
I/O files 1-9
legacy support A-3
optimization switch 1-30
optimizer 2-4
overview 1-2
running 1-7
setting maximum error number

1-49
specifying functional options 1-11

compiler common switches
@ filename (command file) 1-22
-A (assert) compiler switch 1-22
-alttok alternative tokens) 1-23
-bss 1-23
-build-lib 1-24
-C (comments) 1-24
-c (compile only) 1-24
-const-read-write 1-24
-D (define macro) 1-24
-debug-types 1-25
-default-linkage-(tool) 1-25
-dry (verbose dry-run) 1-25
-dryrun (terse dry-run) 1-26
-E (stop after preprocessing) 1-26

-ED (run after preprocessing to
file) 1-26

-EE (run after preprocessing) 1-26
-extra-keywords 1-26
-flags (command-line input) 1-27
-force-circbuf 1-27
-fp-associative (floating-point

associative operation) 1-27
-full-version (display versions)

1-27
-g (generate debug information)

1-28
-H (list headers) 1-28
-h[elp] (command-line help) 1-29
-HH (list headers and compile)

1-28
-i (less includes) 1-30
-I (start include directory) 1-29
-I directory (include search

directory) 1-29
-include (include file) 1-30
-ipa (interprocedural analysis)

1-30
-jump (select jump table memory

type) 1-31
-l (link library) 1-31
-L directory (library search

directory) 1-31
-M (make rules only) 1-32
-map filename (generate a

memory map) 1-33
-MD (generate make rules and

compile) 1-32
-mem (invoke memory initializer)
I-6 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
1-33
-MM (generate make rules and

compile) 1-32
-Mo (processor output file) 1-32
-MQ 1-33
-Mt (output make rules) 1-32
-no_hardware_pc_stack 1-35
-no-alttok (disable tokens) 1-33
-no-bss 1-33
-no-builtin (no built-in functions)

1-34
-no-circbuf (no circular buffer)

1-34
-no-defs (disable defaults) 1-34
-no-extra-keywords (disable

short-form keywords) 1-34
-no-fp-associative 1-34
-no-mem (not invoking memory

initializer) 1-35
-no-std-ass (disable standard

assertions) 1-35
-no-std-def (disable standard

macro definitions) 1-35
-no-std-inc (disable standard

include search) 1-35
-no-std-lib (disable standard

library search) 1-36
-nothreads (disable thread-safe

build) 1-36
-no-widen-muls (disable widening

multiplications) 1-36
-O (enable optimizations) 1-37
-o filename (output file) 1-38
-Oa (automatic function inlining)

1-37
-oldasmcall-{csp|8x} 1-38
-Os (optimize for size) 1-37
-Ov num (optimize for speed vs.

size) 1-38
-P (omit line numbers) 1-38
-path (tool location) 1-39
-path-install directory (installation

location) 1-39
-path-output directory

(non-temporary files location)
1-39

-path-temp directory (temporary
files location) 1-39

-pch (precompiled header) 1-40
-pchdir (locate PCHRepository)

1-40
-pedantic (ANSI standard

warnings) 1-40
-pedantic-errors (ANSI C errors)

1-40
-PP (omit line numbers and

compile) 1-38
-pplist file (preprocessor listing)

1-41
-proc (target processor) 1-41
-R- (disable source path) 1-43
-R directory (add source

directory) 1-42
-reserve (reserve register) 1-43
-S (stop after compilation) 1-43
-s (strip debugging information)

1-43
-save-temps (save intermediate
I-7 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
files) 1-44
-show (display command line)

1-44
-signed-bitfield (make plain

bitfields signed) 1-45
-signed-char (make char signed)

1-45
-si-revision version (silicon

revision) 1-44
sourcefile 1-21
-syntax-only (only check syntax)

1-45
-syntax-only (system definitions)

1-45
-T (linker description file) 1-46
-threads (enable thread-safe build)

1-46
-time (time the compiler) 1-47
-Umacro (undefine macro) 1-47
-unsigned-bitfield (make plain

bitfields unsigned) 1-47
-unsigned-char (make char

unsigned) 1-48
-v (version and verbose) 1-48
-val-global (add global names)

1-48
-verbose (display command line)

1-48
-version (display version) 1-49
-w (disable all warnings 1-50
-W (disable all warnings) 1-49
-warn-protos (prototypes

warning) 1-50
-Werror-limit (maximum

switches) 1-49
-workaround 1-50
-Wremarks (enable diagnostic

warnings) 1-49
-write-files (enable file

redirection) 1-50
-write-opts 1-50
-Wterse (enable terse warnings)

1-49
-xref file (cross-reference list) 1-51

compiler optimization
disabling 1-36

complex conjugate (conj function)
4-46

complex multiply (cmlt function)
4-45

complex number support 1-177
complex subtraction (csub function)

4-56
compound statements

within expressions 1-86
conditional code

in loops 2-20
conditional expressions

with missing operands 1-142
conj (complex conjugate) function

4-46
const

keyword 2-23
qualifier 2-23

const pointers 1-24
-const-read-write compiler switch

1-24
-const-read-write flag 2-24
I-8 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
construct from polar coordinates
(polar function) 4-91

construct operand
assembly 1-68

constructs
flow control 1-77
operand description 1-71
reordering and optimization 1-74
with input and output operands

1-75
with multiple instructions 1-74

control character test (see iscntrl
function)

controlling
optimization 1-56

conv2d (2-D convolution) function
4-49

conv2d3x3 (2-D convolution)
function 4-50

conversions
far and near pointers 1-101

convert, characters (see tolower,
toupper functions)

convert, strings (see atof, atoi, atol,
strtok, strtol, strtoul, functions)

convolution 4-6
convolve (convolution) function

4-47
copysign (copysign) function 4-51
cos (cosine) function 3-45
cos_fr16() function 3-45
cosh (hyperbolic cosine) function

3-48
cot (cotangent) function 4-52

count zero crossing (zero_cross
function) 4-109

countones (count one bits in word)
function 4-53

crosscoh (cross-coherence) function
4-54

crosscorr (cross-correlation)
function 4-55

csub (complex subtraction) function
4-56

custom processors 1-42
cycle counter registers 3-149, 3-152

D
-D (define macro) compiler switch

1-24, 1-47
DAG1 registers 1-164
DAG2 registers 1-165
data

register 1-163
scalar type 2-7

data alignment pragmas 1-121
data types

double-word 1-55
deallocate memory (see free

function)
debugging information 1-43
declarations

mixed with code 1-144
dedicated registers 1-161
default

target processor 1-42
-default-linkage-asm (assembler

link) compiler switch 1-25
I-9 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
-default-linkage-C compiler switch
1-25

-default-linkage-C++ compiler
switch 1-25

Defines 1-148
device

driver 1-166
identifiers 1-166

DeviceID field 1-167
disabling

compiler optimization on
multiplcation 1-36

div (division) function 3-50
div (division, int) function 3-71
division (see div, ldiv functions)
dm memory keyword 1-60
DM support

standard C library 1-83
DMPG_val parameter 1-103
double

representation 3-136
word data types 1-55

-dry (verbose dry-run) compiler
switch 1-25

-dryrun (terse -dry-run) compiler
switch 1-26

DSP
functions 4-22–4-109
header files 4-4
library 3-7
library function calls 4-2
run-time library functions 4-22

DSP run-time library
function linking 4-3

guide 4-2
source code 4-3

dual memory support
pm dm 1-83

dual memory support keywords
(pm dm) 1-60, 1-78
illegal 1-82

E
-E (stop after preprocessing)

compiler switch 1-26
-ED (run after preprocessing to file)

compiler switch 1-26
-EE (run after preprocessing)

compiler switch 1-26
elfar (archive library) 1-2, 1-24
Embedded C++ Library

header files 3-16–3-19
Embedded Standard Template

Library 3-2
header files 3-20–3-22

emulated arithmetic
avoiding 2-8

emulation debug control register
3-149, 3-152

emulation debug status register
3-149, 3-152

enable_interrupts (enable
interrupts) function 3-51

end (see atexit, exit functions)
escape character 1-145
ETSI 1-106

built-in functions 1-109
calling library functions 1-108
I-10 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
compiler built-in functions 1-106
function linking 1-109
header file 1-111
library 1-106
library functions 1-111
library source code 1-110
run-time library 3-7
support 1-106

ETSI library functions
16-bit variable - least significant

bits 1-115
16-bit variable - most significant

bits 1-115
compose long 1-118
extract high 1-112
extract long from two shorts

1-119
extract low 1-112
fract integer division of two longs

1-119
long absolute 1-115
long add 1-115
long add with carry 1-115
long division 1-111
long multiply 1-116
long negate 1-116
long normalize 1-113
long saturation 1-117
long shift left 1-117
long shift right 1-117
long shift right with rounding

1-117
long subtract 1-118
long subtract with carry 1-118

multiply and accumulate 1-116
multiply and accumulate with

rounding 1-112
multiply and accumulate without

saturation 1-116
multiply and subtract 1-116
multiply and subtract with

rounding 1-112
multiply and subtract without

saturation 1-116
multiply both most significant

bits and least significant bits of
long, by same short 1-116

multiply short by a long 1-118
multiply two longs 1-118
multiply with rounding 1-113
round 1-113
saturate 1-114
shift right with rounding 1-114
short absolute 1-111
short add 1-111
short division 1-111
short multiply 1-112
short negate 1-113
short normalize 1-113
short shift left 1-114
short shift right 1-114
short subtract 1-114

ETSI_fract_arith.h header file
1-111

exit (normal program termination)
function 3-52

exit (program termination) function
3-52
I-11 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
exp (exponential) function 3-53
exponentiation 4-25, 4-26
extensions

using compiler language 1-3
external memory access 1-99
external_memory_read function

3-54
external_memory_write function

3-56
-extra-keywords (enable short-form

keywords) compiler switch 1-26
EZ-KIT Lite 1-166

F
fabs (float absolute value) function

3-58
false (see Boolean type support

keywords (bool, true, false)
far

address operator 1-102
jump return (see longjmp, setjmp

functions)
type qualifiers 1-99

far pointers 1-99
library support 1-102
size 1-100

Fast Fourier Transforms 4-6
fflush (NULL) 3-15
FFT function versions 4-7
file

extension 1-7, 1-9
names 1-22
searches 1-9

file I/O support 1-166

file searching
<filename> 1-152

files
.IDL 1-151

filter.h header file 4-6
filters

in digital signal processing 4-6
finite impulse response (FIR) filter

4-57
finite impulse response filter (cfirc

function) 4-42
finite impulse response filter (fir

function) 4-57
fir (finite impulse response filter)

function 4-57
fir_decima (FIR decimation filter)

function 4-59
fir_interp (FIR interpolation filter)

function 4-61
fixed-point arithmetic 1-90
-flags (command line input)

compiler switch 1-27
float representation 3-138
float.h (floating point) header file

3-10
floating-point constants

hexadecimal 1-142
floating-point mathematical

functions 3-12
floor (floor) function 3-59
flow control operations 1-77
FLT_ROUNDS macro 3-10
fmod (floating-point modulus)

function 3-60
I-12 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
-force-circbuf (circular buffer)
compiler switch 1-27

-force-circbuf switch 2-28
-fp-associative (floating-point

associative) compiler switch
1-27

fract 1-176
data type (C++ mode) 1-90

fract type support 1-176
fract16 data types 1-110
fract32 data types 1-110
fractional

arithmetic operations 1-91
data manipulation 2-25
data support 1-90
literal format 1-91
mixed-mode operations 1-92
saturated arithmetic 1-92
type conversions 1-91

free (deallocate memory) function
3-61

free (deallocate memory) functions
3-71

frexp (separate fraction and
exponent) function 3-62

-full-version (display versions)
compiler switch 1-27

function arguments 1-82
and memory keywords 1-82

function call
in loop 2-21

function inlining 2-13
functions

built-in 1-95

C run-time library 3-26–3-161
DSP 4-22–4-109
primitive I/O 3-13
program control

calloc 3-41
free 3-71
malloc 3-93
realloc 3-110

G
-g (generate debug information)

compiler switch 1-28
GCC compatibility extensions

1-138
GCC compiler 1-138, 1-140
gen_bartlett (generate bartlett

window) function 4-63
gen_blackman (generate blackman

window) function 4-65
gen_gaussian (generate gaussian

window) function 4-66
gen_hamming (generate hamming

window) function 4-67
gen_hanning (generate hanning

window) function 4-68
gen_harris (gen_harris window)

function 4-69
gen_kaiser (generate kaiser window)

function 4-70
gen_rectangular (generate

rectangular window) function
4-71

gen_triangle (generate triangle
window) function 4-72
I-13 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
gen_vohann (generate von hann
window) function 4-74

general optimization pragmas 1-125
general register set 1-95, 3-148,

3-151
general utilities

specified by C standard 3-15
get phase of a complex number (arg

function) 4-27
global static variables 3-5
globvar global variable 2-22
GNU C compiler 1-138
graphical character test (see isgraph

function)

H
-H (list headers) compiler switch

1-28
handler

interrupt 1-155
isignal 1-155

hardware
call stack 1-35
call stack overflow 1-157
defect workarounds 1-50
interrupt 1-154

header file 1-136
ETSI 1-111

header file control pragmas 1-136
header files 1-149, 4-4

C run-time library 3-8–3-15
assert.h 3-9
ctype.h 3-9
def2191.h 3-10

def2192-12.h 3-10
def219x.h 3-10
errno.h 3-10
float.h 3-10
iso646.h 3-11
limits.h 3-11
locale.h 3-12
math.h 3-12
setjmp.h 3-13
signal.h 3-13
stdarg.h 3-13
stddef.h 3-13
stdio.h 3-13
stdlib.h 3-15
string.h 3-15
sysreg.h 3-15

C++ access to C facilities
cassert 3-19
cctype 3-19
cerrno 3-20
cfloat 3-20
climits 3-20
clocale 3-20
cmath 3-20
csetjmp 3-20
csignal 3-20
cstdarg 3-20
cstddef 3-20
cstdio 3-20
cstdlib 3-20
cstring 3-20

DSP 4-4
complex.h 4-4–4-6
filter.h 4-6
I-14 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
math.h 4-10
matrix.h 4-12, 4-15
stats.h 4-16
vector.h 4-17–4-20
window.h 4-20

Embedded C++ Library
complex 3-16

embedded C++ library
exception 3-17
fract 3-17
fstream 3-17
iomanip 3-17
ios 3-17
iosfwd 3-17
iostream 3-18
istream 3-18
new 3-18
ostream 3-18
sstream 3-18
stdexcept 3-18
streambuf 3-18
string 3-19
strstream 3-19

Embedded Standard Template
Library 3-20–3-22

embedded standard template
library
algorithm 3-20
deque 3-20
fstreams.h 3-22
functional 3-21
hash_map 3-21
hash_set 3-21
iomanip.h 3-22

iostream.h 3-22
iterator 3-21
list 3-21
map 3-21
memory 3-21
new.h 3-22
numeric 3-21
queue 3-21
set 3-22
stack 3-22
utility 3-22
vector 3-22

system 1-149
user 1-149

header files (standard)
float.h 3-10
iso646.h 3-11
stdio.h 1-166, 3-14

-help (command line help) compiler
switch 1-29

hexadecimal digit test (see isxdigit
function)

hexadecimal floating-point
constants 1-142

-HH (list headers and compile)
compiler switch 1-28

histogram 4-75

I
-i (less includes) compiler switch

1-30
-I (start include directory) compiler

switch 1-29, 1-35
I/O
I-15 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
file support 1-166
functions 3-13
library 3-7, 3-13
new device support 1-166
primitives 1-166, 3-14
redirection 1-50
space addresses 1-97
space read 1-97
space write 1-97

I/O primitives 1-166
I/O support

for new devices 1-166
ifft (N point inverse FFT) function

4-77
ifft2d (NxN point 2-D inverse input

FFT) function 4-81
ifftrad4 (N point inverse FFT)

function 4-79
iir (infinite impulse response filter)

function 4-83
iir_fr16 function 4-83
iir_init macro 4-83
-include (include file) compiler

switch 1-30
include directives 1-151
indexed array 2-12
indexed initializer support 1-87
induction variables 2-19
infinite impulse response (IIR) filter

4-83
inline

keyword 2-13, 2-30
inline asm statements 2-14

inline assembly language support
keyword (asm) 1-63

construct
I/O operands 1-75
template 1-64
template operands 1-68
with multiple instructions 1-74

construct template 1-64
constructs

optimization 1-75
macros containing asm 1-77

inline code
avoiding 2-30

inline function support keyword
(inline) 1-60, 1-62

inlining
automatic 2-13
function 2-13

inner loop 2-19
instantiation

template functions 1-134
interfacing C/C++ and assembly

(See mixed C/C++/assembly
programming)

interprocedural analysis (IPA) 1-30,
2-6

interrupt
disable 1-98
enable 1-98
pragma 1-123
pragmas 1-122
table 1-154

interrupt (define interrupt
handling) function 3-63
I-16 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
interruptf function 3-63
Interrupts (see clear_interrupt,

interruptf, interrupts, signal,
raise functions)

io_space_read (read I/O space)
function 3-67

io_space_write (write I/O space)
function 3-69

-ipa (interprocedural analysis)
compiler switch 1-30, 1-58, 2-6

isalnum (detect alphanumeric
character) function 3-71

isalpha (detect alphabetic character)
function 3-72

iscntrl (detect control character)
function 3-73

isdigit (detect decimal digit)
function 3-74

isgraph (detect printable character)
function 3-75

isinf (test for infinity) function 3-76
islower (detect lowercase character)

function 3-78
isnan (test for NAN) function 3-79
iso646.h (Boolean operator) header

file 3-11
isprint (detect printable character)

function 3-81
ispunct (detect punctuation

character) function 3-82
isspace (detect whitespace character)

function 3-83
isupper (detect uppercase character)

function 3-84

isxdigit (detect hexadecimal digit)
function 3-85

J
-jump (select jump table memory

type) compiler switch 1-31

K
Kaiser window 4-70
keywords

dual memory support
illegal 1-82

memory 1-80, 1-82
memory and macros 1-82

keywords (compiler) (see
VisualDSP++ compiler C/C++
language extensions)

L
-L (library search directory)

compiler switch 1-31
-l (link library) compiler switch

1-31, 1-36
labs (long integer absolute value)

function 3-86
Language extensions (compiler) (see

VisualDSP++ compiler C/C++
language extensions)

ldexp (multiple by power of 2)
function 3-87

ldiv (division, long) function 3-88
leaf function 1-157
legacy support

compiler A-3
I-17 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
libc.dlb library 3-13
libetsi.dlb library 1-106, 1-110, 3-7
libetsi.h system header file 1-109
libio.dlb library 3-13
library

format 4-22
functions, listed 3-23
header files, working with 3-8

line breaks
in string literals

 1-144
linkage type

setting 1-25
linking

DSP run-time library functions
4-3

pragmas for 1-126
log (natural logarithm) function

3-89
log10 (base 10 logarithm) function

3-90
Long jump (see longjmp, setjmp

functions)
long latencies

avoiding 2-24
longjmp (second return from

setjmp) function 3-91
loop

iteration count 2-35
optimization 1-123, 2-35
parallel processing 1-124
short 2-17
unrolling 2-17
vectorizing 1-123

loop control
automatic variables 2-21
variables 2-21

loop exit test 2-21
loop rotation

by hand. 2-18
loop-carried dependency 2-18
lower case (see islower, tolower

functions)
lvalue

GCC generalized 1-141
generalized 1-141

M
-M (generate make rules only)

compiler switch 1-32
macros

and asm() C program constructs
1-77

EDOM 3-12
ERANGE 3-12
HUGE_VAL 3-12
multi-statement 1-150
predefined 1-147
undefining 1-47
variable argument 1-143
writing 1-149

malloc (allocate memory) function
3-93

-map (generate a memory map)
compiler switch 1-33

mathematical functions
floating point 3-12

max (maximum) function 4-85
I-18 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
maximum performance. 2-29
-MD (make and compile) compiler

switch 1-32
mean (mean) function 4-86
mean (mean, array) function 3-111
-mem (invoke memory initializer)

compiler switch 1-33
memchr (find first occurrence of

character) function 3-94
memcmp (compare objects)

function 3-95
memcpy (copy characters from one

object to another) function
3-96

memcpy_to_shared function 3-98
memmove (copy characters between

overlapping objects) function
3-99

memory
allocation 3-110
assignments 1-80
data placement in 2-15

memory (see calloc, free, malloc,
memcmp, memcpy, memset,
memmove, memchar, realloc
functions)

memory initializer 1-33, 1-35, 1-39
memory keywords 1-80

and function arguments 1-82
and function declarations /

pointers 1-81
and macros 1-82

memset (set range of memory to a
character) function 3-100

min (minimum) function 4-87
minimum code size 2-29
missing operands

in conditional expressions 1-142
mixed C/assembly

programming
asm() constructs 1-64

mixed C/assembly naming
conventions 1-174

mixed C/assembly programming
asm() constructs 1-63, 1-64, 1-68,

1-74, 1-75, 1-77
mixed C/C++/assembly

programming 1-153
mixed C/C++/assembly reference

1-172
-MM (generate make rules and

compile) compiler switch 1-32
-Mo (processor output file)

compiler switch 1-32
mode control instructions 1-99
mode_change (change selected

system modes) function 3-101
modf (separate integral and

fractional parts) function 3-103
move memory range (see memmove

function)
-MQ compiler switch 1-33
MSTAT (mode status) register

1-162
-Mt filename (output make rule)

compiler switch 1-32
mu_compress (µ-law compression)

function 4-88
I-19 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
mu_expand (µ-law expansion)
function 4-89

multidimensional arrays 1-86
multi-line asm() C program

constructs 1-74
multiple instructions

constructs with 1-74
multi-statement macros 1-150
multi-threaded environment 3-6

N
N point complex input FFT (cfft

function) 4-36
N point complex input FFT

(cfftrad4 function) 4-38
N point inverse FFT (ifft function)

4-77
N point inverse FFT (ifftrad4

function) 4-79
N point real input FFT (rfft

function) 4-94
N point real input FFT (rfftrad4

function) 4-96
near

type qualifiers 1-99
near pointers 1-99

size 1-100
new devices

I/O support 1-166
next argument in variable list 3-158
-no_hardware_pc_stack compiler

switch 1-35
-no-alttok (disable alternative

tokens) compiler switch 1-33

-no-anach (disable C++
anachronisms) compiler switch
1-53

-no-bss compiler switch 1-33
-no-builtin (no builtin functions)

compiler switch 1-34
-no-circbuf (no circular buffer)

compiler switch 1-34
-no-def (disable definitions)

compiler switch 1-34
-no-demangle (disable demangler)

compiler switch 1-53
-no-extra-keywords (disable

short-form keywords) compiler
switch 1-34

-no-fp-associative compiler switch
1-34

-no-mem (not invoking memory
initializer) compiler switch 1-35

non-constant initializer support
(compiler) 1-87

non-unit stride
avoiding 2-21

norm (normalization) 4-90
-no-std-ass (disable standard

assertions) compiler switch
1-35

-no-std-def (disable standard
definitions) compiler switch
1-35

-no-std-inc (disable standard
include search) compiler switch
1-35
I-20 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
-no-std-lib (disable standard library
search) compiler switch 1-36

-nothreads (disable thread-safe
build) compiler switch 1-36

-no-widen-muls (disable widening
multiplications) compiler
switch 1-36

NxN point 2-D complex input FFT
(cfft2d function) 4-40

NxN point 2-D inverse input FFT
(ifft2d function) 4-81

NxN point 2-D real input FFT
(rfft2d function) 4-98

O
-O (enable optimization) compiler

switch 1-37
-o (output) compiler switch 1-38
-Oa (automatic function inlining)

compiler switch 1-37
-oldasmcall-{csp|8x} compiler

switch 1-38
open operation 3-14
operand constraints 1-69
optimization

code 2-29
controlling 1-56
default 1-56
interprocedural analysis 1-57
option 1-30
reset 1-126
switches 2-37

optimized assembler file 1-58
optimizer 1-56, 1-123, 2-4

optimizing
for space 1-126
for speed 1-126, 2-29

optimizing asm() C program
constructs 1-75

-Os (optimize for size) compiler
switch 1-37

outer loop 2-19
output

flushing 3-15
generated by printf 3-15

-Ov num (optimize for speed versus
size) compiler switch 1-38

P
-P (omit line numbers) compiler

switch 1-38
-path-install (installation location)

compiler switch 1-39
-path-output (non-temporary files

location) compiler switch 1-39
-path-temp (temporary files

location) compiler switch 1-39
-path-tool (tool location) compiler

switch 1-39
-pchdir (locate PCHRepository)

compiler switch 1-40
PCHRepository directory 1-40
-pedantic (ANSI standard warnings)

compiler switch 1-40
-pedantic-errors (ANSI C errors)

compiler switch 1-40
pipeline viewer 2-24
I-21 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

INDEX
placement support keyword
(segment) 1-60, 1-83

pm memory keyword 1-60, 1-78
PM support

standard C library 1-83
pointer

incrementing 2-12
input parameter types 1-83

pointer class support keyword
(restrict) 1-60, 1-84

pointers
arithmetic action on 1-144
memory keywords 1-81

polar (construct from polar
coordinates) function 4-91

pow (raise to a power) function
3-104

-PP (omit line numbers and
compile) compiler switch 1-38

-pplist (preprocessor listing)
compiler switch 1-41

pragmas 1-119
align num 1-121
alloc 1-129
altregisters 1-122
can_instantiate instance 1-136
const 1-130
data alignment 1-121
do_not_instantiate instance

1-136
function side-effect 1-128
hdrstop 1-136
header file control 1-136
instantiate instance 1-135

interrupt 1-122
interrupt handler 1-122
linkage_name 1-126
linking 1-126
linking control 1-126
loop optimization 1-123, 2-35
loop_count(min, max, modulo)

1-124
no_alias 1-125
no_pch 1-137
once 1-138
optimization level change 1-125
optimize_as_cmd_line 1-126
optimize_for_space 1-126
optimize_for_speed 1-126
optimize_off 1-125
pad (alignopt) 1-121
pure 1-129
regs_clobbered string 1-130
result_alignment 1-134
retain_name 1-127
system_header 1-138
template instantiation 1-134
vector_for 1-124
weak_entry 1-128

precompiled 1-136
precompiled header 1-40
precompiled header file 1-136
predefined macros 1-147

__ADSP2191|95|96|990__
1-148

__ADSP2192_12__ 1-148
__ADSP21XX__ 1-148
__ANALOG_EXTENSIONS__
I-22 VisualDSP++ 3.0 C/C++ Compiler and Library Manual
for ADSP-219x DSPs

1-148
__cplusplus 1-148
__DOUBLES_ARE_FLOATS__

1-148
__ECC__ 1-148
__EDG__ 1-148
__EDG_VERSION__ 1-148
__FILE__ 1-148
__LINE__ 1-148
__NO_BUILTIN 1-148
__SIGNED_CHARS__ 1-149
__STDC__ 1-149
__STDC_VERSION__ 1-149
__TIME__ 1-149
__VERSION__ 1-149
_LANGUAGE_C 1-148
_NO_LONG_LONG 1-148

prelinker 1-58
preprocessing

IDL files 1-152
preprocessor macros 1-147
primitive I/O functions 3-13
printable character test (see isprint

function)
printf

flushing output 3-15
printf (write formatted stream output to

standard out) function 3-105
-proc (target processor) compiler switch

1-41
procedural optimizations 1-56
procedure call 1-159
profile-guided optimization 2-30
program control functions

calloc 3-41
free 3-71
malloc 3-93
realloc 3-110

program termination 3-52
punctuation character test (ispunct)

function 3-82

Q
qsort (quicksort) function 3-105
qsort function 3-105

R
-R- (disable source path) compiler

switch 1-43
-R directory (add source directory)

compiler switch 1-42
raise (raise a signal) function 3-107
rand (random number generator)

function 3-109
random number (see rand, srand

functions) 3-109
read operation 3-14
realloc (change memory allocation)

function 3-110
real-time signals (see clear_interrupt,

interruptf, interrupts, poll_flag_in,
raise, signal functions)

reciprocal square root (rsqrt) function
4-101

reference 3-15
register classification

mode status (MSTAT) 1-162
registers 1-161
VisualDSP++ 3.0 C/C++ Compiler and Library Manual for ADSP-219x DSPs

clobbered 1-130
DAG1 1-164
DAG2 1-165
data 1-163
for asm() constructs 1-68
miscellaneous 1-163
user reserved 1-133

regs_clobbered string 1-131
remove function 3-14
rename function 3-14
-reserve (reserve register) compiler

switch 1-43
resetting

optimization 1-126
restrict

keyword 2-23
qualifier 2-22

restricted pointer 2-22
retain_name pragma 1-127
return

registers 1-134
values 1-159

rfft (N point real input FFT) function
4-94

rfft2d (NxN point 2-D real input FFT)
function 4-98

rfftrad4 (N point inverse FFT) function
4-96

rms (root mean square) function 4-100
rsqrt (reciprocal square root) function

4-100
run-time

header 1-154
linking library functions 3-6

run-time environment
(See also mixed C/C++/assembly

programming)
programming (See mixed

C/C++/assembly programming)

S
-S (stop after compilation) compiler

switch 1-43
-s (strip debugging information)

compiler switch 1-43
saturated arithmetic 1-93
-save-temps (save intermediate files)

compiler switch 1-44
search character string (see strchr, strrchr

functions)
search memory, character (see memchar

function)
search path

for include files 1-29
for library files 1-31

searching for #included files 1-152
section elimination 2-29
seek operation 3-14
segment (see placement support

keyword (segment))
selecting

compilation tool 1-39
set jump (see longjmp, setjmp functions)
setjmp (define runtime label) function

3-111
setjmp (label for external linkage)

function 3-111
setjmp (long jump) function 3-111
I-24 VisualDSP++ 3.0 C/C++ Compiler and Library Manual for AD-

shared memory object
ADSP-2192-12 processor 3-98

short-form keywords
disabling 1-34
enabling 1-26

-show (display command line) compiler
switch 1-44

shr() operation 1-114
signal (define signal handling) function

3-112
signal handling 3-13
signals (see clear_interrupt, interruptf,

interrupts, poll_flag_in, raise, signal
functions)

-signed-bitfield (make plain bitfields
signed) compiler switch 1-45

-signed-char (make char signed)
compiler switch 1-45

silicon revision setting 1-44
simulator

library support 3-7
sin (sine) function 3-116
sin_fr16() function 3-116
single case range 1-144
single-threaded environment 3-6
sinh (hyperbolic sine) function 3-118
-si-revision (silicon revision) compiler

switch 1-44
sizeof operator 1-144
source code

DSP run-time library 4-3
sourcefile parameter

on command line 1-21
sqrt (square root) function 3-119

srand (random number seed) function
3-120

stack
address direction 1-156
frame 1-155
free space 1-158
incoming arguments 1-157
local variables/temporaries 1-157
outgoing arguments 1-158
saving return address 1-157

standard conformances 1-4
statement expression 1-139
statistical profiling 2-5
stdio functions 1-166
stdio.h header file 1-166, 3-13
Stop (see atexit, exit functions)
strcat (concatenate strings) function

3-121
strchr (find first occurrence of character

in string) function 3-122
strcmp (compare strings) function

3-123, 3-126
strcoll (compare strings) function 3-124
strcpy (copy from one string to another)

function 3-125
strcspn (length of character segment in

one string but not the other)
function 3-126

strerror (get string containing error
message) function 3-127

string conversion (see atof, atoi, atol,
strtok, strtol, strxfrm functions)

string functions
memchar 3-94
VisualDSP++ 3.0 C/C++ Compiler and Library Manual for ADSP-219x DSPs

memmove 3-99
strchr 3-122
strcoll 3-124
strcspn 3-126
strerror 3-127
strpbrk 3-132
strrchr 3-133, 3-134
strspn 3-134
strstr 3-135
strtok 3-140
strxfrm 3-146

string literals
with line breaks 1-144

strings
converting to double 3-136

strlen (string length) function 3-128
strncat (concatenate characters from one

string to another) function 3-129
strncmp (compare characters in strings)

function 3-130
strncpy (copy characters from one string

to another) function 3-131
strpbrk (find character match in two

strings) function 3-132
strrchr (find last occurrence of character

in string) function 3-133
strspn (length of segment of characters

in both strings) function 3-134
strstr (find string within string) function

3-135
strtod (convert string to double)

function 3-136
strtok (convert string to tokens)

function 3-140

strtol (convert string to long integer)
function 3-142

strtoul (convert string to unsigned long
integer) function 3-144

strxfrm (transform string using
LC_COLLATE) function 3-146

strxfrm function 3-146
support example 1-176
switches

common C and C++ modes 1-21
C++ mode only 1-21
C/C++ mode selection 1-21

symbol
unresolved 1-103

-syntax-only (only check syntax)
compiler switch 1-45

-sysdef (system definitions) compiler
switch 1-45

sysreg.h header file 1-95, 1-102, 2-26
sysreg_read (read from

non-memory-mapped register)
function 3-148

sysreg_write (write to
non-memory-mapped register)
function 3-151

system
control register set 3-148, 3-151
header files 1-149
registers 1-95

T
-T (linker description file) compiler

switch 1-46
I-26 VisualDSP++ 3.0 C/C++ Compiler and Library Manual for AD-

tan (tangent) function 3-154
tan_fr16() function 3-154
tanh (hyperbolic tangent) function

3-155
template

asm() in C program 1-64
assembly construct 1-64
instantiation pragmas 1-134

terminate (see atexit, exit functions)
-threads (enable thread-safe build)

compiler switch 1-46
-time (time the compiler) switch 1-47
tokens, string convert (see strtok

function)
tolower (convert from uppercase to

lowercase) function 3-156
toupper (convert from lowercase to

uppercase) function 3-157
transformations 4-6
true (see Boolean type support keywords

(bool, true, false))
twiddle factors for radix-2 FFT 4-102
twiddle factors for radix-4 FFT 4-104
twidfft2d function 4-106
twidfftrad2 function 4-102
twidfftrad4 function 4-104
type

cast 1-144
conversions 1-80

typeof keyword 1-140

U
-U (undefine macro) compiler switch

1-25, 1-47

unresolved symbol 1-103
-unsigned-bitfield (make plain bitfields

unsigned) compiler switch 1-47
-unsigned-char (make char unsigned)

compiler switch 1-48
upper case (see isupper, toupper

functions)
user header files 1-149

V
-v (version and verbose) compiler switch

1-48
va_arg (get next argument in variable

list) function 3-158
va_end (reset variable list pointer)

function 3-160
va_start (set variable list pointer)

function 3-161
-val-global (add global names) compiler

switch 1-48
var (variance) function 4-108
variable argument macros 1-143
variable-length argument list

initializing 3-161
VCSE components 1-48
-verbose (display command line)

compiler switch 1-48
-version (display version) switch 1-49
VIDL source text 1-151
VisualDSP++

C/C++ language extensions 1-59,
1-60

IDDE 1-3, 1-11
Kernel (VDK). 1-46
VisualDSP++ 3.0 C/C++ Compiler and Library Manual for ADSP-219x DSPs

simulator 1-166
volatile and asm() C program constructs

1-75

W
-w (disable all warnings) compiler

switch 1-50
-w (disable all warnings) switch 1-49
-warn-protos (prototypes warning)

compiler switch 1-50
-Werror-limit (maximum compiler

errors) compiler switch 1-49
white space character test (see isspace

function)
workaround

hardware defect 1-50
-workaround compiler switch 1-50
-Wremarks (enable diagnostic

warnings) compiler switch 1-49
write operation 3-14

-write-files (enable driver I/O
redirection) compiler switch 1-50

-write-opts compiler switch 1-50
writes

array element 2-19
writing

preprocessor macros 1-149
-Wterse (enable terse warnings)

compiler switch 1-49

X
-xref (cross-reference list) compiler

switch 1-51

Z
zero length arrays 1-143
zero_cross (count zero crossing)

function 4-109
I-28 VisualDSP++ 3.0 C/C++ Compiler and Library Manual for AD-

	Contents
	Preface
	Purpose
	Intended Audience
	Manual Contents Description
	What’s New in this Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Technical Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Datasheets

	Contacting DSP Publications

	Notation Conventions

	1 Compiler
	C/C++ Compiler Overview
	Standard Conformance

	Compiler Command-Line Interface
	Running the Compiler
	Table 1-1. File Extensions
	Table 1-2. Input and Output Files�

	Specifying Compiler Options in VisualDSP++
	Figure 1-1. Project Options – Compile Property Page

	Compiler Command-Line Switches
	C/C++ Compiler Switch Summaries
	Table 1-3. C or C++ Mode Selection Switches �
	Table 1-4. C/C++ Compiler Common Switches�
	Table 1-5. C++ Mode Compiler Switches�

	C/C++ Mode Selection Switch Descriptions
	-c89
	-c++

	C/C++ Compiler Common Switch Descriptions
	sourcefile
	�@ filename
	-A name(tokens)
	-alttok
	-bss
	�build�lib
	�C
	�c
	-const-read-write
	-Dmacro[=definition]
	-debug-types <file.h>
	-default-linkage-{asm|C|C++}
	-dry
	-dryrun
	�E
	-ED
	-EE
	�extra�keywords
	-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2 [,...]]
	-force-circbuf
	-fp-associative
	-full-version
	-g
	�H
	-HH
	�h[elp]
	-I-
	�I
	-i
	�include filename
	-ipa
	-jump-{dm|pm|same}
	�L
	�l library
	�M
	-MD
	-MM
	-Mo filename
	-Mt filename
	-MQ
	�map filename
	-mem
	-no-alttok
	-no-bss
	�no�builtin
	-no-circbuf
	�no�defs
	�no�extra�keywords
	�no-fp-associative
	-no_hardware_pc_stack
	-no-mem
	-no-std-ass
	�no�std�def
	�no�std�inc
	�no�std�lib
	-no-widen-muls
	-nothreads
	�O
	-Oa
	�Os
	-Ov num
	�o filename
	-oldasmcall-{csp|8x}
	�P
	-PP
	-path {-asm | -compiler | -def | -lib | -link | -mem} filename
	�path�install directory
	-path-output directory
	�path�temp directory
	-pch
	-pchdir directory
	�pedantic
	�pedantic�errors
	-pplist filename
	-proc processor
	-R directory [{;|,}
	-R-
	�reserve
	�S
	�s
	-save-temps
	-show
	-si-revision version
	-signed-bitfield
	�signed�char
	�syntax�only
	-sysdefs
	�T filename
	-threads
	�time
	�Umacro
	-unsigned-bitfield
	�unsigned�char
	�v
	-val-global <name-list>
	�verbose
	�version
	�W {error|remark|suppress|warn} [.number...]
	�Werror�limit number
	�Wremarks
	�Wterse
	-w
	�warn-protos
	-workaround <workaround>[,<workaround>]*
	�write�files
	-write-opts
	-xref <filename>

	C++ Mode Compiler Switch Descriptions
	-anach
	-no-anach
	-no-demangle

	Data Type Sizes
	Table 1-6. Data Type Sizes for ADSP-219x Processors

	Optimization Control
	Interprocedural Analysis

	C/C++ Compiler Language Extensions
	Table 1-7. Keyword Extensions�
	Table 1-8. Operational Extensions�
	Inline Function Support Keyword (inline)
	Inline Assembly Language Support Keyword (asm)
	Assembly Construct Template
	ASM() Construct Syntax:
	ASM() Construct Syntax Rules
	ASM() Construct Template Example

	Assembly Construct Operand Description
	Table 1-9. ASM() Operand Constraints�
	Table 1-10. Register Names for asm() Constructs�

	Assembly Constructs with Multiple Instructions
	Assembly Construct Reordering and Optimization
	Assembly Constructs with Input and Output Operands
	Assembly Constructs and Macros
	Assembly Constructs and Flow Control

	Dual Memory Support Keywords (pm dm)
	Memory Keywords and Assignments/Type Conversions
	Memory Keywords and Function Declarations/Pointers
	Memory Keywords and Function Arguments
	Memory Keywords and Macros
	PM and DM Compiler Support for Standard C Library Functions

	Placement Support Keyword (section)
	Boolean Type Support Keywords (bool, true, false)
	Pointer Class Support Keyword (restrict)
	Variable Length Array Support
	Non-Constant Aggregate Initializer Support
	Indexed Initializer Support
	Aggregate Constructor Expression Support
	Fractional Type Support
	Format of Fractional Literals
	Conversions Involving Fractional Values
	Fractional Arithmetic Operations
	Mixed Mode Operations
	Saturated Arithmetic

	Preprocessor Generated Warnings
	C++ Style Comments
	Compiler Built-In Functions
	Access to System Registers
	I/O Space Read or Write
	Interrupt Control
	Mode Control
	Near and Far Type Qualifiers
	Declarations
	Sizes of Far and Near Qualified Types
	Conversions Between Far and Near Pointers
	Addressing “Far” Data
	C++ Function Overloading
	Library Support for “Far" Pointers
	Legacy Support

	Circular Buffer Built-In Functions
	Automatic Circular Buffer Generation
	Circular Buffer Increment of an Index
	Circular Buffer Increment of a Pointer

	ETSI Support
	ETSI Support Overview
	Calling ETSI Library Functions
	Using the ETSI Built-In Functions
	Linking ETSI Library Functions
	Working with ETSI Library Source Code
	ETSI Support for Data Types
	ETSI Header File

	Pragmas
	Data Alignment Pragmas
	#pragma align
	#pragma pad (

	Interrupt Handler Pragmas
	#pragma interrupt
	#pragma altregisters

	Loop Optimization Pragmas
	#pragma loop_count(
	#pragma vector_for
	#pragma no_alias

	General Optimization Pragmas
	Linking Control Pragmas
	#pragma linkage_name
	#pragma retain_name
	#pragma weak_entry

	Function Side-Effect Pragmas
	#pragma alloc
	#pragma pure
	#pragma const
	#pragma regs_clobbered
	#pragma result_alignment (

	Template Instantiation Pragmas
	Table 1-11. Instance Names�
	#pragma instantiate
	#pragma do_not_instantiate
	#pragma can_instantiate

	Header File Control Pragmas
	#pragma hdrstop
	#pragma no_pch
	#pragma once
	#pragma system_header

	GCC Compatibility Extensions
	Statement Expressions
	Type Reference Support Keyword (Typeof)
	GCC Generalized Lvalues
	Conditional Expressions with Missing Operands
	Hexadecimal Floating-Point Numbers
	Zero Length Arrays
	Variable Argument Macros
	Line Breaks in String Literals
	Arithmetic on Pointers to Void and Pointers to Functions
	Cast to Union
	Ranges in Case Labels
	Declarations mixed with Code
	Escape Character Constant
	Alignment Inquiry Keyword (__alignof__)
	Keyword for Specifying Names in Generated Assembler (asm)
	Function, Variable and Type Attribute Keyword (__attribute__)

	Preprocessor Features
	Predefined Preprocessor Macros
	Table 1-12. Predefined Macro Listing�

	Header Files
	Writing Preprocessor Macros
	Preprocessing of .IDL Files
	Figure 1-2. #INCLUDE Syntax Diagram

	C/C++ Run-Time Model and Environment
	Using the Run-Time Header
	Interrupt Table and Interface
	Stack Frame
	Figure 1-3. ADSP-219x DSP Stack

	Stack Frame Description
	General System-Wide Specifications
	At a procedure call, the following must be true:
	At an interrupt, the following must be true:

	Return Values
	Procedure Call and Return
	On Entry:
	To Return from a Procedure:

	Miscellaneous Information
	Register Classification
	Callee Preserved Registers (“Preserved”)
	Dedicated Registers
	Caller Save Registers (“Scratch”)
	Circular Buffer Length Registers
	Mode Status (MSTAT) Register
	Table 1-13. MSTAT Register Modes

	Complete List of Registers
	Table 1-14. List of Data Register File Registers �
	Table 1-15. List of DAG1 Registers�
	Table 1-16. List of DAG2 Registers �
	Table 1-17. Miscellaneous Registers�

	File I/O Support
	Extending

	C/C++ and Assembly Language Interface
	Calling Assembly Subroutines from C/C++ Programs
	Calling C/C++ Functions from Assembly Programs
	Using Mixed C/C++ and Assembly Naming Conventions
	Table 1-18. C/C++ Naming Conventions for Symbols �

	C++ Programming Examples
	Using Fract Type Support
	Listing 1-1. Example Code: Using Fract Data Type — C++ code

	Using Complex Number Support
	Listing 1-2. Mandelbrot Generator Example — C++ code
	Listing 1-3. Mandelbrot Generator Example — C Code

	2 Achieving Optimal Performance from C/C++ Source Code
	General Guidelines
	How the Compiler Can Help
	Using the Compiler Optimizer
	Using the Statistical Profiler
	Using Interprocedural Optimization

	Data Types
	Avoiding Emulated Arithmetic

	Getting the Most from IPA
	Initializing Constants Statically
	Avoiding Aliases

	Indexed Arrays vs. Pointers
	Trying Pointer and Indexed Styles

	Function Inlining
	Using Inline asm Statements
	Memory Usage

	Loop Guidelines
	Keeping Loops Short
	Avoiding Unrolling Loops
	Avoiding Loop Rotation by Hand
	Avoiding Array Writes in Loops
	Inner Loops vs. Outer Loops
	Avoiding Conditional Code in Loops
	Avoiding Placing Function Calls in Loops
	Avoiding Non-Unit Strides
	Loop Control
	Using the Restrict Qualifier
	Using the Const Qualifier
	Avoiding Long Latencies

	Using Built-In Functions in Code Optimization
	Fractional Data
	System Support Built-In Functions
	Using Circular Buffers

	Smaller Applications: Optimizing for Code Size
	Pragmas
	Function Pragmas
	#pragma const
	#pragma pure
	#pragma alloc
	#pragma regs_clobbered
	#pragma optimize_{off|for_speed|for_space|as_cmd_line}

	Loop Optimization Pragmas
	#pragma loop_count
	#pragma no_alias

	Useful Optimization Switches
	Table 2-1. C/C++ Compiler Optimization Switches �

	3 C/C++ Run-Time Library
	C and C++ Run-Time Library Guide
	Calling Library Functions
	Using the Compiler’s Built-In C Library Functions
	Linking Library Functions
	Table 3-1. C and C++ Library Files�

	Working With Library Header Files
	Table 3-2. C Run-Time Library Header Files �
	assert.h
	ctype.h
	def2191.h – Memory Map Definitions
	def2192-12.h – Memory Map Definitions
	def219x.h– Memory Map Definitions
	errno.h
	float.h
	iso646.h
	Table 3-3. Symbolic Names Defined in iso646.h�

	limits.h
	locale.h
	math.h
	setjmp.h
	signal.h
	stdarg.h
	stddef.h
	stdio.h
	stdlib.h
	string.h
	sysreg.h

	Abridged C++ Library Support
	Embedded C++ Library Header Files
	complex
	exception
	fract
	fstream
	iomanip
	ios
	iosfwd
	iostream
	istream
	new
	ostream
	sstream
	stdexcept
	streambuf
	string
	strstream

	C++ Header Files for C Library Facilities
	Table 3-4. C++ Header Files for C Library Facilities�

	Embedded Standard Template Library Header Files
	algorithm
	deque
	functional
	hash_map
	hash_set
	iterator
	list
	map
	memory
	numeric
	queue
	set
	stack
	utility
	vector
	fstream.h
	iomanip.h
	iostream.h
	new.h

	Documented Library Functions
	Table 3-5. Documented Library Functions in the ctype.h Header File�
	Table 3-6. Documented Library Functions in the math.h Header File�
	Table 3-7. Documented Library Functions in the setjmp.h Header File�
	Table 3-8. Documented Library Functions in the signal.h Header File�
	Table 3-9. Documented Library Functions in the stdarg.h Header File
	Table 3-10. Supported Library Functions in the stdio.h Header File�
	Table 3-11. Documented Library Functions in stdlib.h Header File�
	Table 3-12. Documented Library Functions in string.h Header File�
	Table 3-13. Documented Library Functions in sysreg.h Header File�

	C Run-Time Library Reference
	Notation Conventions
	Reference Format
	abort
	abs
	acos
	asin
	atan
	atan2
	atexit
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	clear_interrupt
	Table 3-14. ADSP-219x Signals�

	cos
	cosh
	disable_interrupts
	div
	enable_interrupts
	exit
	exp
	external_memory_read
	external_memory_write
	fabs
	floor
	fmod
	free
	frexp
	interrupt
	Table 3-15. Interrupt Function Signals - Values and Meanings�

	io_space_read
	io_space_write
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	isinf
	islower
	isnan
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp
	ldiv
	log
	log10
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memcpy_from_shared
	memcpy_to_shared
	memmove
	memset
	mode_change
	modf
	pow
	qsort
	raise
	Table 3-16. Raise Function Signals - Values and Meanings��

	rand
	realloc
	setjmp
	signal
	Table 3-17. Signal Function Signals - Values and Meanings�

	sin
	sinh
	sqrt
	srand
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtodf
	strtok
	strtol
	strtoul
	strxfrm
	sysreg_read
	sysreg_write
	tan
	tanh
	tolower
	toupper
	va_arg
	va_end
	va_start

	4 DSP Run-Time Library
	DSP Run-Time Library Guide
	Calling DSP Library Functions
	Linking DSP Library Functions
	Working with Library Source Code
	DSP Header Files
	complex.h — Basic Complex Arithmetic Functions
	Table 4-1. Complex Functions�

	filter.h — DSP Filters and Transformations
	Table 4-2. Filter Library �
	Table 4-3. Transformation Functions�

	math.h — Math Functions
	Table 4-4. Math Library�

	matrix.h — Matrix Functions
	Table 4-5. Matrix Functions �

	stats.h — Statistical Functions
	Table 4-6. Stats Functions �

	vector.h — Vector Functions
	Table 4-7. Vector Functions �

	window.h — Window Generators
	Table 4-8. Window Generator Functions�

	DSP Run-Time Library Reference
	Notation Conventions
	a_compress
	a_expand
	alog
	alog10
	arg
	autocoh
	autocorr
	cabs
	cadd
	cartesian
	cdiv
	cexp
	cfft
	cfftrad4
	cfft2d
	cfir
	clip
	cmlt
	conj
	convolve
	conv2d
	conv2d3x3
	copysign
	cot
	countones
	crosscoh
	crosscorr
	csub
	fir
	fir_decima
	fir_interp
	gen_bartlett
	gen_blackman
	gen_gaussian
	gen_hamming
	gen_hanning
	gen_harris
	gen_kaiser
	gen_rectangular
	gen_triangle
	gen_vonhann
	histogram
	ifft
	ifftrad4
	ifft2d
	iir
	max
	mean
	min
	mu_compress
	mu_expand
	norm
	polar
	Table 4-9. Positive Phases
	Table 4-10. Negative Phases

	rfft
	rfftrad4
	rfft2d
	rms
	rsqrt
	twidfftrad2
	twidfftrad4
	twidfft2d
	var
	zero_cross

	A Compiler Legacy Support
	Tools Differences
	C/C++ Compiler and Run-Time Library
	Segment Placement Support Keyword Changed to Section
	G21 Compatibility Call
	Support for G21-Based Options And Extensions
	ANSI C Extensions
	Compiler Switch Modifications
	Table A-1. C/C++ Compiler — Obsolete and Replaced Switches�

	New and Obsolete Warnings
	Table A-2. C/C++ Compiler — New Warning Switches
	Table A-3. C Compiler — Obsolete Warning Switches

	Run-Time Model
	C/C++ Run-Time Library

	I INDEX
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

