
aaaa Engineer To Engineer Note EE-156
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices
regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Support for the H.100 protocol
on the ADSP-2191

DSP Applications Group, March 2002 - Rev 0.1

The serial ports of the ADSP-2191 provide
support for the H.100 standard protocol. It is
also the International Telecommunication
Union’s recommendation for visual telephone
systems. This application note describes the
configurations necessary to be compatible with
the H.100 standard protocol.

The hardware used to test the support for this
protocol was the ADSP-2191 EZ-KIT Lite. The
software used was VisualDSP++ 2.0 with SP1.
The example code is included at the end of this
application note.

Introduction

The ADSP-2191 has three independent,
synchronous serial ports (SPORT0, SPORT1,
and SPORT2). Each one of the serial ports
supports H.100. In this example, SPORT1 is
used. On each SPORT, data can be
simultaneously transferred in both transmit and
receive directions.

For each SPORT, data is transmitted from the
IO bus to the Transmit Data register. After
optional companding, data is transferred to the
Transmit Shift register. Here the bits are shifted
out serially on the SPORT’s DT pin.

The reverse happens for the receive direction.
Data is accepted on the SPORT’s DR pin, and
serially transmitted to the Receive Shift register.
After a word is received and optional de-
companding, the data is transferred to the
Receive Data register.

By writing to different control registers, the
serial clock frequency, data format and length,
multi-channel mode select, and other parameters
can be programmed on the SPORTs.

Direct Memory Access (DMA) is also supported
on each SPORT. The transmit channel enables
DMA transfers from memory to SPORT, while
the receive channel enables DMA transfers from
SPORT to memory.

Hardware Connections

On the ADSP-2191 EZ-KIT Lite, the SPORT0
and SPORT1 pins are brought out via the P6
and P7 SPORT connectors, respectively.

Using SPORT1 in this application, the DT1 and
DR1 pins are connected together to create a
loopback of the data transmitted and received.

Because H.100 applications always runs in
multi-channel mode, the TCLK1 and RCLK1
pins must be wired together. In multi-channel
mode, the TCLK pin is always an input. In this
application, RCLK1 is generated internally.

EE-156 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Figure 1: SPORT pins on the EZ-KIT Lite

Software Configurations

The assembly program consists of 4 main
sections. These sections perform the tasks of
initializing SPORT1, configuring SPORT1 for
multi-channel mode operation, setting up
autobuffer-based DMA, and enabling SPORT1.

To be compatible with the H.100 standard
protocol, certain parameters must be set
accordingly to meet the H.100 specification.
The following is a list of these parameters:

• multi-channel mode enabled
• 8-bit words
• 1024 clock cycles per frame, 122 ns

wide, 125 us period frame sync
• transmit/receive frame sync required
• active low transmit/receive frame sync
• 8.192 MHz (+/- 2% bit clock)
• no frame delay between frame sync and

first data bit
• half clock cycle early frame sync

Initializing SPORT1

The transmit configuration register is initialized
to the Hex value of 0x1CF0. This value
configures SPORT1 to transmit 8-bit words,
generate a transmit frame sync for every data
word, and selects an active low transmit frame
sync. Note that the SPORT1 Transmit Enable
bit is not set here. This bit will be set last, after
all other configurations have been programmed.

 SP1_TCR (0x03:0x000)

0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0

Figure 2: Transmit Configuration Register

The receive configuration register is initialized
to the Hex value of 0x1EF2. This value
configures SPORT1 to receive 8-bit words,
generate a receive frame sync for every data
word, and selects an active low receive frame
sync. Note that the SPORT1 Receive Enable bit
is not set here. This bit will be set last, after all
other configurations have been programmed.

SP1_RCR (0x03:0x001)

0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0

Figure 3: Receive Configuration Register

The SP1_TFSDIV and SP1_RFSDIV registers
hold the number of transmit and receive clock
cycles to count before generating a transmit or
receive frame sync. Both of these registers are
set to a Hex value of 0x03FF. This gives a
value of 1024 clock cycles per frame.

The serial clock frequency is calculated
according to the following equation:

 SP1_CLK = HCLK________
 2 * (SP1_SCKDIV +1)

EE-156 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

With an input clock of 13 MHz and a multiplier
of 10, the core clock frequency becomes 130
MHz. Having the peripheral clock HCLK be
half of core clock and setting both the
SP1_TSCKDIV and SP1_RSCKDIV registers
to be 0x3, the SP1_TCLK and SP1_RCLK
become 8.125 MHz. This frequency is within
the +/- 2% of 8.192 MHz range.

Multi-channel mode operation

There are 8 multi-channel transmit selection
registers and 8 multi-channel receive selection
registers. Each register consists of 16 bits.
Each bit corresponds to 1 channel. By setting
the 8 multi-channel transmit selection registers
to a Hex value of 0xFFFF, all 128 transmit
channels (8 registers * 16 channels) are enabled.

By setting the 8 multi-channel receive selection
registers to a Hex value of 0xFFFF, all 128
receive channels (8 registers * 16 channels) are
enabled.

There are two multi-channel configuration
registers for SPORT1. SP1_MCMC1 is
initialized to a Hex value of 0x01E1. This
setting enables multi-channel mode operations
and a window size corresponding to 128
channels.

SP1_MCMC1 (0x03:0x019)

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

Figure 4: Mulit-Channel Configuration Register 1

SP1_MCMC2 is initialized to a Hex value of
0x02AC. In this setting, a half clock cycle early
frame sync is enabled.

SP1_MCMC2 (0x03:0x01A)

0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0

Figure 5: Mulit-Channel Configuration Register 2

Autobuffer-based DMA

In this section of code, four registers must be
configured to setup SPORT1 autobuffer-based
DMA on both the transmit and receive.

Both the transmit and receive DMA
configuration registers are initially set to a Hex
value of 0x0010. This setting enables
autobuffer mode.
Then, the receive DMA start page and address
registers are written with the page and address at
which the receive data buffer is located. The
receive DMA count register is written with the
length of the receive data buffer.

The transmit DMA start page and address
registers are written with the page and address at
which the transmit data buffer is located. The
transmit DMA count register is written with the
length of the transmit data buffer.

Next, the receive DMA configuration register is
written again with a Hex value of 0x0013. This
setting configures a receive DMA transfer and
enables DMA.

SP1DR_CFG (0x03:0x101)

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

 Figure 6: SPORT1 Receive DMA Configuration Register

The transmit DMA configuration register is
written again with a Hex value of 0x0015. This

EE-156 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

setting enables DMA and an interrupt upon
completion of the DMA.

SP1DT_CFG (0x03:0x181)

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

Figure 7: SPORT1 Transmit DMA Configuration Register

Enable SPORT1

After all of the above configurations are set up,
SPORT1 for both transmit and receive are
enabled by setting bit 0 of the SP1_TCR and
SP1_RCR registers, respectively.

Results

The following diagrams are some screenshots
taken from the results of running this
applications.

 Figure 8: Timing Diagram 1

 Figure 9: Timing Diagram 2

 Figure 10: Transmit and Receive Data Buffer Results

References

1. Analog Devices, Inc. DSP Home:

http://www.analog.com/technology/dsp

http://www.analog.com/technology/dsp

EE-156 Page 5
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

2. International Telecommunication Union:
www.itu.int

3. H.100 References:
http://www.scsa.org/
http://www.ectf.org/

Example Code

#include <def2191.h>

.section/dm seg_dmdata;
.var sport_tx_buffer[128] = "h100.dat";
.var sport_rx_buffer[128];

/************************/
/***** Reset Vector *****/
/************************/

.section/pm seg_ivt;
 jump start;

.section/pm seg_ivtint4;
 ay0 = IOPG;

 /*Set SPORT1 Registers*/
 IOPG = SPORT1_Controller_Page;
 ar = 3;
 io(SP1DT_IRQ) = ar;
 IOPG = ay0;

 nop; nop;

 rti;

.section/pm seg_pmcode;

start:

/**********************************/
/*******SPORT Initialization*******/
/**********************************/

/*Disable interrupts*/
 DIS int;
 IRPTL = 0x0;
 ICNTL = 0;
 IMASK = 0;
/*Set interrupt priorities*/
 IOPG = Interrupt_Controller_Page;
 ar = 0xbbb0;
 io(IPR1) = ar;
 ar = 0xbbbb;

 io(IPR0) = ar;
 io(IPR2) = ar;
 io(IPR3) = ar;

 /*Set SPORT1 Registers*/
 IOPG = SPORT1_Controller_Page;
 ar = 0x0000;
 io(SP1_TCR) = ar;
 io(SP1_RCR) = ar;
 io(SP1DR_CFG) = ar;
 io(SP1DT_CFG) = ar;
 io(SP1_MCMC1) = ar;
 ar = 3;
 io(SP1DT_IRQ) = ar;
 io(SP1DR_IRQ) = ar;

/*SPORT Tx and Rx Clock Divide*/
ax0=0x3;
io(SP1_RSCKDIV)=ax0;
io(SP1_TSCKDIV)=ax0;

/*SPORT Tx and Rx Frame Sync*/
/*1024 clock cycles per frame,
8bits*128channels*/
ax0=0x3ff;
io(SP1_RFSDIV)=ax0;
io(SP1_TFSDIV)=ax0;

/*SPORT Rx Configuration Register*/
/*SLEN, TFSR/RFSR, LTFS, DITFS(only
TX)*/
ax0=0x1Ef2;
io(SP1_RCR)=ax0;

/*SPORT Tx Configuration Register*/
/*SLEN, TFSR/RFSR, LTFS, DITFS(only
TX)*/
ax0=0x1cf0;
io(SP1_TCR)=ax0;

/*************************************/
/** Multichannel Mode Configuration **/
/*************************************/

/*MCM Tx and Rx Channel Select
Register*/
/*Enable all 128 channels for Tx*/
ax0=0xffff;
io(SP1_MTCS0)=ax0;
io(SP1_MTCS1)=ax0;
io(SP1_MTCS2)=ax0;
io(SP1_MTCS3)=ax0;
io(SP1_MTCS4)=ax0;
io(SP1_MTCS5)=ax0;
io(SP1_MTCS6)=ax0;
io(SP1_MTCS7)=ax0;
/*Enable all 128 channels for Rx*/
ax0=0xffff;
io(SP1_MRCS0)=ax0;

http://www.itu.int/
http://www.scsa.org/
http://www.ectf.org/

EE-156 Page 6
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

io(SP1_MRCS1)=ax0;
io(SP1_MRCS2)=ax0;
io(SP1_MRCS3)=ax0;
io(SP1_MRCS4)=ax0;
io(SP1_MRCS5)=ax0;
io(SP1_MRCS6)=ax0;
io(SP1_MRCS7)=ax0;
/*SPORT MCM Configuration Reg 1*/
ax0=0x01e1;
io(SP1_MCMC1)=ax0;
ax0=0x02ac;
io(SP1_MCMC2)=ax0;

/* SPORT1 Interrupts Unmasked */
 AX0=IMASK;
 AR=SETBIT 4 of AX0;
 IMASK=AR;

/*************************************/
/******Autobuffer-based DMA Setup*****/
/*************************************/

ax0 = 0x0010;
io(SP1DR_CFG)=ax0;
ax1=page(sport_rx_buffer);
io(SP1DR_SRP)=ax1;
ax1=address(sport_rx_buffer);
io(SP1DR_SRA)=ax1;
ax1=length(sport_rx_buffer);
io(SP1DR_CNT)=ax1;

ax0=0x0010;
io(SP1DT_CFG)=ax0;
ax1=page(sport_tx_buffer);
io(SP1DT_SRP)=ax1;
ax1=address(sport_tx_buffer);
io(SP1DT_SRA)=ax1;
ax1=length(sport_tx_buffer);
io(SP1DT_CNT)=ax1;

ax0 = 0x0013;
io(SP1DR_CFG)=ax0;

ax0 = 0x0015;
io(SP1DT_CFG)=ax0;

/****************************/
/********Enable SPORT1*******/
/****************************/

ax0=io(SP1_RCR);
ar=setbit 0 of ax0;
io(SP1_RCR)=ar;
ax0=io(SP1_TCR);
ar=setbit 0 of ax0;
io(SP1_TCR)=ar;

ena int;

wait_here: idle;
 jump wait_here;

	Support for the H.100 protocol on the ADSP-2191
	Introduction
	Hardware Connections
	Software Configurations
	Initializing SPORT1
	Multi-channel mode operation
	Autobuffer-based DMA
	Enable SPORT1

	Results
	References
	Example Code

