~

Sy

ANALOG
DEVICES

AN-334
APPLICATION NOTE

ONE TECHNOLOGY WAY e P.0. BOX 9106 NORWOOD, MASSACHUSETTS 02062-9106 o 617/329-4700

Digital Signal Processing Techniques

DiGrTAL FILTERING

Real-time digital filtering is one of the
most powerful tools of DSP. Apart from the
obvious advantages of virtually eliminating
errors in the filter associated with passive
component fluctuations over time and tem-
perature, op amp drift (active filters), etc.,
digital filters are capable of performance
specifications that would, at best, be ex-
tremely difficult, if not impossible, to achieve
with an analog implementation. In addition,
the characteristics of a digital filter can be
easily changed under software control.
Therefore, they are widely used in adaptive-
filtering applications such as modems, digital
audio, digital mobile radio, and speech proc-

essing.

The actual procedure for designing digital
flters has the same fundamental elements as
that for analog filters. First, the desired
filter responses are characterized and the
filter parameters are then calculated. Char-
acteristics such as transfer function and
phase response are used in the same way.
The key difference between analog and
digital filters is that instead of calculating
resistor, capacitor, and inductor values for an
analog filter, coefficient values are calculated
for a digital filter. So for the digital filter,
numbers replace the physical resistor and
capacitor components of the analog filter.
These numbers reside in a memory as filter
coefficients and are used along with data
values from the ADC in performing the
filtering calculations.

The digital filter, because it is a discrete
function, works with digitized data as op-
posed to a continuous waveform, and a data
point is acquired each sampling period.
Because of this discrete nature, we can

reference data samples by numbers such as

sample 1, sample 2, sample 3, etc. Figure
7.1, illustrating the basic filtering function,
shows a low frequency signal containing
higher frequency noise which must be fil-
tered out. This waveform must be digitized
with an ADC to produce samples x(n). These
data values are fed to the digital filter, which
in this case is a lowpass filter. The output
data samples, y(n), are used to reconstruct
an analog waveform using a DAC.

DIGITAL FILTERING

AA N

KA

l LOW-PASS FILTER T
W)
AD xn) ‘ E y(n) oA
Figure 7.1

Digital filters, however, are not the an-
swer to all signal processing filtering require-
ments. In order to maintsin real-time opera-
tion, the DSP processor must be able to
execute all the steps in the filter routine
within one sampling clock period, Uf,. This
currently limits their use to primarily voice
and audio bandwidth applications. However,
it is possible to sacrifice software control and
flexibility, and design special hardware
digital filters which will operate at video-
speed sampling rates. In other cases, the

DIGITAL SIGNAL PROCESSING PRODUCTS

A
v

9-3

speed limitations can be overcome by first FinmE IMPULSE RESPONSE (FIR) DIGITAL FILTERS
storing the high speed ADC data in a buffer

memory. The buffer memory is then read at The simplest form of a digital filter is the

a rate which is compatible with the speed of - finite impulse response filter (FIR), and the

+he DSP-based digital filter. In this manner, most elementary form of an FIR filter is a
seudo real-time operation can be main- moving average filter as shown in Figure 7.4,

- tained as in a radar system, where signal

processing is typically done on bursts of data SIMPLE MOVING AVERAGE FIR FILTER
collected after each transmitted pulse. Even meuts

in highly oversampled sampled data systems, A outPuT

a simple :zalodg afntxah&g filter is usually 54 ~ . MOUNG
required ahead of the and after the Average
DAC. Finally, as signal frequencies increase 1504 AM 1\ e ma u/
sufficiently, they surpass the capabilities of W o paTA

available ADCs, and digital filtering then 4
becomes impossible, since we no longer have

' asampled data system because we have no

ADC. Active analog filtering is not even

possible at extremely high frequencies be- | oAvS
cause of op amp bandwidth and distortion " 100 16
limitations, and filtering requirements must .
then be met using purely passive compo- ’1’ IIII III —
nents. The primary focus of the following WEIGHTING o DAYSPAST
discussions will be on filters which can run in facroms [eseazne
reaitime under DSP program control. Figure 7.4
DIGITAL FILTERING ADVANTAGES .
where we show a 7-day moving average of a
B High Accuracy dieter’s weight plotted along with the daily
weights. After 7 days worth of data samples
§ High Performance are obtained, the first point on the moving
@ Linear Phase, Constant Group Delay average is computed by adding the 7 data
(FIR Filters) samples together and dividing by 7. Another
way to view the process is to weight each
® No Drift Due to Component Variations data sample by a factor of /7 and perform a
Adapt ering summation. To obtain the second point on
| Flexibily, Ive Filt Possible the moving average, the first weighted data
B Easy to Simulate and Design sample is subtracted from the summation,
' and the 8th weighted data sample is added
Figure 7.2 to the summation. This process continues,
and can be viewed as a very crude lowpass
DIGITAL FILTERING LIMITATIONS filtering of the daily readings. The digital
implementation of the process is shown in
= Computation Must be Completed in Figure 7.5 which shows the various multipli-
Sampling Period cations, delays, and the summation. The

B Limited to Voice and Audio Bandwidth Finite Impulse Response (FIR) filter gets its
Signeis if Real-Time Operation is to be
DIGITAL FORM OF FIR FILTER

B Hardwired Digital Filters Required for
Video Frequencies

B Analog Filters Still Needed: Antialiasing
and High Frequencies

B Lack of High Speed ADCs for Sampling

xin) xin=1 xin~2} o0 0

Figure 7.3

Figure 7.5

94 DIGITAL SIGNAL PROCESSING PRODUCTS

name because the impulse response is of
finite duration; i.e., after seven zero-valued
input samples, the filter output goes to zero.
When processing an actual electrical signal,
a moving average might look like Figure 7.6.

MOVING AVERAGE FIR FILTER APPLIED TO

ANALOG SIGNAL
..... A
VISR@ATS 7l B S
"N m SIGNAL
Figure 7.6

It is useful from a mathematical standpoint
to view the moving average filteras a
convolution of the filter impulse response h(t)
with the sampled data pomtl x(t) to obtain
the output y(t) as shown in Figure 7.7. Fora
linear convolution, the operation involves
multxplymg x(t) by a reversed an linearly
shifted version of h(t), and then summing the
values in the product.

MOVING AVERAGE COEFFICIENTS
CONVOLVED WITH SAMPLED WAVEFORM
-4=3-2-1012 3 45

L .
1::'"'1 qIIL N '”II”

-

The sin(x)Vx frequency response of the
moving average filter is shown in Figure 7.8
for various numbers of taps, N. (Note: in
this section N refers to the number of sample
points and not the number of bits of resolu-
tion of an ADC or DAC!). Note that increas-
mgthenumberoftapcsharpm the rolloff
characteristic of the moving average filter
but does nothing to improve the undesirable
sidelobes.

It is possible to dramatically improve the
performance of the simple FIR moving aver-
age filter by properly selecting the individual

FREQUENCY RESPONSE
OF MOVING AVERAGE FILTER
FOR VARIOUS NUMBER OF TAPS

Hi)

MAGNITUDE

1.0 Aﬁ
[X] i wN
\

[X}

0.2

-02 —

-0.4 | |] 3 1 f

° 0.10 020 0.20 0.40 0s0 I
Figure 7.8

weights or coefficients rather than giving
them equal weight. The sharpness of the
rolloff can be improved by adding more
stages (taps), and the stopband attenuation
characteristics can be improved by properly
selecting the filter coefficients. The essence
of FIR filter design is the appropriate selec-
tion of the filter coefficients and the number
of taps to realize the desired transfer func-
tion H(f). Various algorithms are available to
translate the frequency response H(f) into a
set of FIR coefficients. Most of this software
is commercially available and can be run on
PCs. The key theorem of FIR filter design is
that the coefficients h(n) of the FIR filter are
simply the quantized values of the impulse
response of the frequency transfer ﬁmctwn
H(p. Conversely, the impulse response is the
Fourier Transform of H(f).

FACTORS DETERMINING FIR
FILTER TRANSFER FUNCTION H(f)

B Number of Taps

B Proper Selection of Weighted Filter
Coefficients

Figure 7.9

DIGITAL SIGNAL PROCESSING PRODUCTS 9-5

TeE DUALITY OF THE TIME AND FREQUENCY DOMAINS

It is useful to digress for a moment and
examine the relationship between the time
domain and the frequency domain to better
anderstand the principles behind digital
filters such as the FIR filter. In a sampled
data system, a convolution operation can be
carried out by performing a series of multipli-
cations and accumulations. The convolution
operation in the time or frequency domain is
equivalent to point by point multiplication in
the opposite domain. For example, convolu-
tion in the time domain is equivalent to
multiplication in the frequency domain. This
is shown graphically in Figure 7.10. It can be
seen that filtering in the frequency domain
can be accomplished by multiplying all
frequency components in the passband by a 1
and all frequencies in the stopband by 0.
Conversely, convolution in the frequency
domain is equivalent to point by point multi-
plication in the time domain.

DUALITY OF TIME AND FREQUENCY
FOURIER TRANSFORM
A ——

Time Domain
(Cenvolution) Domain
(Muttiplicstion)

e

The transfer function in the frequency
domain (either a 1 or a 0) can be transiated
to the time domain by the Fourier transform.
This transformation produces an impulse
response in the time domain. Since the
multiplication in the frequency domain
(signal spectrum times the transfer function)
is equivalent to convolution in the time
domain (signal convolved with impulse
response), the signal can be filtered by con-
volving it with the impulse response. The
FIR filter is exactly this process. Sinceitisa

9-6 DIGITAL SIGNAL PROCESSING PRODUCTS

sampled data system, the signal and the
impulse response are quantized in time and
amplitude yielding discrete samples. The
discrete samples comprising the impuise
response are the FIR filter coefficients.

The mathematics involved in filter design
(analog or digital) most always make use of
transforms. In continuous-time systems, the
Laplace transform can be considered to bea
generalization of the Fourier Transform. In
a similar manner, it is possible to generalize
the Fourier transform for discrete-time
sampled data systems, resulting in what is
commonly referred to as the z-transform.
Details describing the use of the z-transform
in digital filter design are given in References
1,2,and 3.

FIR FILTER IMPLEMENTATION IN DSP
HARDWARE UsING CIRCULAR BUFFERING

As has been discussed, an FIR filter
(shown in Figure 7.11 must perform the

following convolution equation:
N-1

y(n) = h(n)*x(n) = ?.’bg)x(n-i) '

where h(i) is the filter coefficient array and
x(n-i) is the input data array to the filter.
The number N, in the equation, represents
the number of taps of the filter and relates to
the filter performance as has been discussed
above.

DIRECT FORM FIR FILTER

xin-1) e X(n-N+2) 2(n-N+1)

N-1

Y =2, hm)x(nm)
Outpant med

Figure 7.11

In the series of FIR filter equations, the N
coefficient locations are always accessed se-
quentially from h(0) to h(N-1). The associ-
ated data points circulate through the mem-
ory; new samples are added replacing the
oldest each time a filter output is compu
A fixed boundary RAM can be used to
achieve this circulating buffer effect as
shown in Figure 7.12 for a 4 tap FIR filter.

DATA MEMORY ADDRESSING
FOR 4 TAP FIR FILTER

y(n) = h(n) * x(n) = g h(i) x(n-i)

Memory

0 x(0) x(4) x4) x4)

1 x(1) x(_I; x(5) x(5)

2 x(2) x(2) x(—Z;

3 x(3) x3) x(3)
y(3)= h0)x(3) + h(1)x(2) + h(2)x(1) + h(3)x(0)
y(d)= h(0)x(4) + h(1)x(3) + h(2)x(2) + h(3)x(1)

y(5)= h(O)x(S) + h(Dx@ + h2)x(3) + hGX()
Figure 7.12

The oldest data sample is replaced by the
newest after each convolution. A“time
history” of the four most recent data samples
is kept in RAM.

This delay line can be implemented in
fixed boundary RAM in a DSP chip if new
data values are written into memory, over-
writing the oldest value. To facilitate mem-
ory addressing, old data values are read from
memory starting with the value one location
after the value that was just written. For
example, x(4) is written into memory location
0, and data values are then read from loca-
tions 1,2,3,and 0. This example can be
expanded to accommodate any number of
taps. By addressing data memory locations
in this manner, the address generator need
only supply sequential addresses regardless
of whether the operation is a memory read or
write. This data memory buffer is called
circular because when the last location is
reached, the memory pointer must be reset to
the beginning of the buffer.

The coefficients are fetched simultane-
ously with the data. Due to the addressing
scheme chosen, the oldest data sample is
fetched first. Therefore, the last coefficient
must be fetched first. The coefficients can be
stored backwards in memory: h(N-1) is the
first location, and h(0) is the last, with the
address generator providing incremental
addresses. Alternatively, coefficients can be
stored in a normal manner with the access-
ing of coefficients starting at the end of the
buffer, and the address generator being
decremented. In the example shown in
Figure 7.12, the coefficients are stored in a
reverse manner.

FIR FLTER DESIGN TECHNIQUES

FIR filter design calls for specifying a
finite set of N coefficients, h(n), to approxi-
mate an idealized filter form. The filter
coefficients, h(n), in the time domain corre-
spond to the impulse response of the filter
transfer function H(p.

KEY FIR FILTER DESIGN THEOREM

H The Coefficients h(n) of an FIR Filter are
Simply the Quantized Values of the
impuise Response of the Frequency
Transfer Function H(f)

B The impuise Response is Calculated by
Taking the Fourier Transform of H(f)

Figure 7.13

In Figure 7.14, 2nd, 4th, and 6th-order
ideal Chebyshev lowpass filter transfer
functions, optimized for 1dB in-band ripple,
are compared with a 91-tap (i.e., 91 coeffi-
cients and 91 sequential circular buffer
memory locations) digital FIR filter opti-
mized for 0.002dB passband ripple. There is
no practical analog equivalent; this is higher
order than is realistic with analog hardware
(greater than 70 poles using rule-or-thumb
approximation). Since the response is flatter
within the passband, the signal is reproduced
more faithfullv. and vhase distortion in the
passband is negligible, since all frequencies
are delayed equally by the filter. This is an-
other important characteristic of FIR filters
(linear phase response and constant group
delay) which makes them extremely attrac-
tive to digital audio applications.

91 TAP FIR FILTER RESPONSE COMPARED
TO CHEBYSHEV ANALOG FILTER RESPONSE

9-TAP

- 108

-12%

L T L) Ll T L ¥ ¥ T T
[L) 0.1 0.2 03 0.4 0s
NORMALIZED PREQUENCY
= (ACTUAL FREQ.NISAMPLING FAEQ.)

Figure 7.14

DIGITAL SIGNAL PROCESSING PRODUCTS 9-7

If the 91-tap FIR filter shown in Figure
7.14 is implemented in the ADSP-2101
microcomputer, each tap requires one proces-
sor cycle (80ns). The total processing time is

herefore 7.3us. This implies that sampling
_cates of up to about 136kHz can be achieved
and still maintain real-time operation.

91 TAP FIR FILTER
PERFORMANCE CHARACTERISTICS

B 0.002dB Passband Ripple
Linear Phase

80dB Stopband Attenuation

136kHz Sampling Rate Possible with
ADSP-2101 Processor (80ns Cycle Time
per Fiiter Tap)

No Analog Equivalent! (70 poles Required!)

Figure 7.18

FIR FrLTER DESIGN UsiNG CAD TECHNIQUES

In actual practice, the concepts presented
in the above discussions have been imple-
mented in easy to use CAD programs which
can be run on most PCs. It is only necessary
to specify the desired FIR filter characteris-
tics (sampling frequency, passband frequency,

" stopband frequency, passband ripple, and

stopband attenuation) as shown in Figure
7.16. The CAD program calculates the
number of filter taps required (N), the im-
pulse response, and the filter coefficients.

KEY FILTER DESIGN PARAMETERS

f\/\f\v N -
Rt smowe

s PASS BAND >l

Figure 7.16

9-8 DIGITAL SIGNAL PROCESSING PRODUCTS

FIR FILTER DESIGN
CAD PROGRAM INPUTS
Passband
Passband Ripple
Stopband
Stopband Attenuation
Wordlength, i.e., 16 Bit Fixed-Point

Figure 7.17

A plot of the frequency response, H(f),
along with the impulse response and the
step-function response is also available as an
output. If the response characteristics are
satisfactory, the filter coefficients can then be
downloaded into the DSP processor. The
CAD program can also simulate the effects of
finite word-length (i.e., performing calcula-
tions in 16 bit fixed point arithmetic) on the
transfer function.

FIR FILTER DESIGN
CAD PROGRAM OUTPUTS

Frequency Response Plot Showing
Effects of Finite Wordlength Arithmetic

impuise Response Plot
Step Function Response
Number of Taps Required
Filter Coefficients

Figure 7.18

Other algorithms have been developed for
CAD filter designs which optimize the filter
performance for various characteristics. An
example is the Parks and McClellan program
(see Reference 1) which minimizes the maxi-
mum errors between the desired characteris-
tic and the actual characteristic by using the
Remez exchange algorithm from approxima-
tion theory.

DEsicN ExaMPLE FOR AN FIR DiGITAL
Avpio FiLTER Using CAD PROGRAM

For this example, we will design an audio
lowpass filter that is designed to operate at a
sampling rate of 44.1kHz (standard for CD
players). The program is available from Mo-
mentum Data Systems, Incorporated (Refer-
ence 5). The program is menu-driven and
IBM PC compatible. The filter will be imple-
mented as a Direct Form FIR as shown in

Figure 7.19.

DIRECT FORM FIR FILTER The next screen appears as shown in
s} L xaNed x(nNel) Figure 7.22 where we enter the sampling
o) rate, the band edges, and specifications for
Input | ... 2" - the passband ripple and stopband attenu-
ation. The example we have chosen is a
lowpass filter with a cutoff frequency of

18kHz.
h{N-1)
FIR FILTER DESIGN
LOWPASS FILTER (Screen 3)
Sampling Frequency: 44100.0
Passband Frequency: 18000.0
Y eY, nm) s(nm) Stopbend Frequency: 21000.0
Output m=0
Figure 7.19 Passband Ripple: 1.00000E-02
First, we select the type of filter to be Stopbend Ripple: 96dB
designed from among the Main Menu shown (Attenuation)
in Figure 7.20. We choose the Equiripple Fiaure 7.22
FIR Design (Parks-McClellan) gure 7.
FILTER DESIGN AND ANALYSIS SYSTEM The program will then calculate the
MAIN MENU (Screen 1) required filter coefficients. When this calcu-
lation is complete, the screen shown in
@ IR Filter Design Figure 7.23 appears which lets us know the
B FIR Filter Design With Windows number of coefficients (taps) required to
implement the filter. If the number of taps is
W Equiripple FIR Design (Parks-McClellan) compatible with the throughput of the DSP
B Read Filter smiﬂ“ﬂon File processor and the .mp]jng rate, the user
E System Analysis (Z Domain Input) allows the program to proceed.
E System Analysis (s Domain Input)
® Read System Analysis input File FIR DESIGN EXAMPLE (Screen 4)
® Set System Defaults Estimated Number of Taps of FIR Filter: 69
@ Exitto DOS
Enter Number of Taps Desired: 69
Figure 7.20
The second screen then appears as shown Figure 7.23

in Figure 7.21. This screen is used to select
the type of FIR filter (lowpass, highpass,
bandpass, etc.) as well as specify the mode
for frequency, gain, and whether sin(x)/x

If the 69-tap FIR filter is implemented in
the ADSP-2101 microcomputer, each tap
requires one processor cycle (80ns). The total

campensation is to be processing time is therefore 5.5us. This
FINITE IMPULSE RESPONSE implies that sampling rates up to about
FILTER DESIGN MENU (Screen 2) mﬂn be :ichiWOd and still maintain
Filter Type: 1 - Lowpass ~time operation.
2 - Highpass
3. Bl:;\dpau ADSP-2101 PROCESSOR TIME
4 - Bandstop FOR 69 TAP FIR FILTER
5 - Differentiator
6 - Multiband B 80ns (One Processor Cycle) per Tap
Frequency Mode: H - Hertz W 69 Taps
R - Radians/Second u 5.5us Processor Time (80ns x 69)
Galin Specification 1 - Maximum Gain 1.0 B 182kHz Sampling Rate for Real-Time
Mode: 2 - Nominal Gain 1.0 Operation
Filter Compensation: Enter X to Select Figure 7.24

Figure 7.21
DIGITAL SIGNAL PROCESSING PRODUCTS 9-9

The next step shown in Figure 7.25 is to
quantize the coefficients to the correct num-
ber of bits so that the coefficients are compat-
ible with the DSP processor being used. In
this example, the ADSP-2101 is to be used.
it is a 16 bit fixed point machine, so the
coefficients are quantized to 16 bits.

FIR DESIGN EXAMPLE (Screen 5)

Select the Desired Number of Bits
for Quantization

Number of Bits (8 to 32): 16
Figure 7.25

Now that the coefficients are calculated
and properly quantized, we must see what
effects on filter performance have been
introduced by the quantization process. It
should be noted that the filter design pro-
gram initially calculates the coefficients with
very high resolution. When these very
accurate coefficients are quantized to a lower
resolution, i.e. 16 bits, some accuracy is lost.
This loss in accuracy may adversely affect
the performance of the filter. To verify the
proper performance, the filter is simulated.
In this example the simulation is performed
with 16 bit math. Figure 7.26 shows the
simulated filter response so that the filter
performance can be analyzed. Also available
as outputs are the impulse response (shown
in Figure 7.27) and the step response (shown

FIR FILTER DESIGN EXAMPLE
FREQUENCY RESPONSE

(1] o \
\

~2000—

~40¢fe

404 8—

(1 1) l!l.ll 111170}

~S4ed

'I.O o C‘..O.I ’l l‘ e .sl) 2 .l .2‘ 3 lt.’ .0. 4 l‘.‘ ..5

FREQUENCYINERTZ)

Figure 7.26

9-10 DIGITAL SIGNAL PROCESSING PRODUCTS

in Figure 7.28). It should be clear that this
filter has no analog counterpart. The rule of
thumb for calculating the required number of
poles of an analog filter having this transi-
tion band characteristic (85dB from 18 to
21kHz) would indicate a 65th order filter!
(Refer to Section III).

If the filter performance is satisfactory,
the coefficient file can be downloaded to the
DSP hardware for the filter implementation.
If the response is not satisfactory, the design
process may be iterated with changes made
either to the number of taps or other parame-
ters until the desired response is achieved.

FIR FILTER DESIGN EXAMPLE
IMPULSE RESPONSE

>
It
€-91

L)
t-d

IRPULSE RESPONSE

i

. bAA
e YTV,

; Oy T 408 128 1486
' (X e £-01 x5)
TINE (NILLISECONDS)

Figure 7.27

FIR FILTER DESIGN EXAMPLE
STEP RESPONSE

x.u_?

STEP RESPONSE

1,354 <712 4,040 S,
[31]) 80 Ee88 [£21} Es00

TIRE (MILLISECONDS)

Figure 7.28

INSURING LINEAR PHASE IN FIR FILTERS

An advantage of FIR filters is they can
always be made to have linear phase re-
sponse which is a characteristic that makes
them extremely attractive in audio and sonar
applications. Linear phase means that all
input frequencies are delayed by the same
amount through the filter. In an FIR filter,
this is the time required for the signal to
propagate through the N taps. This delay is
often referred to as group delay when applied
to a band of frequencies. The group delay is
constant for a linear phase FIR filter.

In order to insure phase linearity in an
FIR filter, it is required that the filter coeffi-
cients are symmetric as in the case of a
simple lowpass filter (Figure 7.29) or as in
the case of a simple highpass filter (Figure
7.30). In addition, using an odd number of
taps is also a requirement for linear phase.

SYMMETRICAL FILTER COEFFICIENTS
PRODUCE LINEAR PHASE RESPONSE -

LOWPASS FILTER
Mn)--tT”[hTf "
Figure 7.29

SYMMETRICAL FILTER COEFFICIENTS
PRODUCE LINEAR PHASE RESPONSE -
HIGHPASS FILTER

‘Ilzi

xlll-

DecmaTIiON UsInG FIR FILTERS

FIR filters lend themselves to applications
where data rate decimation is required, such
as in oversampled sigma-delta ADCs. If we
want to decimate the output data rate of an
FIR filter by a factor of 2, for instance, we
would take only every other sample point out
of the filter. This also implies that the filter
output computations need only be done every
other sampling clock period. In other words,

the DSP processor now has two sampling
clock intervals to complete the convolution
calculation. This implies that either more
filter taps can be used, or perhaps a slower
processor.

FIR FILTER PROPERTIES
SUMMARY
Always Stable
Have Linear Phase, Constant Group Delay
Can be Adaptive
Low Round-Off Noise

Computational Advantages When
Decimating Optput
Easy to Understand and implement

Figure 7.31

INFINTTE IMPULSE RESPONSE (IIR) DIGITAL FILTERS

As was mentioned previously, digital FIR
filters have no real analog counterparts, the
closest analogy being the weighted moving
average. In addition, FIR filters have only
zeros and no poles. On the other hand, IIR
filters have traditional analog counterparts
(Butterworth, Chebyshev, and Elliptic) and
can be analyzed and synthesized using more
familiar traditional filter design techniques.

Figure 7.32 shows a second-order lowpass
active filter, and its IIR digital filter equiva-
lent is shown in Figure 7.33. This second-
order IIR filter is referred to as the biquad
(because it is described with a biquadratic

SECOND-ORDER ANALOG FILTER
IMPLEMENTATION

Yis
AN MHis) = J—l =
y Xis)

HT-
¥

X O=mAANP VWAs= ssi2ut
3 Yy

1
1+b{RCs) + (RCs)*

Figure 7.32

(1) o—p> > — ¥(N)

r‘ z-1

z“ z—‘
b, a,

y(n) = by x(n) + byx(n-1) + b2 x(n-2) -2y y(n-1)-82y(n-2)

Figure 7.33

DIGITAL SIGNAL PROCESSING PRODUCTS 9-11

equation in the z-domain) and forms the
basic building block for most higher order IIR
designs. The difference equation which
describes the characteristics of the filter with
5 coefficients is also shown in the figure.

The general digital filter equation is
shown in Figure 7.34 which gives rise to the
general transfer function H(z) which contains
polynomials in both the numerator and the
denominator. The roots of the denominator
determine the pole locations of the filter, and
the roots of the numerator determine the
zero locations. Although it is possible to
construct a high order IIR filter directly from
this equation (called the direct form implem-
entation), accumulation errors due to quanti-
zation errors (finite wordlength arithmetic)
may give rise to instability and large errors.
For this reason, it is common to cascade
several biquad sections with appropriate
coefficients rather than use the direct form
implementation. The biquads can be scaled
separately and then cascaded in order to
minimize the coefficient quantization and the
recursive accumulation errors. Cascaded
biquads execute more slowly than their
direct form counterparts, but are more stable
and minimize the effects of errors due to
finite arithmetic errors. In calculating the
throughput time of a particular DSP IIR
_ filter, one should examine the benchmark
performance specification for a biquad filter
section. For the ADSP-2101, the execution
time for a single biquad section is 560ns,
corresponding to seven instruction cycles.

GENERAL FILTER EQUATION

FEEDFORWARD FEEDBACK

M N
ym) = Y bkx(n-k) + } aky(n-k)
k=0 k=1

GIVES RISE TO THE TRANSFER FUNCTION

)'f,m-k (ZEROS)
k=0 .

H(z) =

1-§nkr* (POLES)
k=1

Figure 7.34

e imim e mimar Al PRAARANIALS DDA IATC

IIR FILTER PROPERTIES
SUMMARY

B Feedback (Recursion)
@ Potentially Unstable

B Usually implemented as Cascaded Biquads

Rather than Direct Form

Non-Linear Phase

W More Efficient Than FIR Filters

B No Computational Advantage when
Decimating Output

B Analogous to Analog Filters

Figure 7.35

THROUGHPUT CONSIDERATION
FOR IIR FILTERS
B Determine How Many Biquad Sections are
Required to Realize the Desired Filter
Function

H Multiply by the Execution Time per Biquad
(560ns for the ADSP-2101)

E The Result is the Minimum Sampling Period

(1/1g) Allowable for Real-Time Operation
Figure 7.36

Summary: FIR VERrsus IIR FILTERS

Choosing between FIR and IIR filter
designs can be somewhat of a challenge, but
a few basic guidelines can be given. Typi-
cally, IIR filters are more efficient than FIR
flters because they require less memory and
fewer multiplications are needed. IIR filters
can be designed based upon previous experi-
ence with analog filter designs. IIR filters
may exhibit instability problems, but this is
much less likely to occur if higher order
filters are designed by cascading second-
order systems.

On the other hand, FIR filters require
more taps and computations for a given
cutoff frequency response, but do exhibit
linear phase characteristics. Since FIR
filters operate on a finite history of data, if
some data is corrupted (ADC sparkle codes,
for example) the FIR filter will ring for only
N-1 samples. Because of the feedback,
however, an IIR filter will ring for a consid-
erably longer period of time.

If sharp cutoff filters are needed and
processing time is at a premium, IIR elliptic
filters are in order. If the number of multi-
plies is not prohibitive, and linear phaseis a
requirement, then the FIR should be chosen.

IIR VERSUS FIR FILTERS
IR FILTERS FiR FLTERS
More Efficient Lass Efficient
Anslog Equivelent No Ansiog Equivalert |
May be Unstable Stable
Non-Lineer Phase Responee Linser Phase
More Ringing on Glitches Less Ringing on Gitches
CAD Design Packages Available CAD Avelisble |
No Efficiency Gained by Decimation Decimation increeses Efficiency
Figure 7.37

Fast FOURIER TRANSFORMS

In many applications it is desired to
process or analyze a signal in the frequency
domain. In the analog world, this is easily
accomplished using an analog spectrum
analyzer. Mathematically, this process can
be duplicated by taking the Fourier trans-
form of the continuous-time analog signal.
The Fourier transform yields the spectral
content of the analog signal. In sampled
data systems, however, this process must be
accomplished by DSP processing of the ADC
output data. Furthermore, there are two
distinct differences between an analog and a
digital spectral analysis. First, the output of
the ADC is discrete quantized samples of the
continuous input, x(t). In sampled data sys-
tems, the Discrete Fourier Transform (DFT)
performs the transformation of the time
domain samples into the frequency domain.
In addition, the DFT must operate on a finite
number of sampled data points, while the
Fourier transform operates on a continuous
waveform.

CONTINUOUS AND DISCRETE
TIME-TO-FREQUENCY
TRANSFORMATIONS

B Fourier Transform Operates on
Continuous-Time Waveforms

B Discrete Fourier Transform Operates on a
Finite Number of Discrete Time Samples of
a Waveform

Figure 7.38

If x(n) is the sequence of N input data
samples, then the DFT produces a sequence
of N samples X(k) spaced equally in fre-
quency. The DFT consists of a series of
multiplications and additions where a data
word is multiplied by a sinusoid value, and a
number of these products are added together
as shown in Figure 7.39.

THE DISCRETE FOURIER
TRANSFORM (DFT) EQUATION

N-1
X(k) =n§)x(n)o-l2m"m, where

o~12=nk/N _ cog(27niUN) - jsin(2rnk/N)

Figure 7.39

The DFT can be viewed as a correlation or
comparison of the input signal to many sinu-
soids, evaluating the frequency content of the
input signal. For example, a 1024 point DFT
would require 1024 samples of the input
signal and 1024 points from a sinusoid.
Sinusoids of 1024 different frequencies
equally spaced from -f/2 to +t;£2 are used.
Each pass of the DFT checks the sinusoid
against the input signal to see how much of
that frequency is present in the input signal.
This is repeated for each of the 1024 frequen-
cies. The result is shown in Figure 7.40
where N/2 discrete frequency components
appear in the output spectrum. If the sam-
pling frequency is f , then the spacing be-
tween the spectral Lines is f/N, or /Nt,,
where t_ is the sampling period, Uf,.

Spectral analysis is most often performed
with complex signals (having both real and
imaginary components) so that phase infor-
mation as well as amplitude and frequency
information is obtained. In the above ex-
ample, 1024 complex data values are multi-
ply/accumulated with 1024 complex sinusoid
values. This requires 1024 complex multi-
plies. This process is repeated for each of the
1024 frequencies for a total of 1024* muiti-
plies, or in general terms, N* complex multi-
plies. Even for a powerful DSP device, this
number of computations can be cumbersome
and time consuming. This amount of compu-

TYPICAL FFT OUTPUTS FOR DIFFERENT

. o

DIGITAL SIGNAL PROCESSING PRODUCTS 9-13

tation is only required when all output
frequencies are to be calculated. If the value
of frequency content for only one or a few fre-
quencies is to be determined, the computa-
tional load is not as heavy.

In most spectral analysis situations,
however, the entire frequency spectrum up to
f /2 must be computed, so we must find a
faster method! The FFT is simply an algo-
rithm to speed up the DFT calculation by
reducing the number of multiplications and
accumulations required. It was popularized
by J. W. Cooley in the 1960s and was actu-
ally a rediscovery of an idea of Runge (1903)
and Danielson and Lanczos (1942), first
occurring prior to the availability of comput-
ers and calculators-when numerical calcula-
tion could take many manhours.

The FFT is based on taking advantage of
certain algebraic and trigonometric symme-
tries in the DFT computational process. For
example, if a 1024 point DFT is performed,
1024? (1,048,567) complex mulitiplications
are required. It is possible to break up the
1024 point DFT into two 512 point DFTs and
end up with the same resuits. This is called
decimation. Each 512 point DFT requires
5122 (262,144) complex multiplications for a
total of 524,288 complex multiplications.
This is a significant reduction compared to
the original 1,048,567. Figure 7.41 shows an
N-point DFT broken up into two N/2-point
DFTs. The presence of a phase factor W
(sometimes called a twiddle factor) on a
horizontal line indicates a multiplication by
W. The points where the arrows intersect
the horizontal lines indicates a summation.
The presence of a -1 on the line indicates a
sign reversal.

FIRST DECIMATION IN TIME
OF 8-POINT DFT
X(0) ——\ Yo . X(0)
X(2) —— Y \ / X1)
o1 ot v A\NEZ
] D \\V//
w®
2000 X(®)
| S //A\\
x(8) — DT P :: / / -1 \\ X(®)
Figure 7.41

9-14 DIGITAL SIGNAL PROCESSING PRODUCTS

If it's possible to break up the 1024 point
DFT into two 512 point DFTs and still get
the same result, why can’t each 512 point
DFT be broken up into two 256 point DFTs
for an even greater reduction in computa-
tions? Well, they can. This decimation
process can continue until the original DFT
is broken up into 2 point DFTs (the smallest
DFT possible).

EIGHT-POINT DECIMATION-IN-TIME FFT
NORMAL-ORDER INPUTS, BIT-REVERSED
OUTPUTS

x(6)
x(™

Figure 7.42

The final series of computations, after the
decimation process is complete, is the FFT.
This is shown for the 8 point DFT in Figure
7.42. Since the FFT was first decimated by a
factor of 2, the FFT is known as a Radix-2
FFT. If the initial DFT was decimated by a
factor of 4, it would be referred to as a Radix-
4 FFT. Note that the input data points are
taken in normal order, but the outputs are in
bit-reversed order. Bit-reversing hardware is

" therefore common in DSP processors such as

the ADSP-2101. The basic calculation,
essentially the 2 point DFT, is commonly
referred to as a butterfly calculation. The
FFT is made up of many butterfly calcula-
tions. Figure 7.43 shows the basic butterfly
for the Radix-2 decimation-in-time FFT
which requires one complex multiply opera-
tion per butterfly.

RADIX-2 DECIMATION-IN-TIME
FFT BUTTERFLY
Xo+iY% " Xo + 1Yy
C+8

Xy + 0%y ® - » Xy + %
Xg=Xq+ 04C-Y,) Yo =% +048 -% O
X, = Xg-04C-¥; 9) Yy2Y - 048 -%0)

Figure 7.43

The significance of the FFT on the reduc-
tion in computations required to do the DFT
is shown in Figure 7.44.

COMPUTATIONAL EFFICIENCY

OF AN N-POINT FFT

DFT FFT
N2 Multiplications (N2 logy(N)
For N = 1024

200:1

Figure 7.44

Note that the FFT results in the computa-
tion of all N/2 spectral outputs (all or noth-
ing!). If only a few spectral points need to be
calculated, the DFT is more efficient. Calcu-
lating a single spectral output using the DFT
requires only N complex multiplications.

FFT HARDWARE IMPLEMENTATION

In general terms, the memory require-
ments for an N point FFT are N locations for
real data, N locations for imaginary data,
and N locations for the sinusoid data (some-
times referred to as the FFT coefficients or
twiddle factors). As long as the memory
requirements are met, the DSP processor
must perform the necessary calculations in
the required time. Many DSP vendors will
either give a performance benchmark for a
specified FFT size or a calculation time for a
butterfly. When comparing FFT specifica-
tions, it is important to make sure that the
same type of FFT is used in all cases. For
example, a 1024 point FFT benchmark could
have been derived from a Radix-2 or Radix-4
FFT and would not be compatible bench-
marks since the number of computations
required is different.

irements are

met, it is the job of the software to make the
system realizable. With the same hardware,
different software routines make possible a
Radix-2, Radix-4, decimation-in-time or
decimation-in-frequency algorithm just by
manipulating the data in a different manner.
An optimized Radix-4 FFT algorithm is given
in Reference 6. '
DSP FFT HARDWARE
BENCHMARK COMPARISONS

® Radix-2, Radix-4 FFT?
B Butterfly Execution Time?
B Total FFT Execution Time?

Figure 7.45

For N = 1024
1,048,576 Muitiplications 5,120 Multiplications

FFT DESIGN CONSIDERATIONS

The first step in designing an FFT is to
determine the number of points required, N,
or the record length. There are several ways
to approach this problem. The sampling
rate, f, must be at least twice the maximum
input signal frequency of interest. Once the
sampling rate is known, the spectral resolu-
tion of the FFT is then given by f/N. The
more points in the FFT, the better the spec-
tral resolution. This is a prime consideration
in spectral analysis applications.

In real-time analysis of speech, for ex-
ample, the signal bandwidth is approxi-
mately 4kHz, implying a sampling rate of
8kHz. The spectrum of speech is not station-
ary. The signal must be divided up into
windows, T, short enough to ensure that
individual features are not averaged out in
the FFT all meaning is lost in the long-term
FFT of speech, for example. But T must be
long enough to give adequate spectral resolu-
tion. It has been determined that for human
speech phonemes, 20ms is adequate, hence
T, = 20ms.

REAL-TIME SPEECH ANALYSIS
FFT EXAMPLE
B BW = 4kHz, Sampling Rate = 8kHz
B Window = 20ms
B N > 8kHz x 20ms = 160, Therefore use
N =256
B Can Processor Keep Up?

B ADSP-2101 Benchmark for N = 256
is 0.59ms

B Yes! With 19.41ms for Other Computations

Figure 7.46

Now, what determines if the FFT can keep
up? The number of sample points in the
window T, is equal to T _f,, or 20ms x 8kHz =
160 points. This will be rounded up to the
nearest power of 2, or 256 points. This says
that the DSP processor must complete the
256 point FFT in less than the data acquisi-
tion time per window, T_. Otherwise real-
time processing is not possible, and the com-
putation would have to be done off line. The
ADSP-2101 completes a 256-point FFT in
0.59ms leaving 19.41ms for other computa-
tions.

Benchmark FFT processing times for most
DSP processors are given by the manufac-
turer. Figure 7.48 shows Radix-4 benchmark
times for the ADSP-2101. The 512-point
benchmark time is for a Radix-2 FFT. In

DIGITAL SIGNAL PROCESSING PRODUCTS

9-15

evaluating various DSP processors, make
sure to compare them under the same condi-
tions. For instance, a Radix-4 FFT is some-
what faster than a Radix-2 FFT.

Figure 7.47 also shows the maximum
sampling rates for real-time operation associ-
ated with the FF'T execution times. These
sampling rates indicate that modern DSP
microcomputers such as the ADSP-2101 are
capable of real-time FFT analysis of signals
having bandwidths as great as 100 to
200kHz.

ADSP-2101 BENCHMARK FFT PERFORMANCE
AND ASSOCIATED SAMPLING RATES

FOR REALTIME OPERATION
FFT SIZE EXECUTION TIME MAXIMUM
SAMPLING RATE
256 0.5ms 434kHz
s12 1.3me 394k
1024 2.9ms 383kHz
2048 6.5ms 318kHz
4006 142me 288kHz2
Figure 7.47

FFT OF SINEWAVE HAVING INTEGRAL
NUMBER OF CYCLES IN WINDOW

INTEGRAL MULTIPLE
N
t

W)

\/

*— | GATA WNDOW :’I -
PERIODIC PERIOOIC
EXTENSION EXTENSION
OF DFY OF DFT

Fin
1
Fin/Fg = Ne/N
N = Record Langth
N = Number of Cycles in Data Window
L e et £
Figure 7.48

SPECTRAL LEAKAGE AND WINDOWING

Spectral leakage in FFT processing can
best be understood by considering the case of
performing an FFT on a pure sinewave
input. Two conditions will be considered. In
Figure 7.48, the ratio between the sampling
rate and the input sinewave frequency is
such that precisely an integral number of
cycles are contained within the data window

a aa mismieear AIALIAL DRAAAECCIAIRN DDAN INTCQ

(or record length). This results in a single
tone FFT spectral response at the sinewave
frequency as shown in the figure. Figure 7.49
shows the condition when the sinewave does
not contain an integral number of cycles
within the data window. The discontinuities
at the endpoints are equivalent to multiply-
ing the sinewave by a rectangular windowing
pulse which has a sin(x)¥/x frequency domain
response. The discontinuities in the time
domain result in leakage in the frequency
domain, because many spectral terms are
needed to fit the discontinuity. Because of
the endpoint discontinuity, the FFT spectral
response shows the main lobe of the sine-
wave being smeared, an a large number of
associated sidelobes which have the basic
characteristics of the rectangular time puise.

FFT OF SINEWAVE HAVING NON-INTEGRAL
NUMBER OF CYCLES IN WINDOW

1 I,.
/ W]
] { /
/ Y,

- ¥
.—l..———unm——.‘_.
PERIODIC PRRIODIC
OF OFT OF DFY

Fin
[=
mon ¢ [\
e Fin/Fg = Ne/N
o]

1 Length
'I \‘ N¢ = Number of Cycies in Data Window

4 VWT\: Ll ‘IIT\IIT\\'1\.”; 3
Figure 7.49

Since in practical FFT spectral analysis
applications the exact frequencies are un-
known, something must be done to minimize
these sidelobes. This is done by choosing a
windowing function other than the rectangu-
lar window. The input time samples are
multiplied by an appropriate windowing
function which brings the signal to zero at
the edges of the window. The selection of an
appropriate windowing function is primarily
a tradeoff between main-lobe spreading and
sidelobe rolloff. Leakage can also be reduced
by padding the data with zeros and perform-
ing a correspondingly longer FFT. Reference
4 is highly recommended for an in-depth ook
at windows.

The time-domain and frequency-domain
characteristics of a simple windowing func-
tion (the Hanning Window) are shown in
Figure 7.50. A comparison of the frequency
response of the Hanning window and the
more sophisticated Minimum 4-Term Black-
man-Harris window is given in Figure 7.5i.

TIME AND FREQUENCY COMPARISON

REPRESENTATION OF HANNING WINDOW OF WEIGHTING FUNCTIONS
W =08 -0.5c08 2xn w,,-q,-a,eouzﬁ"
4 " ; N + sacoe 420
wn Ats /!. a8 - Sxn MINIMUM 4-TERM

BLACKMAN-HARRIS

T=NAt WINDOW, N = 1024

-140!

“ (BINSF>®

e 8-y HANNING
\ WINDOW, N = 1024

.70
-1401
-256 -128 0 128 (amsfu
Figure 7.51
Figure 7.50

FFT SUMMARY
DATA SCALING AND BLOCK FLOATING POINT ® The FFT is an Algorithm, not an

imatio

The resuits of the butterfly calculation can Approx n

be larger than the inputs to the butterfly. B Computational Speed is not Achieved
This data growth can pose a potential prob- at the Expense of Accuracy
lem in a DSP with a fixed number of bits. To
prevent data overflow, the data needs to be B The FFT is a Fast implementation
scaled before hand, leaving enough extra bits of the DFT

for growth. Alternatively, the data can be
scaled after each pass of the FFT. The
technique of scaling data after each pass of

B Resolution of the FFT in Frequency
it fg/N, N = Record Length

the FFT is known as block floating point. 1t m Endpoint Discontinuities in Time

is called this because the full array of data is Usually Require Smoothing Using
scaled as a block regardless of whether or not Windowing Functions

each element in the block needs to be scaled.

The complete block is scaled so that the B Real-Time FFT Processing Possible at
relative relationship of each data word Sampling Rates in Excess of 100kHz
remains the same. For example, if each data Using DSP Microcomputers

word is shifted right one bit (divided by 2),

the absolute values have been changed but Fiaure 7.52

relative to each other, the data stays the gu

same.

NIRITAI SIGNAL PROCESSING PRODUCTS 9-17

REFERENCES

9.

Richard J. Higgins, Digital Signal Processing in VLSI, Prentice-Halil, 1990.
A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, 1975.

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, 1975.

Fredrick J. Harris, On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform, Proc. IEEE, Vol. 66, No. 1, 1978 pp. 51-83. '

Momentum Data Systems, Inc. Costa Mesa, CA.

Fares Eidi, An Optimized Radix-4 Fast Fourier Transform (FFT), Analog Devices
Application Note E1329-5-9/89. Available from Analog Devices.

High Speed Design Seminar, Analog Devices, 1990.

Amy Mar, Editor, Digital Signal Processing Applications Using the ADSP-2100
Family, Prentice-Hall, 1990.

C. S. Williams, Designing Digital Filters, Prentice-Hall, 1986.

10. R. W. Ramirez, The FFT: Fundamentals and Concepts, Prentice-Hall, 1985.

a_1a MIRITAI SIGNAL PROCESSING PRODUCTS

