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Introduction 
 
This application note will define and discuss the 
definition and uses for software overlays. Also, 
an in-depth discussion on overlay management 
techniques will be covered in an abstract level, 
as well as covering overlay management topics 
in further detail. Code examples will be 
provided to help illustrate these topics in detail 
as well. 
 
What are Software Overlays? 
 
As DSP software applications have grown more 
complex, system memory requirements have 
increased as a result of these newer applications. 
Because of this, an application may actually 
exceed the internal memory size of a particular 
DSP. This is where a software overlay system 
comes into play. 
 
Also, in many cost-sensitive applications, it’s to 
the hardware designer’s advantage to design a 
system with the least expensive DSP (which 
typically means less on-chip memory is 
available.) Since the cost of bulk memory such 
as SRAMs and EPROMs are small compared to 
the cost of a DSP, it is sometimes more cost-
efficient to have code and/or data reside in 
cheaper external memory. This is another 
scenario in which software overlays can be 
implemented in a system design. 
 
Soft overlays are a “many to one” memory 
mapping system. Several overlays can ‘live’ (or 

are stored) in unique locations in external 
memory, but they ‘run’ (or execute from) a 
common location in the internal memory of the 
DSP. Soft overlays are not physically present in 
the DSP’s internal SRAM at all times; rather 
they are transferred/fetched into internal 
memory from external memory dynamically at 
runtime.  
 
Say, for example, that your software system has 
10 functions, all of which comprise a total of 
120k words of Program Memory (PM), but your 
DSP only has a maximum of 32k PM locations. 
What do you do? With software overlays, you 
can fetch the desired function at runtime into the 
DSP’s internal memory and then execute this 
function. Accessing code and/or data overlays 
dynamically gives you greater flexibility with 
your DSP’s internal memory requirements. 
 

 
Figure 1: Simple Memory Overlay Example 
 
Figure 1 demonstrates the concept of memory 
overlays. In this figure there are two total 
memory spaces; the internal memory of the 
DSP, and external memory. For this example, 
the external memory is partitioned into six 
overlays, comprised of three functions and three 
data buffers. The internal memory contains the 
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main program code, an overlay manager 
function, and two segments reserved for 
execution of overlay program instructions and 
data. From this example, we also see a “many to 
one” mapping, where Program Memory overlays 
1, 2, and 3 map to the same overlay ‘run’ space. 
(Data overlays 4, 5, and 6 map to the Data 
Memory overlay ‘run’ space as well.) 
 
In this example, overlays 1, 2, and 3 share the 
same runtime location within the DSP’s internal 
memory. If the main program calls the function 
‘Function_1’, the overlay manager will be 
invoked to load overlay #1 into the memory 
segment within the DSP’s memory where 
overlay 2 has been designated to run. If the 
function ‘Function_3’ is requested by the main 
program, then the overlay manager will again be 
invoked to load overlay 3 into its designated run 
time memory segment. We will cover what the 
overlay manager’s role in a soft overlay system 
is and what an overlay manager is (and does) in 
more detail later on in this EE note. 
 
Software Overlays for the ADSP-2191M 
 
Software overlays are a very important software 
feature that can take advantage of the internal 
DSP memory resources and I/O bandwidth of 
the 2191’s external memory interface (EMI). 
 
The ADSP-2191M has 32k words of Program 
Memory (PM) and 32k words of Data Memory 
(DM). Currently, there are also two additional 
219x variants in the 219x family; the ADSP-
2195 and ADSP-2196. The 2195 contains 16k 
words of PM and DM, while the 2196 contains 
8k words for PM and DM, respectively. Because 
some software applications may require more 
memory than is available on-chip, software 
overlays become increasingly more important. 
 
Another point to mention here is that the EMI of 
the 219x runs at a slower rate than the DSP’s 

core. Therefore, executing code or fetching data 
from external memory will have an impact on 
overall system performance. The attractive 
feature of software overlays (for this case) is 
that you can execute code and access data via 
the DSP’s core, while simultaneously fetching 
and loading the desired overlay into internal 
memory in the background via the direct-
memory access (DMA) controller of the ADSP-
219x. (For more detailed information on EMI 
throughput on the 219x family, please refer to 
table 7-10, page 7-26, of the “ADSP-219x/2191 
DSP Hardware Reference”). 
 
What comprises a Soft Overlay? 
 
Soft overlays have only a few attributes; an 
overlay ID#, ‘live’ address, ‘run’ address, ‘live’ 
size, and lastly, a ‘run’ size. Before explaining 
what these terms mean, let’s first talk about the 
two places where an overlay will exist in a 
system. 
 
There are two terms associated with soft 
overlays; ‘live’ space and ‘run’ space. ‘Live’ 
space is the address range in external memory 
where the overlay resides. ‘Run’ space is the 
address range of the DSP’s internal memory 
where the overlay resides at runtime. (For code 
overlays, the ‘run’ address is the target address 
of where the caller of the overlay will ‘jump’ or 
‘call’ to in your program code. For data 
overlays, the ‘run’ address is the first location 
of the buffer or data type. ) 
 
So getting back to the overlay’s attributes, the 
‘run’ address is the address in the DSP’s internal 
memory where the code overlay will be 
executed from or where the data overlay will 
reside. The ‘live’ address is where in external 
memory the overlay will reside. One important 
point to mention here is that the ADSP-219x 
family supports up to 16M words of addressing 
(0x010000 – 0xfeffff) via its EMI; therefore the 
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‘run’ and ‘live’ addresses are 24-bit address 
fields. 
 
The ‘run’ and ‘live’ size attributes define the 
size of the overlay module in words; for the 
ADSP-219x both of these values are the same. 
The last attribute is the overlay ID#. (An 
important note to mention here is that the run 
and live size attributes must not exceed 64k 
words in size, whether for a PM overlay or a 
DM overlay. This is because the EMI of the 
ADSP-219x will not automatically cross page 
boundaries.) This is a unique integer value 
which gets assigned to each overlay by the 
VisualDSP linker (linker.exe). (The first overlay 
gets assigned an ID# of 1, the second gets 
assigned an ID of 2, etc.) 
 
All of these overlay attributes are linker-
generated constants which will be used by our 
overlay manager. (We’ll cover this in much 
more detail later on in this application note.) 
 
So you can see from the overlay attributes that 
soft overlays can reside at whatever internal 
memory ‘run’ space that you define; more than 
one overlay can map to a specific ‘run’ space. 
For more complex overlay managers and 
systems, a single overlay can map to more than 
one ‘run’ space also; we’ll cover this in more 
detail in the “Advanced Topics” section of this 
application note. 
 
What is an Overlay Manager? 
 
An overlay manager is responsible for 
controlling the fetching and loading of an 
overlay module into internal memory. For code 
overlay modules (or functions), the overlay 
manager is also responsible for telling the main 
program (or the ‘caller’ of the overlay function) 
the correct target address to ‘jump’ to after the 
overlay has been loaded. Also, an overlay 
manager is responsible for any housekeeping or 

additional memory management required by the 
main program or calling function. 
 
A simple model of an overlay manager would 
perform the following tasks: 
 

•  Identify the desired overlay module by 
getting the ID# of the overlay. 

•  Assign the appropriate live/run addresses 
and sizes to the DMA engine to properly 
load the overlay into internal ‘run’ space 
from external ‘live’ space. 

•  Invalidate and flush the instruction 
cache. (This is very important because 
we don’t want the overlay manager 
“polluting” the cache when we return 
back to our main program.) 

•  Return back to the main program or the 
‘calling’ function of the overlay. 

 
A more elaborate overlay manager would 
perform all of the above tasks as well as these 
additional tasks listed below: 
 

•  Perform a context save/restore of all of 
the registers used by the overlay manager 
(via a software stack located in the 
DSP’s internal Data Memory). 

•  Check to see if the requested overlay is 
already present in its ‘run’ space. If so, 
then jump to the target ‘run’ address of 
the overlay (if the desired overlay is a 
code overlay module), or return to the 
calling function of main program (if the 
desired overlay is a data overlay 
module.) 

•  Perform any memory management 
“housekeeping” tasks before returning to 
the main program or calling function. 

 
An overlay manager should be written in an 
optimized manner to ensure that the minimum 
number of instruction cycles is required to 
execute it. The overlay manager is responsible 
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for managing the DSP’s internal memory only; 
just like an Interrupt Subroutine (ISR), you want 
to spend the least amount of cycles in the 
overlay manager, and the majority of the 
processor’s time running actual DSP code. 
Remember that we’re developing code for a 
real-time system here! Another obvious point to 
mention here is that the overlay manager code 
should reside in the DSP’s internal memory, not 
in an overlay run segment where it could get 
overwritten. The overlay manager also should 
not reside in external memory, since the 
latencies due to executing code through the EMI 
would incur too much system overhead. 
 
VisualDSP Support for Overlays 
 
The VisualDSP development tools generate 
overlay constants “automagically” which can be 
used by your overlay manager to configure the 
DMA parameter registers to load in the desired 
overlay module. Also, the VisualDSP linker 
automatically redirects overlay function calls to 
a jump table, called a PLIT (or Procedure 
Linkage Table; please refer to the section “What 
Is A PLIT?” on page 6 of this document for 
more information), which is used to setup the 
overlay ID# and overlay run address parameters 
which are passed from the PLIT to your overlay 
manager. Basically, the PLIT is just a function 
containing some user-generated assembly 
instructions that are used to setup the call to the 
overlay manager. We will explain the operation 
of the PLIT and where it is located later in this 
section. 
 
The linker description file (LDF) is where the 
user defines the memory architecture of their 
system. It is within the LDF that you define both 
internal and external memory segments. 
Specifically for overlays, the LDF is where you 
define the ‘live’ and ‘run’ memory segments for 
each overlay module or file. (A complete 
explanation of the LDF is beyond the scope of 

this EE note. Here we only wish to illustrate the 
LDF concepts that apply specifically to software 
overlays. For more information on LDFs, please 
refer to chapter 2 of the “Linker and Utilities 
Manual for ADSP-21xx DSPs”.) 
 

 
Figure 2: PM overlay ‘live’ address vs. ‘run’ address example 
 
Figure 2 shows a simple software system where 
there are three PM overlays defined in their own 
individual ‘live’ segments in external memory. 
All three of these overlays ‘run’ in the same 
memory segment within the internal memory of 
the DSP. Let’s look at an excerpt of what our 
LDF would look like for this example: 
 
dxe_seg_pm_ovl{ 
 OVERLAY_INPUT{ 
 ALGORITHM(ALL_FIT) 
 OVERLAY_OUTPUT("Function_1.ovl") 
 INPUT_SECTIONS("Function_1.doj"(program)) 
 } >mem_pm_ovl1_liv_space 
 
 OVERLAY_INPUT{ 
 ALGORITHM(ALL_FIT) 
 OVERLAY_OUTPUT("Function_2.ovl") 
 INPUT_SECTIONS("Function_2.doj"(program)) 
 } >mem_pm_ovl2_liv_space 
 
 OVERLAY_INPUT{ 
 ALGORITHM(ALL_FIT) 
 OVERLAY_OUTPUT("Function_3.ovl") 
 INPUT_SECTIONS("Function_3.doj"(program)) 
 } >mem_pm_ovl3_liv_space 
} >mem_pm_ovl_run_space 
 
 
 
Example 1: LDF ‘Live’ and ‘Run’ Space Declarations 
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The first thing to notice is that each overlay 
declaration in the LDF has an input and an 
output section. The inputs to the overlay are 
declared within the scope of the overlay 
definition in the LDF via the curly braces. The 
main thing to be aware of is the use of the 
“INPUT_SECTIONS” LDF macro which tells 
the linker that this specific section from the 
specified input file is to be used as an input for 
this overlay segment. 
 
The output of the overlay is defined using the 
redirect input symbol “>”; this redirection tells 
the linker where in memory to place this overlay 
(‘live’ space). For our example in Figure 2, the 
first overlay declaration links the object file 
“Function_1.doj” (which is the output file 
generated after assembling the source file 
“Function_1.asm”) into the overlay ‘live’ space 
named ‘mem_pm_ovl1_live_space’. 
 
The overlay run space from Figure 2 is defined 
at the last line of this excerpt. Therefore, all 
three of the overlays declared in this section of 
the LDF are declared in the LDF to run in the 
overlay ‘run’ memory segment named 
“mem_pm_ovl_run_space”. The overlay ‘live’ 
and ‘run’ address segments are defined earlier in 
the MEMORY{} section of the LDF. 
 
Linker Generated Overlay Constants 
 
As mentioned earlier in this EE note, soft 
overlays have the following attributes; an 
overlay ID#, ‘live’ address, ‘run’ address, ‘live’ 
size, and lastly, a ‘run’ size. For each program 
memory overlay segment, the linker will 
generate the following constants, (where N is 
the ID# of the overlay): 
 
_ov_startaddress_N 
_ov_word_run_size_ N 
_ov_word_live_size_ N 
_ov_runtimestartaddress_ N 
 
Example 2: Linker Generated Overlay Constants Example 

The first constant, “_ov_startaddress_N”, 
represents the ‘live’ or external address where 
the overlay resides. The second and third 
constants represent the ‘run’ and ‘live’ sizes of 
the desired overlay. For the ADSP-2191, these 
two values are (and must) be the same. The 
reason for this is simple; the hardware logic of 
the 2191’s EMI takes care of all of the data 
packing for you. So regardless of the external 
data bus width configuration (8-bits or 16-bits), 
or the memory access type (24-bit PM or 16-bit 
DM), the internal and external memory word 
sizes are the same as far as the ADSP-2191 is 
concerned. The last overlay constant represents 
the ‘run’ address where the overlay will reside 
in the DSP’s internal memory. 
 
These linker generated overlay constants can be 
stored in arrays that can be accessed at runtime 
by your overlay manager to facilitate the loading 
of these overlays into internal memory. For 
example, if you had a system with two code 
overlays, you would declare the overlay constant 
arrays in a fashion like what is shown in the 
following example: 
 
.section/pm seg_pmdata; 
 
.extern _ov_startaddress_1, _ov_startaddress_2; 
.extern _ov_word_run_size_1, _ov_word_run_size_2; 
.extern _ov_word_live_size_1, _ov_word_live_size_2; 
.extern _ov_runtimestartaddress_1, _ov_runtimestartaddress_2; 
 
.var/init24 liveAddresses[2] = _ov_startaddress_1, 

_ov_startaddress_2; 
 
.var runAddresses[NUM_OVLY] = _ov_runtimestartaddress_1, 

_ov_runtimestartaddress_2; 
 
.var runWordSize[NUM_OVLY] = _ov_word_size_run_1, 

_ov_word_size_run_2; 
 
.var liveWordSize[NUM_OVLY] =  _ov_word_size_live_1, 

_ov_word_size_live_2; 
 
.global liveAddresses; 
.global runAddresses; 
.global runWordSize; 
.global liveWordSize; 
 
Example 3: PM Buffer Declarations of Overlay Constants 
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From this example we see how these linker 
generated overlay constants are arranged for use 
by the overlay manager. The overlay constants 
are first declared as external data types to the 
scope of this file via the “.extern” assembler 
directive. This is necessary because these 
constants are generated by the linker in the 
overlay output file (.ovl) and are referenced 
from that file. 
 
One very important point to mention here is 
with how the overlay ‘live’ address constants 
are defined. Since the ADSP-2191 has a 22-bit 
external address bus, and since the live space for 
the overlays in our system are declared to reside 
in external memory, the linker generated 
constants for the overlay ‘live’ addresses must 
be stored in a 24-bit PM buffer, and initialized 
using the “/init24” assembler directive. 
 
(For this linker generated constants example, 
we’ve also declared all of these constant arrays 
as globals since the declaration of these arrays 
exists outside of the file which contains the 
overlay manager code, which references these 
arrays.) 
 
What is a PLIT? 
 
As defined by the “VisualDSP Linker and 
Utilities Manual for ADSP-21xx DSPs”, a PLIT 
is a template of instructions from which the 
linker generates code to set up the information 
necessary to support the DSP program’s overlay 
manager. Every branch instruction that 
references a global label defined in an overlay is 
replaced by a call to this generated code. For 
each overlay routine in the program, the linker 
builds and stores a list of PLIT instances 
according to that template, as it builds its 
executable. 
 
The code for the PLIT is written by the 
programmer in the reserved PLIT section of the 

linker description file (LDF) in the project. A 
simple PLIT merely copies the ‘run’ address of 
the called symbol that resides in the overlay and 
the overlay ID# into user-defined registers. 
Below is a simple PLIT example taken from an 
arbitrary overlay LDF: 
 
PLIT{ 
 ax0 = PLIT_SYMBOL_OVERLAYID; 
 ay0 = PLIT_SYMBOL_ADDRESS; 
 jump Overlay_Manager; 
} 
 
Example 4: Simple LDF PLIT Entry Example 
 
From the above example, we see that the 
registers ax0 and ay0 are used to fetch the 
overlay ID# and ‘run’ address, respectively. 
A more practical example would be where the 
registers used by the PLIT function are saved off 
by the PLIT before consuming these registers to 
properly set up the overlay manager. Here is a 
simple example below: 
 
PLIT{ 
 dm(save_ax0) = ax0; 
 dm(save_ay0) = ay0; 
 ax0 = PLIT_SYMBOL_OVERLAYID; 
 ay0 = PLIT_SYMBOL_ADDRESS; 
 jump Overlay_Manager; 
} 
 
Example 5: Context Save LDF PLIT Entry Example 
 
Aside from containing user-defined code, the 
PLIT is also a section in the DSP’s Program 
Memory where the linker generates a jump table 
containing references to all of the overlay 
function labels. This jump table we refer to as a 
PLIT table. The next section explains how the 
linker adds additional code to facilitate the 
actual call and/or loading of the overlay function 
to allow the program sequencer to begin 
execution of the overlay code, and how the PLIT 
table is invoked and comes into play during 
program execution. 
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How is an overlay actually called? 
 
In your source code, calling a function that 
resides in an overlay (in order to invoke the 
overlay manager to load the overlay code into 
the DSP’s internal memory) is implemented in 
your source code in the same manner that you 
would call an ordinary (i.e. non-overlay) 
function. For example, 
 
 call my_function; 
 
The difference between a non-overlay function 
call and an overlay function call is that the 
linker actually replaces the function call with a 
call to the PLIT entry for the desired overlay 
function. For example, an overlay function call 
from assembly like the following: 
 
 call function_1; 
 
Actually gets replaced by a call to the PLIT by 
the following code: 
 
 call .plt_function_1; 
 
Each overlay module that we declared in our 
LDF gets its own unique copy of the PLIT entry 
that was defined in our LDF. For example, let’s 
say in our system we have three code overlays 
declared, and we have a simple PLIT declared in 
our LDF as shown in Example 4 above. Then 
the corresponding PLIT table for our three 
overlays would look like the following: 
 
 
.plt_function_1: 
 ax0 = 0x0001; 
 ay0 = 0x0400; 
 jump Overlay_Manager; 
 
.plt_function_2: 
 ax0 = 0x0002; 
 ay0 = 0x0400; 
 jump Overlay_Manager; 
 
 
Example 6: Three Code Overlay Segments PLIT Table Example 

.plt_function_3: 
 ax0 = 0x0003; 
 ay0 = 0x0400; 
 jump Overlay_Manager; 
 
Example 6: (continued) 
 
Therefore, the total memory size of your PLIT 
table in the DSP’s Program Memory will be the 
number of code overlays in your system 
multiplied by the number of assembly 
instructions contained in the PLIT{} declaration 
in your LDF. 
 
Looking at Example 6 (and referring back to our 
PLIT declaration from Example 4, where the 
register ax0 is defined as containing the overlay 
ID number), we can see that each overlay has its 
own unique ID number; ‘function_1’ has the 
value ‘0x0001’ as its overlay ID number, 
function ‘function_2’ has an ID of ‘0x002’, etc. 
We also see that all three of these overlays share 
the same run address, which is passed as a 
parameter to the overlay manager in the register 
ay0. Lastly, the jump instruction for each PLIT 
table entry is a jump to the overlay manager 
itself. 
 
Simple Overlay Manager Example 
 
Example 7 below contains example assembly 
source code showing one implementation of a 
‘simple’ overlay manager. This overlay manager 
example is broken up into six different sections; 
we’ll discuss each section in detail to explain 
how this simple overlay manager example 
works. 
  
Overlay_Manager: 
 ar = ax0 - 1; 

m7 = ar; 
dm(curr_PM_ovly_ID) = ar; 

dm(WR_DMA_DESC_BLOCK+2) = ay0;  
 
Get_Overlay_Run_Size: 

i7 = runWordSize; 
ax0 = dm(i7 + m7); 

 
Example 7: Simple Overlay Manager 
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ar = ax0; 
ar = ar - 1; 
dm(WR_DMA_DESC_BLOCK+3) = ar; 
dm(RD_DMA_DESC_BLOCK+3) = ar; 

 
Parse_Live_Address: 

i7 = liveAddresses; 
ar = pm(i7 + m7); 
sr = lshift ar by 0x8 (lo); 
ar = px; 
sr = sr or lshift ar by 0x0 (lo); 
i7 = sr0; 
ar = i7; 
ar = ar + 1; 

 
DMA_Config: 

dm(RD_DMA_DESC_BLOCK+2) = ar; 
dm(RD_DMA_DESC_BLOCK+1) = sr1; 
ax0 = 0x800f; 
dm(WR_DMA_DESC_BLOCK) = ax0; 
ax0 = 0x800d; 
dm(RD_DMA_DESC_BLOCK) = ax0; 
ax0 = end_dma; 
dm(WR_DMA_DESC_BLOCK+4) = ax0; 
dm(RD_DMA_DESC_BLOCK+4) = ax0; 
iopg =  Memory_DMA_Controller_Page; 
ax0 = WR_DMA_DESC_BLOCK; 
io(DMACW_CP) = ax0; 
ax0 = RD_DMA_DESC_BLOCK; 
io(DMACR_CP) = ax0; 
ax0 = 0x1; 
io(DMACW_CPR) = ax0; 
io(DMACR_CPR) = ax0; 
io(DMACW_CFG) = ax0; 
io(DMACR_CFG) = ax0; 
ena int; 
 

Wait_For_Overlay: 
idle; 

 
Jump_To_Overlay: 

i7 = ay0; 
jump (i7); 

 
Example 7: Simple Overlay Manager (cont’d) 
 
Let’s take a look at this code section by section 
to determine what the overlay manager is 
actually doing. (Keep in mind that this is a 
simple overlay manager example; we’ll build on 
this example and explain more overlay manager 
concepts in further detail later on in this EE 
note.) 
The section “Overlay_Manager” is the address 
label where the overlay manager gets invoked 

via a “jump Overlay_Manager;” instruction 
which is from the PLIT table. 
 
Before we execute the first line of code from 
this overlay manager example, there is an 
important point to mention here first; the 
register ax0 contains the overlay ID# of the 
desired overlay that we wish to fetch. This point 
is important because we need to subtract 1 from 
the overlay ID# in order to use the register m7 
as an index to the array of the linker generated 
overlay constants. 
 
Think of this as the same manner you would 
with an array in C. The first element in a C array 
is actually index zero, even though it’s still the 
first array element. (This is commonly known as 
an “off by one” error when indexing arrays in C; 
the same case applies here for our overlay 
constants and its appropriate ID value.) 
 
Since the register ay0 already contains the ‘run 
address’ of the desired overlay (via the PLIT 
assignment, “ay0 = PLIT_SYMBOL_ADDRESS;”), 
we simply assign this value to the address field 
of our Write DMA Descriptor Block. (For more 
information on the configuration and use of 
DMA Descriptors, please refer to the sections 
titled “Descriptor-Based DMA Transfers” and 
“Code Example: Internal Memory DMA”, on 
pages 6-4 and 6-33, respectively, of the “ADSP-
219x/2191 DSP Hardware Reference”.) 
 
The next section of our overlay manager, 
labeled “Get_Overlay_Run_Size”, is where we 
again use the m7 register as an offset into the 
‘runWordSize’ array, which contains the ‘run’ 
size of the overlay we wish to fetch. One 
important point to mention here is that the 
overlay run size actually contains an additional 
word, which is the overlay ID number itself. 
Because of this, we must subtract one from the 
actual run size of the overlay stored in the 
‘runWordSize’ array. This is performed in the 



 

EE-152 Page 9 
Technical Notes on using Analog Devices’ DSP components and development tools 

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com,  WEB: www.analog.com/dsp 

instruction “ar = ar – 1;”. Once we get the 
proper size for the overlay, we then place this 
value into the MEMDMA read and write 
descriptors at the last two instructions of  this 
section. 
 
In the next section, labeled Parse_Live_Address, 
we take the 24-bit ‘live’ address of the overlay 
and break it up into its respective 8-bit page 
value and 16-bit address offset. We implement 
this by taking the 16 MSBs of the 24-bit ‘live’ 
address value into the AR register, using AR as 
an input to the shifter register SR0, and then 
shifting this value 8 bit positions to the left, 
filling up the 8 LSBs of the SR1 register. We 
then “OR” the remaining 8-bits of the ‘live’ 
address that were stored in the PX register from 
the 24-bit PM fetch, to get the proper 16-bit 
address offset value. Figure 3 below shows the 
operation of this procedure to properly parse the 
live address into the appropriate page and offset 
values. 
 

 
 
Figure 3: Parsing Overlay Live Address Example 
 
(Remember that because the ADSP-2191’s 
opcodes are always 24-bits in length, the 
complete 24-bit address cannot be fully 
contained in a 16-bit register, nor can it be fully 
contained in an opcode. Therefore all external 

memory addresses are broken up into an 8-bit 
page value and a 16-bit address offset.) 
 
The next section labeled “DMA_Config” is 
where we initialize the remainder of the DMA 
Descriptors for the read and write DMA 
channels to kick off the DMA that will fetch the 
overlay from external memory and place it into 
the proper internal memory addresses. After 
kicking off the DMA, we simply sit at the 
“idle;” instruction and wait until we get a MEM 
DMA interrupt. 
 
After servicing the interrupt, we return to 
execution of the overlay manager at the next 
instruction, which is in the section labeled, 
“Jump_To_Overlay”. In this section, we simply 
load the ‘run’ address of the overlay that we’ve 
just DMA’ed into internal memory into the I7 
register, and then begin execution of the overlay 
via the “jump (i7);” instruction. 
 
Overlay Manager Optimizations 
 
The simple overlay manager example we just 
dissected is what its name implies; a “simple” 
overlay manager. In this section, we’ll talk about 
optimization techniques to make our overlay 
manager more robust for our system design. 
 
The first thing to mention is that our overlay 
manager example didn’t perform a context save 
and restore of the registers that it corrupted. You 
have two options; you can both create and 
manage a software stack (used primarily by your 
overlay manager), or you can use the secondary 
computational and DAG registers. But, as with 
many things in life, there are trade-offs between 
both of these implementations. 
 
Using the secondary registers is the fastest 
method for context switching, but since most 
real-time systems use the secondary registers for 
interrupt subroutines (ISRs) to minimize their 
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overhead, using these registers for your overlay 
manager may not be beneficial. Disabling 
interrupts for the sections of your overlay 
manager which use the secondary registers may 
not be practical unless you have a very low 
number of external interrupts occurring in your 
system or if your interrupts are deterministic 
(like the timer, for example.) 
 
A software stack implementation is therefore 
more robust than using secondary registers, 
since it allows for the overlay manager to be 
interrupted during its execution. The overhead 
incurred by a software stack should only amount 
to the number of cycles needed to save and 
restore only the registers that are used by the 
overlay manager; saving all of the core registers 
is overkill. 
 
Overlay_Manager: 
 dm(ov_stack) = ax0; 

ax0 = dmpg2; 
dm(ov_stack+1) = ax0; 
dm(ov_stack+2) = ar; 
dm(ov_stack+3) = m7; 
dm(ov_stack+4) = i7; 
dm(ov_stack+5) = sr0; 
dm(ov_stack+6) = sr1; 
dm(ov_stack+7) = sr2; 
ax0 = iopg; 
dm(ov_stack+8) = ax0; 
dmpg2 = 0; 
ax0 = dm(ov_stack); 
ar = ax0 - 1; 
m7 = ar; 
dm(curr_PM_ovly_ID) = ar; 
dm(WR_DMA_DESC_BLOCK+2) = ay0; 
... 

 
Example 8: Overlay Stack Register Context Save Example 
 
Example 8 above shows example code that we 
can add to the very beginning of the ‘simple’ 
overlay manager example that was given in 
example 7. Example 9 shows an implementation 
on performing a context restore of the registers 
used by our overlay manager from the overlay 
software stack: 
 
 

… 
 
Context_Restore: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 flush cache; 
 
Jump_To_Overlay: 
 i7 = ay0; 
 jump (i7) (db); 
 i7 = dm(ov_stack+4); 
 ar = dm(ov_stack+2); 
 
Example 9: Overlay Stack Register Context Restore Example 
 
Another optimization implementation is to have 
your overlay manager check to see if the desired 
overlay function already resides in internal PM 
of the DSP. All that is needed to implement this 
is a data variable that can be updated by the 
overlay manager with the desired overlay’s ID 
number once the overlay has been loaded into 
the DSP’s internal memory. Also, some simple 
code to compare the overlay ID that we wish to 
fetch versus the overlay ID that already resides 
in the DSP’s internal memory is needed. 
 
Is_Ovly_Loaded_Already: 
 ax0 = m7; 
 ay1 = dm(curr_PM_ovly_ID); 
 ar = ax0 – ay1; 
 dm(curr_PM_ovly_ID) = m7;  
 if eq jump Goto_PM_Run_1; 

… 
 
Example 10: Overlay Load Verification Example 
 
Example 10 above shows a simple method of 
comparing the overlay that we wish to fetch 
(stored in register ax0) with the current overlay 
ID number of the overlay that’s currently in the 
PM overlay ‘run’ segment of the DSP (stored in 
register ay1). 
 
At the end of this code snippet, we simply 
compare registers ax0 and ay1 by subtracting 
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them; if they’re the same, then subtracting them 
will result in a zero value. If the result is zero, 
then we jump to the section in the overlay 
manager code labeled “Goto_PM_Run_1”, 
which is the section where the overlay manager 
loads the ‘run’ address of the overlay into 
register i7, which is used to begin execution of 
the overlay function via the “jump (i7);” 
instruction. If the result of subtracting the ax0 
and ay0 registers is not zero, then we simply 
execute the overlay manager, like before, to load 
in the desired overlay via MEM DMA. 
 
Goto_PM_Run_1: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 
 flush cache; 
 
 i7 = ay0; 
 jump (i7) (db); 
 ar = dm(ov_stack+2); 
 i7 = dm(ov_stack+4); 
 
Example 11: Overlay Manager for Overlay ‘Run’ Space ‘Hit’ 
 
Example 11 above shows the portion of the 
overlay manager that gets executed if the desired 
overlay function has already been found to 
reside in the overlay ‘run’ memory space. Here 
we see that this code simply performs a context 
restore of the registers used by the overlay 
manager. Also, the ‘run’ address of the overlay 
function is found (from the ‘runAddresses’ 
buffer stored in DM), and this value is loaded 
into the i7 DAG register which is used to jump 
to the overlay function and begin its execution. 
 
 
 
 
 
 

A Complete Overlay Manager Example 
 
Now that we’ve broken up our “enhanced” 
overlay manager, let’s list it here below in its 
entirety… 
 
Overlay_Manager: 
 dm(ov_stack) = ax0; 
 ax0 = dmpg2; 
 dm(ov_stack+1) = ax0; 
 dm(ov_stack+2) = ar; 
 dm(ov_stack+3) = m7; 
 dm(ov_stack+4) = i7; 
 dm(ov_stack+5) = sr0; 
 dm(ov_stack+6) = sr1; 
 dm(ov_stack+7) = sr2; 
 ax0 = iopg; 
 dm(ov_stack+8) = ax0; 
 
Find_Overlay: 
 dmpg2 = 0; 
 ax0 = dm(ov_stack); 
 ar = ax0 - 1; 
 m7 = ar; 
 
Is_Ovly_Loaded_Already: 
 ax0 = m7; 
 ay0 = dm(curr_PM_ovly_ID); 
 ar = ax0 – ay1; 
 dm(curr_PM_ovly_ID) = m7; 
 if eq jump Goto_PM_Run_1; 
 
Get_Run_Address: 
 dm(WR_DMA_DESC_BLOCK+2) = ay0; 
 
Parse_Live_Address: 
 i7 = runWordSize; 
 ax0 = dm(i7 + m7); 
 ar = ax0; 
 ar = ar - 1; 
 dm(WR_DMA_DESC_BLOCK+3) = ar; 
 dm(RD_DMA_DESC_BLOCK+3) = ar; 
 
 i7 = liveAddresses; 
 ar = pm(i7 + m7); 
 sr = lshift ar by 0x8 (lo); 
 ar = px; 
 sr = sr or lshift ar by 0x0 (lo); 
 i7 = sr0; 
 ar = i7; 
 ar = ar + 1; 
 dm(RD_DMA_DESC_BLOCK+2) = ar; 
 dm(RD_DMA_DESC_BLOCK+1) = sr1; 

ax0 = 0x800f; 
 dm(WR_DMA_DESC_BLOCK) = ax0; 

 
 
Example 12: Complete Overlay Manager Example 
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 ax0 = 0x800d; 
 dm(RD_DMA_DESC_BLOCK) = ax0; 
 ax0 = end_dma; 
 dm(WR_DMA_DESC_BLOCK+4) = ax0; 
 dm(RD_DMA_DESC_BLOCK+4) = ax0; 
 
Start_DMA: 
 iopg =  Memory_DMA_Controller_Page; 
 ax0 = WR_DMA_DESC_BLOCK; 
 io(DMACW_CP) = ax0; 
 ax0 = RD_DMA_DESC_BLOCK; 
 io(DMACR_CP) = ax0; 
 ax0 = 0x1; 
 io(DMACW_CPR) = ax0; 
 io(DMACR_CPR) = ax0; 
 io(DMACW_CFG) = ax0; 
 io(DMACR_CFG) = ax0; 
 ena int; 
 idle; 
 
Context_Restore: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 flush cache; 
 
Jump_To_Caller: 
 i7 = ay0; 
 jump (i7) (db); 
 i7 = dm(ov_stack+4); 
 ar = dm(ov_stack+2); 
 
Goto_PM_Run_1: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 
 flush cache; 
 
 i7 = ay0; 
 jump (i7) (db); 
 ar = dm(ov_stack+2); 
 i7 = dm(ov_stack+4); 
 
 
 
 
 
Example 12: Continued 

Advanced Tips and Tricks 
 
Now that we’ve covered the basics as well as 
some more robust examples on how to add self-
checking code into your overlay manager, let’s 
take a look at some more advanced tips and 
tricks that can help improve the performance of 
your software overlay system. (The topics 
covered in this section apply to some special 
cases that can be used to your advantage when 
your software system meets these specific 
criterions.) 
 
Having a greater number of overlay functions 
that are smaller in size has two main advantages. 
First, having smaller functions means that 
system latency will be minimized since the 
DMA controller has less data to fetch from 
external memory at any given time. (This is also 
important if your code requires the use of the 
external memory interface at the same time that 
a DMA may occur.) 
 
Secondly, having smaller overlay functions 
means that you can have more than a single 
overlay ‘run’ space in the DSP. Having multiple 
run spaces not only allows for greater 
granularity with your memory partitioning, but 
also increases the associativity of your overlay 
run spaces, which can improve the amount of 
time that each overlay resides in internal DSP 
memory. Think of this example in the same 
manner as you would with an instruction cache; 
increasing the associativity of the cache (to a 
practical degree) will increase the cache hit 
performance ratio, since multiple code sections 
can reside within the cache at the same time. 
The same situation applies for overlays that 
reside in different run spaces of the DSP’s 
program memory. 
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Multiple Overlay “Run” Segments 
 
This next section will highlight an overlay 
example that uses two overlay ‘run’ space 
segments within the DSP’s internal program 
memory region. We’ll discuss how to configure 
the LDF and the overlay manager to implement 
this in detail as well.  
 

 
 
Figure 4: Two PM Overlay ‘Run’ Segments Example 
 
Figure 4 shows a diagram depicting four overlay 
functions that reside in external memory. The 
DSP’s internal memory is partitioned into two 
distinct segments for the ‘run’ segments of the 
overlay functions. The overlay functions named 
“Function_1” and “Function_2” occupy the first 
overlay memory ‘run’ segment inside of the 
DSP at runtime, and the other two overlay 
functions, “Function_3” and “Function_4”, will 
execute from the second overlay ‘run’ segment. 
 
Example 13 below shows an excerpt from our 
LDF file. Here we see the two internal memory 
segments that we define as the two distinct 
overlay ‘run’ segments; they’re labeled as mem_ 
ovl_run_space1 and mem_ovl_run_space2. For 
the ‘live’ address declarations of the overlay 
functions, we see that each function has its own 
external ‘live’ memory segment defined for it as 
well, therefore we have defined four external 

‘live’ address regions for the four overlay 
functions. 
 
MEMORY{ 
 … 
   // "run" address regions for PM soft overlay functions   
 mem_ ovl_run_space1{TYPE(PM RAM) START(0x000400) 
  END(0x003fff) WIDTH(24)} 
 mem_ ovl_run_space 2{TYPE(PM RAM) START(0x004000) 
  END(0x007fff) WIDTH(24)} 
 ... 
 // "live" address regions for PM soft overlay functions 
 mem_ovl1_liv_space{TYPE(PM RAM) START(0x200000) 
  END(0x2000ff) WIDTH(24)} 
 mem_ovl2_liv_space{TYPE(PM RAM) START(0x200100) 
  END(0x2001ff) WIDTH(24)} 
 mem_ovl3_liv_space{TYPE(PM RAM) START(0x200200) 
  END(0x2002ff) WIDTH(24)} 
 mem_ovl4_liv_space{TYPE(PM RAM) START(0x200300) 
  END(0x2003ff) WIDTH(24)} 
} 
 
Example 13: Two PM ‘Run’ Segments LDF Memory Example 
 
Next, we’ll take a look at another excerpt from 
our LDF where we define which overlay 
functions get linked to which specific overlay 
‘run’ segment within the internal memory of our 
DSP. Example 14 below shows how we 
implement this. We can see, for example how 
the overlay functions named “Function_1” and 
“Function_2” are declared within the scope of 
the memory segment “mem_ovl_run_space1”; 
this is how we map our overlay function objects 
(and their respective overlay ‘live’ segments) to 
the desired overlay ‘run’ segment internal to the 
DSP. 
 
dxe_seg_pm_ovl1{ 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Function_1.ovl") 
     INPUT_SECTIONS("Function_1.doj"(seg_code)) 
 } >mem_ovl1_liv_space 
 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Function_2.ovl") 
  INPUT_SECTIONS("Function_2.doj"(seg_code)) 
 } >mem_ovl2_liv_space 
}> mem_ovl_run_space1 
 
 
Example 14: Mapping Overlay Run Spaces to Live Spaces 
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dxe_seg_pm_ovl2{ 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Function_3.ovl") 

INPUT_SECTIONS("Function_3.doj"(seg_code)) 
 } >mem_ovl3_liv_space 
 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Function_4.ovl") 
  INPUT_SECTIONS("Function_4.doj"(seg_code)) 
 } >mem_ovl4_liv_space 
}> mem_seg_pm_ovl2 
 
Example 14: Continued 
 
Next, we’ll talk about what we need to do to our 
overlay manager in order for it to work with 
these additional ‘run’ segments. The first thing 
we need to do is define two data variables which 
will be responsible for containing the overlay ID 
for each of the respective overlay ‘run’ segments 
that these variables represent. We’ll call them 
‘curr_PM_ovly_ID1’ and ‘curr_PM_ovly_ID2’. 
(We’ll also initialize both of these variables to 
0xffff, assuming that we’re not going to have 
65536 overlay functions for each run segment!) 
 
The overlay manager needs to compare these 
two variables against the overlay ID number that 
we desire during runtime; if the desired ID 
matches one of the overlay ID numbers, then 
that means the desired overlay already resides 
within the DSP’s memory, and therefore we 
simply jump to the run address of that overlay. 
Example 15 shows an excerpt from the overlay 
manager that performs this overlay ID checking: 
 
Overlay_Manager: 
 dm(ov_stack) = ax0; 
 ax0 = dmpg2; 
 dm(ov_stack+1) = ax0; 
 dm(ov_stack+2) = ar; 
 dm(ov_stack+3) = m7; 
 dm(ov_stack+4) = i7; 
 dm(ov_stack+5) = sr0; 
 dm(ov_stack+6) = sr1; 
 dm(ov_stack+7) = sr2; 
 ax0 = iopg; 
 dm(ov_stack+8) = ax0; 
 
Example 15: ID Checking Overlay Manager Excerpt 

Find_Overlay: 
 dmpg2 = 0; 
 ax0 = dm(ov_stack); 
 ar = ax0 - 1; 
 m7 = ar; 
 
Is_Ovly1_Loaded_Already: 
 ax0 = m7; 
 ay0 = dm(curr_PM_ovly_ID1); 
 ar = ax0 - ay0; 
 if eq jump Goto_PM_Run_1; 
 
Is_Ovly2_Loaded_Already: 
 ay0 = dm(curr_PM_ovly_ID2); 
 ar = ax0 - ay0; 
 if eq jump Goto_PM_Run_2; 
 
Example 15: Continued 
 
If after executing this portion of the overlay 
manager we find that the overlay that we desire 
from our main program (or another calling 
function), then we must find the run address of 
the overlay function to determine which overlay 
run segment to place it. In example 16 below, at 
the label “Set_Ovly_ID”, we know that the 
second overlay run segment starts at address PM 
0x4000. Therefore, we assign this value to 
register ay0 and compare this to the run address 
of the desired overlay, which is stored in register 
ax0, by subtracting the two registers. If the 
result is zero, then we know that the desired 
overlay should be loaded into and execute from 
the second overlay run segment. 
 
Get_Run_Address: 
 i7 = runAddresses; 
 ax0 = pm(i7 + m7); 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 dm(ov_stack+19) = ax0; 
 
Set_Ovly_ID: 
 ay0 = 0x4000; 
 ar = ax0 - ay0; 
 if eq jump Set_Ovly_ID2; 
 
Set_Ovly_ID1: 
 dm(curr_PM_ovly_ID1) = m7; 
 jump Parse_Live_Address; 
 
Set_Ovly_ID2: 
 dm(curr_PM_ovly_ID2) = m7; 
 
Example 16: Setting Overlay Run ID Variables 
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Since the size of the entire overlay manager 
example that we’ve discussed in this section is a 
bit too large to show here, please refer to 
Appendix A where this overlay manager is 
listed in its entirety. 
 
Least Recently Used (LRU) Overlay Manager 
 
For our next “advanced” overlay manager 
example, we’ll discuss some topics that may not 
be suitable for every soft overlay application. 
But there are some useful techniques covered 
here to provide information for further 
performance benefits for your software overlay 
system. 
 
First, you may have noticed that all the 
references to soft overlays thus far have been 
implicitly referring to code overlays only; 
nothing specific has been mentioned about using 
data overlays up to this point. At the time of this 
writing, the VisualDSP development tools don’t 
properly support the initialization of external 
data overlays in memory. (Also, because the 
PLIT supports ‘calls’ to functions, it’s not clear 
at this time how to implement a ‘call’ to a data 
segment; actually calling a data segment is 
meaningless. Therefore we will declare and 
initialize our data overlays as if they were just 
ordinary external memory segments.) 
 
In most cases the data segments will be static; 
only the code will need to be dynamically 
loaded during runtime. But some systems may 
require the dynamic loading of data segments as 
well; for example, a non-deterministic system 
that needs to update its data segments at runtime 
due to a decision based upon reading in a value 
in an ISR that occurs at random intervals could 
take advantage of this implementation. 
 
In this section, we’ll discuss an example where 
we define two distinct overlay ‘run’ segments 
for code overlays, and two ‘run’ segments for 

data overlays. The idea here is to use these 
different memory segments as cache memory, 
using the overlay manager as a crude cache 
controller. 
 
For our example, we’ll take advantage of a non-
deterministic system, by applying an LRU 
scheme to our overlay manager to more 
efficiently make use of the two distinct overlay 
run segments for both code and data. The 
advantage of using an LRU scheme is that the 
code (or data) that you request most often will 
be stored in internal memory; the code or data 
that is used less-frequently will be replaced by 
the code or data that is requested more 
frequently. Therefore because the most-
commonly requested data resides in memory, an 
increase in system performance is achieved. 
 

 
 
Figure 5: LRU Overlay ‘Run’ Segments Example 
 
For this example, we’ll have eight total overlay 
modules in our system; four code overlays and 
four data overlays. We’ll also define two 
overlay ‘run’ segments for each of our code and 
data overlays, resulting in a total of four overlay 
‘run’ segments residing in the internal memory 
of the DSP. Figure 5 above shows a conceptual 
block diagram of this software system. From 
this diagram, we can see how each overlay can 
map to any of its two possible overlay ‘run’ 
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spaces; this is quite different than the “Multiple 
Overlay Run Segments” example that we 
discussed in the previous section. The previous 
example had multiple overlay run segments 
which specified overlay modules were mapped 
to at link time. For this example, the placement 
of the overlay modules into the internal run 
segments is performed at runtime via an LRU 
memory replacement policy scheme. 
 
One caveat to the LRU system that we wish to 
implement is that since we’re declaring our 
overlay functions as external functions versus 
declaring them as overlay functions, we no 
longer have the luxury of making the linker 
generate the linker generated overlay constants 
for us. Therefore, we must declare these 
constants and buffers manually, which can be 
quite cumbersome if a significant number of 
overlays are declared. (Currently, this is the only 
method for properly declaring data overlay 
segments, so there is no wasted effort here as far 
as data overlays are concerned.) 
 
The ‘live’ and ‘run’ sizes for each of the 
overlays can be determined by the linker 
generated map file; therefore only the ‘live’ 
addresses for the overlay modules need to be 
calculated by hand. But this information is 
already known and defined in your LDF.)  
 
Let us now take a look at our “LRU” overlay 
manager in detail. The first thing that we need to 
provide to the overlay manager are four memory 
variables used to store the overlay ID for each 
overlay ‘run’ region. We’ll declare these 
variables below: 
 
.section/dm seg_data; 
.var curr_PM_ovly_ID1 = 0xffff; 
.var curr_PM_ovly_ID2 = 0xffff; 
.var curr_DM_ovly_ID1 = 0xffff;  
.var curr_DM_ovly_ID2 = 0xffff;  
 
 
Example 17: Overlay Segment ID Variables 

.global curr_PM_ovly_ID1; 

.global curr_PM_ovly_ID2; 

.global curr_DM_ovly_ID1; 

.global curr_DM_ovly_ID2; 
 
Example 17 (continued) 
 
As with our previous overlay manager example, 
we’ll initialize these variables to the value 
0xffff, since we’re assuming that there will be 
less than 64k (!!) overlay modules defined for 
each overlay ‘run’ segment. 
 
Next, our overlay manager can use these 
variables to determine whether the desired 
overlay already resides within its own ‘run’ 
space. 
 
Is_Ovly_Loaded_Already: 
 ar = dm(ov_stack); 
 ar = ar - 1; 
 ax0 = ar; 
 dm(ov_stack) = ar;  
 ay0 = dm(curr_PM_ovly_ID1); 
 ar = ax0 - ay0; 
 if eq jump Goto_PM_Run_1;  
 
 ay0 = dm(curr_PM_ovly_ID2); 
 ar = ax0 - ay0; 
 if eq jump Goto_PM_Run_2; 
 
 ay0 = dm(curr_DM_ovly_ID1);  
 ar = ax0 - ay0; 
 if eq jump DM_Context_Restore; 
  
 ay0 = dm(curr_PM_ovly_ID2);  
 ar = ax0 - ay0; 
 if eq jump DM_Context_Restore; 
 
Example 18: Test for Overlay ID Hit 
 
Here we see that the ID number of the overlay 
that we desire is stored in register ax0, and the 
value of the overlay IDs that are present in their 
‘run’ segments within the DSP are stored in 
register ay0. As before, we just subtract the two 
registers to determine whether we have a hit or 
not. 
 
If the desired overlay ID doesn’t match any of 
the IDs of the overlays that already reside in the 
DSP’s memory, then the overlay manager must 
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then determine whether the desired overlay is a 
code or data overlay, and which overlay ‘run’ 
segment it can overwrite to load in this overlay 
module. 
 
Determining whether the desired overlay is a 
code or data overlay is fairly simple, but there is 
a bit of user interaction required to achieve this. 
The user simply must list all of the attributes of 
the code overlays in the ‘liveAddresses’, 
‘runWordSize’, and ‘liveWordSize’ buffers first 
before the data overlays. This way you know the 
total number of overlays in your system and the 
total number of code overlays in your system. 
Therefore, the difference between these two 
values is the overlay ID number of the first data 
overlay module. For example, if there are a total 
of fifteen overlays in your system and you know 
that ten of these overlays are code overlays, then 
the remaining five overlays are for data. 
Therefore, the overlay ID number of the first 
data overlay module would be eleven. We then 
can use this knowledge to find out if the desired 
overlay is a code or data overlay. 
 
#define TOTAL_NUM_OF_PM_OVLYS 4 
 
Find_Overlay: 
 dmpg2 = 0; 
 m7 = dm(ov_stack); 
 dm(ovly_ID_temp) = m7; 
 ay0 = TOTAL_NUM_OF_PM_OVLYS; 
 ar = ax0 - ay0; 
 if le jump Check_PM_LRU; 
 
Check_DM_LRU: 
 … 
 
Example 19: Code or Data Overlay Test Code Example 
 
In example 19 above, we declared the total 
number of code overlays using the “#define” 
declaration at the top of the example. The ID 
number of the desired overlay is already stored 
in the ax0 register, so we simply subtract the 
two values to determine whether the desired 
overlay is a code (PM) or data (DM) module. 
 

Now we must determine which overlay ‘run’ 
segment we should replace. This holds true 
whether the desired overlay is code or data. Here 
is where the LRU scheme comes into play. 
Since we now have two overlay ‘run’ spaces for 
code and two more for data, we need to define a 
total of four variables to define the LRU 
attribute for each overlay ‘run’ space. 
 
.section/dm seg_data; 
.var LRU_PM_Ovly_1 = 1; 
.var LRU_PM_Ovly_2 = 1; 
.var LRU_DM_Ovly_1 = 1; 
.var LRU_DM_Ovly_2 = 1; 
 
.global LRU_PM_Ovly_1 = 1; 
.global LRU_PM_Ovly_2 = 1; 
.global LRU_DM_Ovly_1 = 1; 
.global LRU_DM_Ovly_2 = 1; 
 
Example 20: LRU Variables For Overlay Run Segments 
 
Assigning these LRU variables to one means 
that the specified overlay run segment that the 
LRU variable pertains to is “least recently used” 
and therefore can be overwritten with a new 
overlay module. 
 
At this point, we’ve explained how the overlay 
manager determines how and where to load an 
overlay module into the DSP’s internal memory, 
but we haven’t yet touched on the subject of 
how the overlay manager exits itself to return to 
the normal program flow. 
 
The next issue our overlay manager must deal 
with is exiting itself to either return to the main 
program, if the desired overlay we’re requesting 
is data, or jump to the overlay function itself, if 
the desired overlay is program code. Here we 
have an underlying issue; since we call the 
overlay manager, a return address from the 
overlay manager is placed on the PC stack. 
(Remember that the address placed on the top of 
the PC stack after a call instruction is executed 
is the address of the instruction immediately 
following the call instruction.) 
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Therefore, in order to return to the normal 
program flow, we must execute an “rts;” 
instruction somewhere to restore the stack to its 
proper state. Having stated this, we now have 
two conditions; the first condition is if the 
desired overlay is a data overlay or it’s an 
overlay function that is not resident in an 
internal “run” space, then we simply can execute 
an “rts;” instruction at the end of the overlay 
manager to exit it. 
 
The second condition is if the desired overlay is 
a function that is not resident in an internal 
“run” space. In this case, we need to DMA the 
overlay function into internal memory and then 
jump to this function from the overlay manager 
(instead of calling it). The only restriction here 
is that the overlay function must have an “rts;” 
instruction at the end of it to return our program 
flow back to the main program. Example 21 
below shows how we can implement this type of 
scheme. 
 
Jump_To_Caller: 
 ax0 = dm(ov_stack); 
 ay0 = TOTAL_NUM_OF_PM_OVLYS; 
 ar = ax0 - ay0; 
 if lt jump Goto_Target; 
 rts (db); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 
Goto_Target: 
 dm(ov_stack+18) = i7; 
 i7 = dm(ov_stack+19); 
 jump (i7) (db); 
 i7 = dm(ov_stack+18); 
 nop; 
 
Example 21: Overlay Manager Exit Routine 
 
 
 
 
 
 
 
 
 

Putting It All Together 
 
So after all this, we finally have our complete 
LRU Overlay manager. Example 22 below lists 
it in its entirety. 
 
#define TOTAL_NUM_OF_PM_OVLYS 4 
#include "2191asm.h" 
 
Overlay_Manager: 
 ax0 = dmpg2; 
 dm(ov_stack+1) = ax0; 
 dm(ov_stack+2) = ar; 
 dm(ov_stack+3) = m7; 
 dm(ov_stack+4) = i7; 
 dm(ov_stack+5) = sr0; 
 dm(ov_stack+6) = sr1; 
 dm(ov_stack+7) = sr2; 
 ax0 = iopg; 
 dm(ov_stack+8) = ax0; 
 dm(ov_stack+9) = ay0; 
 
Is_Ovly_Loaded_Already: 
 ar = dm(ov_stack); 
 ar = ar - 1; 
 ax0 = ar; 
 dm(ov_stack) = ar; 
 ay0 = dm(curr_PM_ovly_ID1); 
 ar = ax0 - ay0; 
 if eq jump Goto_PM_Run_1; 
 ay0 = dm(curr_PM_ovly_ID2); 
 ar = ax0 - ay0; 
 if eq jump Goto_PM_Run_2; 
 ay0 = dm(curr_DM_ovly_ID1); 
 ar = ax0 - ay0; 
 if eq jump DM_Context_Restore; 
 ay0 = dm(curr_DM_ovly_ID2); 
 ar = ax0 - ay0; 
 if eq jump DM_Context_Restore; 
  
Find_Overlay: 
 dmpg2 = 0; 
 m7 = dm(ov_stack); 
 dm(ovly_ID_temp) = m7; 
 ay0 = TOTAL_NUM_OF_PM_OVLYS; 
 ar = ax0 - ay0; 
 if le jump Check_PM_LRU; 
 
Check_DM_LRU: 
 ar = dm(LRU_DM_Ovly_1); 
 ar = ar - 1; 
 if eq jump Load_DM_Ovly_Run_1; 
 
 
 
 
Example 22: LRU Overlay Manager Example 
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Load_DM_Ovly_Run_2: 
 ax0 = 0xc000; 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 ax0 = 0x0000; 
 dm(LRU_DM_Ovly_2) = ax0; 
 ax0 = 0x0001; 
 dm(LRU_DM_Ovly_1) = ax0; 
 jump Load_DM_Ovly (db); 
 ar = dm(ovly_ID_temp); 
 dm(curr_DM_ovly_ID2) = ar; 
 
Load_DM_Ovly_Run_1: 
 ax0 = 0x9000; 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 ax0 = 0x0000; 
 dm(LRU_DM_Ovly_1) = ax0; 
 ax0 = 0x0001; 
 dm(LRU_DM_Ovly_2) = ax0; 
 ar = dm(ovly_ID_temp); 
 dm(curr_DM_ovly_ID1) = ar; 
  
Load_DM_Ovly: 
 iopg = External_Memory_Interface_Page; 
 ax0 = 0x0030; 
 io(EMICTL) = ax0; 
 iopg = External_Access_Bridge_Page; 
 jump Parse_Live_Address (db); 
 ax0 = 0x0000; 
 io(E_STAT) = ax0; 
 
Check_PM_LRU: 
 ar = dm(LRU_PM_Ovly_1); 
 ar = ar - 1; 
 if eq jump Load_PM_Ovly_Run_1; 
 
Load_PM_Ovly_Run_2: 
 ax0 = 0x4000; 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 dm(ov_stack+19) = ax0; 
 ax0 = 0x0000; 
 dm(LRU_PM_Ovly_2) = ax0; 
 ax0 = 0x0001; 
 dm(LRU_PM_Ovly_1) = ax0; 
 jump Load_PM_Ovly (db); 
 ar = dm(ovly_ID_temp); 
 dm(curr_PM_ovly_ID2) = ar; 
 
Load_PM_Ovly_Run_1: 
 ax0 = 0x0400; 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 dm(ov_stack+19) = ax0; 
 ax0 = 0x0000; 
 dm(LRU_PM_Ovly_1) = ax0; 
 ax0 = 0x0001; 
 dm(LRU_PM_Ovly_2) = ax0; 
 ar = dm(ovly_ID_temp); 
 dm(curr_PM_ovly_ID1) = ar; 
 
Example 22: (continued) 

Load_PM_Ovly: 
 iopg = External_Memory_Interface_Page; 
 ax0 = 0x0030; 
 io(EMICTL) = ax0; 
 iopg = External_Access_Bridge_Page; 
 ax0 = 0x0008; 
 io(E_STAT) = ax0; 
 
Parse_Live_Address: 
 i7 = runWordSize; 
 ax0 = dm(i7 + m7); 
 ar = ax0; 
 dm(WR_DMA_DESC_BLOCK+3) = ar; 
 dm(RD_DMA_DESC_BLOCK+3) = ar; 
 i7 = liveAddresses; 
 ar = pm(i7 + m7); 
 sr = lshift ar by 0x8 (lo); 
 ar = px; 
 sr = sr or lshift ar by 0x0 (lo); 
 i7 = sr0; 
 ar = i7; 
 dm(RD_DMA_DESC_BLOCK+2) = ar; 
 dm(RD_DMA_DESC_BLOCK+1) = sr1; 
 ax0 = 0x800f; 
 dm(WR_DMA_DESC_BLOCK) = ax0; 
 ax0 = 0x800d; 
 dm(RD_DMA_DESC_BLOCK) = ax0; 
 ax0 = end_dma; 
 dm(WR_DMA_DESC_BLOCK+4) = ax0; 
 dm(RD_DMA_DESC_BLOCK+4) = ax0; 
 iopg =  Memory_DMA_Controller_Page; 
 ax0 = WR_DMA_DESC_BLOCK; 
 io(DMACW_CP) = ax0; 
 ax0 = RD_DMA_DESC_BLOCK; 
 io(DMACR_CP) = ax0; 
 ax0 = 0x1; 
 io(DMACW_CPR) = ax0; 
 io(DMACR_CPR) = ax0; 
 io(DMACW_CFG) = ax0; 
 io(DMACR_CFG) = ax0; 
 ena int; 
 idle; 
 
Context_Restore: 
 ay0 = dm(ov_stack+9); 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 i7 = dm(ov_stack+4); 
 m7 = dm(ov_stack+3); 
 ar = dm(ov_stack+2); 
 flush cache; 
 
 
 
 
Example 22: (continued) 
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Jump_To_Caller: 
 ax0 = dm(ov_stack); 
 ay0 = TOTAL_NUM_OF_PM_OVLYS; 
 ar = ax0 - ay0; 
 if lt jump Goto_Target; 
 rts (db); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 
Goto_Target: 
 dm(ov_stack+18) = i7; 
 i7 = dm(ov_stack+19); 
 jump (i7) (db); 
 i7 = dm(ov_stack+18); 
 nop; 
 
Goto_PM_Run_1: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 ay0 = dm(ov_stack+9); 
 flush cache; 
 i7 = 0x0400; 
 jump (i7) (db); 
 ar = dm(ov_stack+2); 
 i7 = dm(ov_stack+4); 
 
Goto_PM_Run_2: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 ay0 = dm(ov_stack+9); 
 flush cache; 
 i7 = 0x4000; 
 jump (i7) (db); 
 ar = dm(ov_stack+2); 
 i7 = dm(ov_stack+4); 
 
DM_Context_Restore: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
  
Example 22: (continued) 

ay0 = dm(ov_stack+9); 
 flush cache; 
 rts (db); 
 i7 = dm(ov_stack+4); 
 ar = dm(ov_stack+2); 
 
Example 22: (continued) 
 
Pre-emptive Overlay Loading 
 
Until now, we have only covered how to call or 
invoke an overlay when we need it. But in some 
cases, to increase system performance it may be 
beneficial to load in the overlay code or data 
before it is needed. Fortunately for us, we 
already have mechanisms built into our LRU 
overlay manager to implement this. The only 
part that requires some additional work on the 
programmer is to know what overlay ID number 
corresponds to which overlay code or data 
module. 
 
The first thing that we need to do is pass the 
overlay ID number and the run address as input 
parameters to our overlay manager. If you 
remember from our PLIT entries, these two 
values are passed in the ax0 and ay0 registers, 
respectively. So now all we need to do is load 
the appropriate values into these two registers 
before invoking our overlay manager. 
 
The next question is, “how do we decide which 
overlay ID number gets mapped to which 
overlay?” The answer is simple; the overlay ID 
numbers are assigned in the exact order that you 
define your overlays in the overlay input section 
of your LDF. 
 
For an example, the LDF excerpt below declares 
three overlay functions named “Harry”, “Gus”, 
and “Joe”, contained in the files “Harry.asm”, 
“Joe.asm”, and “Gus.asm”, respectively. Since 
the overlay functions are declared in the exact 
order listed above, they will be assigned overlay 
ID numbers in that specific order as well. In 
other words, the code function “Harry” gets 
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assigned an ID number of 1, “Joe” an ID 
number of two, and so on. 
 
dxe_seg_pm_ovl{ 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Harry.ovl") 
  INPUT_SECTIONS("Harry.doj"(seg_code)) 
 }>mem_ovl1_liv_space 
 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Gus.ovl") 
  INPUT_SECTIONS("Gus.doj"(seg_code)) 
 }>mem_ovl2_liv_space 
 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Joe.ovl") 
  INPUT_SECTIONS("Joe.doj"(seg_code)) 
 }>mem_ovl3_liv_space 
}>mem_seg_pm_ovl 
 
Example 23: Overlay Declarations and ID Mapping 
 
The above LDF example explicitly links the 
input source file with the overlay input segment. 
Alternatively, these three overlay functions 
could be linked to the overlay input segment via 
the “$OBJECTS” LDF macro. One important 
point to mention is that unique section names 
must be used in this case to specifically map the 
input file objects to the overlay input section. 
Example 24 below shows this in more detail: 
 
LDF File Excerpt: 
 
dxe_seg_pm_ovl{ 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Harry.ovl") 
  INPUT_SECTIONS($OBJECTS(seg_Harry)) 
 }>mem_ovl1_liv_space 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Gus.ovl") 
  INPUT_SECTIONS($OBJECTS (seg_Gus)) 
 }>mem_ovl2_liv_space 
 OVERLAY_INPUT{ 
  ALGORITHM(ALL_FIT) 
  OVERLAY_OUTPUT("Joe.ovl") 
  INPUT_SECTIONS($OBJECTS (seg_Joe)) 
 }>mem_ovl3_liv_space 
}>mem_seg_pm_ovl 
 

Harry.asm Excerpt: 
 
.section/pm seg_Harry; 
.global Harry; 
Harry: 
 … 
 
Gus.asm Excerpt: 
 
.section/pm seg_Gus; 
.global Gus; 
Gus: 
 … 
 
Joe.asm Excerpt: 
 
.section/pm seg_Joe; 
.global Joe; 
Joe: 
 … 
 
Example 24: LDF Overlay Mapping and Source File Segment 
Name Mapping 
 
From the above example, we see that unique 
segment names are used in the “.section/pm” 
directive in each source file, as well as in the 
“INPUT_SECTIONS($OBJECTS(…))” LDF macro. This 
is how we explicitly map the objects from the 
input section(s) named “seg_Harry” into the 
overlay input section of the LDF. The same 
protocol is true for the other two segment 
names, “seg_Gus” and “seg_Joe”. 
 
The “$OBJECTS” macro is assigned a listing of 
all of the source files in the project via the 
“$OBJECTS = $COMMAND_LINE_OBJECTS;” LDF 
declaration. The “$COMMAND_LINE_OBJECTS” 
LDF macro expands to a complete listing of all 
of the source files in the project. 
 
Again, in this example, the function “Harry” 
would be assigned an overlay ID number of one, 
“Gus” an ID of two, and “Joe” and ID of three. 
This overlay ID number assignment is generated 
in the specific order in which each overlay is 
declared in the LDF. Now that we know the ID 
numbers for all of the overlays in our system, 
we can easily fetch them via the overlay 
manager. 
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Listed below is a simple macro definition for 
invoking the overlay manager and some 
additional definitions to make the code more 
readable: 
 
#define Harry  0x0001 // ID # for ‘Harry’ function 
#define Gus  0x0002 // ID # for ‘Gus’ function 
#define Joe   0x0003 // ID # for ‘Joe’ function 
 
#define Fetch_Overlay(x) \ 
    dm(save_ax0) = ax0;\ 
    ax0 = x;\ 
    dm(ov_stack) = ax0;\ 
    call Overlay_Manager;\ 
    ax0 = dm(save_ax0); 
 
Example 25: Overlay Macro Definitions 
 
These macros can then be used in your main 
program to pre-fetch or to perform a pre-
emptive load of the overlay. For example: 
 
Main: 
 … 

Fetch_Overlay(Harry); // pre-fetch overlay function #1 
… 

 
Example 26: Using User-defined Macros for Overlay Support 
 
Taking a closer look at this “Fetch_Overlay” 
macro, we see that it performs a few simple 
steps. First, it performs a context save of the ax0 
register, then it reads in the overlay ID number 
of the desired overlay and stores this into the 
ax0 register. Next, the ax0 register is placed 
onto the overlay stack, where this value will be 
used by the overlay manager. After performing 
all of this housekeeping, a call to the overlay 
manager function is made. 
 
Once the overlay manager has completed 
execution, the program will return to the “ax0 = 
dm(save_ax0);” instruction, where this macro 
completes by performing a context save of the 
ax0 register. From here the program can 
continue, and if necessary, can make a call to the 

function “Harry” without any performance 
penalties, since this function already resides in 
its overlay run space. 
 
 
Least Frequently Used (LFU) Overlay Manager 
 
For our final “advanced” overlay manager 
example, we’ll discuss a different type of 
replacement policy than LRU. The LRU 
replacement policy takes advantage of your 
application code’s temporal locality. In other 
words, the code (or data) that you used most 
recently will be present in memory thanks to the 
exploitation of this replacement policy. The 
downside of this is that because of your 
instruction flow, you may have an overlay 
module that you fetch or call more frequently 
than others. With an LRU replacement policy, 
this overlay module could be overwritten with 
another overlay which is less frequently used 
(but more recently used), which in some cases 
may be undesired behavior. 
 
A further optimization would be to keep the 
more frequently used overlay module resident in 
its respective overlay ‘run’ space. If we request 
a new overlay, we overwrite the least frequently 
used overlay that is resident in its respective 
overlay run space instead. Let’s show a simple 
instruction execution example below that will 
help illustrate this scenario: 
 

 
 
Figure 6: LRU vs. LFU Replacement Policy Example 
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From figure 6 above, we see that we have a 
particular ordering to our instruction flow 
(which may or may not be deterministic). (Also, 
please note for this example that we have a two-
way associative overlay ‘run’ space. In other 
words, any overlay can be mapped to one of the 
two overlay run spaces at run time.) From this 
example, we see that overlay 1 gets called three 
times, overlay 2 gets called two times, and 
overlays 3 and 4 get called only once. Because 
overlays 1 and 2 get called more frequently than 
the other two overlays, it would be beneficial 
(from a system performance perspective) to 
keep overlays 1 and 2 resident in their overlay 
run spaces more frequently than overlays 3 and 
4. 
 
From figure 6 we can see from the instruction 
flow which overlay module resides in the two 
overlay run regions at that specific point in time. 
Here we can clearly see that the LFU 
replacement policy takes advantage of the fact 
that overlays 1 and 2 are called more frequently, 
since we can see that they are present in the run 
spaces more times than with the LRU 
replacement policy. 
 
So how does this all work? First off, we’ll need 
to keep a count of how many times each overlay 
is called. We can implement this very easily by 
keeping an array of count variables for each 
overlay module. Here is an example below: 
 
.section/dm seg_data; 
.var ovly_module_fetch_count[7] = 0, 0, 0, 0, 0, 0, 0; 
 
Example 27: Overlay Fetch Count Array Initialization 
 
For this example, let’s say that we have a total 
of seven overlay modules, comprised of four 
overlay functions and three data overlay 
modules. (Please note that this may be quite 
cumbersome if your project has an appreciable 
number of overlay modules.) This array will 
allow us to keep a running count for each 

overlay module every time we request it. An 
array is used here (versus keeping separate count 
variables for each overlay module) to simplify 
things for our overlay manager, since we can use 
a DAG index register and a modify register 
(which contains the ID# of the desired overlay 
module) to stride through this array to increment 
the desired We initialize each element of this 
array to zero, since at the beginning of our 
program, none of the overlay modules have been 
requested. 
 
Now we need to implement an LFU algorithm 
for our overlay manager. There are two steps 
required to implement this: 
 

1. Automatically increment the overlay count 
value for the overlay module that we’re 
fetching. (We automatically increment the 
count value here because we know that 
since we’re fetching the overlay module 
that we’re going to immediately access it 
whether it resides in an overlay run space 
or not.) 

2. Compare the overlay count values for each 
of the overlay modules that currently reside 
in both of the overlay ‘run’ memory 
regions. Next, replace the overlay that has 
the smaller overlay count value with the 
new overlay that we desire. (If both of the 
currently loaded overlays have the same 
overlay count value, then use the LRU 
replacement policy.) 

 
Step one can be easily implemented. Listed 
below are the instructions needed to 
implement this: 
 
Update_Overlay_Fetch_Count: 
 i0 = ovly_module_fetch_count; 
 m0 = dm(ov_stack); 
 ar = dm(i0 + m0); 
 ar = ar + 1; 
 dm(i0 + m0) = ar; 
  
Example 28: Updating Overlay Fetch Count 
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ar = tstbit 14 of ar; 
if eq jump Is_Ovly_Loaded_Already; 
 
Scale_Down_Count: 
 m1 = 0; 
 m2 = 1; 
 cntr = TOTAL_NUM_OF_OVLYS; 
 do Kill_Overflow until ce; 
  ar = dm(i0, m1); 
  sr = lshift ar by -1 (hi); 
Kill_Overflow: 
  dm(i0, m2) = sr1; 
 
Restore_M1_Reg: 
 m2 = dm(ov_stack+13); 
 m1 = dm(ov_stack+12); 
 
Is_Ovly_Loaded_Already: 
... 
 
Example 28: (continued) 
 
From the code snippet in example 24, we see 
that upon entering the overlay manager, we 
automatically increment the desired overlay’s 
fetch count. But you’ll also notice that there is 
some additional code placed here for error 
checking, starting at the address label called 
“Scale_Down_Count”. 
 
We have the additional code added here 
because we want to ensure that our count value 
doesn’t become a negative value (MSB = 1), 
which would screw things up here because 
we’re performing subtractions to compare the 
count values of two overlay modules. Here we 
want to ensure that we aren’t subtracting a 
negative value, which would cause incorrect 
behavior with our LFU replacement policy. 
Actually, this portion of the overlay manager 
checks the value of bit 14 to ensure that our 
overlay count value doesn’t exceed 16k 
(16384). If it does, then we simply scale down 
all of our overlay count values by 2 in the loop 
labeled “Kill_Overflow”. 
 
Step two of our LFU algorithm is also fairly 
straightforward. All we need to do is get the 
overlay count values for the two overlay 

modules that currently reside in the two 
overlay run spaces for our example. We simply 
load these two values into two registers and 
subtract them to find the larger value. We then 
just replace the overlay run space that contains 
the overlay with the smaller overlay count 
value with the new overlay module that we 
desire. 
 
But there is one caveat here; the first time 
running through our code, both of the overlay 
run spaces are empty (or more accurately, 
filled with illegal data) and the current overlay 
ID# variables for each of these overlay run 
regions are initialized to 0xffff. Since we use 
the overlay ID# variables as an offset for our 
DAG index register when we’re initializing the 
DMA parameter registers, we must ensure that 
we’re not running off into the weeds and are 
actually accessing the proper initialization 
data!! 
 
The first thing we check for is if we’re 
executing our program for the first time. If we 
are, then the current overlay ID# variables for 
both overlay run spaces will be equal. (This is 
the only time during program execution that 
these variables will contain the same value.) 
We simply compare these two variables and if 
both of these values are the same, we know 
that we’re just starting the program and 
therefore we arbitrarily decide to load the 
desired overlay into the first overlay run space.  
 
The code from example 25 below shows the 
portion of the overlay manager for fetching a 
Program Memory overlay code module, but 
the same algorithm applies for fetching a Data 
Memory overlay module as well. 
 
If we’re not executing the program for the first 
time, then we simply compare the count values 
for the two overlays that currently reside in 
their respective run spaces. Here we see that if 
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both overlay count values are equal, then we 
jump to the LRU subroutine; if one of the 
values is greater than or less than the other, 
then we simply jump to the subroutine to 
overwrite the least-frequently used overlay 
with the desired overlay via the DMA 
parameter registers. 
 
Check_PM_Overlay_First_Time: 
 ax0 = dm(curr_PM_ovly_ID1); 
 ay0 = dm(curr_PM_ovly_ID2); 
 ar = ax0 - ay0; 
 if eq jump Load_PM_Ovly_Run_1; 
 
Compare_PM_Ovly_Count: 
 m0 = dm(curr_PM_ovly_ID1); 
 ax0 = dm(i0 + m0); 
 m0 = dm(curr_PM_ovly_ID2); 
 ay0 = dm(i0 + m0); 
 ar = ax0 - ay0; 
 if lt jump Load_PM_Ovly_Run_1; 
 if gt jump Load_PM_Ovly_Run_2; 
 
Check_PM_LRU: 
… 
 
Example 29: LFU Comparison Algorithm Code Example 
 

Putting It All Together (Again) 
 
So after all this, we finally have our complete 
LRU Overlay manager. Example 26 below lists 
it in its entirety. 
 
#define TOTAL_NUM_OF_OVLYS 7 
#define TOTAL_NUM_OF_PM_OVLYS 4 
 
#include "2191asm.h" 
 
.section/pm seg_code; 
 
Overlay_Manager: 
 ax0 = dmpg2; 
 dm(ov_stack+1) = ax0; 
 dm(ov_stack+2) = ar; 
 dm(ov_stack+3) = m7; 
 dm(ov_stack+4) = i7; 
 dm(ov_stack+5) = sr0; 
 dm(ov_stack+6) = sr1; 
 dm(ov_stack+7) = sr2; 
 ax0 = iopg; 
 dm(ov_stack+8) = ax0; 
 
Example 30: LFU Overlay Manager 

 dm(ov_stack+9) = ay0; 
 dm(ov_stack+10) = i0; 
 dm(ov_stack+11) = m0; 
 dm(ov_stack+12) = m1; 
 dm(ov_stack+13) = m2; 
 
Get_Overlay_ID_value: 
 ar = dm(ov_stack); 
 ar = ar - 1; 
 ax0 = ar; 
 dm(ov_stack) = ar; 
 
Update_Overlay_Fetch_Count: 
 i0 = ovly_module_fetch_count; 
 m0 = dm(ov_stack); 
 ar = dm(i0 + m0); 
 ar = ar + 1; 
 dm(i0 + m0) = ar; 
 ar = tstbit 14 of ar; 
 if eq jump Is_Ovly_Loaded_Already; 
  
Scale_Down_Count: 
 m1 = 0; 
 m2 = 1; 
  
 cntr = TOTAL_NUM_OF_OVLYS; 
 do Kill_Overflow until ce; 
  
  ar = dm(i0, m1); 
  sr = lshift ar by -1 (hi); 
Kill_Overflow: 
  dm(i0, m2) = sr1; 
 
Restore_M1_Reg: 
 m2 = dm(ov_stack+13); 
 m1 = dm(ov_stack+12); 
 
Is_Ovly_Loaded_Already: 
 ay0 = dm(curr_PM_ovly_ID1); 
 ar = ax0 - ay0; 
 if eq jump Goto_PM_Run_1; 
 ay0 = dm(curr_PM_ovly_ID2); 
 ar = ax0 - ay0; 
 if eq jump Goto_PM_Run_2; 
 ay0 = dm(curr_DM_ovly_ID1); 
 ar = ax0 - ay0; 
 if eq jump DM_Context_Restore; 
 ay0 = dm(curr_DM_ovly_ID2); 
 ar = ax0 - ay0; 
 if eq jump DM_Context_Restore; 
 
Find_Overlay: 
 dmpg2 = 0; 
 m7 = dm(ov_stack); 
 dm(ovly_ID_temp) = m7; 
 ay0 = TOTAL_NUM_OF_PM_OVLYS; 
 ar = ax0 - ay0; 
 
Example 30: (continued) 
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 if le jump Check_PM_Overlay_First_Time; 
 
Check_DM_Overlay_First_Time: 
 ax0 = dm(curr_DM_ovly_ID1); 
 ay0 = dm(curr_DM_ovly_ID2); 
 ar = ax0 - ay0; 
 if eq jump Load_DM_Ovly_Run_1; 
 
Compare_DM_Ovly_Count: 
 m0 = dm(curr_DM_ovly_ID1); 
 ax0 = dm(i0 + m0); 
 m0 = dm(curr_DM_ovly_ID2); 
 ay0 = dm(i0 + m0); 
 ar = ax0 - ay0; 
  
 if lt jump Load_DM_Ovly_Run_1; 
 if gt jump Load_DM_Ovly_Run_2; 
 
Check_DM_LRU: 
 ar = dm(LRU_DM_Ovly_1); 
 ar = ar - 1; 
 if eq jump Load_DM_Ovly_Run_1; 
 
Load_DM_Ovly_Run_2: 
 ax0 = 0xc000; 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 ax0 = 0x0000; 
 dm(LRU_DM_Ovly_2) = ax0; 
 ax0 = 0x0001; 
 dm(LRU_DM_Ovly_1) = ax0; 
 jump Load_DM_Ovly (db); 
 ar = dm(ovly_ID_temp); 
 dm(curr_DM_ovly_ID2) = ar; 
 
Load_DM_Ovly_Run_1: 
 ax0 = 0x9000; 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 ax0 = 0x0000; 
 dm(LRU_DM_Ovly_1) = ax0; 
 ax0 = 0x0001; 
 dm(LRU_DM_Ovly_2) = ax0; 
 ar = dm(ovly_ID_temp); 
 dm(curr_DM_ovly_ID1) = ar; 
  
Load_DM_Ovly: 
 iopg = External_Memory_Interface_Page; 
 ax0 = 0x0030; 
 io(EMICTL) = ax0; 
 iopg = External_Access_Bridge_Page; 
 jump Parse_Live_Address (db); 
 ax0 = 0x0000; 
 io(E_STAT) = ax0; 
 
Check_PM_Overlay_First_Time: 
 ax0 = dm(curr_PM_ovly_ID1); 
 ay0 = dm(curr_PM_ovly_ID2); 
 ar = ax0 - ay0; 
  
Example 30: (continued) 

if eq jump Load_PM_Ovly_Run_1; 
 
Compare_PM_Ovly_Count: 
 m0 = dm(curr_PM_ovly_ID1); 
 ax0 = dm(i0 + m0); 
 m0 = dm(curr_PM_ovly_ID2); 
 ay0 = dm(i0 + m0); 
 ar = ax0 - ay0; 
 if lt jump Load_PM_Ovly_Run_1; 
 if gt jump Load_PM_Ovly_Run_2; 
 
Check_PM_LRU: 
 ar = dm(LRU_PM_Ovly_1); 
 ar = ar - 1; 
 if eq jump Load_PM_Ovly_Run_1; 
 
Load_PM_Ovly_Run_2: 
 ax0 = 0x4000; 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 dm(ov_stack+19) = ax0; 
 ax0 = 0x0000; 
 dm(LRU_PM_Ovly_2) = ax0; 
 ax0 = 0x0001; 
 dm(LRU_PM_Ovly_1) = ax0; 
 jump Load_PM_Ovly (db); 
 ar = dm(ovly_ID_temp); 
 dm(curr_PM_ovly_ID2) = ar; 
 
Load_PM_Ovly_Run_1: 
 ax0 = 0x0400; 
 dm(WR_DMA_DESC_BLOCK+2) = ax0; 
 dm(ov_stack+19) = ax0; 
 ax0 = 0x0000; 
 dm(LRU_PM_Ovly_1) = ax0; 
 ax0 = 0x0001; 
 dm(LRU_PM_Ovly_2) = ax0; 
 ar = dm(ovly_ID_temp); 
 dm(curr_PM_ovly_ID1) = ar; 
 
Load_PM_Ovly: 
 iopg = External_Memory_Interface_Page; 
 ax0 = 0x0030; 
 io(EMICTL) = ax0; 
 iopg = External_Access_Bridge_Page; 
 ax0 = 0x0008; 
 io(E_STAT) = ax0; 
 
Parse_Live_Address: 
 i7 = runWordSize; 
 ax0 = dm(i7 + m7); 
 ar = ax0; 
 dm(WR_DMA_DESC_BLOCK+3) = ar; 
 dm(RD_DMA_DESC_BLOCK+3) = ar; 
 i7 = liveAddresses; 
 ar = pm(i7 + m7); 
 sr = lshift ar by 0x8 (lo); 
 ar = px; 
  
Example 30: (continued) 
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sr = sr or lshift ar by 0x0 (lo); 
 i7 = sr0; 
 ar = i7; 
 
 dm(RD_DMA_DESC_BLOCK+2) = ar; 
 dm(RD_DMA_DESC_BLOCK+1) = sr1; 
 ax0 = 0x800f; 
 dm(WR_DMA_DESC_BLOCK) = ax0; 
 ax0 = 0x800d; 
 dm(RD_DMA_DESC_BLOCK) = ax0; 
 ax0 = end_dma; 
 dm(WR_DMA_DESC_BLOCK+4) = ax0; 
 dm(RD_DMA_DESC_BLOCK+4) = ax0; 
  
 iopg =  Memory_DMA_Controller_Page; 
 ax0 = WR_DMA_DESC_BLOCK; 
 io(DMACW_CP) = ax0; 
 ax0 = RD_DMA_DESC_BLOCK; 
 io(DMACR_CP) = ax0; 
 ax0 = 0x1; 
 io(DMACW_CPR) = ax0; 
 io(DMACR_CPR) = ax0; 
 io(DMACW_CFG) = ax0; 
 io(DMACR_CFG) = ax0; 
 
 ena int; 
 idle; 
 
Context_Restore: 
 ay0 = dm(ov_stack+9); 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 i7 = dm(ov_stack+4); 
 m7 = dm(ov_stack+3); 
 ar = dm(ov_stack+2); 
 
 flush cache; 
 
Jump_To_Caller: 
 ax0 = dm(ov_stack); 
 ay0 = TOTAL_NUM_OF_PM_OVLYS; 
 ar = ax0 - ay0; 
 if lt jump Goto_Target; 
 rts (db); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 
Goto_Target: 
 dm(ov_stack+18) = i7; 
 i7 = dm(ov_stack+19); 
 jump (i7) (db); 
 i7 = dm(ov_stack+18); 
 nop; 
 
 
Example 30: (continued) 

Goto_PM_Run_1: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 ay0 = dm(ov_stack+9); 
 
 flush cache; 
 
 i7 = 0x0400; 
 jump (i7) (db); 
 ar = dm(ov_stack+2); 
 i7 = dm(ov_stack+4); 
 
Goto_PM_Run_2: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 ay0 = dm(ov_stack+9); 
 
 flush cache; 
 
 i7 = 0x4000; 
 jump (i7) (db); 
 ar = dm(ov_stack+2); 
 i7 = dm(ov_stack+4); 
 
DM_Context_Restore: 
 ax0 = dm(ov_stack+8); 
 iopg = ax0; 
 sr2 = dm(ov_stack+7); 
 sr1 = dm(ov_stack+6); 
 sr0 = dm(ov_stack+5); 
 m7 = dm(ov_stack+3); 
 ax0 = dm(ov_stack+1); 
 dmpg2 = ax0; 
 ay0 = dm(ov_stack+9); 
 
 flush cache; 
 
 rts (db); 
 i7 = dm(ov_stack+4); 
 ar = dm(ov_stack+2); 
 
Example 30: (continued) 
 
 


