
Engineer To Engineer Note EE-146

a
Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Implementing a Boot Manager for ADSP-218x Family DSPs
Contributed by Benno Kusstatscher September 5, 2002

Introduction
Conventional system design calls for a single
program to boot at power-up. One may
implement a more sophisticated approach to
build an application comprised of separate
programs, each booted into the DSP as needed,
under the control of a boot manager. One benefit
of such an approach is that the total memory
consumption of the application may far exceed
the on-chip memory resources provided by the
chosen ADSP-218x family DSP.

A boot manager is a piece of control code that
determines which program is booted after system
reset (e.g. by sampling one of input flag pins). A
boot manager may also help to boot a second
program after the first one has terminated. The
underlying technique remains the same.

If booted by a host processor through the IDMA
interface, the ADSP-218x behaves like a slave
and the host device has full control to reset and
reboot the DSP with different programs any time.

This application note discusses the scenario
where the ADSP-218x boots from an 8-bit
EPROM using its BDMA capability. All
programs are stored in the same EPROM the
DSP boots from and need to be managed
properly. It is obvious that the W
loader/splitter1 utility elfspl21.exe plays a crucial

role. The following explanations are based on
VisualDSP++TM version 3.0 although the basic
functionality was introduced with version 2.0.

1 In this context the utility elfspl21.exe functions as a loader
utility, only. The name “Splitter” has historical nature for
usage on former ADSP-21xx devices that did not feature
BDMA booting yet.

General Bootstrap Procedure
It is not an absolute must that one has an in-depth
understanding of the BDMA boot process to get
the boot manager up and running. Nevertheless it
helps to adapt the procedure described below to
slightly different requirements.

Figure 1: VisualDSP++ project property page

Copyright 2002, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products
or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders.
Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog
Devices regarding the technical accuracy and topicality of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

In order to boot any of the ADSP-218x family
DSPs from an 8-bit parallel EPROM or Flash
device, the VisualDSP++ Loader/Splitter utility

a

Implementing a Boot Manager for ADSP-218x Family DSPs (EE-146) Page 2 of 8

Figure 2: VisualDSP++ load property page

needs to be invoked as shown in Figure 1. The
default settings within the load property page
(Figure 2) force VisualDSP++ to invoke the
splitter utility with the following command line
switches:

elfspl21 project1.dxe project1
 -218x -loader -i

In response to this command, the elfspl21.exe
generates a boot stream from the linker’s
executable file project1.dxe that meets the
ELF/DWARF-2 standard; the output file will be
project1.bnm, encoded in the Intel Hex format. Let
us discuss the BDMA boot feature of the ADSP-
218x family first in order to understand the
structure of the boot stream.

With BDMA booting enabled, after reset the
ADSP-218x DSPs do not immediately start to
fetch and execute instructions. First, the core is
halted and the BDMA engine automatically loads
the first 96 bytes from the BDMA space and
copies them into the internal SRAM at PM
address 0x0000. Once the BDMA transfer has
finished the DSP core starts to execute the 32
instructions built by these 96 bytes.

Of course, most applications are much larger
than 32 instructions. 32 instructions are not
sufficient to boot real applications, either.
Therefore, this first piece of program is used to
implement a bootstrap scenario only. We shall
refer to this as the “preloader”. Listing 1 shows
the preloader that is used by default.

 /* standard preloader (32 instructions) address opcodes */

 ax0 = 0x0060; dm(0x3fe2) = ax0; /* BEAD */ /* 0x0000: 400600 93FE20 */

 ax0 = 0x0020; dm(0x3fe1) = ax0; /* BIAD */ /* 0x0002: 400200 93FE10 */

 ax0 = 0x0000; dm(0x3fe3) = ax0; /* CTRL */ /* 0x0004: 400000 93FE30 */

 ax0 = 0x0087; dm(0x3fe4) = ax0; /* BWCOUNT */ /* 0x0006: 400870 93FE40 */

 ifc = 0x0008; nop; /* BDMA IRQ */ /* 0x0008: 3C008C 000000 */

 imask = 0x0008; /* 0x000A: 3C0083 */

 idle; /* 0x000B: 028000 */

 jump 0x0020; nop; nop; nop; /* 0x000C: 18020F 000000 ... */

 nop; nop; nop; nop; /* 0x0010: 000000 000000 ... */

 nop; nop; nop; nop; /* 0x0014: 000000 000000 ... */

 nop; nop; nop; nop; /* 0x0018: 000000 000000 ... */

 rti; nop; nop; nop; /* 0x001C: 0A001F 000000 ... */

Listing 1: Default preloader used by elfspl21.exe

a
Basically, the preloader just sets up another
BDMA sequence that loads additional loader
code from byte address 0x0060 to PM address
0x0020. An IDLE instruction stops the program
execution until the BDMA has finished. The
unmasked BDMA Interrupt brings the core out of
the idle state afterward. Please note the RTI
instruction at BDMA interrupt vector address
0x001C.

Once the BDMA transfer has finished, the code
execution continues at the address subsequent to
the IDLE instruction. The program jumps to
0x0020, where the recently loaded instructions
have been placed. This is the first PM location
after the BDMA interrupt vector.

This second part of the bootstrap loader is
conventionally called “page loader”. It boots the
final application data. The elfspl21.exe tool
generates this page loader content dynamically.

Figure 3: EPROM memory map example

Basically, the page loader consists of a set of
BDMA setup sequences, one for every hardware
page that needs to be booted. Such a setup
sequence takes nine instructions; the last one is
the IDLE instruction, required to halt program
execution. Please note that the RTI instruction at
address 0x001C is still required.

The final BDMA transfer loads the fixed PM
page (PM 0x0000 to 0x1FFF). It overwrites both,
preloader and page loader. Therefore the final
BDMA setup does not use the IDLE instruction,
but sets the BCR (BDMA Context Reset) bit of
the BDMA control register. This forces the DSP
to halt the program execution until the BDMA
transfer has finished and to jump to PM address
0x0000 afterward. Then, it immediately starts to
execute the booted application.

VisualDSP++TM 2.0 versus 3.0
Beside minor bug fixes the elfspl21.exe utility of
VisualDSP++ 3.0 is the same as the one of the
2.0 release – with one exception: VisualDSP++
3.0 supports booting of off-chip DM and PM
overlay pages, while VisualDSP++ 2.0 does not.
This new feature results in some impacts we
need to be aware of.

VisualDSP++ 2.0 fixes the number of page
loader instructions to 135, providing space for up
to 15 BDMA setup sequences. This is sufficient
to boot all on-chip overlay pages of ADSP-2188
devices. Unused page loader instructions are
simply filled with NOP instructions. The
preloader’s BWCOUNT value is always 135
(=87h) as shown in Listing 1 and Figure 3.

Preloader
32 Instructions

Page Loader
135 Instructions

Application Data

0x000000

0x000060

0x0001F5

VisualDSP++ 3.0 can boot off-chip SRAM.
Since the hardware does not support BDMA
transfers directly to off-chip DM and PM
memories, additional instructions are required to
copy boot data from intermediate internal storage
to off-chip overlay memory. Therefore the page
loader of VisualDSP++ 3.0 may exceed these
135 instructions. The number of instructions may
vary and the default preloader’s BWCOUNT
value is calculated dynamically by elfspl21.exe. If
the –uload switch is used to replace default
preloader, the user has no access to the real
length of the page loader. The BWCOUNT
register needs to be filled with a constant value
that mirrors the maximal possible page loader
length. This worst-case length depends on the
application. Actually, the maximal length

Implementing a Boot Manager for ADSP-218x Family DSPs (EE-146) Page 3 of 8

a
generated by the VisualDSP++ 3.0 splitter is 658
instructions if off-chip pages are also booted, but
this may change in future releases.

Simulating the boot procedure
The entire boot procedure can be simulated with
the VisualDSP++ debugger. Please follow these
steps:

• Invoke the integrated VisualDSP++
environment and select an ADSP-218x
simulator session

• Set Settings Simulator Boot Mode to
“Boot from EPROM”

• Load the generated BNM file by
Settings Simulator Load ROM File

• Load the preloader by clicking on
Debug Reset

• Set a breakpoint to address 0x0020 and let
the Debugger run (press F5)

• Set another breakpoint at address 0x0000
and press F5 again

Grouping more programs into a
single EPROM image
Former splitter versions already featured the
command-line switch –bdma file.dxe offset, where
offset is any decimal or hexadecimal number
(0x….). It allows additional executable files to
be included into one EPROM image, but the
splitter does not generate extra boot information.
Therefore, the VisualDSP++ splitter features an
additional switch called –bdmaload file.dxe offset that
includes the required boot loader. The only
restriction is that the second parameter offset has
to be a BDMA page boundary. In other words: it
must be a multiple of 0x4000. The complete
syntax may look like

elfspl21 project1.dxe project1
 -i –218x –loader
 –bdmaload project2.dxe 0x4000

Then, the splitter places a second preloader at
address 0x4000 that looks just like the first one
except that the BMPAGE field within the BDMA
control register is set to one this time. The
preloader is followed by another page loader and
finally the application data.

Preloader 1
32 Instructions

Page Loader 1
 658 Instructions

Project 1 Data

0x000000

0x000060

0x0002F2

Preloader 2
32 Instructions

Page Loader 2
45 Instructions

Project 2 Data

0x004000

0x004060

0x0040E7

Figure 4: EPROM memory map (example)

The –bdmaload switch can be specified multiple
times. For example, to group three projects use

elfspl21 project1.dxe project1
 -i –218x –loader
 –bdmaload project2.dxe 0x4000
 –bdmaload project3.dxe 0x8000

Within the load property dialog specify the A load
frame field to obtain such a command line. If you
want to specify a third or even more “load
frames“ you need to type them into the additional
options box, like illustrated in Figure 5.

Implementing a Boot Manager for ADSP-218x Family DSPs (EE-146) Page 4 of 8

a

Implementing a Boot Manager for ADSP-218x Family DSPs (EE-146) Page 5 of 8

Figure 5: Load frame example settings

Complex Boot Manager as a
separate application
The user can easily implement a boot manager as
a separate application by taking advantage of the
–bdmaload switch. A newly created project may
contain all the code required to handle the
selective booting. First of all, this boot manager
determines the index number of the application
to be booted. Regardless whether this
information is received on the SPORT or is
determined by flag pins, finally the index number
will be available and might be stored in the AR
register as required by the example below.

A simple relationship between this index number
and the corresponding byte address needs to be
established. The BEAD register holds the lower
14 bits of the byte address. Since the –bdmaload
switch enables offsets multiple to 0x4000 only,
the BEAD register is always set to zero. The
BMPAGE bit field in the BDMA control register
holds the upper 8 bits. Figure 6 shows the
BDMA control register. The 8 LSBs are always
zero for our purpose.

Figure 6: BDMA Control Register

In the simplified case that every single
application takes less than 0x4000 bytes and
therefore application number 1 starts at byte
address 0x4000 and application number 2 at
0x8000 etc. the following procedure can be used.

Make sure that

• The BDMA interrupt vector address 0x001C
contains a RTI instruction

• All the hardware stacks are empty

• No interrupts are pending

• The function loadapplication is located at any
PM address higher than 0x20

Then, jump to the label loadapplication which loads
the preloader of the wanted program and
executes it afterward in order to boot the
corresponding program.

/* AR holds index of the program that needs
 * to be booted. This example assumes that
 * every program occupies less than 16384
 * byte memory to keep the relationship
 * between AR and the start byte address as
 * simple as possible.
 *
 * EPROM map
 * 0x0000: boot manager
 * 0x4000: program 1
 * 0x8000: program 2
 * ...
 *
 */

loadapplication:

/* clear and unmask BDMA interrupt */

 ifc = 0x0008; nop;
 imask = 0x0008;

/* BEAD (lower 14-bit) is 0x0000 */

a
 ax0 = 0x0000; dm(0x3fe2) = ax0;

/* BIAD is PM 0x0000 */

 ax0 = 0x0000; dm(0x3fe1) = ax0;

/* BDMA Control (BM Page = AR+1) */

 ar = ar + 1;
 sr = lshift ar by 8 (lo);
 dm(0x3fe3) = sr0;

/* BWCOUNT is 32 x 24 bit */

 ax0 = 0x0020; dm(0x3fe4) = ax0;

 idle;

 jump 0x0000;

Listing 2: Load another (next) program

Finally, use the ELF splitter to group the boot
manager and the various applications together in
a single BNM file.

elfspl21 bootman.dxe bootman
 -i –218x –loader
 –bdmaload project1.dxe 0x4000
 –bdmaload project2.dxe 0x8000

Of course, the code of Listing 2 may or may not
be part of an explicit boot manager. It may also
be part of a regular application project and can
be called once the program has finished in order
to boot the next one. Then the instruction
ar=ar+1; should be removed from Listing 2.

If individual boot images don’t fit
into a single BM page
The previous example assumed the individual
boot images fit into 0x4000 bytes. In real
applications, this is usually not the case.

In case of an ADSP-2185 device with 16k PM
words and 16k DM words on-chip a realistic
boot image may take six BM pages (0x18000
bytes). Then the elfspl21.exe utility could be
invoked by

elfspl21 bootman.dxe bootman
 -i –218x –loader
 –bdmaload project1.dxe 0x04000
 –bdmaload project2.dxe 0x1C000
 . . .

And the relationship between the program
number (stored in AR) and the corresponding

BMPAGE value could be calculated by
/* AR holds index of the program that needs
 * to be booted.
 *
 * EPROM map
 * 0x000000: boot manager
 * 0x004000: program 1 (BMPAGE = 1)
 * 0x01C000: program 2 (BMPAGE = 7)
 * 0x034000: program 3 (BMPAGE = 13)
 * ...
 *
 */

 dis m_mode;
 my0 = 0x0300;
 mr0 = 0x0100;
 mr = mr + ar * my0 (SS);
 dm(0x3fe3) = mr0;

Listing 3: Alternative AR to Byte Address Relationship

Simple Boot Manager replaces
preloader
The procedure described above is very flexible,
but there exists an alternative and even simpler
scenario. If the boot manager requires a few
instructions only (e.g. determining the
application to boot by testing an input flag pin)
the preloader can be exchanged.

The ELF splitter elfspl21.exe features an additional
command line switch –uload objectfile.doj. This
forces the splitter to use a user-defined preloader
instead of the standard one. This is typically used
to speed up the booting by reducing wait-states.

elfspl21 project1.dxe project1
 -i –218x –loader
 –bdmaload project2.dxe 0x4000
 –uload myloader.doj

Within the load property page you can specify
your own preloader file by activating the user
loader file check box.

Please note: since the –uload switch expects a DOJ
file as input, the user defined preloader must not
contain symbols and labels. Labels are resolved
by the linker, but DOJs are just assembler output
files. The following example illustrates how the
FI pin might be checked in order to select either
program 0 or program 1.

Implementing a Boot Manager for ADSP-218x Family DSPs (EE-146) Page 6 of 8

a
/* example of an user-defined preloader
 * (32 instructions, no labels)
 * Input pin FI selects program to be
 * booted
 */

/* start at address 0x0000 */

.section / pm interrupts;

/* BEAD */

 ax0 = 0x0060; dm(0x3fe2) = ax0;

/* BIAD */

 ax0 = 0x0020; dm(0x3fe1) = ax0;

/* set BM page to 0 */

 ax0 = 0x0000;

/* test FI pin */

 if flag_in jump 0x0007;

/* set BM page to 1 */

 ax0 = 0x0100;

/* at address 0x0007: BDMA Control */

 dm(0x3fe3) = ax0;

/* BWCOUNT (worst case is 658 words) */

 ax0 = 0x0292; dm(0x3fe4) = ax0;

/* clear and unmask BDMA interrupt */

 ifc = 0x0008; nop;
 imask = 0x0008;

/* halt core until IRQ */

 idle;

/* jump to page loader */

 jump 0x0020; nop;

 nop; nop; nop; nop;

 nop; nop; nop; nop;

 nop; nop; nop; nop;

/* rti still at 0x001C !!! */

 rti; nop; nop; nop;

/* next address is 0x0020 */

Listing 4: Example of a user-defined preloader that
evaluates the FI input pin

The preloader in Listing 4 always loads 658 page
loader instructions. This is the maximal number
of page loader instructions generated by
VisualDSP++ 3.0, but this number may differ in
future releases. If an application does not require
booting overlay pages a BWCOUNT value of
135 instructions may be sufficient.

The EZ-KIT Lite of the ADSP-2189M connects
a push button to the memory-mapped flag input
PF4. An alternative preloader that evaluates the
state of PF4 could look like the following code
example.

/* example of an user-defined preloader
 * (32 instructions)
 * Input pin PF4 selects program
 * to be booted
 */

/* start at address 0x0000 */

.section / pm interrupts;

/* BEAD */

 ax0 = 0x0060; dm(0x3fe2) = ax0;

/* BIAD */

 ax0 = 0x0020; dm(0x3fe1) = ax0;

/* read PFDATA and test PF4 */

 ar = dm(0x3fe5);
 ar = tstbit 4 of ar;

/* result is either 0 or 0x0010 */
/* if 0x0010 change to 0x0100 */

 if ne ar = pass 0x0100;

/* BDMA Control */

 dm(0x3fe3) = ar;

/* BWCOUNT */

 ax0 = 0x0292; dm(0x3fe4) = ax0;

/* clear and unmask BDMA interrupt */

 ifc = 0x0008; nop;
 imask = 0x0008;

/* halt core until IRQ */

 idle;

/* jump to page loader */

 jump 0x0020; nop;

 nop; nop; nop; nop;

 nop; nop; nop; nop;

 nop; nop; nop; nop;

/* rti still at 0x001C !!! */

 rti; nop; nop; nop;

/* next address is 0x0020 */

Listing 5: Example of a user-defined preloader that
evaluates the PF4 input pin

Again, these examples assume that the single
applications do not take more than 0x4000 bytes

Implementing a Boot Manager for ADSP-218x Family DSPs (EE-146) Page 7 of 8

a
and that the page loader consists of 658
instructions.

More choices required?
Sampling a single input flag pin like the previous
examples does limit the number of program
options to two. Of course, this number can be
increased by evaluating multiple PFx pins.
Application note EE-125 used an alternative
technique that might be of general interest:

Many applications use the external memory bus
only for booting; some connect 16-bit devices
only. In case the eight lower data pins D0..D7 are
unused, they can be connected by jumpers to a
little network consisting of pull-up and pull-
down resistors. Depending on the jumper settings
individual pins read ‘0’ or ‘1’. Just make sure
that these pins are never shorted to a power
supply or a buffer output.

 i4 = 0x2000;
 m4 = 0;

 pmovlay = 1;
 ar = pm(i4,m4);
 pmovlay = 0;
 ar = px;

 jump loadapplication;

/* sr = lshift ar by 8 (lo);
 * dm(0x3fe3) = sr0;
 */

Listing 6: Read D0..D7 into AR

The little piece of code in Listing 6 reads the 8
LSBs and stores the result into AR like required
by Listing 2. It may also replace the PF4
handling in Listing 5. Then an additional left
shift is required in order to copy AR into the
BMPAGE bit field properly.

References
• ADSP-218x DSP Hardware Reference

• ADSP-218x DSP Instruction Set Reference

• VisualDSP++ 3.0 Online Help

• VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xx DSPs

• VisualDSP 6.1 Release Notes

• ADSP-218x Embedded system software management and In-System Programming (EE-125)

• ADSP-2106x: Storing multiple applications in a single boot EPROM (EE-108)

Document History

Version Description

Sep. 5, 02 Discussion of VisualDSP++ 3.0 and general rewording. Chapters “More choices required?”
and “If individual boot images don’t fit into a single BM page” added.

Sep. 20, 01 Initial version based on VisualDSP++ 2.0

Implementing a Boot Manager for ADSP-218x Family DSPs (EE-146) Page 8 of 8

	Introduction
	General Bootstrap Procedure
	VisualDSP++TM 2.0 versus 3.0
	Simulating the boot procedure
	Grouping more programs into a single EPROM image
	Complex Boot Manager as a separate application
	If individual boot images don’t fit into a single
	Simple Boot Manager replaces preloader
	More choices required?
	References
	Document History

