
aaaa Engineer To Engineer Note EE-152
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices
regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Using Software Overlays with the
ADSP-219x and VisualDSP 2.0++
(Some assembly required…)

Last modified: February 6, 2002

Introduction

This application note will define and discuss the
definition and uses for software overlays. Also,
an in-depth discussion on overlay management
techniques will be covered in an abstract level,
as well as covering overlay management topics
in further detail. Code examples will be
provided to help illustrate these topics in detail
as well.

What are Software Overlays?

As DSP software applications have grown more
complex, system memory requirements have
increased as a result of these newer applications.
Because of this, an application may actually
exceed the internal memory size of a particular
DSP. This is where a software overlay system
comes into play.

Also, in many cost-sensitive applications, it’s to
the hardware designer’s advantage to design a
system with the least expensive DSP (which
typically means less on-chip memory is
available.) Since the cost of bulk memory such
as SRAMs and EPROMs are small compared to
the cost of a DSP, it is sometimes more cost-
efficient to have code and/or data reside in
cheaper external memory. This is another
scenario in which software overlays can be
implemented in a system design.

Soft overlays are a “many to one” memory
mapping system. Several overlays can ‘live’ (or

are stored) in unique locations in external
memory, but they ‘run’ (or execute from) a
common location in the internal memory of the
DSP. Soft overlays are not physically present in
the DSP’s internal SRAM at all times; rather
they are transferred/fetched into internal
memory from external memory dynamically at
runtime.

Say, for example, that your software system has
10 functions, all of which comprise a total of
120k words of Program Memory (PM), but your
DSP only has a maximum of 32k PM locations.
What do you do? With software overlays, you
can fetch the desired function at runtime into the
DSP’s internal memory and then execute this
function. Accessing code and/or data overlays
dynamically gives you greater flexibility with
your DSP’s internal memory requirements.

Figure 1: Simple Memory Overlay Example

Figure 1 demonstrates the concept of memory
overlays. In this figure there are two total
memory spaces; the internal memory of the
DSP, and external memory. For this example,
the external memory is partitioned into six
overlays, comprised of three functions and three
data buffers. The internal memory contains the

EE-152 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

main program code, an overlay manager
function, and two segments reserved for
execution of overlay program instructions and
data. From this example, we also see a “many to
one” mapping, where Program Memory overlays
1, 2, and 3 map to the same overlay ‘run’ space.
(Data overlays 4, 5, and 6 map to the Data
Memory overlay ‘run’ space as well.)

In this example, overlays 1, 2, and 3 share the
same runtime location within the DSP’s internal
memory. If the main program calls the function
‘Function_1’, the overlay manager will be
invoked to load overlay #1 into the memory
segment within the DSP’s memory where
overlay 2 has been designated to run. If the
function ‘Function_3’ is requested by the main
program, then the overlay manager will again be
invoked to load overlay 3 into its designated run
time memory segment. We will cover what the
overlay manager’s role in a soft overlay system
is and what an overlay manager is (and does) in
more detail later on in this EE note.

Software Overlays for the ADSP-2191M

Software overlays are a very important software
feature that can take advantage of the internal
DSP memory resources and I/O bandwidth of
the 2191’s external memory interface (EMI).

The ADSP-2191M has 32k words of Program
Memory (PM) and 32k words of Data Memory
(DM). Currently, there are also two additional
219x variants in the 219x family; the ADSP-
2195 and ADSP-2196. The 2195 contains 16k
words of PM and DM, while the 2196 contains
8k words for PM and DM, respectively. Because
some software applications may require more
memory than is available on-chip, software
overlays become increasingly more important.

Another point to mention here is that the EMI of
the 219x runs at a slower rate than the DSP’s

core. Therefore, executing code or fetching data
from external memory will have an impact on
overall system performance. The attractive
feature of software overlays (for this case) is
that you can execute code and access data via
the DSP’s core, while simultaneously fetching
and loading the desired overlay into internal
memory in the background via the direct-
memory access (DMA) controller of the ADSP-
219x. (For more detailed information on EMI
throughput on the 219x family, please refer to
table 7-10, page 7-26, of the “ADSP-219x/2191
DSP Hardware Reference”).

What comprises a Soft Overlay?

Soft overlays have only a few attributes; an
overlay ID#, ‘live’ address, ‘run’ address, ‘live’
size, and lastly, a ‘run’ size. Before explaining
what these terms mean, let’s first talk about the
two places where an overlay will exist in a
system.

There are two terms associated with soft
overlays; ‘live’ space and ‘run’ space. ‘Live’
space is the address range in external memory
where the overlay resides. ‘Run’ space is the
address range of the DSP’s internal memory
where the overlay resides at runtime. (For code
overlays, the ‘run’ address is the target address
of where the caller of the overlay will ‘jump’ or
‘call’ to in your program code. For data
overlays, the ‘run’ address is the first location
of the buffer or data type.)

So getting back to the overlay’s attributes, the
‘run’ address is the address in the DSP’s internal
memory where the code overlay will be
executed from or where the data overlay will
reside. The ‘live’ address is where in external
memory the overlay will reside. One important
point to mention here is that the ADSP-219x
family supports up to 16M words of addressing
(0x010000 – 0xfeffff) via its EMI; therefore the

EE-152 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

‘run’ and ‘live’ addresses are 24-bit address
fields.

The ‘run’ and ‘live’ size attributes define the
size of the overlay module in words; for the
ADSP-219x both of these values are the same.
The last attribute is the overlay ID#. (An
important note to mention here is that the run
and live size attributes must not exceed 64k
words in size, whether for a PM overlay or a
DM overlay. This is because the EMI of the
ADSP-219x will not automatically cross page
boundaries.) This is a unique integer value
which gets assigned to each overlay by the
VisualDSP linker (linker.exe). (The first overlay
gets assigned an ID# of 1, the second gets
assigned an ID of 2, etc.)

All of these overlay attributes are linker-
generated constants which will be used by our
overlay manager. (We’ll cover this in much
more detail later on in this application note.)

So you can see from the overlay attributes that
soft overlays can reside at whatever internal
memory ‘run’ space that you define; more than
one overlay can map to a specific ‘run’ space.
For more complex overlay managers and
systems, a single overlay can map to more than
one ‘run’ space also; we’ll cover this in more
detail in the “Advanced Topics” section of this
application note.

What is an Overlay Manager?

An overlay manager is responsible for
controlling the fetching and loading of an
overlay module into internal memory. For code
overlay modules (or functions), the overlay
manager is also responsible for telling the main
program (or the ‘caller’ of the overlay function)
the correct target address to ‘jump’ to after the
overlay has been loaded. Also, an overlay
manager is responsible for any housekeeping or

additional memory management required by the
main program or calling function.

A simple model of an overlay manager would
perform the following tasks:

• Identify the desired overlay module by
getting the ID# of the overlay.

• Assign the appropriate live/run addresses
and sizes to the DMA engine to properly
load the overlay into internal ‘run’ space
from external ‘live’ space.

• Invalidate and flush the instruction
cache. (This is very important because
we don’t want the overlay manager
“polluting” the cache when we return
back to our main program.)

• Return back to the main program or the
‘calling’ function of the overlay.

A more elaborate overlay manager would
perform all of the above tasks as well as these
additional tasks listed below:

• Perform a context save/restore of all of
the registers used by the overlay manager
(via a software stack located in the
DSP’s internal Data Memory).

• Check to see if the requested overlay is
already present in its ‘run’ space. If so,
then jump to the target ‘run’ address of
the overlay (if the desired overlay is a
code overlay module), or return to the
calling function of main program (if the
desired overlay is a data overlay
module.)

• Perform any memory management
“housekeeping” tasks before returning to
the main program or calling function.

An overlay manager should be written in an
optimized manner to ensure that the minimum
number of instruction cycles is required to
execute it. The overlay manager is responsible

EE-152 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

for managing the DSP’s internal memory only;
just like an Interrupt Subroutine (ISR), you want
to spend the least amount of cycles in the
overlay manager, and the majority of the
processor’s time running actual DSP code.
Remember that we’re developing code for a
real-time system here! Another obvious point to
mention here is that the overlay manager code
should reside in the DSP’s internal memory, not
in an overlay run segment where it could get
overwritten. The overlay manager also should
not reside in external memory, since the
latencies due to executing code through the EMI
would incur too much system overhead.

VisualDSP Support for Overlays

The VisualDSP development tools generate
overlay constants “automagically” which can be
used by your overlay manager to configure the
DMA parameter registers to load in the desired
overlay module. Also, the VisualDSP linker
automatically redirects overlay function calls to
a jump table, called a PLIT (or Procedure
Linkage Table; please refer to the section “What
Is A PLIT?” on page 6 of this document for
more information), which is used to setup the
overlay ID# and overlay run address parameters
which are passed from the PLIT to your overlay
manager. Basically, the PLIT is just a function
containing some user-generated assembly
instructions that are used to setup the call to the
overlay manager. We will explain the operation
of the PLIT and where it is located later in this
section.

The linker description file (LDF) is where the
user defines the memory architecture of their
system. It is within the LDF that you define both
internal and external memory segments.
Specifically for overlays, the LDF is where you
define the ‘live’ and ‘run’ memory segments for
each overlay module or file. (A complete
explanation of the LDF is beyond the scope of

this EE note. Here we only wish to illustrate the
LDF concepts that apply specifically to software
overlays. For more information on LDFs, please
refer to chapter 2 of the “Linker and Utilities
Manual for ADSP-21xx DSPs”.)

Figure 2: PM overlay ‘live’ address vs. ‘run’ address example

Figure 2 shows a simple software system where
there are three PM overlays defined in their own
individual ‘live’ segments in external memory.
All three of these overlays ‘run’ in the same
memory segment within the internal memory of
the DSP. Let’s look at an excerpt of what our
LDF would look like for this example:

dxe_seg_pm_ovl{
 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Function_1.ovl")
 INPUT_SECTIONS("Function_1.doj"(program))
 } >mem_pm_ovl1_liv_space

 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Function_2.ovl")
 INPUT_SECTIONS("Function_2.doj"(program))
 } >mem_pm_ovl2_liv_space

 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Function_3.ovl")
 INPUT_SECTIONS("Function_3.doj"(program))
 } >mem_pm_ovl3_liv_space
} >mem_pm_ovl_run_space

Example 1: LDF ‘Live’ and ‘Run’ Space Declarations

EE-152 Page 5
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

The first thing to notice is that each overlay
declaration in the LDF has an input and an
output section. The inputs to the overlay are
declared within the scope of the overlay
definition in the LDF via the curly braces. The
main thing to be aware of is the use of the
“INPUT_SECTIONS” LDF macro which tells
the linker that this specific section from the
specified input file is to be used as an input for
this overlay segment.

The output of the overlay is defined using the
redirect input symbol “>”; this redirection tells
the linker where in memory to place this overlay
(‘live’ space). For our example in Figure 2, the
first overlay declaration links the object file
“Function_1.doj” (which is the output file
generated after assembling the source file
“Function_1.asm”) into the overlay ‘live’ space
named ‘mem_pm_ovl1_live_space’.

The overlay run space from Figure 2 is defined
at the last line of this excerpt. Therefore, all
three of the overlays declared in this section of
the LDF are declared in the LDF to run in the
overlay ‘run’ memory segment named
“mem_pm_ovl_run_space”. The overlay ‘live’
and ‘run’ address segments are defined earlier in
the MEMORY{} section of the LDF.

Linker Generated Overlay Constants

As mentioned earlier in this EE note, soft
overlays have the following attributes; an
overlay ID#, ‘live’ address, ‘run’ address, ‘live’
size, and lastly, a ‘run’ size. For each program
memory overlay segment, the linker will
generate the following constants, (where N is
the ID# of the overlay):

_ov_startaddress_N
_ov_word_run_size_ N
_ov_word_live_size_ N
_ov_runtimestartaddress_ N

Example 2: Linker Generated Overlay Constants Example

The first constant, “_ov_startaddress_N”,
represents the ‘live’ or external address where
the overlay resides. The second and third
constants represent the ‘run’ and ‘live’ sizes of
the desired overlay. For the ADSP-2191, these
two values are (and must) be the same. The
reason for this is simple; the hardware logic of
the 2191’s EMI takes care of all of the data
packing for you. So regardless of the external
data bus width configuration (8-bits or 16-bits),
or the memory access type (24-bit PM or 16-bit
DM), the internal and external memory word
sizes are the same as far as the ADSP-2191 is
concerned. The last overlay constant represents
the ‘run’ address where the overlay will reside
in the DSP’s internal memory.

These linker generated overlay constants can be
stored in arrays that can be accessed at runtime
by your overlay manager to facilitate the loading
of these overlays into internal memory. For
example, if you had a system with two code
overlays, you would declare the overlay constant
arrays in a fashion like what is shown in the
following example:

.section/pm seg_pmdata;

.extern _ov_startaddress_1, _ov_startaddress_2;
.extern _ov_word_run_size_1, _ov_word_run_size_2;
.extern _ov_word_live_size_1, _ov_word_live_size_2;
.extern _ov_runtimestartaddress_1, _ov_runtimestartaddress_2;

.var/init24 liveAddresses[2] = _ov_startaddress_1,

_ov_startaddress_2;

.var runAddresses[NUM_OVLY] = _ov_runtimestartaddress_1,

_ov_runtimestartaddress_2;

.var runWordSize[NUM_OVLY] = _ov_word_size_run_1,

_ov_word_size_run_2;

.var liveWordSize[NUM_OVLY] = _ov_word_size_live_1,

_ov_word_size_live_2;

.global liveAddresses;
.global runAddresses;
.global runWordSize;
.global liveWordSize;

Example 3: PM Buffer Declarations of Overlay Constants

EE-152 Page 6
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

From this example we see how these linker
generated overlay constants are arranged for use
by the overlay manager. The overlay constants
are first declared as external data types to the
scope of this file via the “.extern” assembler
directive. This is necessary because these
constants are generated by the linker in the
overlay output file (.ovl) and are referenced
from that file.

One very important point to mention here is
with how the overlay ‘live’ address constants
are defined. Since the ADSP-2191 has a 22-bit
external address bus, and since the live space for
the overlays in our system are declared to reside
in external memory, the linker generated
constants for the overlay ‘live’ addresses must
be stored in a 24-bit PM buffer, and initialized
using the “/init24” assembler directive.

(For this linker generated constants example,
we’ve also declared all of these constant arrays
as globals since the declaration of these arrays
exists outside of the file which contains the
overlay manager code, which references these
arrays.)

What is a PLIT?

As defined by the “VisualDSP Linker and
Utilities Manual for ADSP-21xx DSPs”, a PLIT
is a template of instructions from which the
linker generates code to set up the information
necessary to support the DSP program’s overlay
manager. Every branch instruction that
references a global label defined in an overlay is
replaced by a call to this generated code. For
each overlay routine in the program, the linker
builds and stores a list of PLIT instances
according to that template, as it builds its
executable.

The code for the PLIT is written by the
programmer in the reserved PLIT section of the

linker description file (LDF) in the project. A
simple PLIT merely copies the ‘run’ address of
the called symbol that resides in the overlay and
the overlay ID# into user-defined registers.
Below is a simple PLIT example taken from an
arbitrary overlay LDF:

PLIT{
 ax0 = PLIT_SYMBOL_OVERLAYID;
 ay0 = PLIT_SYMBOL_ADDRESS;
 jump Overlay_Manager;
}

Example 4: Simple LDF PLIT Entry Example

From the above example, we see that the
registers ax0 and ay0 are used to fetch the
overlay ID# and ‘run’ address, respectively.
A more practical example would be where the
registers used by the PLIT function are saved off
by the PLIT before consuming these registers to
properly set up the overlay manager. Here is a
simple example below:

PLIT{
 dm(save_ax0) = ax0;
 dm(save_ay0) = ay0;
 ax0 = PLIT_SYMBOL_OVERLAYID;
 ay0 = PLIT_SYMBOL_ADDRESS;
 jump Overlay_Manager;
}

Example 5: Context Save LDF PLIT Entry Example

Aside from containing user-defined code, the
PLIT is also a section in the DSP’s Program
Memory where the linker generates a jump table
containing references to all of the overlay
function labels. This jump table we refer to as a
PLIT table. The next section explains how the
linker adds additional code to facilitate the
actual call and/or loading of the overlay function
to allow the program sequencer to begin
execution of the overlay code, and how the PLIT
table is invoked and comes into play during
program execution.

EE-152 Page 7
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

How is an overlay actually called?

In your source code, calling a function that
resides in an overlay (in order to invoke the
overlay manager to load the overlay code into
the DSP’s internal memory) is implemented in
your source code in the same manner that you
would call an ordinary (i.e. non-overlay)
function. For example,

 call my_function;

The difference between a non-overlay function
call and an overlay function call is that the
linker actually replaces the function call with a
call to the PLIT entry for the desired overlay
function. For example, an overlay function call
from assembly like the following:

 call function_1;

Actually gets replaced by a call to the PLIT by
the following code:

 call .plt_function_1;

Each overlay module that we declared in our
LDF gets its own unique copy of the PLIT entry
that was defined in our LDF. For example, let’s
say in our system we have three code overlays
declared, and we have a simple PLIT declared in
our LDF as shown in Example 4 above. Then
the corresponding PLIT table for our three
overlays would look like the following:

.plt_function_1:
 ax0 = 0x0001;
 ay0 = 0x0400;
 jump Overlay_Manager;

.plt_function_2:
 ax0 = 0x0002;
 ay0 = 0x0400;
 jump Overlay_Manager;

Example 6: Three Code Overlay Segments PLIT Table Example

.plt_function_3:
 ax0 = 0x0003;
 ay0 = 0x0400;
 jump Overlay_Manager;

Example 6: (continued)

Therefore, the total memory size of your PLIT
table in the DSP’s Program Memory will be the
number of code overlays in your system
multiplied by the number of assembly
instructions contained in the PLIT{} declaration
in your LDF.

Looking at Example 6 (and referring back to our
PLIT declaration from Example 4, where the
register ax0 is defined as containing the overlay
ID number), we can see that each overlay has its
own unique ID number; ‘function_1’ has the
value ‘0x0001’ as its overlay ID number,
function ‘function_2’ has an ID of ‘0x002’, etc.
We also see that all three of these overlays share
the same run address, which is passed as a
parameter to the overlay manager in the register
ay0. Lastly, the jump instruction for each PLIT
table entry is a jump to the overlay manager
itself.

Simple Overlay Manager Example

Example 7 below contains example assembly
source code showing one implementation of a
‘simple’ overlay manager. This overlay manager
example is broken up into six different sections;
we’ll discuss each section in detail to explain
how this simple overlay manager example
works.

Overlay_Manager:
 ar = ax0 - 1;

m7 = ar;
dm(curr_PM_ovly_ID) = ar;

dm(WR_DMA_DESC_BLOCK+2) = ay0;

Get_Overlay_Run_Size:

i7 = runWordSize;
ax0 = dm(i7 + m7);

Example 7: Simple Overlay Manager

EE-152 Page 8
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

ar = ax0;
ar = ar - 1;
dm(WR_DMA_DESC_BLOCK+3) = ar;
dm(RD_DMA_DESC_BLOCK+3) = ar;

Parse_Live_Address:

i7 = liveAddresses;
ar = pm(i7 + m7);
sr = lshift ar by 0x8 (lo);
ar = px;
sr = sr or lshift ar by 0x0 (lo);
i7 = sr0;
ar = i7;
ar = ar + 1;

DMA_Config:

dm(RD_DMA_DESC_BLOCK+2) = ar;
dm(RD_DMA_DESC_BLOCK+1) = sr1;
ax0 = 0x800f;
dm(WR_DMA_DESC_BLOCK) = ax0;
ax0 = 0x800d;
dm(RD_DMA_DESC_BLOCK) = ax0;
ax0 = end_dma;
dm(WR_DMA_DESC_BLOCK+4) = ax0;
dm(RD_DMA_DESC_BLOCK+4) = ax0;
iopg = Memory_DMA_Controller_Page;
ax0 = WR_DMA_DESC_BLOCK;
io(DMACW_CP) = ax0;
ax0 = RD_DMA_DESC_BLOCK;
io(DMACR_CP) = ax0;
ax0 = 0x1;
io(DMACW_CPR) = ax0;
io(DMACR_CPR) = ax0;
io(DMACW_CFG) = ax0;
io(DMACR_CFG) = ax0;
ena int;

Wait_For_Overlay:
idle;

Jump_To_Overlay:

i7 = ay0;
jump (i7);

Example 7: Simple Overlay Manager (cont’d)

Let’s take a look at this code section by section
to determine what the overlay manager is
actually doing. (Keep in mind that this is a
simple overlay manager example; we’ll build on
this example and explain more overlay manager
concepts in further detail later on in this EE
note.)
The section “Overlay_Manager” is the address
label where the overlay manager gets invoked

via a “jump Overlay_Manager;” instruction
which is from the PLIT table.

Before we execute the first line of code from
this overlay manager example, there is an
important point to mention here first; the
register ax0 contains the overlay ID# of the
desired overlay that we wish to fetch. This point
is important because we need to subtract 1 from
the overlay ID# in order to use the register m7
as an index to the array of the linker generated
overlay constants.

Think of this as the same manner you would
with an array in C. The first element in a C array
is actually index zero, even though it’s still the
first array element. (This is commonly known as
an “off by one” error when indexing arrays in C;
the same case applies here for our overlay
constants and its appropriate ID value.)

Since the register ay0 already contains the ‘run
address’ of the desired overlay (via the PLIT
assignment, “ay0 = PLIT_SYMBOL_ADDRESS;”),
we simply assign this value to the address field
of our Write DMA Descriptor Block. (For more
information on the configuration and use of
DMA Descriptors, please refer to the sections
titled “Descriptor-Based DMA Transfers” and
“Code Example: Internal Memory DMA”, on
pages 6-4 and 6-33, respectively, of the “ADSP-
219x/2191 DSP Hardware Reference”.)

The next section of our overlay manager,
labeled “Get_Overlay_Run_Size”, is where we
again use the m7 register as an offset into the
‘runWordSize’ array, which contains the ‘run’
size of the overlay we wish to fetch. One
important point to mention here is that the
overlay run size actually contains an additional
word, which is the overlay ID number itself.
Because of this, we must subtract one from the
actual run size of the overlay stored in the
‘runWordSize’ array. This is performed in the

EE-152 Page 9
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

instruction “ar = ar – 1;”. Once we get the
proper size for the overlay, we then place this
value into the MEMDMA read and write
descriptors at the last two instructions of this
section.

In the next section, labeled Parse_Live_Address,
we take the 24-bit ‘live’ address of the overlay
and break it up into its respective 8-bit page
value and 16-bit address offset. We implement
this by taking the 16 MSBs of the 24-bit ‘live’
address value into the AR register, using AR as
an input to the shifter register SR0, and then
shifting this value 8 bit positions to the left,
filling up the 8 LSBs of the SR1 register. We
then “OR” the remaining 8-bits of the ‘live’
address that were stored in the PX register from
the 24-bit PM fetch, to get the proper 16-bit
address offset value. Figure 3 below shows the
operation of this procedure to properly parse the
live address into the appropriate page and offset
values.

Figure 3: Parsing Overlay Live Address Example

(Remember that because the ADSP-2191’s
opcodes are always 24-bits in length, the
complete 24-bit address cannot be fully
contained in a 16-bit register, nor can it be fully
contained in an opcode. Therefore all external

memory addresses are broken up into an 8-bit
page value and a 16-bit address offset.)

The next section labeled “DMA_Config” is
where we initialize the remainder of the DMA
Descriptors for the read and write DMA
channels to kick off the DMA that will fetch the
overlay from external memory and place it into
the proper internal memory addresses. After
kicking off the DMA, we simply sit at the
“idle;” instruction and wait until we get a MEM
DMA interrupt.

After servicing the interrupt, we return to
execution of the overlay manager at the next
instruction, which is in the section labeled,
“Jump_To_Overlay”. In this section, we simply
load the ‘run’ address of the overlay that we’ve
just DMA’ed into internal memory into the I7
register, and then begin execution of the overlay
via the “jump (i7);” instruction.

Overlay Manager Optimizations

The simple overlay manager example we just
dissected is what its name implies; a “simple”
overlay manager. In this section, we’ll talk about
optimization techniques to make our overlay
manager more robust for our system design.

The first thing to mention is that our overlay
manager example didn’t perform a context save
and restore of the registers that it corrupted. You
have two options; you can both create and
manage a software stack (used primarily by your
overlay manager), or you can use the secondary
computational and DAG registers. But, as with
many things in life, there are trade-offs between
both of these implementations.

Using the secondary registers is the fastest
method for context switching, but since most
real-time systems use the secondary registers for
interrupt subroutines (ISRs) to minimize their

EE-152 Page 10
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

overhead, using these registers for your overlay
manager may not be beneficial. Disabling
interrupts for the sections of your overlay
manager which use the secondary registers may
not be practical unless you have a very low
number of external interrupts occurring in your
system or if your interrupts are deterministic
(like the timer, for example.)

A software stack implementation is therefore
more robust than using secondary registers,
since it allows for the overlay manager to be
interrupted during its execution. The overhead
incurred by a software stack should only amount
to the number of cycles needed to save and
restore only the registers that are used by the
overlay manager; saving all of the core registers
is overkill.

Overlay_Manager:
 dm(ov_stack) = ax0;

ax0 = dmpg2;
dm(ov_stack+1) = ax0;
dm(ov_stack+2) = ar;
dm(ov_stack+3) = m7;
dm(ov_stack+4) = i7;
dm(ov_stack+5) = sr0;
dm(ov_stack+6) = sr1;
dm(ov_stack+7) = sr2;
ax0 = iopg;
dm(ov_stack+8) = ax0;
dmpg2 = 0;
ax0 = dm(ov_stack);
ar = ax0 - 1;
m7 = ar;
dm(curr_PM_ovly_ID) = ar;
dm(WR_DMA_DESC_BLOCK+2) = ay0;
...

Example 8: Overlay Stack Register Context Save Example

Example 8 above shows example code that we
can add to the very beginning of the ‘simple’
overlay manager example that was given in
example 7. Example 9 shows an implementation
on performing a context restore of the registers
used by our overlay manager from the overlay
software stack:

…

Context_Restore:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;
 flush cache;

Jump_To_Overlay:
 i7 = ay0;
 jump (i7) (db);
 i7 = dm(ov_stack+4);
 ar = dm(ov_stack+2);

Example 9: Overlay Stack Register Context Restore Example

Another optimization implementation is to have
your overlay manager check to see if the desired
overlay function already resides in internal PM
of the DSP. All that is needed to implement this
is a data variable that can be updated by the
overlay manager with the desired overlay’s ID
number once the overlay has been loaded into
the DSP’s internal memory. Also, some simple
code to compare the overlay ID that we wish to
fetch versus the overlay ID that already resides
in the DSP’s internal memory is needed.

Is_Ovly_Loaded_Already:
 ax0 = m7;
 ay1 = dm(curr_PM_ovly_ID);
 ar = ax0 – ay1;
 dm(curr_PM_ovly_ID) = m7;
 if eq jump Goto_PM_Run_1;

…

Example 10: Overlay Load Verification Example

Example 10 above shows a simple method of
comparing the overlay that we wish to fetch
(stored in register ax0) with the current overlay
ID number of the overlay that’s currently in the
PM overlay ‘run’ segment of the DSP (stored in
register ay1).

At the end of this code snippet, we simply
compare registers ax0 and ay1 by subtracting

EE-152 Page 11
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

them; if they’re the same, then subtracting them
will result in a zero value. If the result is zero,
then we jump to the section in the overlay
manager code labeled “Goto_PM_Run_1”,
which is the section where the overlay manager
loads the ‘run’ address of the overlay into
register i7, which is used to begin execution of
the overlay function via the “jump (i7);”
instruction. If the result of subtracting the ax0
and ay0 registers is not zero, then we simply
execute the overlay manager, like before, to load
in the desired overlay via MEM DMA.

Goto_PM_Run_1:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;

 flush cache;

 i7 = ay0;
 jump (i7) (db);
 ar = dm(ov_stack+2);
 i7 = dm(ov_stack+4);

Example 11: Overlay Manager for Overlay ‘Run’ Space ‘Hit’

Example 11 above shows the portion of the
overlay manager that gets executed if the desired
overlay function has already been found to
reside in the overlay ‘run’ memory space. Here
we see that this code simply performs a context
restore of the registers used by the overlay
manager. Also, the ‘run’ address of the overlay
function is found (from the ‘runAddresses’
buffer stored in DM), and this value is loaded
into the i7 DAG register which is used to jump
to the overlay function and begin its execution.

A Complete Overlay Manager Example

Now that we’ve broken up our “enhanced”
overlay manager, let’s list it here below in its
entirety…

Overlay_Manager:
 dm(ov_stack) = ax0;
 ax0 = dmpg2;
 dm(ov_stack+1) = ax0;
 dm(ov_stack+2) = ar;
 dm(ov_stack+3) = m7;
 dm(ov_stack+4) = i7;
 dm(ov_stack+5) = sr0;
 dm(ov_stack+6) = sr1;
 dm(ov_stack+7) = sr2;
 ax0 = iopg;
 dm(ov_stack+8) = ax0;

Find_Overlay:
 dmpg2 = 0;
 ax0 = dm(ov_stack);
 ar = ax0 - 1;
 m7 = ar;

Is_Ovly_Loaded_Already:
 ax0 = m7;
 ay0 = dm(curr_PM_ovly_ID);
 ar = ax0 – ay1;
 dm(curr_PM_ovly_ID) = m7;
 if eq jump Goto_PM_Run_1;

Get_Run_Address:
 dm(WR_DMA_DESC_BLOCK+2) = ay0;

Parse_Live_Address:
 i7 = runWordSize;
 ax0 = dm(i7 + m7);
 ar = ax0;
 ar = ar - 1;
 dm(WR_DMA_DESC_BLOCK+3) = ar;
 dm(RD_DMA_DESC_BLOCK+3) = ar;

 i7 = liveAddresses;
 ar = pm(i7 + m7);
 sr = lshift ar by 0x8 (lo);
 ar = px;
 sr = sr or lshift ar by 0x0 (lo);
 i7 = sr0;
 ar = i7;
 ar = ar + 1;
 dm(RD_DMA_DESC_BLOCK+2) = ar;
 dm(RD_DMA_DESC_BLOCK+1) = sr1;

ax0 = 0x800f;
 dm(WR_DMA_DESC_BLOCK) = ax0;

Example 12: Complete Overlay Manager Example

EE-152 Page 12
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

 ax0 = 0x800d;
 dm(RD_DMA_DESC_BLOCK) = ax0;
 ax0 = end_dma;
 dm(WR_DMA_DESC_BLOCK+4) = ax0;
 dm(RD_DMA_DESC_BLOCK+4) = ax0;

Start_DMA:
 iopg = Memory_DMA_Controller_Page;
 ax0 = WR_DMA_DESC_BLOCK;
 io(DMACW_CP) = ax0;
 ax0 = RD_DMA_DESC_BLOCK;
 io(DMACR_CP) = ax0;
 ax0 = 0x1;
 io(DMACW_CPR) = ax0;
 io(DMACR_CPR) = ax0;
 io(DMACW_CFG) = ax0;
 io(DMACR_CFG) = ax0;
 ena int;
 idle;

Context_Restore:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;
 flush cache;

Jump_To_Caller:
 i7 = ay0;
 jump (i7) (db);
 i7 = dm(ov_stack+4);
 ar = dm(ov_stack+2);

Goto_PM_Run_1:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;

 flush cache;

 i7 = ay0;
 jump (i7) (db);
 ar = dm(ov_stack+2);
 i7 = dm(ov_stack+4);

Example 12: Continued

Advanced Tips and Tricks

Now that we’ve covered the basics as well as
some more robust examples on how to add self-
checking code into your overlay manager, let’s
take a look at some more advanced tips and
tricks that can help improve the performance of
your software overlay system. (The topics
covered in this section apply to some special
cases that can be used to your advantage when
your software system meets these specific
criterions.)

Having a greater number of overlay functions
that are smaller in size has two main advantages.
First, having smaller functions means that
system latency will be minimized since the
DMA controller has less data to fetch from
external memory at any given time. (This is also
important if your code requires the use of the
external memory interface at the same time that
a DMA may occur.)

Secondly, having smaller overlay functions
means that you can have more than a single
overlay ‘run’ space in the DSP. Having multiple
run spaces not only allows for greater
granularity with your memory partitioning, but
also increases the associativity of your overlay
run spaces, which can improve the amount of
time that each overlay resides in internal DSP
memory. Think of this example in the same
manner as you would with an instruction cache;
increasing the associativity of the cache (to a
practical degree) will increase the cache hit
performance ratio, since multiple code sections
can reside within the cache at the same time.
The same situation applies for overlays that
reside in different run spaces of the DSP’s
program memory.

EE-152 Page 13
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Multiple Overlay “Run” Segments

This next section will highlight an overlay
example that uses two overlay ‘run’ space
segments within the DSP’s internal program
memory region. We’ll discuss how to configure
the LDF and the overlay manager to implement
this in detail as well.

Figure 4: Two PM Overlay ‘Run’ Segments Example

Figure 4 shows a diagram depicting four overlay
functions that reside in external memory. The
DSP’s internal memory is partitioned into two
distinct segments for the ‘run’ segments of the
overlay functions. The overlay functions named
“Function_1” and “Function_2” occupy the first
overlay memory ‘run’ segment inside of the
DSP at runtime, and the other two overlay
functions, “Function_3” and “Function_4”, will
execute from the second overlay ‘run’ segment.

Example 13 below shows an excerpt from our
LDF file. Here we see the two internal memory
segments that we define as the two distinct
overlay ‘run’ segments; they’re labeled as mem_
ovl_run_space1 and mem_ovl_run_space2. For
the ‘live’ address declarations of the overlay
functions, we see that each function has its own
external ‘live’ memory segment defined for it as
well, therefore we have defined four external

‘live’ address regions for the four overlay
functions.

MEMORY{
 …
 // "run" address regions for PM soft overlay functions
 mem_ ovl_run_space1{TYPE(PM RAM) START(0x000400)
 END(0x003fff) WIDTH(24)}
 mem_ ovl_run_space 2{TYPE(PM RAM) START(0x004000)
 END(0x007fff) WIDTH(24)}
 ...
 // "live" address regions for PM soft overlay functions
 mem_ovl1_liv_space{TYPE(PM RAM) START(0x200000)
 END(0x2000ff) WIDTH(24)}
 mem_ovl2_liv_space{TYPE(PM RAM) START(0x200100)
 END(0x2001ff) WIDTH(24)}
 mem_ovl3_liv_space{TYPE(PM RAM) START(0x200200)
 END(0x2002ff) WIDTH(24)}
 mem_ovl4_liv_space{TYPE(PM RAM) START(0x200300)
 END(0x2003ff) WIDTH(24)}
}

Example 13: Two PM ‘Run’ Segments LDF Memory Example

Next, we’ll take a look at another excerpt from
our LDF where we define which overlay
functions get linked to which specific overlay
‘run’ segment within the internal memory of our
DSP. Example 14 below shows how we
implement this. We can see, for example how
the overlay functions named “Function_1” and
“Function_2” are declared within the scope of
the memory segment “mem_ovl_run_space1”;
this is how we map our overlay function objects
(and their respective overlay ‘live’ segments) to
the desired overlay ‘run’ segment internal to the
DSP.

dxe_seg_pm_ovl1{
 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Function_1.ovl")
 INPUT_SECTIONS("Function_1.doj"(seg_code))
 } >mem_ovl1_liv_space

 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Function_2.ovl")
 INPUT_SECTIONS("Function_2.doj"(seg_code))
 } >mem_ovl2_liv_space
}> mem_ovl_run_space1

Example 14: Mapping Overlay Run Spaces to Live Spaces

EE-152 Page 14
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

dxe_seg_pm_ovl2{
 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Function_3.ovl")

INPUT_SECTIONS("Function_3.doj"(seg_code))
 } >mem_ovl3_liv_space

 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Function_4.ovl")
 INPUT_SECTIONS("Function_4.doj"(seg_code))
 } >mem_ovl4_liv_space
}> mem_seg_pm_ovl2

Example 14: Continued

Next, we’ll talk about what we need to do to our
overlay manager in order for it to work with
these additional ‘run’ segments. The first thing
we need to do is define two data variables which
will be responsible for containing the overlay ID
for each of the respective overlay ‘run’ segments
that these variables represent. We’ll call them
‘curr_PM_ovly_ID1’ and ‘curr_PM_ovly_ID2’.
(We’ll also initialize both of these variables to
0xffff, assuming that we’re not going to have
65536 overlay functions for each run segment!)

The overlay manager needs to compare these
two variables against the overlay ID number that
we desire during runtime; if the desired ID
matches one of the overlay ID numbers, then
that means the desired overlay already resides
within the DSP’s memory, and therefore we
simply jump to the run address of that overlay.
Example 15 shows an excerpt from the overlay
manager that performs this overlay ID checking:

Overlay_Manager:
 dm(ov_stack) = ax0;
 ax0 = dmpg2;
 dm(ov_stack+1) = ax0;
 dm(ov_stack+2) = ar;
 dm(ov_stack+3) = m7;
 dm(ov_stack+4) = i7;
 dm(ov_stack+5) = sr0;
 dm(ov_stack+6) = sr1;
 dm(ov_stack+7) = sr2;
 ax0 = iopg;
 dm(ov_stack+8) = ax0;

Example 15: ID Checking Overlay Manager Excerpt

Find_Overlay:
 dmpg2 = 0;
 ax0 = dm(ov_stack);
 ar = ax0 - 1;
 m7 = ar;

Is_Ovly1_Loaded_Already:
 ax0 = m7;
 ay0 = dm(curr_PM_ovly_ID1);
 ar = ax0 - ay0;
 if eq jump Goto_PM_Run_1;

Is_Ovly2_Loaded_Already:
 ay0 = dm(curr_PM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump Goto_PM_Run_2;

Example 15: Continued

If after executing this portion of the overlay
manager we find that the overlay that we desire
from our main program (or another calling
function), then we must find the run address of
the overlay function to determine which overlay
run segment to place it. In example 16 below, at
the label “Set_Ovly_ID”, we know that the
second overlay run segment starts at address PM
0x4000. Therefore, we assign this value to
register ay0 and compare this to the run address
of the desired overlay, which is stored in register
ax0, by subtracting the two registers. If the
result is zero, then we know that the desired
overlay should be loaded into and execute from
the second overlay run segment.

Get_Run_Address:
 i7 = runAddresses;
 ax0 = pm(i7 + m7);
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 dm(ov_stack+19) = ax0;

Set_Ovly_ID:
 ay0 = 0x4000;
 ar = ax0 - ay0;
 if eq jump Set_Ovly_ID2;

Set_Ovly_ID1:
 dm(curr_PM_ovly_ID1) = m7;
 jump Parse_Live_Address;

Set_Ovly_ID2:
 dm(curr_PM_ovly_ID2) = m7;

Example 16: Setting Overlay Run ID Variables

EE-152 Page 15
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Since the size of the entire overlay manager
example that we’ve discussed in this section is a
bit too large to show here, please refer to
Appendix A where this overlay manager is
listed in its entirety.

Least Recently Used (LRU) Overlay Manager

For our next “advanced” overlay manager
example, we’ll discuss some topics that may not
be suitable for every soft overlay application.
But there are some useful techniques covered
here to provide information for further
performance benefits for your software overlay
system.

First, you may have noticed that all the
references to soft overlays thus far have been
implicitly referring to code overlays only;
nothing specific has been mentioned about using
data overlays up to this point. At the time of this
writing, the VisualDSP development tools don’t
properly support the initialization of external
data overlays in memory. (Also, because the
PLIT supports ‘calls’ to functions, it’s not clear
at this time how to implement a ‘call’ to a data
segment; actually calling a data segment is
meaningless. Therefore we will declare and
initialize our data overlays as if they were just
ordinary external memory segments.)

In most cases the data segments will be static;
only the code will need to be dynamically
loaded during runtime. But some systems may
require the dynamic loading of data segments as
well; for example, a non-deterministic system
that needs to update its data segments at runtime
due to a decision based upon reading in a value
in an ISR that occurs at random intervals could
take advantage of this implementation.

In this section, we’ll discuss an example where
we define two distinct overlay ‘run’ segments
for code overlays, and two ‘run’ segments for

data overlays. The idea here is to use these
different memory segments as cache memory,
using the overlay manager as a crude cache
controller.

For our example, we’ll take advantage of a non-
deterministic system, by applying an LRU
scheme to our overlay manager to more
efficiently make use of the two distinct overlay
run segments for both code and data. The
advantage of using an LRU scheme is that the
code (or data) that you request most often will
be stored in internal memory; the code or data
that is used less-frequently will be replaced by
the code or data that is requested more
frequently. Therefore because the most-
commonly requested data resides in memory, an
increase in system performance is achieved.

Figure 5: LRU Overlay ‘Run’ Segments Example

For this example, we’ll have eight total overlay
modules in our system; four code overlays and
four data overlays. We’ll also define two
overlay ‘run’ segments for each of our code and
data overlays, resulting in a total of four overlay
‘run’ segments residing in the internal memory
of the DSP. Figure 5 above shows a conceptual
block diagram of this software system. From
this diagram, we can see how each overlay can
map to any of its two possible overlay ‘run’

EE-152 Page 16
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

spaces; this is quite different than the “Multiple
Overlay Run Segments” example that we
discussed in the previous section. The previous
example had multiple overlay run segments
which specified overlay modules were mapped
to at link time. For this example, the placement
of the overlay modules into the internal run
segments is performed at runtime via an LRU
memory replacement policy scheme.

One caveat to the LRU system that we wish to
implement is that since we’re declaring our
overlay functions as external functions versus
declaring them as overlay functions, we no
longer have the luxury of making the linker
generate the linker generated overlay constants
for us. Therefore, we must declare these
constants and buffers manually, which can be
quite cumbersome if a significant number of
overlays are declared. (Currently, this is the only
method for properly declaring data overlay
segments, so there is no wasted effort here as far
as data overlays are concerned.)

The ‘live’ and ‘run’ sizes for each of the
overlays can be determined by the linker
generated map file; therefore only the ‘live’
addresses for the overlay modules need to be
calculated by hand. But this information is
already known and defined in your LDF.)

Let us now take a look at our “LRU” overlay
manager in detail. The first thing that we need to
provide to the overlay manager are four memory
variables used to store the overlay ID for each
overlay ‘run’ region. We’ll declare these
variables below:

.section/dm seg_data;
.var curr_PM_ovly_ID1 = 0xffff;
.var curr_PM_ovly_ID2 = 0xffff;
.var curr_DM_ovly_ID1 = 0xffff;
.var curr_DM_ovly_ID2 = 0xffff;

Example 17: Overlay Segment ID Variables

.global curr_PM_ovly_ID1;

.global curr_PM_ovly_ID2;

.global curr_DM_ovly_ID1;

.global curr_DM_ovly_ID2;

Example 17 (continued)

As with our previous overlay manager example,
we’ll initialize these variables to the value
0xffff, since we’re assuming that there will be
less than 64k (!!) overlay modules defined for
each overlay ‘run’ segment.

Next, our overlay manager can use these
variables to determine whether the desired
overlay already resides within its own ‘run’
space.

Is_Ovly_Loaded_Already:
 ar = dm(ov_stack);
 ar = ar - 1;
 ax0 = ar;
 dm(ov_stack) = ar;
 ay0 = dm(curr_PM_ovly_ID1);
 ar = ax0 - ay0;
 if eq jump Goto_PM_Run_1;

 ay0 = dm(curr_PM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump Goto_PM_Run_2;

 ay0 = dm(curr_DM_ovly_ID1);
 ar = ax0 - ay0;
 if eq jump DM_Context_Restore;

 ay0 = dm(curr_PM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump DM_Context_Restore;

Example 18: Test for Overlay ID Hit

Here we see that the ID number of the overlay
that we desire is stored in register ax0, and the
value of the overlay IDs that are present in their
‘run’ segments within the DSP are stored in
register ay0. As before, we just subtract the two
registers to determine whether we have a hit or
not.

If the desired overlay ID doesn’t match any of
the IDs of the overlays that already reside in the
DSP’s memory, then the overlay manager must

EE-152 Page 17
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

then determine whether the desired overlay is a
code or data overlay, and which overlay ‘run’
segment it can overwrite to load in this overlay
module.

Determining whether the desired overlay is a
code or data overlay is fairly simple, but there is
a bit of user interaction required to achieve this.
The user simply must list all of the attributes of
the code overlays in the ‘liveAddresses’,
‘runWordSize’, and ‘liveWordSize’ buffers first
before the data overlays. This way you know the
total number of overlays in your system and the
total number of code overlays in your system.
Therefore, the difference between these two
values is the overlay ID number of the first data
overlay module. For example, if there are a total
of fifteen overlays in your system and you know
that ten of these overlays are code overlays, then
the remaining five overlays are for data.
Therefore, the overlay ID number of the first
data overlay module would be eleven. We then
can use this knowledge to find out if the desired
overlay is a code or data overlay.

#define TOTAL_NUM_OF_PM_OVLYS 4

Find_Overlay:
 dmpg2 = 0;
 m7 = dm(ov_stack);
 dm(ovly_ID_temp) = m7;
 ay0 = TOTAL_NUM_OF_PM_OVLYS;
 ar = ax0 - ay0;
 if le jump Check_PM_LRU;

Check_DM_LRU:
 …

Example 19: Code or Data Overlay Test Code Example

In example 19 above, we declared the total
number of code overlays using the “#define”
declaration at the top of the example. The ID
number of the desired overlay is already stored
in the ax0 register, so we simply subtract the
two values to determine whether the desired
overlay is a code (PM) or data (DM) module.

Now we must determine which overlay ‘run’
segment we should replace. This holds true
whether the desired overlay is code or data. Here
is where the LRU scheme comes into play.
Since we now have two overlay ‘run’ spaces for
code and two more for data, we need to define a
total of four variables to define the LRU
attribute for each overlay ‘run’ space.

.section/dm seg_data;
.var LRU_PM_Ovly_1 = 1;
.var LRU_PM_Ovly_2 = 1;
.var LRU_DM_Ovly_1 = 1;
.var LRU_DM_Ovly_2 = 1;

.global LRU_PM_Ovly_1 = 1;
.global LRU_PM_Ovly_2 = 1;
.global LRU_DM_Ovly_1 = 1;
.global LRU_DM_Ovly_2 = 1;

Example 20: LRU Variables For Overlay Run Segments

Assigning these LRU variables to one means
that the specified overlay run segment that the
LRU variable pertains to is “least recently used”
and therefore can be overwritten with a new
overlay module.

At this point, we’ve explained how the overlay
manager determines how and where to load an
overlay module into the DSP’s internal memory,
but we haven’t yet touched on the subject of
how the overlay manager exits itself to return to
the normal program flow.

The next issue our overlay manager must deal
with is exiting itself to either return to the main
program, if the desired overlay we’re requesting
is data, or jump to the overlay function itself, if
the desired overlay is program code. Here we
have an underlying issue; since we call the
overlay manager, a return address from the
overlay manager is placed on the PC stack.
(Remember that the address placed on the top of
the PC stack after a call instruction is executed
is the address of the instruction immediately
following the call instruction.)

EE-152 Page 18
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Therefore, in order to return to the normal
program flow, we must execute an “rts;”
instruction somewhere to restore the stack to its
proper state. Having stated this, we now have
two conditions; the first condition is if the
desired overlay is a data overlay or it’s an
overlay function that is not resident in an
internal “run” space, then we simply can execute
an “rts;” instruction at the end of the overlay
manager to exit it.

The second condition is if the desired overlay is
a function that is not resident in an internal
“run” space. In this case, we need to DMA the
overlay function into internal memory and then
jump to this function from the overlay manager
(instead of calling it). The only restriction here
is that the overlay function must have an “rts;”
instruction at the end of it to return our program
flow back to the main program. Example 21
below shows how we can implement this type of
scheme.

Jump_To_Caller:
 ax0 = dm(ov_stack);
 ay0 = TOTAL_NUM_OF_PM_OVLYS;
 ar = ax0 - ay0;
 if lt jump Goto_Target;
 rts (db);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;

Goto_Target:
 dm(ov_stack+18) = i7;
 i7 = dm(ov_stack+19);
 jump (i7) (db);
 i7 = dm(ov_stack+18);
 nop;

Example 21: Overlay Manager Exit Routine

Putting It All Together

So after all this, we finally have our complete
LRU Overlay manager. Example 22 below lists
it in its entirety.

#define TOTAL_NUM_OF_PM_OVLYS 4
#include "2191asm.h"

Overlay_Manager:
 ax0 = dmpg2;
 dm(ov_stack+1) = ax0;
 dm(ov_stack+2) = ar;
 dm(ov_stack+3) = m7;
 dm(ov_stack+4) = i7;
 dm(ov_stack+5) = sr0;
 dm(ov_stack+6) = sr1;
 dm(ov_stack+7) = sr2;
 ax0 = iopg;
 dm(ov_stack+8) = ax0;
 dm(ov_stack+9) = ay0;

Is_Ovly_Loaded_Already:
 ar = dm(ov_stack);
 ar = ar - 1;
 ax0 = ar;
 dm(ov_stack) = ar;
 ay0 = dm(curr_PM_ovly_ID1);
 ar = ax0 - ay0;
 if eq jump Goto_PM_Run_1;
 ay0 = dm(curr_PM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump Goto_PM_Run_2;
 ay0 = dm(curr_DM_ovly_ID1);
 ar = ax0 - ay0;
 if eq jump DM_Context_Restore;
 ay0 = dm(curr_DM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump DM_Context_Restore;

Find_Overlay:
 dmpg2 = 0;
 m7 = dm(ov_stack);
 dm(ovly_ID_temp) = m7;
 ay0 = TOTAL_NUM_OF_PM_OVLYS;
 ar = ax0 - ay0;
 if le jump Check_PM_LRU;

Check_DM_LRU:
 ar = dm(LRU_DM_Ovly_1);
 ar = ar - 1;
 if eq jump Load_DM_Ovly_Run_1;

Example 22: LRU Overlay Manager Example

EE-152 Page 19
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Load_DM_Ovly_Run_2:
 ax0 = 0xc000;
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 ax0 = 0x0000;
 dm(LRU_DM_Ovly_2) = ax0;
 ax0 = 0x0001;
 dm(LRU_DM_Ovly_1) = ax0;
 jump Load_DM_Ovly (db);
 ar = dm(ovly_ID_temp);
 dm(curr_DM_ovly_ID2) = ar;

Load_DM_Ovly_Run_1:
 ax0 = 0x9000;
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 ax0 = 0x0000;
 dm(LRU_DM_Ovly_1) = ax0;
 ax0 = 0x0001;
 dm(LRU_DM_Ovly_2) = ax0;
 ar = dm(ovly_ID_temp);
 dm(curr_DM_ovly_ID1) = ar;

Load_DM_Ovly:
 iopg = External_Memory_Interface_Page;
 ax0 = 0x0030;
 io(EMICTL) = ax0;
 iopg = External_Access_Bridge_Page;
 jump Parse_Live_Address (db);
 ax0 = 0x0000;
 io(E_STAT) = ax0;

Check_PM_LRU:
 ar = dm(LRU_PM_Ovly_1);
 ar = ar - 1;
 if eq jump Load_PM_Ovly_Run_1;

Load_PM_Ovly_Run_2:
 ax0 = 0x4000;
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 dm(ov_stack+19) = ax0;
 ax0 = 0x0000;
 dm(LRU_PM_Ovly_2) = ax0;
 ax0 = 0x0001;
 dm(LRU_PM_Ovly_1) = ax0;
 jump Load_PM_Ovly (db);
 ar = dm(ovly_ID_temp);
 dm(curr_PM_ovly_ID2) = ar;

Load_PM_Ovly_Run_1:
 ax0 = 0x0400;
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 dm(ov_stack+19) = ax0;
 ax0 = 0x0000;
 dm(LRU_PM_Ovly_1) = ax0;
 ax0 = 0x0001;
 dm(LRU_PM_Ovly_2) = ax0;
 ar = dm(ovly_ID_temp);
 dm(curr_PM_ovly_ID1) = ar;

Example 22: (continued)

Load_PM_Ovly:
 iopg = External_Memory_Interface_Page;
 ax0 = 0x0030;
 io(EMICTL) = ax0;
 iopg = External_Access_Bridge_Page;
 ax0 = 0x0008;
 io(E_STAT) = ax0;

Parse_Live_Address:
 i7 = runWordSize;
 ax0 = dm(i7 + m7);
 ar = ax0;
 dm(WR_DMA_DESC_BLOCK+3) = ar;
 dm(RD_DMA_DESC_BLOCK+3) = ar;
 i7 = liveAddresses;
 ar = pm(i7 + m7);
 sr = lshift ar by 0x8 (lo);
 ar = px;
 sr = sr or lshift ar by 0x0 (lo);
 i7 = sr0;
 ar = i7;
 dm(RD_DMA_DESC_BLOCK+2) = ar;
 dm(RD_DMA_DESC_BLOCK+1) = sr1;
 ax0 = 0x800f;
 dm(WR_DMA_DESC_BLOCK) = ax0;
 ax0 = 0x800d;
 dm(RD_DMA_DESC_BLOCK) = ax0;
 ax0 = end_dma;
 dm(WR_DMA_DESC_BLOCK+4) = ax0;
 dm(RD_DMA_DESC_BLOCK+4) = ax0;
 iopg = Memory_DMA_Controller_Page;
 ax0 = WR_DMA_DESC_BLOCK;
 io(DMACW_CP) = ax0;
 ax0 = RD_DMA_DESC_BLOCK;
 io(DMACR_CP) = ax0;
 ax0 = 0x1;
 io(DMACW_CPR) = ax0;
 io(DMACR_CPR) = ax0;
 io(DMACW_CFG) = ax0;
 io(DMACR_CFG) = ax0;
 ena int;
 idle;

Context_Restore:
 ay0 = dm(ov_stack+9);
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 i7 = dm(ov_stack+4);
 m7 = dm(ov_stack+3);
 ar = dm(ov_stack+2);
 flush cache;

Example 22: (continued)

EE-152 Page 20
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Jump_To_Caller:
 ax0 = dm(ov_stack);
 ay0 = TOTAL_NUM_OF_PM_OVLYS;
 ar = ax0 - ay0;
 if lt jump Goto_Target;
 rts (db);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;

Goto_Target:
 dm(ov_stack+18) = i7;
 i7 = dm(ov_stack+19);
 jump (i7) (db);
 i7 = dm(ov_stack+18);
 nop;

Goto_PM_Run_1:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;
 ay0 = dm(ov_stack+9);
 flush cache;
 i7 = 0x0400;
 jump (i7) (db);
 ar = dm(ov_stack+2);
 i7 = dm(ov_stack+4);

Goto_PM_Run_2:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;
 ay0 = dm(ov_stack+9);
 flush cache;
 i7 = 0x4000;
 jump (i7) (db);
 ar = dm(ov_stack+2);
 i7 = dm(ov_stack+4);

DM_Context_Restore:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;

Example 22: (continued)

ay0 = dm(ov_stack+9);
 flush cache;
 rts (db);
 i7 = dm(ov_stack+4);
 ar = dm(ov_stack+2);

Example 22: (continued)

Pre-emptive Overlay Loading

Until now, we have only covered how to call or
invoke an overlay when we need it. But in some
cases, to increase system performance it may be
beneficial to load in the overlay code or data
before it is needed. Fortunately for us, we
already have mechanisms built into our LRU
overlay manager to implement this. The only
part that requires some additional work on the
programmer is to know what overlay ID number
corresponds to which overlay code or data
module.

The first thing that we need to do is pass the
overlay ID number and the run address as input
parameters to our overlay manager. If you
remember from our PLIT entries, these two
values are passed in the ax0 and ay0 registers,
respectively. So now all we need to do is load
the appropriate values into these two registers
before invoking our overlay manager.

The next question is, “how do we decide which
overlay ID number gets mapped to which
overlay?” The answer is simple; the overlay ID
numbers are assigned in the exact order that you
define your overlays in the overlay input section
of your LDF.

For an example, the LDF excerpt below declares
three overlay functions named “Harry”, “Gus”,
and “Joe”, contained in the files “Harry.asm”,
“Joe.asm”, and “Gus.asm”, respectively. Since
the overlay functions are declared in the exact
order listed above, they will be assigned overlay
ID numbers in that specific order as well. In
other words, the code function “Harry” gets

EE-152 Page 21
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

assigned an ID number of 1, “Joe” an ID
number of two, and so on.

dxe_seg_pm_ovl{
 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Harry.ovl")
 INPUT_SECTIONS("Harry.doj"(seg_code))
 }>mem_ovl1_liv_space

 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Gus.ovl")
 INPUT_SECTIONS("Gus.doj"(seg_code))
 }>mem_ovl2_liv_space

 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Joe.ovl")
 INPUT_SECTIONS("Joe.doj"(seg_code))
 }>mem_ovl3_liv_space
}>mem_seg_pm_ovl

Example 23: Overlay Declarations and ID Mapping

The above LDF example explicitly links the
input source file with the overlay input segment.
Alternatively, these three overlay functions
could be linked to the overlay input segment via
the “$OBJECTS” LDF macro. One important
point to mention is that unique section names
must be used in this case to specifically map the
input file objects to the overlay input section.
Example 24 below shows this in more detail:

LDF File Excerpt:

dxe_seg_pm_ovl{
 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Harry.ovl")
 INPUT_SECTIONS($OBJECTS(seg_Harry))
 }>mem_ovl1_liv_space
 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Gus.ovl")
 INPUT_SECTIONS($OBJECTS (seg_Gus))
 }>mem_ovl2_liv_space
 OVERLAY_INPUT{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT("Joe.ovl")
 INPUT_SECTIONS($OBJECTS (seg_Joe))
 }>mem_ovl3_liv_space
}>mem_seg_pm_ovl

Harry.asm Excerpt:

.section/pm seg_Harry;
.global Harry;
Harry:
 …

Gus.asm Excerpt:

.section/pm seg_Gus;
.global Gus;
Gus:
 …

Joe.asm Excerpt:

.section/pm seg_Joe;
.global Joe;
Joe:
 …

Example 24: LDF Overlay Mapping and Source File Segment
Name Mapping

From the above example, we see that unique
segment names are used in the “.section/pm”
directive in each source file, as well as in the
“INPUT_SECTIONS($OBJECTS(…))” LDF macro. This
is how we explicitly map the objects from the
input section(s) named “seg_Harry” into the
overlay input section of the LDF. The same
protocol is true for the other two segment
names, “seg_Gus” and “seg_Joe”.

The “$OBJECTS” macro is assigned a listing of
all of the source files in the project via the
“$OBJECTS = $COMMAND_LINE_OBJECTS;” LDF
declaration. The “$COMMAND_LINE_OBJECTS”
LDF macro expands to a complete listing of all
of the source files in the project.

Again, in this example, the function “Harry”
would be assigned an overlay ID number of one,
“Gus” an ID of two, and “Joe” and ID of three.
This overlay ID number assignment is generated
in the specific order in which each overlay is
declared in the LDF. Now that we know the ID
numbers for all of the overlays in our system,
we can easily fetch them via the overlay
manager.

EE-152 Page 22
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Listed below is a simple macro definition for
invoking the overlay manager and some
additional definitions to make the code more
readable:

#define Harry 0x0001 // ID # for ‘Harry’ function
#define Gus 0x0002 // ID # for ‘Gus’ function
#define Joe 0x0003 // ID # for ‘Joe’ function

#define Fetch_Overlay(x) \
 dm(save_ax0) = ax0;\
 ax0 = x;\
 dm(ov_stack) = ax0;\
 call Overlay_Manager;\
 ax0 = dm(save_ax0);

Example 25: Overlay Macro Definitions

These macros can then be used in your main
program to pre-fetch or to perform a pre-
emptive load of the overlay. For example:

Main:
 …

Fetch_Overlay(Harry); // pre-fetch overlay function #1
…

Example 26: Using User-defined Macros for Overlay Support

Taking a closer look at this “Fetch_Overlay”
macro, we see that it performs a few simple
steps. First, it performs a context save of the ax0
register, then it reads in the overlay ID number
of the desired overlay and stores this into the
ax0 register. Next, the ax0 register is placed
onto the overlay stack, where this value will be
used by the overlay manager. After performing
all of this housekeeping, a call to the overlay
manager function is made.

Once the overlay manager has completed
execution, the program will return to the “ax0 =
dm(save_ax0);” instruction, where this macro
completes by performing a context save of the
ax0 register. From here the program can
continue, and if necessary, can make a call to the

function “Harry” without any performance
penalties, since this function already resides in
its overlay run space.

Least Frequently Used (LFU) Overlay Manager

For our final “advanced” overlay manager
example, we’ll discuss a different type of
replacement policy than LRU. The LRU
replacement policy takes advantage of your
application code’s temporal locality. In other
words, the code (or data) that you used most
recently will be present in memory thanks to the
exploitation of this replacement policy. The
downside of this is that because of your
instruction flow, you may have an overlay
module that you fetch or call more frequently
than others. With an LRU replacement policy,
this overlay module could be overwritten with
another overlay which is less frequently used
(but more recently used), which in some cases
may be undesired behavior.

A further optimization would be to keep the
more frequently used overlay module resident in
its respective overlay ‘run’ space. If we request
a new overlay, we overwrite the least frequently
used overlay that is resident in its respective
overlay run space instead. Let’s show a simple
instruction execution example below that will
help illustrate this scenario:

Figure 6: LRU vs. LFU Replacement Policy Example

EE-152 Page 23
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

From figure 6 above, we see that we have a
particular ordering to our instruction flow
(which may or may not be deterministic). (Also,
please note for this example that we have a two-
way associative overlay ‘run’ space. In other
words, any overlay can be mapped to one of the
two overlay run spaces at run time.) From this
example, we see that overlay 1 gets called three
times, overlay 2 gets called two times, and
overlays 3 and 4 get called only once. Because
overlays 1 and 2 get called more frequently than
the other two overlays, it would be beneficial
(from a system performance perspective) to
keep overlays 1 and 2 resident in their overlay
run spaces more frequently than overlays 3 and
4.

From figure 6 we can see from the instruction
flow which overlay module resides in the two
overlay run regions at that specific point in time.
Here we can clearly see that the LFU
replacement policy takes advantage of the fact
that overlays 1 and 2 are called more frequently,
since we can see that they are present in the run
spaces more times than with the LRU
replacement policy.

So how does this all work? First off, we’ll need
to keep a count of how many times each overlay
is called. We can implement this very easily by
keeping an array of count variables for each
overlay module. Here is an example below:

.section/dm seg_data;
.var ovly_module_fetch_count[7] = 0, 0, 0, 0, 0, 0, 0;

Example 27: Overlay Fetch Count Array Initialization

For this example, let’s say that we have a total
of seven overlay modules, comprised of four
overlay functions and three data overlay
modules. (Please note that this may be quite
cumbersome if your project has an appreciable
number of overlay modules.) This array will
allow us to keep a running count for each

overlay module every time we request it. An
array is used here (versus keeping separate count
variables for each overlay module) to simplify
things for our overlay manager, since we can use
a DAG index register and a modify register
(which contains the ID# of the desired overlay
module) to stride through this array to increment
the desired We initialize each element of this
array to zero, since at the beginning of our
program, none of the overlay modules have been
requested.

Now we need to implement an LFU algorithm
for our overlay manager. There are two steps
required to implement this:

1. Automatically increment the overlay count
value for the overlay module that we’re
fetching. (We automatically increment the
count value here because we know that
since we’re fetching the overlay module
that we’re going to immediately access it
whether it resides in an overlay run space
or not.)

2. Compare the overlay count values for each
of the overlay modules that currently reside
in both of the overlay ‘run’ memory
regions. Next, replace the overlay that has
the smaller overlay count value with the
new overlay that we desire. (If both of the
currently loaded overlays have the same
overlay count value, then use the LRU
replacement policy.)

Step one can be easily implemented. Listed
below are the instructions needed to
implement this:

Update_Overlay_Fetch_Count:
 i0 = ovly_module_fetch_count;
 m0 = dm(ov_stack);
 ar = dm(i0 + m0);
 ar = ar + 1;
 dm(i0 + m0) = ar;

Example 28: Updating Overlay Fetch Count

EE-152 Page 24
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

ar = tstbit 14 of ar;
if eq jump Is_Ovly_Loaded_Already;

Scale_Down_Count:
 m1 = 0;
 m2 = 1;
 cntr = TOTAL_NUM_OF_OVLYS;
 do Kill_Overflow until ce;
 ar = dm(i0, m1);
 sr = lshift ar by -1 (hi);
Kill_Overflow:
 dm(i0, m2) = sr1;

Restore_M1_Reg:
 m2 = dm(ov_stack+13);
 m1 = dm(ov_stack+12);

Is_Ovly_Loaded_Already:
...

Example 28: (continued)

From the code snippet in example 24, we see
that upon entering the overlay manager, we
automatically increment the desired overlay’s
fetch count. But you’ll also notice that there is
some additional code placed here for error
checking, starting at the address label called
“Scale_Down_Count”.

We have the additional code added here
because we want to ensure that our count value
doesn’t become a negative value (MSB = 1),
which would screw things up here because
we’re performing subtractions to compare the
count values of two overlay modules. Here we
want to ensure that we aren’t subtracting a
negative value, which would cause incorrect
behavior with our LFU replacement policy.
Actually, this portion of the overlay manager
checks the value of bit 14 to ensure that our
overlay count value doesn’t exceed 16k
(16384). If it does, then we simply scale down
all of our overlay count values by 2 in the loop
labeled “Kill_Overflow”.

Step two of our LFU algorithm is also fairly
straightforward. All we need to do is get the
overlay count values for the two overlay

modules that currently reside in the two
overlay run spaces for our example. We simply
load these two values into two registers and
subtract them to find the larger value. We then
just replace the overlay run space that contains
the overlay with the smaller overlay count
value with the new overlay module that we
desire.

But there is one caveat here; the first time
running through our code, both of the overlay
run spaces are empty (or more accurately,
filled with illegal data) and the current overlay
ID# variables for each of these overlay run
regions are initialized to 0xffff. Since we use
the overlay ID# variables as an offset for our
DAG index register when we’re initializing the
DMA parameter registers, we must ensure that
we’re not running off into the weeds and are
actually accessing the proper initialization
data!!

The first thing we check for is if we’re
executing our program for the first time. If we
are, then the current overlay ID# variables for
both overlay run spaces will be equal. (This is
the only time during program execution that
these variables will contain the same value.)
We simply compare these two variables and if
both of these values are the same, we know
that we’re just starting the program and
therefore we arbitrarily decide to load the
desired overlay into the first overlay run space.

The code from example 25 below shows the
portion of the overlay manager for fetching a
Program Memory overlay code module, but
the same algorithm applies for fetching a Data
Memory overlay module as well.

If we’re not executing the program for the first
time, then we simply compare the count values
for the two overlays that currently reside in
their respective run spaces. Here we see that if

EE-152 Page 25
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

both overlay count values are equal, then we
jump to the LRU subroutine; if one of the
values is greater than or less than the other,
then we simply jump to the subroutine to
overwrite the least-frequently used overlay
with the desired overlay via the DMA
parameter registers.

Check_PM_Overlay_First_Time:
 ax0 = dm(curr_PM_ovly_ID1);
 ay0 = dm(curr_PM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump Load_PM_Ovly_Run_1;

Compare_PM_Ovly_Count:
 m0 = dm(curr_PM_ovly_ID1);
 ax0 = dm(i0 + m0);
 m0 = dm(curr_PM_ovly_ID2);
 ay0 = dm(i0 + m0);
 ar = ax0 - ay0;
 if lt jump Load_PM_Ovly_Run_1;
 if gt jump Load_PM_Ovly_Run_2;

Check_PM_LRU:
…

Example 29: LFU Comparison Algorithm Code Example

Putting It All Together (Again)

So after all this, we finally have our complete
LRU Overlay manager. Example 26 below lists
it in its entirety.

#define TOTAL_NUM_OF_OVLYS 7
#define TOTAL_NUM_OF_PM_OVLYS 4

#include "2191asm.h"

.section/pm seg_code;

Overlay_Manager:
 ax0 = dmpg2;
 dm(ov_stack+1) = ax0;
 dm(ov_stack+2) = ar;
 dm(ov_stack+3) = m7;
 dm(ov_stack+4) = i7;
 dm(ov_stack+5) = sr0;
 dm(ov_stack+6) = sr1;
 dm(ov_stack+7) = sr2;
 ax0 = iopg;
 dm(ov_stack+8) = ax0;

Example 30: LFU Overlay Manager

 dm(ov_stack+9) = ay0;
 dm(ov_stack+10) = i0;
 dm(ov_stack+11) = m0;
 dm(ov_stack+12) = m1;
 dm(ov_stack+13) = m2;

Get_Overlay_ID_value:
 ar = dm(ov_stack);
 ar = ar - 1;
 ax0 = ar;
 dm(ov_stack) = ar;

Update_Overlay_Fetch_Count:
 i0 = ovly_module_fetch_count;
 m0 = dm(ov_stack);
 ar = dm(i0 + m0);
 ar = ar + 1;
 dm(i0 + m0) = ar;
 ar = tstbit 14 of ar;
 if eq jump Is_Ovly_Loaded_Already;

Scale_Down_Count:
 m1 = 0;
 m2 = 1;

 cntr = TOTAL_NUM_OF_OVLYS;
 do Kill_Overflow until ce;

 ar = dm(i0, m1);
 sr = lshift ar by -1 (hi);
Kill_Overflow:
 dm(i0, m2) = sr1;

Restore_M1_Reg:
 m2 = dm(ov_stack+13);
 m1 = dm(ov_stack+12);

Is_Ovly_Loaded_Already:
 ay0 = dm(curr_PM_ovly_ID1);
 ar = ax0 - ay0;
 if eq jump Goto_PM_Run_1;
 ay0 = dm(curr_PM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump Goto_PM_Run_2;
 ay0 = dm(curr_DM_ovly_ID1);
 ar = ax0 - ay0;
 if eq jump DM_Context_Restore;
 ay0 = dm(curr_DM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump DM_Context_Restore;

Find_Overlay:
 dmpg2 = 0;
 m7 = dm(ov_stack);
 dm(ovly_ID_temp) = m7;
 ay0 = TOTAL_NUM_OF_PM_OVLYS;
 ar = ax0 - ay0;

Example 30: (continued)

EE-152 Page 26
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

 if le jump Check_PM_Overlay_First_Time;

Check_DM_Overlay_First_Time:
 ax0 = dm(curr_DM_ovly_ID1);
 ay0 = dm(curr_DM_ovly_ID2);
 ar = ax0 - ay0;
 if eq jump Load_DM_Ovly_Run_1;

Compare_DM_Ovly_Count:
 m0 = dm(curr_DM_ovly_ID1);
 ax0 = dm(i0 + m0);
 m0 = dm(curr_DM_ovly_ID2);
 ay0 = dm(i0 + m0);
 ar = ax0 - ay0;

 if lt jump Load_DM_Ovly_Run_1;
 if gt jump Load_DM_Ovly_Run_2;

Check_DM_LRU:
 ar = dm(LRU_DM_Ovly_1);
 ar = ar - 1;
 if eq jump Load_DM_Ovly_Run_1;

Load_DM_Ovly_Run_2:
 ax0 = 0xc000;
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 ax0 = 0x0000;
 dm(LRU_DM_Ovly_2) = ax0;
 ax0 = 0x0001;
 dm(LRU_DM_Ovly_1) = ax0;
 jump Load_DM_Ovly (db);
 ar = dm(ovly_ID_temp);
 dm(curr_DM_ovly_ID2) = ar;

Load_DM_Ovly_Run_1:
 ax0 = 0x9000;
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 ax0 = 0x0000;
 dm(LRU_DM_Ovly_1) = ax0;
 ax0 = 0x0001;
 dm(LRU_DM_Ovly_2) = ax0;
 ar = dm(ovly_ID_temp);
 dm(curr_DM_ovly_ID1) = ar;

Load_DM_Ovly:
 iopg = External_Memory_Interface_Page;
 ax0 = 0x0030;
 io(EMICTL) = ax0;
 iopg = External_Access_Bridge_Page;
 jump Parse_Live_Address (db);
 ax0 = 0x0000;
 io(E_STAT) = ax0;

Check_PM_Overlay_First_Time:
 ax0 = dm(curr_PM_ovly_ID1);
 ay0 = dm(curr_PM_ovly_ID2);
 ar = ax0 - ay0;

Example 30: (continued)

if eq jump Load_PM_Ovly_Run_1;

Compare_PM_Ovly_Count:
 m0 = dm(curr_PM_ovly_ID1);
 ax0 = dm(i0 + m0);
 m0 = dm(curr_PM_ovly_ID2);
 ay0 = dm(i0 + m0);
 ar = ax0 - ay0;
 if lt jump Load_PM_Ovly_Run_1;
 if gt jump Load_PM_Ovly_Run_2;

Check_PM_LRU:
 ar = dm(LRU_PM_Ovly_1);
 ar = ar - 1;
 if eq jump Load_PM_Ovly_Run_1;

Load_PM_Ovly_Run_2:
 ax0 = 0x4000;
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 dm(ov_stack+19) = ax0;
 ax0 = 0x0000;
 dm(LRU_PM_Ovly_2) = ax0;
 ax0 = 0x0001;
 dm(LRU_PM_Ovly_1) = ax0;
 jump Load_PM_Ovly (db);
 ar = dm(ovly_ID_temp);
 dm(curr_PM_ovly_ID2) = ar;

Load_PM_Ovly_Run_1:
 ax0 = 0x0400;
 dm(WR_DMA_DESC_BLOCK+2) = ax0;
 dm(ov_stack+19) = ax0;
 ax0 = 0x0000;
 dm(LRU_PM_Ovly_1) = ax0;
 ax0 = 0x0001;
 dm(LRU_PM_Ovly_2) = ax0;
 ar = dm(ovly_ID_temp);
 dm(curr_PM_ovly_ID1) = ar;

Load_PM_Ovly:
 iopg = External_Memory_Interface_Page;
 ax0 = 0x0030;
 io(EMICTL) = ax0;
 iopg = External_Access_Bridge_Page;
 ax0 = 0x0008;
 io(E_STAT) = ax0;

Parse_Live_Address:
 i7 = runWordSize;
 ax0 = dm(i7 + m7);
 ar = ax0;
 dm(WR_DMA_DESC_BLOCK+3) = ar;
 dm(RD_DMA_DESC_BLOCK+3) = ar;
 i7 = liveAddresses;
 ar = pm(i7 + m7);
 sr = lshift ar by 0x8 (lo);
 ar = px;

Example 30: (continued)

EE-152 Page 27
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: 1-800-ANALOG-D, FAX: 781-461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

sr = sr or lshift ar by 0x0 (lo);
 i7 = sr0;
 ar = i7;

 dm(RD_DMA_DESC_BLOCK+2) = ar;
 dm(RD_DMA_DESC_BLOCK+1) = sr1;
 ax0 = 0x800f;
 dm(WR_DMA_DESC_BLOCK) = ax0;
 ax0 = 0x800d;
 dm(RD_DMA_DESC_BLOCK) = ax0;
 ax0 = end_dma;
 dm(WR_DMA_DESC_BLOCK+4) = ax0;
 dm(RD_DMA_DESC_BLOCK+4) = ax0;

 iopg = Memory_DMA_Controller_Page;
 ax0 = WR_DMA_DESC_BLOCK;
 io(DMACW_CP) = ax0;
 ax0 = RD_DMA_DESC_BLOCK;
 io(DMACR_CP) = ax0;
 ax0 = 0x1;
 io(DMACW_CPR) = ax0;
 io(DMACR_CPR) = ax0;
 io(DMACW_CFG) = ax0;
 io(DMACR_CFG) = ax0;

 ena int;
 idle;

Context_Restore:
 ay0 = dm(ov_stack+9);
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 i7 = dm(ov_stack+4);
 m7 = dm(ov_stack+3);
 ar = dm(ov_stack+2);

 flush cache;

Jump_To_Caller:
 ax0 = dm(ov_stack);
 ay0 = TOTAL_NUM_OF_PM_OVLYS;
 ar = ax0 - ay0;
 if lt jump Goto_Target;
 rts (db);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;

Goto_Target:
 dm(ov_stack+18) = i7;
 i7 = dm(ov_stack+19);
 jump (i7) (db);
 i7 = dm(ov_stack+18);
 nop;

Example 30: (continued)

Goto_PM_Run_1:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;
 ay0 = dm(ov_stack+9);

 flush cache;

 i7 = 0x0400;
 jump (i7) (db);
 ar = dm(ov_stack+2);
 i7 = dm(ov_stack+4);

Goto_PM_Run_2:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;
 ay0 = dm(ov_stack+9);

 flush cache;

 i7 = 0x4000;
 jump (i7) (db);
 ar = dm(ov_stack+2);
 i7 = dm(ov_stack+4);

DM_Context_Restore:
 ax0 = dm(ov_stack+8);
 iopg = ax0;
 sr2 = dm(ov_stack+7);
 sr1 = dm(ov_stack+6);
 sr0 = dm(ov_stack+5);
 m7 = dm(ov_stack+3);
 ax0 = dm(ov_stack+1);
 dmpg2 = ax0;
 ay0 = dm(ov_stack+9);

 flush cache;

 rts (db);
 i7 = dm(ov_stack+4);
 ar = dm(ov_stack+2);

Example 30: (continued)

