
W3.5
User’s Guide

for 16-Bit Processors

Revision 1.0, October 2003

Part Number
82-000035-06

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information

©1996–2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This
document may not be reproduced in any form without prior, express
written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by
implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, EZ-ICE, and EZ-KIT Lite are
registered trademarks and VisualDSP++, the VisualDSP++ logo,
Apex-ICE, and Summit-ICE are trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
PREFACE

Purpose of This Manual .. xxiii

Intended Audience .. xxiii

Manual Contents ... xxiv

What’s New in This Manual .. xxv

Technical or Customer Support ... xxv

Supported Processors .. xxvi

Product Information .. xxvi

MyAnalog.com .. xxvii

DSP Product Information .. xxvii

Related Documents .. xxviii

Online Documentation .. xxviii

From VisualDSP++ .. xxix

From Windows .. xxix

From the Web ... xxx

Printed Manuals ... xxxi

VisualDSP++ Documentation Set xxxi

Hardware Manuals ... xxxi

Data Sheets .. xxxi
VisualDSP++ 3.5 User’s Guide iii
for 16-Bit Processors

CONTENTS
Contacting DSP Publications .. xxxii

Notation Conventions ... xxxiii

INTRODUCTION TO VISUALDSP++

VisualDSP++ Features .. 1-2

Integrated Development and Debugging Environment 1-2

Code Development Tools .. 1-2

Source File Editing Features .. 1-3

Project Management Features .. 1-4

Debugging Features ... 1-5

VDK Features ... 1-6

VisualDSP++ 3.5 Features ... 1-7

License Management .. 1-10

Licensing Options ... 1-10

License Status ... 1-11

Temporary Licenses .. 1-11

Valid vs. Expired Licenses ... 1-11

Client Licenses ... 1-12

License Installation ... 1-12

Installing a Single-User License ... 1-13

Installing a Server License ... 1-14

Installing a Client License ... 1-14

Software Registration .. 1-15

Validation Codes ... 1-15

Product Upgrades .. 1-15
iv VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

CONTENTS
Product Serial Numbers ... 1-16

Project Development ... 1-16

Overview of Programming with VisualDSP++ 1-16

DSP Project Development Stages ... 1-19

Simulation .. 1-19

Evaluation .. 1-20

Emulation ... 1-20

Targets .. 1-20

Simulation Targets .. 1-20

EZ-KIT Lite Targets ... 1-21

Emulation Targets ... 1-21

Platforms .. 1-21

Hardware Simulation ... 1-22

Debugging Overview ... 1-22

VisualDSP++ Kernel .. 1-24

Program Development Steps .. 1-24

Step 1: Create a Project ... 1-25

Step 2: Configure Project Options 1-25

Step 3: Add and Edit Project Source Files 1-25

Adding Files to Your Project .. 1-25

Creating Files to Add to Your Project 1-26

Editing Files .. 1-26

Managing Project Dependencies 1-26

Step 4: Define Project Build Options 1-26
VisualDSP++ 3.5 User’s Guide v
for 16-Bit Processors

CONTENTS
Configuration ... 1-27

Project-Wide File and Tool Options 1-27

Individual File and Tool Options 1-27

Step 5: Build a Debug Version of the Project 1-28

Step 6: Create a Debug Session and Load the Executable ... 1-28

Step 7: Run and Debug the Program 1-28

Step 8: Build a Release Version of the Project 1-28

Code Development Tools .. 1-29

Compiler .. 1-30

C++ Run-Time Libraries ... 1-31

Assembler ... 1-32

Linker ... 1-33

Expert Linker .. 1-36

Expert Linker Window ... 1-38

Memory Map Pane Right-Click Menu 1-39

Stack and Heap Usage ... 1-41

Archiver .. 1-43

Splitter ... 1-43

Loader .. 1-44

VCSE ... 1-46

VCSE Components ... 1-46

VCSE Component Model Specification 1-47

VCSE Component Model ... 1-47

VCSE Tools .. 1-48
vi VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

CONTENTS
Use of VCSE Components with VisualDSP++ 1-48

VCSE User Interface .. 1-49

Tool Chain Integration .. 1-49

Wizards .. 1-50

Component Manager .. 1-50

Structure of VCSE ... 1-51

Interface Definition Language (IDL) and Compiler 1-53

DSP Projects ... 1-56

What is a Project? .. 1-56

Project Options ... 1-57

Project Groups .. 1-58

Source Code Control (SCC) .. 1-60

Makefiles ... 1-61

Rules .. 1-62

Output Window ... 1-62

Example Makefile ... 1-63

Project Configurations ... 1-65

Customized Project Configurations .. 1-66

Project Build ... 1-66

Build Options ... 1-67

File Building ... 1-68

Post-Build Options .. 1-68

Command Syntax .. 1-69

Project Dependencies .. 1-69
VisualDSP++ 3.5 User’s Guide vii
for 16-Bit Processors

CONTENTS
Project Rules ... 1-70

VisualDSP++ Help System .. 1-71

ENVIRONMENT

Parts of the User Interface ... 2-1

Title Bar ... 2-3

Additional Information in Title Bars 2-4

Title Bar Right-Click Menus ... 2-4

Control Menu ... 2-5

Program Icons .. 2-5

Editor Windows ... 2-5

Debugging Windows .. 2-6

Menu Bar ... 2-6

Command Information ... 2-7

Toolbars and User Tools .. 2-7

Built-In Toolbars .. 2-8

Toolbar Customization ... 2-9

Toolbars: Docked vs. Floating ... 2-9

Toolbar Button Appearance .. 2-10

Toolbar Shape .. 2-12

Toolbar Rules ... 2-12

User Tools .. 2-13

Status Bar ... 2-13

VisualDSP++ Windows ... 2-15

Project Window .. 2-15
viii VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

CONTENTS
Project View ... 2-16

Project Dependencies .. 2-17

Project Nodes ... 2-18

Project Page Right-Click Menus .. 2-19

Project Group Icon Right-Click Menu 2-19

Project Icon Right-Click Menu 2-20

Folder Icon Right-Click Menu 2-21

File Icon Right-Click Menu ... 2-21

Project Folders .. 2-22

Project Files .. 2-23

Project Window Icons for Source Code Control (SCC) 2-24

File Associations .. 2-25

Automatic File Placement .. 2-26

File Placement Rules ... 2-26

Example .. 2-27

Kernel Page ... 2-27

Editor Windows .. 2-29

Right-Click Menu ... 2-30

Editor Tab Mode .. 2-31

Output Window .. 2-32

Output Window Tabs ... 2-32

Build Page ... 2-33

Console Page ... 2-33

Output Window Error Messages .. 2-34
VisualDSP++ 3.5 User’s Guide ix
for 16-Bit Processors

CONTENTS
Error Message Severity Hierarchy 2-35

Syntax of Help for Error Messages 2-35

How to Promote, Demote, and Suppress Error Messages 2-37

Log File .. 2-41

Output Window Customization .. 2-42

Right-Click Menu .. 2-43

Script Command Output .. 2-44

Window Operations ... 2-46

Window Manipulation .. 2-46

Right-Click Menu Options ... 2-46

Scroll Bars and Resize Pull-Tab .. 2-47

Windows: Docked vs. Floating .. 2-47

Example of a Docked Window .. 2-48

Examples of Floating Windows ... 2-49

Window Position Rules ... 2-50

Standard Windows Buttons ... 2-51

Debugging Windows .. 2-52

Disassembly Windows ... 2-54

Other Disassembly Window Features 2-56

Right-Click Menu .. 2-57

Disassembly Window Symbols .. 2-58

Expressions Window ... 2-59

Locals Window ... 2-60

Trace Window .. 2-62
x VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

CONTENTS
Statistical/Linear Profiling Results Window 2-63

Window Components ... 2-63

Left Pane .. 2-64

Right Pane .. 2-65

Status Bar ... 2-65

Right-Click Menu ... 2-65

Window Operations .. 2-67

Changing the Window View ... 2-67

Displaying a Source File .. 2-67

Working with Ranges .. 2-68

Switching Display Modes .. 2-68

Filtering PC Samples with No Debug Information 2-70

Call Stack Window .. 2-71

Memory Windows ... 2-71

Memory Number Formats ... 2-72

Right-Click Menu ... 2-74

Expression Tracking in a Memory Window 2-75

Background Telemetry Channel (BTC) Window 2-77

BTC Definitions in Your Program 2-77

BTC Priority ... 2-78

Examples .. 2-80

Right-Click Menu ... 2-82

Memory Map Windows ... 2-83

Register Windows .. 2-84
VisualDSP++ 3.5 User’s Guide xi
for 16-Bit Processors

CONTENTS
Stack Windows ... 2-88

Custom Register Windows .. 2-88

Multiprocessor Window .. 2-89

Multiprocessor Groups ... 2-89

Focus ... 2-90

Right-Click Menu .. 2-90

Multiprocessor Window Pages ... 2-91

Status Page ... 2-91

Groups Page ... 2-92

Pipeline Viewer Window ... 2-93

Right-Click Menu .. 2-94

Pipeline Viewer Properties Dialog Box 2-95

Pipeline Viewer Window Event Icons 2-96

Pipeline Instruction Event Details 2-97

Cache Viewer .. 2-98

Configuration Page ... 2-101

Detailed View Page ... 2-102

History Page ... 2-103

Performance Page ... 2-105

Histogram Page .. 2-106

Address View Page .. 2-107

VDK Status Window .. 2-108

VDK State History Window .. 2-110

Thread Status and Event Colors 2-111
xii VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

CONTENTS
Window Operations .. 2-112

Right-Click Menu ... 2-112

Target Load Window ... 2-113

About Debugging Windows ... 2-114

Editor Window Features .. 2-114

Syntax Coloring .. 2-114

Right-Click Menu ... 2-115

Editor Window Symbols ... 2-116

Bookmarks .. 2-116

Context-Sensitive Expression Evaluation 2-116

Viewing an Expression .. 2-117

Highlighting an Expression ... 2-117

Source Mode vs. Mixed Mode ... 2-117

Source Mode ... 2-117

Mixed Mode ... 2-118

Expressions in an Expression Window 2-119

Number Formats ... 2-120

Plot Windows ... 2-123

Plot Window Features ... 2-124

Status Bar ... 2-124

Tool Bar .. 2-125

Right-Click Menu ... 2-126

Plot Window Statistics .. 2-128

Plot Configuration .. 2-129
VisualDSP++ 3.5 User’s Guide xiii
for 16-Bit Processors

CONTENTS
Plot Window Presentation .. 2-130

Plot Presentation Options ... 2-132

Image Viewer .. 2-133

Right-Click Menu .. 2-135

Image Configuration Dialog Box 2-136

Gamma Correction Dialog Box 2-137

Export Image Dialog Box .. 2-137

DEBUGGING

Debug Sessions ... 3-2

Debug Session Management .. 3-3

Simulation vs. Emulation .. 3-3

Breakpoints .. 3-3

Watchpoints ... 3-4

Multiprocessor (MP) Debugging ... 3-4

Setting Up a Multiprocessor Debug Session 3-4

Debugging a Multiprocessor System 3-5

Focus and Pinning .. 3-5

Window Title Bar Information .. 3-6

Additional Focus Indication .. 3-7

Code Analysis Tools .. 3-7

Statistical Profiles and Linear Profiles 3-7

Simulation ... 3-8

Emulation .. 3-8

Traces ... 3-9
xiv VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

CONTENTS
DSP Memory Plots .. 3-10

Program Execution Operations .. 3-11

Selecting a New Debug Session at Startup 3-11

Loading the DSP Executable Program 3-12

Using Program Execution Commands 3-12

Restarting the Program .. 3-13

Performing a Restart During Simulation 3-13

Performing a Restart during Emulation 3-14

Using Breakpoints ... 3-14

Using Unconditional and Conditional Breakpoints 3-15

Using Watchpoints .. 3-15

Simulation Tools ... 3-16

Interrupts .. 3-16

Input/Output Simulation (Data Streams) 3-16

Image Viewer .. 3-17

Plots ... 3-18

Plot Types ... 3-18

Line Plots .. 3-19

X-Y Plots ... 3-20

Constellation Plots .. 3-21

Eye Diagrams .. 3-22

Waterfall Plots ... 3-23

Spectrogram Plots .. 3-25

Flash Programmer ... 3-26
VisualDSP++ 3.5 User’s Guide xv
for 16-Bit Processors

CONTENTS
Flash Devices .. 3-26

Flash Programmer Functions ... 3-26

Flash Driver .. 3-27

Flash Programmer Window ... 3-28

REFERENCE INFORMATION

Glossary ... A-2

File Types ... A-24

Keyboard Shortcuts .. A-27

Working with Files .. A-27

Moving Within a File .. A-28

Cutting, Copying, Pasting, Moving Text A-29

Selecting Text Within a File ... A-29

Working with Bookmarks in an Editor Window A-30

Building Projects ... A-31

Using Keyboard Shortcuts for Program Execution A-31

Working with Breakpoints ... A-32

Obtaining Online Help ... A-32

Miscellaneous ... A-32

IDDE Command-Line Parameters .. A-33

Extensive Scripting ... A-34

Toolbar Buttons .. A-38

Text Operations .. A-43

Regular Expressions vs. Normal Searches A-43

Specific Special Characters .. A-44
xvi VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

CONTENTS
Special Rules for Sequences .. A-45

Repetition and Combination Characters A-45

Match Rules .. A-46

Tagged Expressions in Replace Operations A-46

Comment Start and Stop Strings ... A-47

Online Help Features and Operations ... A-48

Using the Help Window ... A-48

Invoking Online Help .. A-49

Viewing Context-Sensitive Help ... A-50

Viewing Menu, Toolbar, or Window Help A-51

Viewing Dialog Box Button or Field Help A-51

Viewing Window Help ... A-52

Using Help Window Navigation Buttons A-52

Copying Example Code from Help A-53

Printing Help ... A-54

Bookmarking Frequently Used Help Topics A-54

Placing a Bookmark at a Topic ... A-55

Opening a Bookmarked Topic .. A-55

Navigating in Online Help ... A-55

Using the Search Features ... A-57

Help System Search Rules .. A-57

Rules for Full-Text Searches .. A-57

Rules for Advanced Searches ... A-58

Full-Text Searches .. A-58
VisualDSP++ 3.5 User’s Guide xvii
for 16-Bit Processors

CONTENTS
Advanced Search Techniques ... A-60

Using Wildcard Expressions .. A-60

Using Boolean Operators .. A-61

Using Nested Expressions .. A-62

Viewing Online Manuals ... A-62

Printing Online Documents .. A-63

Using the About VisualDSP++ Dialog Box A-64

SIMULATION OF BLACKFIN PROCESSORS

Peripheral Support in Simulators ... B-2

Special Considerations for Peripherals ... B-6

Universal Asynchronous Receiver/Transmitter Peripheral B-6

Timer (TMR) Peripheral ... B-6

Simulator Instruction Timing Analysis for ADSP-BF535 Processors B-7

Stall Reasons ... B-8

Kill Reasons .. B-9

Pipeline Viewer Window Examples .. B-9

Pipeline Viewer Window Messages .. B-10

Pipeline Viewer Detail View Stall Event Messages B-11

Kills Detected Messages .. B-14

Multicycle Instructions ... B-15

Abbreviations in Pipeline Viewer Messages B-16

Simulator Instruction Timing Analysis for ADSP-BF531,
ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors B-17

Stall Reasons ... B-17
xviii VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

CONTENTS
Kill Reasons ... B-18

Pipeline Viewer Window Examples B-19

Multicycle Instructions and Latencies ... B-20

Multicycle Instructions ... B-21

Push Multiple or Pop Multiple ... B-21

32-Bit Multiply (modulo 232) .. B-21

Call and Jump .. B-22

Conditional Branch ... B-22

Return ... B-23

Core and System Synchronization B-23

Linkage .. B-23

Interrupts and Emulation ... B-24

Testset ... B-24

Instruction Latencies .. B-25

Accumulator to Data Register Latencies B-25

Register Move Latencies ... B-26

Move Conditional and Move CC Latencies B-28

Loop Setup Latencies ... B-29

Instructions Within Hardware Loop Latencies B-30

Instruction Alignment Unit Empty Latencies B-31

L1 Data Memory Stalls ... B-32

Minibank Access Collision ... B-32

SRAM Access (1-Cycle Stall) .. B-33

Cache Access (1-Cycle Stall) ... B-33
VisualDSP++ 3.5 User’s Guide xix
for 16-Bit Processors

CONTENTS
MMR Access .. B-36

System Minibank Access Collision B-37

Store Buffer Overflow ... B-37

Store Buffer Load Collision ... B-38

Load/Store Size Mismatch ... B-38

Store Data Not Ready ... B-38

Instruction Groups .. B-39

Register Groups .. B-40

Compiled Simulation ... B-41

Program Preparation Starting from Source Files B-42

Specifying a Session for Compiled Simulation B-42

Specifying Project Options for Compiled Simulation B-43

Program Preparation Starting from an Existing .DXE File B-45

Execution of an .EXE File from the Command Line B-46

SIMULATION OF ADSP-21XX PROCESSORS

Peripheral Support in Simulators ... C-2

General-Purpose I/O (GPIO) or Flag I/O (FIO) Peripheral C-4

Input and Output Handling .. C-5

GPIO Window in VisualDSP++ .. C-5

Host Port Interface (HPI) Peripheral ... C-6

Input and Output ... C-7

External-Initiated Control File Commands C-7

Command Bit Definitions ... C-8

External-Initiated Direct Operation Bit Definitions C-9
xx VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Host Port Window in VisualDSP++ C-11

Unsupported Features ... C-11

Example – DMA Transfer to the Host Port C-11

Serial Peripheral Interface (SPI) .. C-11

SPI Global Status and Control .. C-13

SPI Signal Usage ... C-14

Modes of Operation ... C-14

Master Mode Operation (No DMA) C-14

Slave Mode Operation (No DMA) C-14

Master Mode DMA Operation ... C-15

Slave Mode DMA Operation .. C-16

SPI with Streams .. C-17

Slave Mode DMA Example ... C-17

Serial Port (SPORT) Peripheral .. C-19

Input and Output ... C-21

Serial Port Windows in VisualDSP++ C-21

Unsupported Features ... C-22

Example – SPORT DMA ... C-22

Universal Asynchronous Receiver/Transmitter (UART) Peripheral C-23

Input and Output ... C-24

UART Window in VisualDSP++ ... C-25

Unsupported Features ... C-25

Example ... C-25

Timer (TMR) Peripheral .. C-26
VisualDSP++ 3.5 User’s Guide xxi
for 16-Bit Processors

Timer Global Status and Control ... C-27

Timer Signal Usage ... C-29

Modes of Operation .. C-29

Timer with Streams Usage ... C-29

WDTH_CAP Mode ... C-29

Example Streams Data File .. C-30

External Clock Mode .. C-32

Memory DMA (MEMDMA) Peripheral C-32

Modes .. C-32

Registers ... C-34

Example – MEMDMA Transfer .. C-36

Simulator Instruction Timing Analysis Overview C-36

Cycle-Accurate Simulator .. C-37

Instruction Pipeline .. C-37

Delay in the Pipeline Viewer Window C-39

Pipeline Stages .. C-43

Pipeline Viewer Window Messages .. C-43

Stalls Detected Messages ... C-44

Aborts Detected Messages ... C-45

Boot Simulation ... C-46

Simulating Boot Loading for ADSP-218x Targets C-46

Simulating Boot Loading for ADSP-219x Targets C-47

INDEX
xxii VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

PREFACE

Thank you for purchasing VisualDSP++™, the development software for

Analog Devices processors.

Purpose of This Manual

The VisualDSP++ 3.5 User’s Guide for 16-Bit Processors describes the
features, components, and functions of VisualDSP++. Use this guide as a
reference for developing programs for Blackfin® and ADSP-21xx
processors.

The User’s Guide does not include detailed procedures for building and
debugging projects. For how-to information, refer to the VisualDSP++
online Help and the VisualDSP++ 3.5 Getting Started Guide for 16-Bit
Processors.

Intended Audience

This manual is primarily intended for digital signal processing (DSP)
programmers who are familiar with Analog Devices processors, but are
unfamiliar with the VisualDSP++ environment. The manual assumes that
you have a working knowledge of your processor’s architecture and
instruction set. If you are unfamiliar with Analog Devices processors, you
should supplement this manual with other texts (such as the Hardware
Reference and Instruction Set Reference manuals that describe your
target’s architecture and instruction set).
VisualDSP++ 3.5 User’s Guide xxiii
for 16-Bit Processors

Manual Contents
Manual Contents

This manual consists of:

• Chapter 1, “Introduction” – describes VisualDSP++ features,
license management, project development, code development
tools, VCSE, and DSP projects; also provides a brief introduction
to the VisualDSP++ Help system

• Chapter 2, “Environment” – describes the VisualDSP++ user inter-
face, windows, environment customization, window operations,
and the debugging windows

• Chapter 3, “Debugging” – describes debug sessions, code analysis
tools, program execution operations, simulation tools, Image
Viewer, plots, and Flash Programmer

• Appendix A, “Reference Information” – provides a glossary and
information about file types, keyboard shortcuts, command-line
parameters, scripting, toolbar buttons, and text operations; also
provides details about online Help features and operations

• Appendix B, “Simulation of Blackfin Processors” – provides an
overview of peripheral support in the Blackfin simulators and
describes limitations of the simulation software models, simulator
instruction timing analysis, and compiled simulation

• Appendix C, “Simulation of ADSP-21xx Processors” – provides an
overview of peripheral support in the ADSP-21xx simulators and
information about simulating the General Purpose I/O, Host Port
Interface, Serial Peripheral Interface, Serial Port, UART Port,
Timer, and Memory DMA; also describes simulator instruction
timing analysis and boot simulation
xxiv VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Preface
What’s New in This Manual

The VisualDSP++ 3.5 User’s Guide for 16-Bit Processors supports all Black-
fin and ADSP-21xx processors, including the new ADSP-BF561 Blackfin
processor. This edition also documents new features and enhancements.

Technical or Customer Support

You can reach DSP Tools Support in the following ways.

• Visit the DSP Development Tools Web site at

www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA
VisualDSP++ 3.5 User’s Guide xxv
for 16-Bit Processors

Supported Processors
Supported Processors

The name “Blackfin” refers to the family of Analog Devices 16-bit,
fixed-point digital signal processors. VisualDSP++ currently supports the
following Blackfin processors.

VisualDSP++ currently supports the following ADSP-21xx processors.

Product Information

You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

ADSP-BF531 ADSP-BF532 (formerly ADSP-21532)

ADSP-BF533 ADSP-BF535 (formerly ADSP-21535)

ADSP-BF561 AD6532

ADSP-2181 ADSP-2191

ADSP-2183 ADSP-2192-12

ADSP-2184/84L/84N ADSP-2195

ADSP-2185/85L/85M/85N ADSP-2196

ADSP-2186/86L/86M/86N ADSP-21990

ADSP-2187L/87N ADSP-21991

ADSP-2188L/88N ADSP-21992

ADSP-2189M/89N
xxvi VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

�������
��	
���
����

MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

�������������
��������

For information on digital signal processors, visit our Web site at
www.analog.com/dsp, which provides access to technical publications, data
sheets, application notes, product overviews, and product announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49 (0) 089 76 903 157 (Europe)

• Access the Digital Signal Processing Division’s FTP Web site at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com
VisualDSP++ 3.5 User’s Guide xxvii
for 16-Bit Processors

Product Information
Related Documents

For information on product related development software, see the follow-
ing publications.

For hardware information, refer to your processor’s Hardware Reference,
Programming Reference, and data sheet.

All documentation is available online. Most documentation is available in
printed form.

Online Documentation

Online documentation comprises Microsoft HTML Help (.CHM), Adobe
Portable Documentation Format (.PDF), and HTML (.HTM and .HTML)
files. A description of each file type is as follows.

VisualDSP++ 3.5 Getting Started Guide for 16-Bit Processors

VisualDSP++ 3.5 C/C++ Compiler and Library Manual for Blackfin Processors

VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x Processors

VisualDSP++ 3.5 C/C++ Compiler and Library Manual for ADSP-219x Processors

VisualDSP++ 3.5 Assembler and Preprocessor Manual for Blackfin Processors

VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-21xx Processors

VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors

VisualDSP++ 3.5 Loader Manual for 16-Bit Processors

VisualDSP++ 3.5 Product Bulletin

VisualDSP++ Kernel (VDK) User’s Guide

VisualDSP++ Component Software Engineering User’s Guide

Quick Installation Reference Card
xxviii VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Preface
Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices Web site.

From VisualDSP++

VisualDSP++ provides access to online Help. It does not provide access to
.PDF files or the supplemental reference documentation (Dinkum
Abridged C++ library and FlexLM network licence). Access Help by:

• Choosing Contents, Search, or Index from the VisualDSP++ Help
menu

• Invoking context-sensitive Help on a user interface item
(toolbar button, menu command, or window)

From Windows

In addition to shortcuts you may construct, Windows provides many ways
to open VisualDSP++ online Help or the supplementary documentation.

File Description

.CHM VisualDSP++ online Help system files and VisualDSP++ manuals are provided in
Microsoft HTML Help format. Installing VisualDSP++ automatically copies these
files to the VisualDSP\Help folder. Online Help is ideal for searching the entire
tools manual set. Invoke Help from the VisualDSP++ Help menu or via the
Windows Start button.

.PDF Manuals and data sheets in Portable Documentation Format are located in the
installation CD’s Docs folder. Viewing and printing a .PDF file requires a PDF
reader, such as Adobe Acrobat Reader (4.0 or higher). Running setup.exe on the
installation CD provides easy access to these documents. You can also copy .PDF
files from the installation CD onto another disk.

.HTM
 or
.HTML

Dinkum Abridged C++ library and FlexLM network license manager software
documentation is located on the installation CD in the Docs\Reference folder.
Viewing or printing these files requires a browser, such as Internet Explorer 4.0 (or
higher). You can copy these files from the installation CD onto another disk.
VisualDSP++ 3.5 User’s Guide xxix
for 16-Bit Processors

Product Information
Help system files (.CHM) are located in the VisualDSP\Help folder.
Manuals and data sheets in PDF format are located in the Docs folder of
the installation CD. The installation CD also contains the Dinkum
Abridged C++ library and FlexLM network license manager software doc-
umentation in the \Reference folder.

Using Windows Explorer:

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click vdsp-help.chm, the master Help system, to access all
the other .CHM files.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, VisualDSP, and VisualDSP++
Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, VisualDSP, Documentation for Printing, and the
name of the book.

From the Web

To download the tools manuals, point your browser at:

www.analog.com/technology/dsp/developmentTools/gen_purpose.html

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.
xxx VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Preface
Printed Manuals

For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

Printed copies of VisualDSP++ manuals may be purchased through
Analog Devices Customer Service at 1-781-329-4700; ask for a Customer
Service representative. The manuals can be purchased only as a kit. For
additional information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto http://www.analog.com/salesdir/continent.asp.

Hardware Manuals

Printed copies of hardware manuals can be ordered through the Literature
Center or downloaded from the Analog Devices Web site. The phone
number is 1-800-ANALOGD (1-800-262-5643). The manuals can be
ordered by title or by product number (located on the back cover of each
manual).

Data Sheets

All data sheets can be downloaded from the Analog Devices Web site. As a
general rule, printed copies of data sheets with a letter suffix (L, M, N, S)
can be obtained from the Literature Center at 1-800-ANALOGD
(1-800-262-5643) or downloaded from the Web site. Data sheets without
the suffix can be downloaded from the Web site only—no hard copies are
available. You can ask for the data sheet by part name or by product
number.
VisualDSP++ 3.5 User’s Guide xxxi
for 16-Bit Processors

Product Information
If you want to have a data sheet faxed to you, the phone number for that
service is 1-800-446-6212. Follow the prompts and a list of data sheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested data sheets are available.

Contacting DSP Publications

Please send your comments and recommendations for improving our
manuals and online Help. You can contact us by sending an email to:

dsp.techpubs@analog.com
xxxii VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Preface
Notation Conventions

The following table identifies and describes text conventions used in this
manual.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Code has been formatted to fit this manual’s page width.

Example Description

Close command
(File menu) or OK

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system and user interface items.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets separated by vertical bars; read the example as this or that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, code examples, and feature names
are in text with letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

A note providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution providing information about critical design or programming
issues that influence operation of a product. In the online version of
this book, the word Caution appears instead of this symbol.
VisualDSP++ 3.5 User’s Guide xxxiii
for 16-Bit Processors

Notation Conventions
xxxiv VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

1 INTRODUCTION TO
VISUALDSP++

This manual describes VisualDSP++, a flexible management system that

provides a suite of tools for developing DSP applications and projects.

VisualDSP++ includes:

• Integrated Development and Debugging Environment (IDDE)
with VisualDSP++ Kernel (VDK) integration

• C/C++ optimizing compiler with run-time library

• Assembler and linker

• Simulator software and example programs

This chapter contains the following topics.

• “VisualDSP++ Features” on page 1-2

• “License Management” on page 1-10

• “Project Development” on page 1-16

• “Code Development Tools” on page 1-29

• “VCSE” on page 1-46

• “DSP Projects” on page 1-56

• “VisualDSP++ Help System” on page 1-71
VisualDSP++ 3.5 User’s Guide 1-1
for 16-Bit Processors

VisualDSP++ Features
VisualDSP++ Features

VisualDSP++ includes all the tools you need to build and manage your
DSP projects.

Integrated Development and Debugging
Environment

The VisualDSP++ single, integrated project management and debugging
environment provides complete graphical control of the edit, build, and
debug process. In this integrated environment, you can move easily
between editing, building, and debugging activities.

Code Development Tools

Depending on the DSP development tools that you purchased,
VisualDSP++ includes one or more of the following components.

• C/C++ compiler with run-time library

• Assembler, linker, preprocessor, and archiver

• Loader and splitter

• Simulator

• EZ-KIT Lite development system (must be purchased separately)

• Emulator (must be purchased separately)

VisualDSP++ supports ELF/DWARF-2 (Executable Linkable Format)
executable files. VisualDSP++ supports all executable file formats pro-
duced by the linker.
1-2 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
If your system is configured with third-party development tools,
you can select the compiler, assembler, or linker to use for a partic-
ular target build.

Source File Editing Features

VisualDSP++ simplifies tasks involving source files. You can easily per-
form all the activities necessary to create, view, print, move within, and
locate information.

• Edit text files. Create and modify source files and view listing or
map files generated by the DSP code development tools.

Source files are the C/C++ language or assembly language files that
make up your project.

DSP projects can include additional files such as data files and a
Linker Description File (.LDF), which contains command input for
the linker. For more information about .LDF files, see “Linker” on
page 1-33.

• Editor windows. Open multiple editor windows to view and edit
related files, or open multiple editor windows for a single file. The
VisualDSP++ editor is an integrated code-writing tool that enables
you to focus on code development.

• Specify syntax coloring. Configure options that specify the color of
text objects viewed in an editor window.

This feature enhances the view and helps you to locate portions of
the text, because keywords, quotes, and comments appear in dis-
tinct colors.

• Context-sensitive expression evaluation. Move the mouse pointer
over a variable that is in the scope and view the variable’s value.
VisualDSP++ 3.5 User’s Guide 1-3
for 16-Bit Processors

VisualDSP++ Features
• Status icons. View icons that indicate breakpoints, bookmarks, and
the current PC position.

• View error details and offending code. From the Output window’s
Build view, display error details by highlighting the error code
(such as cc0251) and pressing the F1 key. Double-click an error
line to jump to the offending code in an editor window.

Project Management Features

VisualDSP++ provides flexible project management for the development
of DSP applications, including access to all the activities necessary to cre-
ate, define, and build DSP projects.

• Define and manage projects. Identify files that the code develop-
ment tools process to build your project. Create this project
definition once, or modify it to meet changing development needs.

• Access and manage code development tools. Configure options to
specify how the DSP code development tools process inputs and
generate outputs. Tool settings correspond to command-line
switches for code development tools. Define these options once, or
modify them to meet your needs.

• View and respond to project build results. View project status
while a build progresses and, if necessary, halt the build.

Double-click on an error message in the Output window to view
the source file causing the error, or iterate through error messages.

• Manage source files. Manage source files and track file dependen-
cies in your project from the Project window to provide a display
of software file relationships. VisualDSP++ uses code development
tools to process your project and to produce a DSP program. It also
provides a source code control (SCC) interface, which enables you
to access SCC applications without leaving the IDDE.
1-4 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Debugging Features

While debugging your project, you can:

• View and debug mixed C/C++ and assembly code. View C/C++
source code interspersed with assembly code. Line number and
symbol information help you to source-level debug assembly files.

• Run command-line scripts. Use scripts to customize key debug-
ging features.

• Use memory expressions. Use expressions that refer to memory.

• Use breakpoints to view registers and memory. Quickly add and
remove, and enable and disable breakpoints.

• Set simulated watchpoints. Set watchpoints on stacks, registers,
memory, or symbols to halt program execution.

• Statistically profile the target processor’s PC (JTAG emulator
debug targets only). Take random samples and display them graph-
ically to see where the program uses most of its time.

• Linearly profile the target processor’s PC (Simulation only). Sam-
ple every executed PC and provide an accurate and complete
graphical display of what was executed in your program.

• Generate interrupts using streaming I/O. Set up serial port
(SPORT) or memory-mapped I/O.

• Create customized register windows. Configure a custom register
window to display a specified set of registers.

• Plot values from DSP memory. Choose from multiple plot styles,
data processing options, and presentation options.
VisualDSP++ 3.5 User’s Guide 1-5
for 16-Bit Processors

VisualDSP++ Features
• Trace program execution history. Trace how your program arrives
at a certain point and show reads, writes, and symbolic names.

• View pipeline depth of assembly instructions. Display the pipeline
stage by querying the target processor or processors through the
pipeline interface (not supported on the ADSP-218x processor).

For details, see the VisualDSP++ 3.5 Getting Started Guide for 16-Bit
Processors.

VDK Features

The VisualDSP++ Kernel (VDK) is a scalable software executive specially
developed for effective operations on Analog Devices 16-bit processors
and tightly integrated with VisualDSP++.

The kernel enables you to abstract the details of the hardware implemen-
tation from the software design. As a result, you can concentrate on the
processing algorithms.

The kernel provides all the basic building blocks required for application
development. Properties of the kernel can be characterized as follows.

• Automatic. VisualDSP++ automatically generates source code
framework for each user-requested object in the user-specified
language.

• Deterministic. VisualDSP++ specifies whether the execution time
of a VDK API is deterministic.

• Multitasking. Kernel tasks (threads) are independent of one
another. Each thread has its own stack.

• Modular. The kernel comprises various components. Future
releases may offer additional functionality.
1-6 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
• Portable. Most of the kernel components can be written in ANSI
Standard C or C++ and are portable to other Analog Devices
processors.

• Pre-emptive. The kernel’s priority-based scheduler enables the
highest priority thread not waiting for a signal to be run at any
time.

• Prototypical. The kernel and VisualDSP++ create an initial file set
based on a series of template files. The entire application is proto-
typed and ready to be tested.

• Reliable. The kernel provides run-time error checking.

• Scalable. If a project does not include a kernel feature, the support
code is not included in the target system.

VisualDSP++ 3.5 Features

VisualDSP++ 3.5 includes the following new features and enhancements.

• New processor support. The ADSP-BF561 processor is supported
by this software version. Refer to the ADSP-BF561 Blackfin Hard-
ware Reference and chip data sheet for details.

• Multiple project support. VisualDSP++ provides the ability to switch
among multiple open projects in the same IDDE session. The Project
window displays active projects.

• Data streaming and logging. VisualDSP++ now offers the ability to
stream and log data from a target DSP without halting the DSP. The
IDDE takes advantage of this capability in plot windows. If the target
supports background telemetry channel (BTC), the plot window is
updated while the target is running.
VisualDSP++ 3.5 User’s Guide 1-7
for 16-Bit Processors

VisualDSP++ Features
• License management in the IDDE. License management (installa-
tion and validation) has been integrated into the VisualDSP++ IDDE.
Installing a FlexLM license server is still handled by the separate instal-
lation application.

• Profile-guided optimization (PGO) in the IDDE. The Visu-
alDSP++ IDDE includes facilities to run common PGO scenarios
simply and also provides a mechanism for advanced applications that
require more control over the profiling process via scripting. The PGO
process involves setting up and executing data sets to produce an opti-
mized application. A data set is the association of zero or more input
streams with one .pgo output file.

The most common scenario for collecting PGO data is setting up one
or more simple File to Device streams. The File is a standard ASCII
stream input file, and the Device is any stream device (such as memory
or a peripheral) supported by the simulator target. You create, edit, and
delete data sets in VisualDSP++ and then run them to optimize your
application. For PGO operations, the Tools menu provides a new
PGO submenu and a Manage Data Sets option.

Note that each compiler manual associated with VisualDSP++ 3.5 has
a new chapter called “Achieving Optimal Performance from C/C++
Source Code.” Its focus is to help you maximize code performance
from the compiler while you minimize code size. The chapter starts by
discussing some general optimization principles and how the compiler
can most help your optimization effort. Optimal coding styles are then
considered in detail. Special features such as compiler switches,
built-in functions, and pragmas are also discussed. The chapter ends
with a short example that demonstrates how the optimizer works.

Additional information about PGO is in the VisualDSP++ 3.5
Getting Started Guide for 16-Bit Processors and in the online Help.
1-8 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
• Integrated Source Code Control (SCC). VisualDSP++ uses the
Microsoft Common Source Code Control (MCSCC) interface to pro-
vide a connection from the IDDE to SCC applications (such as Visual
SourceSafe, PVCS Version Manager, and ClearCase) installed on your
machine. You can now conveniently access commonly-used SCC fea-
tures from VisualDSP++ without leaving the IDDE. Advanced and
application-specific SCC features not available from the IDDE must
be run directly from the SCC applications.

• Automation aware scripting engine. VisualDSP++ includes a script-
ing engine that uses the Microsoft ActiveX script host framework. The
engine enables you to use multiple scripting languages (such as
VBScript, JavaScript, and so on) to access the VisualDSP++ Automa-
tion API.

You can interact with the IDDE by using a single command or a script
file similar to the Tcl scripting functionality, which was available in
previous versions of VisualDSP++.

• Profiling code with Expert Linker. You can use Expert Linker to
profile object sections in a program. When the program halts, Expert
Linker graphically displays how much time was spent in each object
section. You can use this display to locate code “hotspots” and then
move that code to faster, internal memory.

• Address bar in Disassembly and Memory windows. When enabled,
an address bar is displayed in Disassembly windows and memory win-
dows. You can use the address bar to navigate by address, symbol, or
expression. The address bar maintains a most recently used history of
visited locations.

• Menus with Icons. Icons now appear beside menu commands that
have corresponding toolbar buttons.
VisualDSP++ 3.5 User’s Guide 1-9
for 16-Bit Processors

License Management
License Management

VisualDSP++ is a licensed software product. This section describes licensing
options, license status, license installation, software registration, validation
codes, product updates, and product serial numbers.

Licensing Options

Two licensing options are available: single-user and client. A server license
is required before you can install a client license (see Table 1-1).

Table 1-1. VisualDSP++ Licenses

License Description

Single-User Also called node-locked or per-user licenses, they are locked to the machine
ID of the host computer. Once installed, these tools will run only on
that one machine. You may install and register the software up to three
times (for example, at work, at home, and on a laptop computer). Use,
however, is restricted to one installed software at a time.

Client Client licenses are a client/server-based application. The server manages
a pool of licenses installed on the server. One license is installed on the
server for each purchased copy of VisualDSP++. In this model, you can
have as many client installations as desired. When a client starts the soft-
ware, it checks out a license from the server. When the software exits, the
license is returned to the server. As long as licenses are available on the
server, clients can access VisualDSP++.

Example: Assume a license server has been set up with 10 licenses, and
20 client machines are installed in three labs. Ten simultaneous develop-
ers (any combination) can use the software. When the 11th client tries to
use VisualDSP++, a message appears, stating that no more licenses are
available. This allows sharing of the software resources in an environ-
ment that needs more locations than developers.

Server Allows multiple users to access VisualDSP++ on computers sharing "cli-
ent licenses" across a network. A server license must be installed prior to
installing client licenses.
1-10 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Server-based floating licenses consist of two parts: server and client. The server
manages the license pool that is stored on the server. The clients “check-out”
licenses when the software is started and return licenses to the server when
developers exit VisualDSP++.

License Status

The Licenses page of the About VisualDSP++ dialog box displays the status
of all recognized licenses.

The status for each serial numbered product can be:

• Validated (Permanent)

• Not Validated

• Test Drive

• For EZ-KIT Lite: Permanent, Restricted; Expiring in X days; or
Expired

Temporary Licenses

A temporary license indicates the number of days remaining before you
can no longer use the product. Test drive versions of VisualDSP++ (serial
number beginning with “TST”) carry temporary licenses.

An unrestricted version of VisualDSP++ includes its permanent license. If
you do not install the validation code after purchasing a full (unrestricted)
license, the status of the license is marked “Not Validated (Expiring in X
days).” Install the validation code to change the status to “Permanent.”

Valid vs. Expired Licenses

An expired license is indicated by “Expired”. A valid license is indicated by
“Permanent” unless it is for an EZ-KIT. A valid license for an EZ-KIT is
indicated by “Permanent, Restricted”.
VisualDSP++ 3.5 User’s Guide 1-11
for 16-Bit Processors

License Management
Client Licenses

When a client license is installed, the server_name appears under Serial
Number, “client” appears under Family, and “use_server” appears under
Status.

License Installation

After installing VisualDSP++, you have to license the software. Licensing
involves these three tasks:

• Installing the single-user or client serial number

Note that a server license must be installed before you can install
client licenses.

• Registering products

• Entering validation codes

You perform license management activities within VisualDSP++ by using
the About VisualDSP++ dialog box. See the online Help for detailed
installation, registration, and validation procedures.

Test drives require online registration to receive a “TST” serial number,
which expires 90 days after installation. Test drives do not require a vali-
dation code.

As of VisualDSP++ 3.5, EZ-KIT Lite versions of VisualDSP++
require online registration and a validation code. The “KIT” serial
number is on the label on the back of the CD wallet.

“KIT” serial numbers impose restrictions on VisualDSP++. These
limitations do not prevent processor evaluation on the EZ-KIT
Lite evaluation board, but they encourage the purchase of a full
(unrestricted) VisualDSP++ license.
1-12 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Installing a Single-User License

VisualDSP++ must be licensed. A single-user (per-user, node-locked) license
allows VisualDSP++ to be used on one computer. Installing the serial number
creates a license.dat file.

This procedure requires a serial number, which is located on the soft-
ware registration card or on the CD’s sleeve.

This procedure assumes you have installed VisualDSP++ from the
CD and have installed the latest service pack (if applicable). Service
packs are available from the Analog Devices Web site at:

http://www.analog.com/dsp/tools/fixes.html

If the installation is successful, a “success” message appears. Additional
information appears, depending on the installed license. At this point, the
software has a temporary, 30-day license.

For serial numbers that begin with “ADI”, “ENG”, or “KIT”, a message
instructs you to register the serial number to receive a validation code.
Note that “ENG” licenses are for Analog Devices use only.

For serial numbers that begin with “TST”, a message informs you that the
license can be installed only once.

You install a single-user license from the Install New License dialog box,
accessed from the Licenses page of the About VisualDSP++ dialog box.
VisualDSP++ 3.5 User’s Guide 1-13
for 16-Bit Processors

License Management
Installing a Server License

Installing a server license allows multiple users to use VisualDSP++ on
computers using “client licenses” across a network. You must install a
server license before installing client licenses.

This procedure requires the entry of a server node name, which you
can obtain from the Identification page of the Network applet in
Windows Control Panel.

The installation procedure uses the FlexLM (Flexible License Manager)
network license manager included with VisualDSP++. Flex-LM installs
the NT service and path information. Note that when you add a seat or a
permanent license, you must restart/reread the FlexLM license manager each
time that you update your license file.

You install a server license by running Install License and Install Server
License from the VisualDSP++ CD ROM.

Installing a Client License

A client license allows access to VisualDSP++ over a network.

A server license allows multiple users to use VisualDSP++ on com-
puters using “client licenses” across a network. A server license
must be installed before you can install client licenses.

If the installation is successful, a “success” message is displayed.

If a license.dat file already exists on the client machine
(VisualDSP\system), a message indicates that the current
license.dat file will be renamed to license.bak and the server
license will be copied to the client machine.

You install a client license from the Install New License dialog box,
accessed from the Licenses page of the About VisualDSP++ dialog box.
1-14 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Software Registration

After you install or float a single-user license, you must register the prod-
uct (via the Analog Devices Web site) within 30 days to obtain a
validation code.

“ENG,” “ADI,” and “KIT” serial numbers require registration.
“TST” serial numbers do not require registration.

You register a license from the Licenses page of the About VisualDSP++
dialog box, accessed from the Help menu.

Validation Codes

After you successfully register an “ENG,” “ADI,” or “KIT” serial number
on the Analog Devices Web site, you will receive a validation code that
you must enter to create a permanent license. If you enter this code suc-
cessfully, a message indicates that a permanent license has been created.

You enter a validation code from the Enter Validation Code dialog box,
accessed from the Licenses page of the About VisualDSP++ dialog box.

Product Upgrades

From time to time, Analog Devices releases new software versions.

The upgrade procedure does not change the previous version's folder structure
or license file. The new installation process uses the previous version's path
and license.

Check the Analog Devices Web site to ensure you have the latest soft-
ware version.
VisualDSP++ 3.5 User’s Guide 1-15
for 16-Bit Processors

Project Development
Product Serial Numbers

Product serial numbers are located on product CD sleeves. You can also
view a product’s serial number from within VisualDSP++.

If you cannot locate a serial number, contact your local sales representative
or Analog Devices sales.

• Send e-mail to: dsptools.support@analog.com

• Phone: 1-800-ANALOGD (1-800-262-5643)

Provide details about the exact products, versions, and operating system being
used.

Within VisualDSP++, you view product serial numbers from the Licenses
page of the About VisualDSP++ dialog box, accessed from the Help menu.

Project Development

During project development, VisualDSP++ helps you interactively observe
and alter the data in the processor and in memory.

Overview of Programming with VisualDSP++

Programming effectively with VisualDSP++ depends on how well you
master a four-step process. You must learn how to:

1. Work with VisualDSP++

2. Implement structured software design with VisualDSP++

3. Optimize performance with VisualDSP++

4. Test and debug your programs with VisualDSP++
1-16 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Working With VisualDSP++: You should have a working knowledge of
VisualDSP++, the front end for all available targets and platforms. You
should know how and when to use its various features and have a firm
foundation in these project basics:

• Working with property pages. These pages are analogous to com-
mand-line switches.

• Setting up debug sessions. Know the distinctions between the three
development stages: evaluation (via an EZ-Kit Lite development
system), simulation, and emulation.

• Understanding how program sections and memory segments relate
to physical DSP memory. Become familiar with the Expert Linker.

• Accessing peripherals. This task includes setting up and handling
interrupts in both C and assembly.

Designing Structured Software With VisualDSP++: You should consider
elements of software design, code reuse, and interoperability. If you are
new to embedded systems, try to acquire a clear understanding of:

• The role of and motivation behind component software

• How to create and use a VCSE component

• The role of an RTOS

• How to use VDK to manage multiple threads of execution and the
communication between those threads
VisualDSP++ 3.5 User’s Guide 1-17
for 16-Bit Processors

Project Development
Optimizing Performance With VisualDSP++: At this stage, you should
understand how to access the features of the DSP and how to use a struc-
tured approach to develop software. Next you should optimize your
software to take full advantage of the DSP’s computational power. This
step entails:

• Understanding the compiler optimizer

• Writing mixed C and assembly programs

• Accessing C/C++ data structures in assembly

• Harnessing the power of C++

• Setting up and using overlays

• Configuring emulation L1 memory (Blackfin processors only) for
cache vs. SRAM with cache visualization

• Using statistical profiling

Testing and Debugging With VisualDSP++: At this stage, you should
have a good understanding of the various facilities available for producing
optimal software. The last step is applying software testing and debugging
techniques, which include:

• Collecting data and using the advanced plot windows

• Using compiled simulation

• Using ActiveX and COM Automation to create regression test
environments and to take advantage of interoperability with other
applications
1-18 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
DSP Project Development Stages

The typical project includes three phases: simulation, evaluation, and
emulation.

You use VisualDSP++ during both simulation and emulation.

Simulation

You typically begin project development in a simulation environment
while hardware engineers are developing the new hardware (cell phone,
computer, and so on). Simulation mimics system memory and I/O, which
enables you to view portions of the target system hardware. A simulator is
software that mimics the behavior of a DSP chip. Running VisualDSP++
with a simulation target without a physical processor enables you to build,
edit, and debug your DSP program before a DSP chip is manufactured.

Figure 1-1. Project Development Stages
VisualDSP++ 3.5 User’s Guide 1-19
for 16-Bit Processors

Project Development
Evaluation

Use an EZ-KIT Lite™ evaluation system in your project’s early planning
stage to determine the DSP that best fits your needs. Your PC connects to
the EZ-KIT Lite board via cable, which enables you to monitor DSP
behavior.

Emulation

Once the hardware is ready, you move directly to a JTAG emulator, the
hardware that connects your PC to the actual DSP target board. An emu-
lator enables application software to be downloaded and debugged from
within VisualDSP++. Emulator software performs the communications
that enable you to see how your DSP code affects DSP performance.

Targets

A target (or debug target) refers to the communication channel between
VisualDSP++ and a processor (or group of processors). A target can be a
simulator, EZ-KIT Lite evaluation board, or an emulator. Your system
can include multiple targets.

For example, the JTAG emulator communicates with one or more physi-
cal devices over the host PC’s PCI bus, and the Apex-ICE™ emulator
communicates with a device via the PC’s USB port.

Simulation Targets

A simulation target, such as the ADSP-BF535 Family Simulator, is a pure
software module and does not require the presence of a processor for
debugging.

During simulation, VisualDSP++ reads an executable file (.DXE) and exe-
cutes it in software, similar to the way a processor executes a DSP image in
hardware. VisualDSP++ simulates the memory and I/O devices that you
specify in an .LDF file.
1-20 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Compiled simulation is an optional process that converts a .DXE file into
an .EXE file, which executes directly on the system hosting VisualDSP++ to
increase speed. For details, see “Compiled Simulation” on page B-41.

EZ-KIT Lite Targets

An EZ-KIT Lite target is a development board that enables you to evaluate a
particular DSP. Analog Devices provides several EZ-KIT Lite evaluation sys-
tems, which include demonstration programs.

Emulation Targets

An emulation target is a module that controls a physical DSP connected to
a JTAG emulator system. For example, the Summit-ICE™ emulator
communicates with one or more physical devices through the host PC’s
PCI bus, and the Apex-ICE emulator communicates with a device
through the PC’s USB port.

Platforms

A platform refers to the configuration of processors with which a target
communicates. Several platforms may exist for a given debug target. For
example, if three emulators are installed on your system, you might select
emulator 2 as the platform that you want to use. The platform that you
use depends on your project development stage.

Table 1-2. Development Stages and Supported Platforms

Stage Platform

Simulation Typically one or more DSPs of the same type. By default, the platform
name is the identical DSP simulator.

Evaluation An EZ-KIT Lite evaluation system

Emulation Any combination of devices. You must configure the platform for a partic-
ular target with the JTAG ICE Configurator. When the debug target is a
JTAG emulator, a platform refers to a JTAG chain.
VisualDSP++ 3.5 User’s Guide 1-21
for 16-Bit Processors

Project Development
Hardware Simulation

VisualDSP++ enables you to simulate a hardware environment when con-
nected to a simulation target. You can simulate the following.

• Random interrupts that can occur during program execution

• Data transfer through the processor’s I/O pins

• Processor booting from a PROM or host processor

Setting up VisualDSP++ to generate random interrupts during program
execution enables you to exercise interrupt service routines in your code.

Debugging Overview

Once you have successfully built your DSP project and have generated a
DSP executable file, you can debug the project. Projects developed in
VisualDSP++ are run as hardware and software debug sessions.

In the following table, the check mark indicates the various debug-
ging tools that you can use while building and debugging your DSP
program.

Table 1-3. Tools Used for Simulation and Emulation

Tool Simulation Evaluation Emulation

Linear profiles

Interrupts

Streams

Watchpoints

Pipelining
1-22 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
You can attach to and control the operation of any Analog Devices DSP or
DSP simulator. Download your application code to the processor and use
VisualDSP++’s debugging facilities to ensure that your application func-
tions as desired.

VisualDSP++ is your window into the inner workings of the target proces-
sor or simulator. From this user interface, you can:

• Run, step, and halt the program and set breakpoints and
watchpoints

• View the state of the processor’s memory, registers, and stacks

• Perform a cycle-accurate statistical profile or linear profile

Breakpoints

Plotting

Statistical profiles

Hardware breakpoints

Table 1-3. Tools Used for Simulation and Emulation (Cont’d)

Tool Simulation Evaluation Emulation
VisualDSP++ 3.5 User’s Guide 1-23
for 16-Bit Processors

Project Development
VisualDSP++ Kernel

A 16-bit project can optionally include the VisualDSP++ Kernel (VDK),
which is a software executive between DSP algorithms, peripherals, and
control logic.

The Project window’s Kernel tab accesses a tree control for structuring
and scaling application development. From this tree control, you can add,
modify, and delete Kernel elements such as thread types, boot threads,
round-robin priorities, semaphores, events, event bits, interrupts, and
device drivers.

Two VDK-specific windows, VDK State History and Target Load, pro-
vide views of VDK information. Another VDK window, VDK Status,
provides thread status data when a VDK-enabled program is halted.

Refer to the VisualDSP++ Kernel (VDK) User’s Guide for complete details.

Program Development Steps

In the VisualDSP++ environment, program development consists of the
following steps.

1. Create a project

2. Configure project options

3. Add and edit project source files

4. Define project build options

5. Build a debug version (executable file) of the project

6. Create a debug session and load the executable

7. Run and debug the program

8. Build a release version of the project
1-24 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
By following these steps, you can build DSP projects consistently and
accurately with minimal project management. This process reduces devel-
opment time and lets you concentrate on code development.

These steps, described below, are covered in detail in the online Help and
in the “Basic Tutorial” chapter of the VisualDSP++ 3.5 Getting Started
Guide for 16-Bit Processors.

Step 1: Create a Project

All development in VisualDSP++ occurs within a project. The project file
(.DPJ) stores your program’s build information: source files list and devel-
opment tools option settings.

Step 2: Configure Project Options

Define the target processor and set up your project options (or accept
default settings) before adding files to the project. The Project Options
dialog box provides access to project options, which enable the corre-
sponding build tools to process the project’s files correctly.

Step 3: Add and Edit Project Source Files

A project normally contains one or more C, C++, or assembly language
source files. After you create a project and define its target processor, you
add new or existing files to the project by importing or writing them. Use
the VisualDSP++ Editor to create new files or edit any existing text file.

Adding Files to Your Project

You can add any type of file to the project. The DSP development tools
selectively process only recognized file types when you build the project.
VisualDSP++ 3.5 User’s Guide 1-25
for 16-Bit Processors

Project Development
Creating Files to Add to Your Project

You can create new text files. The Editor can read or write text files with
arbitrary names. When you add files to your project, VisualDSP++
updates the project’s file tree in the Project window.

Editing Files

You can edit the file(s) that you add to the project. To open a file for edit-
ing, double-click on the file icon in the Project window.

The editor has a standard Windows-style user interface and can handle
normal editing operations and multiple open windows. Additional fea-
tures include customizable language- and DSP-specific syntax coloring,
and bookmark capabilities (creation and search).

Managing Project Dependencies

Project dependencies control how source files use information in other
files, and consequently determine the build order. VisualDSP++ maintains
a makefile, which stores dependency information for each file in the
project. VisualDSP++ updates dependency information when you change
the project’s build options, when you add a file to the project, or when
you choose Update Dependencies from the Project menu.

Step 4: Define Project Build Options

After you create a project, set the target processor, and add or edit the
project’s source files, you configure your project’s build options. You must
specify options or accept the default options in VisualDSP++ before using
the development tools that create your executable file. You can specify
options for a whole project or for individual files, or you can specify a cus-
tom build.

VisualDSP++ retains your changes to the build options. Settings
reflect your last changes, not necessarily the original defaults.
1-26 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Configuration

A project’s configuration setting controls its build. By default, the choices
are Debug or Release.

• Selecting Debug and leaving all other options at their default set-
tings builds a project that can be debugged. The compiler generates
debug information.

• Selecting Release and leaving all other options at their default set-
tings builds a project with limited or no debug capabilities. Release
builds are usually optimized for performance. Your test suite
should verify that the Release build operates correctly without
introducing significant bugs.

You can modify VisualDSP++’s default operation for either configuration
by changing the appropriate entries on the Compile, Assemble, and Link
property pages. You can create custom configurations that include the
build options and source files that you want.

Project-Wide File and Tool Options

Next, you must decide whether to use project-wide option settings or
individual file settings.

For projects built entirely within VisualDSP++ with no pre-existing object
or archive (library) files, you typically use project-wide options. New files
added to the project inherit these settings.

Individual File and Tool Options

Occasionally, you may want to specify tool settings for individual files.
Each file is associated with two property pages: a General page, which lets
you choose output directories for intermediate and output files, and a
tool-specific property page (Compile, Assemble, Link, and so on), which
lets you choose options. For information about each tool’s options, see the
online Help or the manual for each tool.
VisualDSP++ 3.5 User’s Guide 1-27
for 16-Bit Processors

Project Development
Step 5: Build a Debug Version of the Project

Now you must build a debug version of the project.

Status messages from each code development tool appear in the Output
window as the build progresses.

The output file type must be an executable (.DXE) file to produce
debugger-compatible output.

Step 6: Create a Debug Session and Load the Executable

After you successfully build an executable file, you set up a debug session.
You run DSP projects that you develop as either hardware or software ses-
sions. After you specify target and processor information, you must load
your project’s executable file. On the General page in the Preferences dia-
log box, you can configure VisualDSP++ to load the file automatically and
advance to the main function of your code.

Step 7: Run and Debug the Program

After you successfully create a debug session and build and load your exe-
cutable program, you run and debug the program.

If the project is not current (has outdated source files or dependency
information), VisualDSP++ prompts you to build the project before load-
ing and debugging the executable file.

Step 8: Build a Release Version of the Project

After you finish debugging your application, you build a Release version
of your project to run on the product’s DSP.
1-28 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Code Development Tools

This section describes the following DSP development tools.

• C/C++ compiler with run-time libraries

• Assembler and preprocessor

• Linker

• Expert Linker

• Archiver

• Loader

• Splitter

Available code development tools differ, depending on your processor.
The options available on the tab pages of the Project Options dialog box
enable you to specify tool preference.

VisualDSP++ supports ELF/DWARF-2 (Executable Linkable Format,
Debugging Information Format) executable files. VisualDSP++ supports
all executable file formats produced by the linker.

If your system is configured with third-party development tools, you can
select the compiler, assembler, or linker to use for a particular target build.
VisualDSP++ 3.5 User’s Guide 1-29
for 16-Bit Processors

Code Development Tools
Compiler

The compiler processes C/C++ programs into assembly code. The term
compiler refers to the compiler utility shipped with the VisualDSP++
software.

The compiler generates a linkable object file by compiling one or more
C/C++ source files. The compiler’s primary output is a linkable object file
with a .DOJ extension.

You specify compiler options for your build by selecting Project, Project
Options, and the Compile tab. On the Compile page, you then select a
Category of options.

Compiler options are grouped into the categories described in Table 1-4.

The available compile options depend on your target DSP and
your code development tools.

For more information, refer to the VisualDSP++ 3.5 C/C++ Compiler and
Library Manual for your processor.

Table 1-4. Groups of Compiler Options

Category Purpose

General Optimization, compilation, and termination options

Preprocessor Macro and directory search options

Processor Processor-specific options

Warning Warning and error reporting options
1-30 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
C++ Run-Time Libraries

You must run VisualDSP++ to use the C++ run-time libraries.

The C and C++ run-time libraries are collections of functions, macros,
and class templates that can be called from source programs. Many func-
tions are implemented in the DSP assembly language.

C and C++ programs depend on library functions to perform operations
that are basic to the C and C++ programming languages. These operations
include memory allocations, character and string conversions, and math
calculations. The libraries also include multiple signal processing func-
tions that ease DSP code development. The run-time library simplifies
software development by providing code for a variety of common needs.

The compiler provides a broad collection of C functions including those
required by the ANSI standard and additional Analog Devices-supplied
functions of value for DSP programming. This release of the compiler
software includes both the Standard C Library and the Abridged Library, a
conforming subset of the Standard C++ Library.

For more information about the algorithms on which many of the C
library’s math functions are based, refer to the Cody and Waite text
Software Manual for the Elementary Functions from Prentice Hall (1980).

For more information about the C++ library portion of the ANSI/ ISO
Standard for C++, refer to the Plauger text Draft Standard C++ Library
from Prentice Hall (1994) (ISBN: 0131170031).
VisualDSP++ 3.5 User’s Guide 1-31
for 16-Bit Processors

Code Development Tools
Assembler

The assembler generates an object file by assembling source, header, and
data files. The assembler’s primary output is an object file with a .DOJ
extension.

You specify assembler options by selecting Project, Project Options, and
the Assemble tab.

Assembler terms are defined as follows.

Instruction set

The set of assembly instructions that pertain to a specific DSP. For
information about the instruction set, refer to your processor’s
Hardware Reference.

Preprocessor commands

Commands that direct the preprocessor to include files, perform
macro substitutions, and control conditional assembly

Assembler directives

Directives that tell the assembler how to process your source code
and set up DSP features. You use directives to structure your pro-
gram into logical segments or sections that support the use of a
Linker Description File (.LDF) to construct an image suited to the
target system.

For more information, refer to the VisualDSP++ 3.5 Assembler and
Preprocessor Manual for your processor.
1-32 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Linker

The linker links separately assembled files (object files and library files) to
produce executable files (.DXE), shared memory files (.SM), and overlay
files (.OVL), which can be loaded onto the target.

The linker’s output files (.DXE, .SM, .OVL) are binary, executable, and linkable
files (ELF). To make an executable file, the linker processes data from a
Linker Description File (.LDF) and one or more object files (.DOJ). The
executable files contain program code and debugging information. The linker
fully resolves addresses in executable files.

You specify linker options by selecting Project, Project Options, and the
Link tab. On the Link page, you then select a Category of options. Linker
options are grouped into the following categories.

• General

• LDF Preprocessing

• Elimination

• Processor

Linker terms are defined as follows.

Link against

Functionality that enables the linker to resolve symbols to which
multiple executables refer. For instance, shared memory executable
files (.SM) contain sections of code that other processor executables
(.DXE) link against. Through this process, a shared item is available
to multiple executables without being duplicated.

Link objects

Object files (.DOJ) that become linked and other items, such as exe-
cutables (.DXE, .SM, .OVL), that are linked against
VisualDSP++ 3.5 User’s Guide 1-33
for 16-Bit Processors

Code Development Tools
.LDF file

File that contains the commands, macros, and expressions that
control how the linker arranges your program in memory

Memory

Definitions that provide the linker with a description of your target
DSP system

Overlays

Files that your overlay manager swaps in and out of run-time
memory, depending on code operations. The linker produces
overlay files (.OVL).

Sections

Declarations that identify the content for each executable that the
linker produces

For more information, refer to the VisualDSP++ 3.5 Linker and Utilities
Manual for 16-Bit Processors.

A Linker Description File (.LDF) describes the target system and maps
your program code with the system memory and processors.

The .LDF file creates an executable file by using:

• The target system memory map

• Defined segments in your source files
1-34 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
The parts of an .LDF file from the beginning to the end of the file, are
described as follows.

• Memory map – describes the processor’s physical memory, at the
beginning of the .LDF file

• SEARCH_DIR, $LIBRARIES, and $OBJECTS commands – define the
path names that the linker uses to search and resolve references in
the input files

• MEMORY command – defines the systems’ physical memory and
assigns labels to logical segments within it. These logical segments
define program, memory, and stack memory types.

• SECTIONS command – defines the placement of code in physical
memory by mapping the sections specified in program files to the
sections declared in the MEMORY command. The INPUT_SECTIONS
statement specifies the object file that the linker uses to resolve the
mapping.

For details, refer to the VisualDSP++ 3.5 Linker and Utilities Manual for
16-Bit Processors.
VisualDSP++ 3.5 User’s Guide 1-35
for 16-Bit Processors

Code Development Tools
Expert Linker

Expert Linker is a graphical tool that enables you to:

• Define a DSP target’s memory map

• Place a project’s object sections into that memory map

• View how much stack or heap has been used after you run a DSP
program

This interactive tool speeds up the configuration of system memory. It uses
your application's target memory description, object files, and libraries to cre-
ate a memory map that you can manipulate to optimize your system’s use of
memory.

The Expert Linker works with the linker. For more information
about linking, refer to the VisualDSP++ 3.5 Linker and Utilities
Manual for 16-Bit Processors.

Expert Linker graphically displays the available project information in an .LDF
file as input. This information includes object files, LDF macros, libraries,
and target memory descriptions. You can then use the drag-and-drop function
to arrange the object files in a graphical memory mapping representation.
When you are satisfied with the memory layout, you can generate the execut-
able file (.DXE) via VisualDSP++ project options.

You can use default .LDF files that come with VisualDSP++, or you
can use the Expert Linker wizard to create and customize a new
.LDF file.

When you open Expert Linker in a project that already includes an .LDF file,
Expert Linker parses the .LDF file and graphically displays the DSP target’s
memory map and the object mappings. The memory map appears in the
Expert Linker window (Figure 1-2 on page 1-38). Use this display to mod-
ify the memory map or the object mappings. When the project is about to be
built, Expert Linker saves the changes to the .LDF file.
1-36 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Expert Linker can graphically display space allocated to program heap and
stack. After you load and run your program, Expert Linker indicates the por-
tion of the heap and stack that has been used. You can then reduce the size of
the heap or stack to minimize the memory allocated for the heap and stack.
Freeing up memory in this way enables you to use it for storing other things
like DSP code or data.

You can launch the Expert Linker from VisualDSP++ in three ways:

• Double-click the .LDF file in the Project window.

• Right-click the .LDF file in the Project window to display a menu and
then choose Open in Expert Linker.

• From the VisualDSP++ main menu, choose Tools, Expert Linker,
and Create LDF.

The Expert Linker window (Figure 1-2 on page 1-38) is displayed.
VisualDSP++ 3.5 User’s Guide 1-37
for 16-Bit Processors

Code Development Tools
Expert Linker Window

The Expert Linker window (Figure 1-2) enables you to modify the memory
map or the object mappings. You can specify a color for each type of object
(internal memory, external memory, unused memory, reserved memory, out-
put sections, object sections, overlays in live space, and overlays in run space).
The objects are displayed in color when you view the Memory Map pane in
graphical memory map mode. When the project is about to be built, Expert
Linker saves the changes to the .LDF file.

The Expert Linker window contains two main panes:

• The Input Sections pane displays a tree structure of the input
sections.

• The Memory Map pane displays each memory map in a tree or
graphical representation.

You can dock or float the Expert Linker window in the VisualDSP++ main
window.

Figure 1-2. Expert Linker Window
1-38 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Memory Map Pane Right-Click Menu

Table 1-5 describes the commands on the Memory Map pane right-click
menu.

Table 1-5. Memory Map Pane Right-Click Menu

Command Purpose

View ModevMemory Map Tree Displays the memory map in tree mode

View ModevGraphical Mem-
ory Map

Displays the memory map in graphical blocks

ViewvMapping Strategy
(Pre-Link)

Displays the memory map, which shows where you intended to
place object sections

ViewvLink Results (Post-Link) Displays the memory map, which shows where the object sections
are actually placed

NewvMemory Segment Opens the Memory Segment Properties dialog box, from which
you specify the name, address range, type, width, and so on of the
memory segment that you want to add

NewvOutput Section Adds an output section to the selected memory segment.
Note: Right-click on a memory segment to access this command.

NewvShared Memory Opens the Shared Memory Properties dialog box, from which
you specify the name of the shared memory output file and pro-
cessors that share the memory. This command is not available on
single-processor systems.

NewvOverlay Opens the Overlay Properties dialog box, from which you add a
new overlay to the selected output section or memory segment.
Note: The new overlay’s run space is in the selected output sec-
tion.

Delete Deletes the selected object

Pin to Output Section Pins an object section to an output section to prevent it from
overflowing to another output section. This command is available
only after you right-click on an object section that is part of an
output section set to overflow to another section.
VisualDSP++ 3.5 User’s Guide 1-39
for 16-Bit Processors

Code Development Tools
View Section Contents Opens the Section Contents dialog box, which displays the con-
tents of the input or output section. This command is available
only after you link or build the project and then right-click on an
input or object section.

Add Hardware Page Overlay
Support

Sets up hardware overlay live and run spaces for all available hard-
ware pages by:
a) Checking if memory segments are currently defined in all hard-
ware pages. If memory segments are located, you are queried
about whether to delete those segments.
b) Creating a memory segment containing an overlay (live space)
in each hardware page
c) Creating a memory segment containing all overlay run spaces
in hardware page 0
d) Creating a default mapping for each overlay. The default map-
ping maps objects containing the section, “pmpage0” to the hard-
ware overlay on PM page 0, “pmpage1” to PM page1, “dmpage0”
to DM page 0, and so on.

View Symbols Opens the View Symbols dialog box and displays the symbols for
the project, overlay, or input section. This command is available
after you link the project and then right-click on the Memory
Map pane for a processor, memory segment, output section, or
input section.

Expand All Expands all items in the memory map tree to make their contents
visible

View Legend Opens the Legend dialog box, which shows all possible icons in
the tree window, with a brief description of each icon. The Colors
page displays a list of colors used in the graphical memory map.
You can specify each object’s color.

View Global Properties Opens the Global Properties dialog box for the selected
object. The dialog box’s title and content depend on the selected
object.

Table 1-5. Memory Map Pane Right-Click Menu (Cont’d)

Command Purpose
1-40 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Stack and Heap Usage

Expert Linker enables you to adjust the size of the stack and heap, and make
better use of memory.

Expert Linker can:

• Locate stacks and heaps and fill them with a marker value

This operation occurs after you load the program into a DSP target.
The stacks and heaps are located by their memory segment names,
which may vary across processor families.

• Search the heap and stack for the highest memory locations written to
by the DSP program

This operation occurs when the target halts after you run the program.
Assume that these values are the start of the unused portion of the
stack or heap. The Expert Linker updates the memory map to show
how much of the stack and heap are unused.

For Blackfin DSPs, be aware of the following stack and heap restrictions.

• The heap, stack, and system stack must be defined in output sections
named HEAP, STACK, and SYSSTACK, respectively.

• The heap, stack, and system stack must be the only items in those out-
put sections. You cannot place other objects in those output sections.

For other processor families, the restrictions on memory segment names differ
according to what is used in the default .LDF files. If you do not heed these
restrictions, you will not be able to view stack and heap usage after running
your program.
VisualDSP++ 3.5 User’s Guide 1-41
for 16-Bit Processors

Code Development Tools
Figure 1-3 shows an example memory map after you run a Blackfin program.

Figure 1-3. Memory Map Example After Running a Blackfin Program
1-42 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Archiver

The VisualDSP++ archiver, elfar.exe, combines object files (.DOJ) into
library files (.DLB), which serve as a reusable resource for project develop-
ment. The linker searches library files for routines (library members) that
are referred to by other objects and links them in your executable
program.

You can run the archiver from within VisualDSP++ or from the command
line. From VisualDSP++, you can create a library file as your project’s
output.

To modify or list the contents of a library file (or perform other operations
on it), you must run the archiver from a command line. For details, refer
to the VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors.

Splitter

The splitter processes an executable file to generate a series of
non-bootable programmable read-only memory (PROM) files. These files
execute from the processor’s external memory.

The splitter's primary output is a PROM file with these extensions:

• .LDR (Blackfin processors)

• .S_#, .H_#, and .STK (ADSP-219x processors)

• .BNM, .BNU, and .BNL (ADSP-218x processors)

The ADSP-218x splitter (elfspl21.exe) can prepare non-bootable PROM
image files that execute from DSP external memory. In most instances, use the
loader instead of the splitter.

The ADSP-218x splitter must be run from a command line. For details, refer
to the VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors.
VisualDSP++ 3.5 User’s Guide 1-43
for 16-Bit Processors

Code Development Tools
The splitter generates images for the external PMOVLAY and DMOVLAY
memory pages. If you use the splitter to produce ROM images (for example,
ADSP-2181 program memory pages 1 and 2), the generated code must target
ROM. Define appropriate ROM segments in your .LDF file.

The ADSP-219x splitter utility (elfloader.exe) can prepare non-bootable
PROM image files that execute from DSP external memory. In most
instances, use the loader instead of the splitter.

Splitting does not apply to ADSP-2192-12 DSPs.

Splitter capability for Blackfin processors is available from the Load page of
the Project Options dialog box.

For more information about the splitter and options used to generate
loader files, refer to the VisualDSP++ 3.5 Linker and Utilities Manual for
16-Bit Processors.

Loader

The loader (elfloader.exe) generates a boot-loadable file for 16-bit
processors by processing executable files. To generate a loadable file, the
loader processes data from a boot kernel file (.DXE), the linker’s executable
file (.DXE), and in some cases overlay files (.OVL). The ADSP-BF532 and
ADSP-21xx processors use one on-chip ROM bootstrap kernel for
automatic booting from an external memory device. The ADSP-BF535
and ADSP-21xx processors are supported by two booting kernels. Boot
loading through the boot kernel is currently supported only on the
ADSP-BF535 and ADSP-21xx processors.

Once you have fully debugged your program, use the loader to generate a
set of boot-loadable files for your target system. The loader produces one
output file with an .LDR extension (.BNM for ADSP-218x processors) or
two output files (an .LDR boot kernel file and a .KLN application code file),
depending on your loader setup selections.
1-44 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Loading the loader output into a simulator session in the VisualDSP++
debugger enables you to simulate the boot process and the boot loaded
application.

You specify loader options by selecting Project, Project Options, and the
Load tab. On the Load page, you then select a Category of options.

Loader options are grouped into the following categories.

• Loader options

• Boot kernel options

• ROM splitter options

Loader terms are defined as follows.

Boot kernel

The executable file that performs the memory initialization on the
target

Boot-loadable file

The loader’s output, which contains the boot loader and the for-
matted system configurations. This file is a bootable image file.

Boot loading

The process of loading the boot loader, initializing system memory,
and starting the application on the target

Loader

The loader application, such as elfloader.exe, contained in the
software release
VisualDSP++ 3.5 User’s Guide 1-45
for 16-Bit Processors

VCSE
VCSE

VCSE consists of a combination of tools and guidelines that simplify the
process of developing components and help to document and validate such
components. These tools and guidelines:

• Enable applications to incorporate and use software algorithm
components from other developers easily and with confidence

• Ensure that components from multiple vendors will not interact
with each other in unpredictable ways or have resource clashes

• Allow components to be developed in assembler, C, or C++ and be
used from applications developed in any of these languages

• Allow components to be reused easily

• Allow comparison of algorithms that offer the same functionality

• Provide support for testing of components as they are developed or
used by an application

• Enable the use of components to be optimized automatically

• Encourage third party developers to provide the implementation of
algorithms as easily used components

For more information, refer to the VisualDSP++ 3.5 Component Software
Engineering User’s Guide.

VCSE Components

VCSE provides support for creating and using software components that
are specifically targeted at the embedded space.
1-46 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
VCSE Component Model Specification

Components that adhere to the VCSE Component Model specification
enable you to achieve these objectives:

• Create software algorithms as reusable components

• Use software algorithms as components from other developers

• Use components from an assembler, C, or C++ program irrespective of
the language that they were implemented in

• Use components from multiple sources predictably in any applica-
tion without resource conflicts

VCSE Component Model

The VCSE component model does the following.

• Defines a binary standard to allow component interoperability

• Specifies a mechanism that is language independent and usable by
assembly, C, and C++ components

• Provides a robust mechanism to cope with the evolution of compo-
nents over time

• Defines a naming standard to ensure the uniqueness of component
names

The binary standard defining the mechanism allows function calls
between components and supports the grouping of available functions or
methods into interfaces that are accessible as a unit. Each component can
support more than one interface. Each component must support a base
interface that can be used to access any other interface supported by the
component.
VisualDSP++ 3.5 User’s Guide 1-47
for 16-Bit Processors

VCSE
VCSE Tools

VCSE tools enable you to create and use components without having to
become familiar with the detail of the model and the mechanisms it
involves. As a result, you can concentrate on the application itself.

VCSE consists of tools and guidelines that simplify the process of develop-
ing components and automate the conformance testing of such
components. VCSE components are integrated with VisualDSP++. They
simplify the process of incorporating and utilizing components from a
variety of developers.

Use of VCSE Components with VisualDSP++

VCSE automatically generates an interface header file that defines the ser-
vices it offers and provides access to those services from assembly, C, and
C++ files.

VCSE components can be integrated with VisualDSP++, so you can view
information on all the components that are available. From VisualDSP++,
you can view a list of all the registered components in VisualDSP++. Some
components may not have a complete implementation, but they are avail-
able for purchase. You can access the information for each registered
component and view the list of interfaces it supports.

When you add a component to a project, VisualDSP++ adds the
following.

• Relevant object and header files to the project

• Supported interfaces

You can use the New Interface Wizard to create an interface and add
methods and parameters to it. This process generates the necessary Inter-
face Definition Language (IDL) source code.
1-48 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
VCSE User Interface

Integration of VCSE with VisualDSP++ simplifies the process of creating
components and of incorporating and utilizing components from a variety of
developers. VCSE menu options accessed from the Tools menu enable you
to:

• Use a wizard to create an new interface specification

• Use a wizard to create a VCSE component and a project to build
the component

• Create a project to support the creation of a VCSE component

• Install and a view components on the local system

• Download and install new or updated components from the ADI
Web site

• Add an installed component to a project

Tool Chain Integration

You tell VisualDSP++ to produce a VCSE component library from the
Project page of the Project Options dialog box. Under Type, select VCSE
component library. Specify VCSE compiler options from the VIDL page
of the Project Options dialog box. Specify IDL font and color preferences
for editing on the Editor page of the Preferences dialog box.
VisualDSP++ 3.5 User’s Guide 1-49
for 16-Bit Processors

VCSE
Wizards

VCSE wizards lead you through various tasks.

• New Component Project Wizard

Creating a new VCSE component project is simple with the New
Component Project wizard. After making the required decisions in
the wizard, a new VCSE Component Library project is created and
added to the current workspace. In addition, the IDL source code
describing your component is generated and added to the project.

• New Component Package Wizard

You create a new component package with the New Component
Package wizard. Select an XML component manifest, review com-
ponent information, and then include files in the component
package.

Creating a new interface is easy with the New Interface wizard. You
define methods and parameters for the new interface, and the wiz-
ard generates the IDL source code for that interface and adds it to
the current project.

Once you have downloaded and installed a component onto your system,
you can easily add the component to a project.

Component Manager

You can view the list of currently installed components, add installed
components to a project, and interactively view and download new com-
ponents from the Analog Devices Web site. Use the Component Manager
to browse components at various locations.
1-50 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
From the Component Manager dialog box, you can:

• Browse components

View the list of installed components on your system or the new
and updated components on the ADI Web site. Each component
includes a description.

• Filter your view of the components

Sort the component list by name, category, company, status,
supported processor, or implemented interface.

• Install components

Install them directly from the Analog Devices Web site or from a
third party. You must download the component to your PC from a
Web site or copy the component to your PC by any means.

• Uninstall components from your PC

Structure of VCSE

VCSE specifies the requirements that a component must meet and pro-
vides a set of tools to help ensure that a component conforms to the ADI
component standard for DSP algorithms and other objects. VCSE greatly
simplifies the task of enabling components within a system to communi-
cate. It also provides a degree of abstraction that offers greater flexibility in
the choice and use of components.

VCSE support for DSP algorithms makes it much easier for integrators to
exploit algorithms from one or more vendors. This support also provides
the algorithm developer with a standardized framework to make algo-
rithms more interoperable and usable at a minimal cost.
VisualDSP++ 3.5 User’s Guide 1-51
for 16-Bit Processors

VCSE
VCSE provides a set of specifications and tools that comprise:

• A software architecture that is designed to be efficient and effective
for DSP applications and processors. The language-neutral archi-
tecture provides support for inter-working between software
written in assembly, C, and C++. The architecture is designed to
operate within multiple environments such as single or
multi-threaded applications.

• A component model that provides encapsulation (hiding of the
implementation and other information) of the algorithms and
objects and supports the idea of abstract interfaces and a single
inheritance model. The VCSE component model is specifically
designed for use within DSP and embedded applications.

• An Interface Definition Language (IDL) that supports simple bind-
ings for C, C++, and assembly. The IDL is supported by the VCSE
IDL (VIDL) compiler, which processes the IDL specified compo-
nent and interface definitions and generates interface headers,
component shells, and HTML-based documentation for the
component.

IDL incorporates support for documenting the interfaces, and
enables standardized documentation to be generated, which allows
other statements about the interface to be automatically validated
or even generated.

• A set of rules and guidelines to which each component must adhere
if it is to be a conforming component or algorithm. Validation of
conformance to some of these rules is effected automatically by
VisualDSP++.

• An interface wizard that provides a visual user interface to allow the
object or algorithm provider to define interfaces. The interface wiz-
ard generates an IDL specification of the interface, which you can
then compile by using the VIDL compiler.
1-52 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
• Support for the inclusion of VCSE components in a project and
the display of associated component documentation

Each VCSE component can be packaged as a compressed package,
called a component package file (.VCP). You can install this file into
VisualDSP++ by using the same techniques used to install and
identify debug-targets from third-party suppliers. Each such pack-
age contains the component interface headers, documentation, and
(optionally) the implementation and any necessary license informa-
tion. Packages that do not contain the implementation provide a
means of promoting a component or algorithm in a convenient
form for VisualDSP++ developers.

Interface Definition Language (IDL) and Compiler

VCSE supports an Interface Definition Language (IDL) and compiler that
enable developers to specify and then create and use components without
having to become familiar with the detail of the model and its mecha-
nisms. The VIDL compiler processes the specification of the interfaces
supported by a component and generates the framework code needed to
implement the component. The developer of the component can thus con-
centrate on providing the implementation of the methods that the component
will provide. In addition, the VIDL compiler can generate a simple test
harness to help in testing the component.
VisualDSP++ 3.5 User’s Guide 1-53
for 16-Bit Processors

VCSE
The VIDL compiler compiles the supplied IDL definitions of interfaces
and components and generates up to five possible output items. These
items can be emitted for each interface:

• An interface header file, which can be used by a client of the inter-
face to request services from the interface. Each interface header
file can be used within assembly, C, and C++ source files.

• An interface component shell, which provides a standard frame-
work for providing the implementation of each interface supported
by the component in the chosen implementation language

This shell supports the interface but leaves the implementation of
each method to the developer. Consequently, the developer is free
to concentrate on the implementation of interface services without
having to know the details of the VCSE binary standard.

The binary standard requires all functions within the interface to
obey the C run-time model. The generated assembler shell for an
interface ensures that the requirement is met by using the appropri-
ate macros in the generated code. The component shell can be
generated in the assembly, C, or C++ language.

• HTML-based documentation of the component and all of its sup-
ported interfaces in a standardized way. The documentation is
derived from the IDL definition and the embedded auto-doc
comments that the developer is encouraged to provide as part of
the IDL definition.

• An .XML file, which can be used by the New Component Package
Wizard when a component is packaged for distribution

• A test shell component, which can be used to do the following
automatically: validate the behavior of a component or ensure that
an application is using a component properly. In addition to gener-
ating checks automatically, you can add additional validation for
each method in an interface.
1-54 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
The IDL language supports all the standard C/C++ base types (as well as
arrays, structs, and enums) and the use of typedef. The only explicit
pointer types that IDL supports are interface pointers. All out parameters
are mapped to arrays or pointers. All in arrays and structs are also mapped
to arrays and pointers.

The VIDL compiler inputs .IDL files and produces the files shown in
Figure 1-4.

Figure 1-4. Files Produced by the VIDL Compiler
VisualDSP++ 3.5 User’s Guide 1-55
for 16-Bit Processors

DSP Projects
DSP Projects

The project is the structure in which you build the DSP program.
VisualDSP++ provides flexibility in how you set up projects. You config-
ure settings for DSP code development tools and configurations, and you
specify build settings for the project and for individual files. You can set
up folders that contain your source files. A project can include VDK
support.

What is a Project?

Your goal is to create a program that runs on a single-processor (or multi-
processor) system. All your development in VisualDSP++ occurs within a
project.

The term project refers to the collection of source files and tool configura-
tions used to create a DSP program. A project file (.DPJ) stores program
build information.

Use the Project window to manage projects from start to finish. Within
the context of a DSP project, you can:

• Specify DSP code development tools

• Specify project-wide and individual-file options for Debug or
Release configurations of project builds

• Create source files

VisualDSP++ facilitates movement among editing, building, and debug-
ging activities.
1-56 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Project Options

You specify project options, which apply to the entire DSP project.
Figure 1-5 shows the top of the Project Options dialog box.

For each code development tool (compiler, assembler, linker, splitter and
loader), a tabbed page provides options that control how each tool pro-
cesses inputs and generates outputs. The available pages depend on your
target. Options correspond to an individual tool’s command-line switches.
You can define these options once or modify them to meet changing
development needs.

You can also access the tools from the operating system’s command
line.

Project options also specify the following information.

• Project target

• Tool chain

• Output file directories

• Post-build options

Figure 1-5. Top Portion of the Project Options Dialog Box
VisualDSP++ 3.5 User’s Guide 1-57
for 16-Bit Processors

DSP Projects
Project Groups

Project groups enable you to work with a number of projects at once. A
project group can be empty or contain any number of projects. Opening a
project adds it to the project group. Closing a project removes it from the
project group.

Similar functionality is found in Microsoft Visual Studio. The capabilities
provided by project groups are particularly useful in VCSE development,
which involves multiple projects.

The Project window (Figure 1-6) displays the project group icon and the
projects opened in that workspace.

Each workspace has one project group. When you switch among work-
spaces, the project group is loaded and the same set of projects are opened
just as when you last closed the workspace.

Figure 1-6. Project Window
1-58 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
One project is active at a time. The active project responds to commands and
messages from menus and tool bars. The Project window displays the active
project with bold typeface. A Project box, located by default with the toolbar
buttons, displays the name of the active project (see Figure 1-7).

Though commands are sent to the active project, they may also be carried
out by a project on which the active project depends. For example, assume
that project A is active and depends on project B. Performing a Rebuild All
command on project A builds project B first. The same applies to the clean
command. Exporting a makefile exports one makefile for each open project.
In the makefile of a project depending on another project, one sub-target is
created for each project on which it depends. Thus, building a project builds
all dependent projects first.

Figure 1-7. Project Box Showing the Active Project
VisualDSP++ 3.5 User’s Guide 1-59
for 16-Bit Processors

DSP Projects
Source Code Control (SCC)

VisualDSP++ includes Source Code Control (SCC), which enables you to
use the Microsoft Common Source Code Control (MCSCC) interface to
connect between the VisualDSP++ IDDE and the SCC applications
installed on your machine.

Various SCC products (such as Visual SourceSafe, PVCS Version Man-
ager, and ClearCase) support the MCSCC interface. Using the convenient
VisualDSP++ interface, you can access the commonly used features of
these applications without leaving the IDDE. You can launch the SCC
application from the plugin menu to use non-supported features.

When you create a project, you are prompted to add the project to SCC.
When you open a project in the IDDE, the SCC plugin connects to the
selected SCC application and locates a controlled copy of the project and its
source files. If a controlled copy is not located, the SCC application must
locate it. Typically, you are queried to browse for it. If the controlled copy is
successfully found or added, the plugin keeps its application-specific path in
the project file and reconnects with this path in the future. You can subse-
quently reconnect to the controlled copy without having to browse for it.

Operations executed on large number of files tend to take longer to finish.
A message box provides status information by displaying the operation
currently executing. A button on the message box enables you to cancel
the operation. The Output window’s Console view displays finished oper-
ations. Messages indicate what has been done. Warnings and error
messages may also appear in the Output window.

SCC applications provide dialog boxes and GUI displays for some file opera-
tions such as show history, show difference, and show properties. You can run
these operations from VisualDSP++.
1-60 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Makefiles

You can use a makefile (.MAK) to automate builds within VisualDSP++.
The output make rule is compatible with the gnumake utility (GNU
Make V3.77 or higher) or other make utilities. VisualDSP++ generates a
project make file that controls the orderly sequence of code generation in
the target. You can also export a makefile for use outside of VisualDSP++.
For more information about makefiles, go to:

http://www.gnu.org/manual/make/

A project can have multiple makefiles, but only one makefile can be
enabled (active).

The project in Figure 1-8 includes an active makefile (indicated by).

Figure 1-8. Enabled Makefile dot_product_asm.mak
VisualDSP++ 3.5 User’s Guide 1-61
for 16-Bit Processors

DSP Projects
The active makefile, with its explicit gmake command line, builds the
project. When no makefile is enabled for a project, VisualDSP++ uses
specifications configured in the Project Options dialog box.

You can view a makefile’s command line. To change the makefile’s target,
use the Configuration box, shown in Figure 1-9.

When you close a project, the make commands and the target list associ-
ated with each makefile are serialized in the project file (.DPJ).

Rules

You can enable only one makefile when you build a project. If you enable
more than one makefile, VisualDSP++ generates an error message. After
you build your project with an external makefile, the executable is not
automatically loaded (even when this option is configured).

Output Window

Make command error messages and standard output appear in the Output
window. Double-clicking on an error-message position opens the makefile in
an editor window to the line of code causing the error.

Keywords in the makefile are syntax colored.

Note: The error message format of gmake is parsed correctly when you dou-
ble-click on an error message. If you use another make utility, the double-click
feature does not function.

Figure 1-9. Configuration Box
1-62 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Example Makefile

An example of a makefile appears below.

Generated by the VisualDSP++ IDDE
Note: Any changes made to this makefile
will be lost the next time the matching
project file is loaded into the IDDE.
To preserve changes, rename this file
and run it externally to the IDDE.
The syntax of this makefile is such that
GNU Make v3.77 or higher is required.
The current working directory should be the
directory in which this makefile resides.
Supported targets:
Debug
Debug_clean
Define ADI_DSP if it is not already defined.
Define this variable if you wish to run this
makefile on a host other than the host that
created it and VisualDSP++ may be installed
in a different directory.
ifndef ADI_DSP
ADI_DSP=C:\Program Files\Analog Devices\VisualDSP
endif
$VDSP is a gmake-friendly version of ADI_DIR
empty:=
space:= $(empty) $(empty)
VDSP_INTERMEDIATE=$(subst \,/,$(ADI_DSP))
VDSP=$(subst (space),\$(space),$(VDSP_INTERMEDIATE))
Define the command to use to delete files
(which is different on Win95/98
and Windows NT/2000)
ifeq ($(OS),Windows_NT)
RM=cmd /C del /F /Q
else
RM=command /C del
endif
#
Begin "Debug" configuration
#
ifeq ($(MAKECMDGOALS),Debug)
Debug : ./debug/dot_product_asm.dxe
VisualDSP++ 3.5 User’s Guide 1-63
for 16-Bit Processors

DSP Projects
./debug/dotprod.doj : ./dotprod.c
$(VDSP)/ccblkfn
-c .\dotprod.c
-g -BF535
-o .\Debug\dotprod.doj -MM
./debug/dotprod_func.doj : ./dotprod_func.asm
$(VDSP)/easmBLKFN.exe -BF535
-o .\Debug\dotprod_func.doj
.\dotprod_func.asm -MM
./debug/dotprod_main.doj : ./dotprod_main.c
$(VDSP)/blackfin/include/stdio.h
$(VDSP)/blackfin/include/yvals.h
$(VDSP)/blackfin/include/stdlib.h
$(VDSP)/blackfin/include/math.h
$(VDSP)/blackfin/include/ymath.h
$(VDSP)/blackfin/include/ccblkfn.h
$(VDSP)/ccblkfn -c .\dotprod_main.c
-g -BF535
-o .\Debug\dotprod_main.doj -MM
./debug/dot_product_asm.dxe :
./debug/dotprod.doj ./debug/dotprod_func.doj
./debug/dotprod_main.doj ./dotprodasm.ldf
$(VDSP)/ccblkfn.exe .\Debug\dotprod.doj
.\Debug\dotprod_func.doj
\Debug\dotprod_main.doj
-T .\dotprodasm.ldf -BF535
-L .\Debug -o .\Debug\dot_product_asm.dxe
-flags-link -MM
endif
ifeq ($(MAKECMDGOALS),Debug_clean)
Debug_clean:
$(RM) ".\Debug\dotprod.doj"
$(RM) ".\Debug\dotprod_func.doj"
$(RM) ".\Debug\dotprod_main.doj"
$(RM) ".\Debug\dot_product_asm.dxe"
$(RM) ".\Debug*.ipa"
$(RM) ".\Debug*.opa"
$(RM) ".\Debug*.ti"
endif
1-64 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Project Configurations

By default, a project includes two configurations, Debug and Release,
described in the following table. In previous software releases, the term
configuration was called “build type.”

Available configurations appear in the configuration box, which is part of
the Project toolbar, as shown in Figure 1-10.

You cannot delete the Release or Debug configuration.

Table 1-6. Default Project Configurations

Configuration Description

Debug Builds a project that enables you to use VisualDSP++
debugging capabilities

Release Builds a project with optimization enabled

Figure 1-10. Configuration Box
VisualDSP++ 3.5 User’s Guide 1-65
for 16-Bit Processors

DSP Projects
Customized Project Configurations

You can add a configuration to your project. A customized project config-
uration can include various project options and build options to help you
develop your project. Figure 1-11 shows a customized configuration
(Version2) listed in the configuration box.

Project Build

The term build refers to the process of performing operations (such as
preprocessing, assembling, and linking) on projects and files. During a
build, VisualDSP++ processes project files that have been modified since
the previous build as well as project files that include modified files.

A build differs from a rebuild all. When you run the Rebuild All com-
mand, VisualDSP++ processes all the files in the project, regardless of
whether they have been modified.

Building a project builds all outdated files in the project and enables you
to make your program. An outdated file is a file that has been modified
since the last time it was built or a file that includes a modified file. For
example, if a C file that has not been modified includes a header file that
has been modified, the C file is out of date.

Figure 1-11. Customized Configuration Version2
1-66 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
VisualDSP++ uses dependency information to determine which files, if
any, must be updated during a build.

Note the following.

• A file with an unrecognized file extension is ignored at build
time.

• If an included header file is modified, VisualDSP++ builds
the source files that include (#include) the header file,
regardless of whether the source files have been modified
since the previous build.

• File icons in the Project window indicate file status (such as
excluded files or files with specific options that override
project settings).

Build Options

You can specify options for the entire project and for individual files.
Table 1-7 describes these build options.

Table 1-7. Build Options

Options Description

Project-wide You specify these options from a tabbed page (for example, Compile
or Link) for each of the DSP code development tools.

Individual file These settings override project-wide settings.

Custom build step For maximal flexibility, you can edit the command line(s) issued to
build a particular file. For example, you might call a third-party
utility.
VisualDSP++ 3.5 User’s Guide 1-67
for 16-Bit Processors

DSP Projects
File Building

You build a single file to compile or assemble the file and to locate and remove
errors. The build process updates the source file’s output (.OBJ file) and
updates the output file’s debug information. Building a single file is very fast.
Large projects, however, may require hours to build.

You can build multiple files that you select. Similar to building an individual
file, this process enables you to update output files.

If you change a common header file that requires a full build, you can build
only the current file to ensure that your change fixes the error in the current
file.

Post-Build Options

Post-build options are typically DOS commands that execute after a
project has been successfully built. These commands invoke external tools.

For example, you can use a post-build command to copy the final output
file to another location on the hard drive or to invoke an application
automatically.

Automatically copying files and cleaning up intermediate files after a suc-
cessful build can be very useful.
1-68 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
Command Syntax

Depending on your operating system, you must place “cmd /C” or
“command /C” at the beginning of each DOS command line.

For example, to execute copy a.txt b.txt, use one of the commands shown
in the Table 1-8. The “C” after the slash in the commands must be uppercase.

Project Dependencies

Dependency data determines which files must be updated during a build. The
following are examples of dependency information.

./debug/diriirc.doj : ./diriirc.dsp

./debug/setupiir.doj : ./setupiir.dsp

./debug/shell.doj : ./shell.c ./newsigc.dat ./bcoeff.dat

./acoeff.dat

./debug/mixedcandasm.dxe : $(VDSP)/BF535/ldf/adsp-BF535.ldf

./debug/diriirc.doj ./debug/setupiir.doj ./debug/shell.doj

$(VDSP)/BF535/lib/BF535_hdr.doj

$(VDSP)/BF535/lib/BF535_int_tab.doj $(VDSP)/BF535/lib/libc.dlb

$(VDSP)/BF535/lib/libdsp.dlb $(VDSP)/BF535/lib/libio.dlb

Table 1-8. Operating System and Required Command Syntax

Operating System Command

Windows 98 command /C copy a.txt b.txt

Windows Me command /C copy a.txt b.txt

Windows NT cmd /C copy a.txt b.txt

Windows 2000 cmd /C copy a.txt b.txt

Windows XP cmd /C copy a.txt b.txt
VisualDSP++ 3.5 User’s Guide 1-69
for 16-Bit Processors

DSP Projects
Project Rules

The Project window displays a project’s files, as shown in Figure 1-12.

The following rules dictate how files and subfolders behave in the Project
window’s file tree.

• You can include any file in a project.

• Only one .LDF file is permitted.

• You cannot add the same file into the same project more than once.

• Only one project (project node) is permitted.

• A file with an unrecognized file extension is ignored at build time.

• When you add a file to a project, the file is placed in the first folder
configured with the same extension. If no such folders are present,
an added file goes to the project level.

Figure 1-12. Example of Project Files
1-70 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Introduction to VisualDSP++
VisualDSP++ Help System

The VisualDSP++ Help system is designed to help you obtain information
quickly. You can use the Help system’s table of contents, index, full-text
search function, bookmark function, and extensive hyperlinks to jump to
topics.

VisualDSP++ Help is a merge of several Help systems (.CHM files). Each is
identified with a book icon in your product installation’s Help folder.

Most of the Help system comprises VisualDSP++ tools manuals, such as
the Assembler and Preprocessor manuals. These manuals are also provided
in PDF format (on installation disk) for printing and are available from
Analog Devices as printed books.

Some .CHM files support pop-up messages for dialog box controls (buttons,
fields, and so on). These messages, which appear in little yellow boxes,
compose part of the context-sensitive Help in VisualDSP++.

The Help system describes the VisualDSP++ user interface. Help files
include concepts, procedures, and reference information. Each toolbar
button, menu-bar command, and debugging window in VisualDSP++ is
linked to a topic in one of these files.

For details about using the Help system, refer to “Online Help Features
and Operations” on page A-48.
VisualDSP++ 3.5 User’s Guide 1-71
for 16-Bit Processors

VisualDSP++ Help System
1-72 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

2 ENVIRONMENT

This chapter describes the features of the VisualDSP++ environment,

including the main window, debugging windows, window operations, and
customization.

The topics are organized as follows.

• “Parts of the User Interface” on page 2-1

• “VisualDSP++ Windows” on page 2-15

• “Window Operations” on page 2-46

• “Debugging Windows” on page 2-52

Parts of the User Interface

VisualDSP++ is an intuitive, easy-to-use user interface for programming
Analog Devices DSPs. When you open VisualDSP++, the application’s
main window appears. Figure 2-1 on page 2-2 shows an example of the
VisualDSP++ main window.

This work area contains everything you need to build, manage, and debug
your DSP project. You can set up preferences that specify the appearance
of application objects (fonts, visibility, and so on). You can open project
files by dragging and dropping them into the main window.
VisualDSP++ 3.5 User’s Guide 2-1
for 16-Bit Processors

Parts of the User Interface
The VisualDSP++ main window includes these parts:

• Title bar

• Menu bar

• Project window

• Control menu

• Toolbars

Figure 2-1. Example of VisualDSP++ Main Window
2-2 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
• Output window

• Status bar

VisualDSP++ also provides many debugging windows to facilitate project
development. You need to learn only one interface to debug all your DSP
applications.

VisualDSP++ supports ELF/DWARF-2 (Executable Linkable Format,
Debugging Information Format) executable files. VisualDSP++ supports
all executable file formats produced by the linker.

Title Bar

Figure 2-2 shows the different parts of the title bar.

The title bar includes these components:

• Control menu button

• Application name – Analog Devices VisualDSP++

• Name of the active target

• Project name

• Filename (when an editor window is maximized in the main
window)

• Standard Windows buttons

Figure 2-2. Example Title Bar (Split into Three Parts to Fit the Page)
VisualDSP++ 3.5 User’s Guide 2-3
for 16-Bit Processors

Parts of the User Interface
Clicking the control menu button opens the control menu, which
contains commands for positioning, resizing, minimizing, maximizing,
and closing the window. Double-clicking the control button closes
VisualDSP++. The control menu and title bar right-click menu (see
below) are identical.

Additional Information in Title Bars

A register window title bar displays its numeric format (such as hexadeci-
mal). An editor window title bar displays the name of the source file.

Title Bar Right-Click Menus

A menu like the one below appears when you right-click within the
VisualDSP++ title bar or within the title bar of a child (sub) window.

From the VisualDSP++ title bar’s right-click menu, you can:

• Resize or move the application window

• Close VisualDSP++

Figure 2-3. Right-Clicking in the Window’s Title Bar
2-4 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Control Menu

Commands on a control menu (system menu, shown below) move, size, or
close a window.

Program Icons

Click a program icon to open a control menu.

 Program icon for the application and debugging windows

 Program icon for editor windows

When you place the mouse pointer over a control menu command, a brief
description of the command appears in the status bar at the bottom of the
application window.

Editor Windows

A floating editor window’s control menu includes Next, which moves the
focus to another window.

When an editor window floats in the main application window, its pro-
gram icon resides at the left side of its title bar. When an editor window is
maximized, the program icon resides at the left end of the menu bar.

Figure 2-4. VisualDSP++ Control Menu
VisualDSP++ 3.5 User’s Guide 2-5
for 16-Bit Processors

Parts of the User Interface
Debugging Windows

Each debugging window has a control menu. You can open a debugging
window’s control menu only when the window is floating in the main
window. For more information, see “Debugging Windows” on page 2-52.

Menu Bar

The menu bar, shown in Figure 2-5, appears directly below the applica-
tion title bar and displays menu headings, such as File and Edit.

To display menu commands and submenus, click a menu heading. You
can also access many menu bar commands as follows.

• Click toolbar buttons

• Type keyboard shortcuts

• Right-click the mouse and choose a command from a context
menu

Figure 2-5. VisualDSP++ Menu Bar
2-6 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Command Information

When the mouse pointer is over a menu bar command (or a toolbar but-
ton), a short description (tool tip) of the command appears in the status
bar at the bottom of the main window.

Context-sensitive Help is available for each command.

To learn more about an individual menu command:

• Press Shift+F1 or click the toolbar’s Help button .

The pointer becomes a Help pointer .

• Move the Help pointer over a menu command.

If necessary, navigate through submenus.

• Click the mouse to display Help.

View the description of the command in the Help window.

Toolbars and User Tools

A toolbar is a set of buttons. You can run a command quickly by clicking
a toolbar button.

Use toolbars to organize the tasks you use most often. Position the tool-
bars on the screen for fast access to the tools that you plan to use.

The application includes standard (built-in) toolbars. You can create cus-
tom toolbars.
VisualDSP++ 3.5 User’s Guide 2-7
for 16-Bit Processors

Parts of the User Interface

Built-In Toolbars

Table 2-1 shows the standard (default) toolbars.

To obtain information about a tool, move the mouse pointer over the tool
and press the F1 key.

Table 2-1. Built-In Toolbars

Name Toolbar

File

Edit

Help

Project

Window

Debug

Multiprocessor

User Tools

Workspaces

2-8 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Toolbar Customization

By default, nine standard toolbars appear near the top of the application
window, below the menu bar.

You can change the appearance of toolbars by:

• Moving, docking, or floating the toolbars

• Adding or removing buttons to or from toolbars

• Displaying cool look buttons, large buttons, or both

You can also:

• Hide toolbars from view

• Add and delete custom-built toolbars

Toolbars: Docked vs. Floating

By default, toolbars are located under the application’s menu bar. You can
move them to the following locations.

• Over a docked window

• On the main window

• Anywhere on the desktop

When a toolbar is attached to a window, it is called a docked toolbar. You
can tell when a toolbar is going to dock by the size and shape of its moving
outline as you drag it. Its outline becomes slightly smaller than its floating
outline. To prevent a toolbar from docking, press and hold the Ctrl key
while dragging the toolbar to a new location.
VisualDSP++ 3.5 User’s Guide 2-9
for 16-Bit Processors

Parts of the User Interface
You can detach a toolbar from a window and move it to another location
anywhere on the desktop. A floating toolbar is a stand-alone window, as it
is not docked. A docked toolbar does not show its name, but a floating
toolbar displays its title.

Figure 2-6 shows a floating Help toolbar.

Toolbar Button Appearance

You can choose the appearance of the toolbar buttons. Two options, cool
look and large buttons, provide slightly different button appearances.

The cool look option includes a pair of vertical bars on the toolbar’s left
side, but removes the square box from each button. The vertical bars visu-
ally separate toolbar buttons into groups (toolbars).

The large buttons option makes the area of each button larger.

Table 2-2 on page 2-11 shows how small and large buttons appear with
the cool look option turned off (disabled) and on (enabled).

Figure 2-6. Example of a Floating Toolbar
2-10 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Table 2-2. Toolbars in Different Viewing Options

Option Settings Docked Floating

Cool look – Off
Large buttons - Off

Cool look – On
Large buttons – Off

Cool look – Off
Large buttons – On

Cool look – On
Large buttons – On
VisualDSP++ 3.5 User’s Guide 2-11
for 16-Bit Processors

Parts of the User Interface
Toolbar Shape

You can change the shape of a floating toolbar. Table 2-3 shows two tool-
bar shapes.

Depending on the number of tools in the toolbar, you can create other
length and width arrangements.

Toolbar Rules

When working with toolbars, be aware of these rules:

• You can customize a built-in toolbar (for example, you can remove
a button from the File toolbar), but you cannot delete a built-in
toolbar. You can reset the buttons in a built-in toolbar to their
original default settings.

• You can change the name of a user-defined toolbar, but not the
name of a built-in toolbar. For example, you cannot change the
name of the File toolbar.

Table 2-3. Toolbars in Two Orientations

Horizontal Vertical
2-12 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
User Tools

Save time running commands by configuring user tools. You can config-
ure up to ten user tools.

A user tool runs a command, which can:

• Contain parameters to launch an application

• Be a script command

You access configured user tools from the Tools menu or from the User
Tools toolbar, as shown in Figure 2-7.

When a user tool is configured, its menu name (label) appears in the
Tools menu. The label also appears when you move the mouse pointer
over a user tool button.

Status Bar

The status bar, located at the bottom of the main application window,
provides various informational messages. Figure 2-8 shows different infor-
mation displayed on the status bar.

Figure 2-7. Default User Tools

Figure 2-8. The Status Bar’s Appearance Depends on Context
VisualDSP++ 3.5 User’s Guide 2-13
for 16-Bit Processors

Parts of the User Interface
The type of information that appears in the status bar depends on your
context (what you are doing).

• When you move the mouse pointer over a toolbar button or a
menu bar command, a brief description of the button or command
appears.

• When you halt program operation with a Halt command, the
address where the program halted appears.

• When you use some script commands, the status bar provides
information, such as when the menu item has focus.

While you are editing a file, the right side of the status bar provides editor
window information, described in Table 2-4.

Table 2-4. Status Bar Information While Editing

Item Indicates

Line ### Cursor current line number

Col ### Cursor current column number

CAP The keyboard’s Caps Lock key is latched down

NUM The keyboard’s Num Lock key is latched down

SCRL The keyboard’s Scroll Lock key is latched down
2-14 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
VisualDSP++ Windows

From the application’s main window, you can open a Project window,
editor windows, an Output window, and various debugging windows.

Project Window

To open a Project window, choose View and Project Window. Figure 2-9
shows a Project window with VDK enabled.

The Project window can include two subtabs:

• The Project tab , which is always available, provides a
hierarchal representation of a debug session’s projects, folders, files, and
dependencies.

• The Kernel tab appears when you enable VDK for a
project.

Figure 2-9. Project Window with Kernel Tab
VisualDSP++ 3.5 User’s Guide 2-15
for 16-Bit Processors

VisualDSP++ Windows
Project View

The Project view displays a project group, which may contain any number
of projects. Only one project, however, is active at a time. Nodes are
arranged in a hierarchy similar to the file structure in Windows Explorer.

Figure 2-10 shows some of the information displayed in the Project view.

Figure 2-10. Project View
2-16 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Project Dependencies

A project may depend on other projects. The icon indicates dependency
and identifies the dependency. Building a project also builds the projects on
which it depends.

Figure 2-11 shows how project dependencies are indicated in the Project
view.

Figure 2-11. Projects Dependencies Indicated in the Project View
VisualDSP++ 3.5 User’s Guide 2-17
for 16-Bit Processors

VisualDSP++ Windows
Project Nodes

The Project window comprises the types of nodes described in Table 2-5.

Table 2-5. Types of Nodes in the Project Window

Node Icon Description

Project group Only one project group permitted in a debug session

Project
Multiple projects permitted, but only one is active
(indicated with bold typeface)

Folder

Closed folder

Opened folder revealing its contents

File

File that uses project settings

File whose options differ from the project options

File excluded from the current configuration

Enabled (active) makefile

Project dependency Project on which this project depends
2-18 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Project Page Right-Click Menus

Right-click menus (also called context menus or popup menus) operate on
Project window objects (the project group, projects, folders, and files). These
menus provide fast access to many menu bar and toolbar commands. The
commands available from a right-click menu depend on context (the selected
object).

Project window right-click menus offer these standard commands:

• Allow Docking (dock the Project window to the frame)

• Hide (remove the Project window from view)

• Float in Main Window

Project Group Icon Right-Click Menu

The project group icon () right-click menu (Figure 2-12) provides a
project group context from which you can:

• Create a new project

• Open a project and add it to the project group

• View the project group’s properties

Figure 2-12. Project Group Icon’s Right-Click Menu
VisualDSP++ 3.5 User’s Guide 2-19
for 16-Bit Processors

VisualDSP++ Windows
Project Icon Right-Click Menu

The project icon () right-click menu (Figure 2-13) provides a project con-
text from which you can:

• Build the project

• Clean (delete intermediate and target files)

• Specify the active project

• Add folders and files

• View and specify project options

• View project properties

Figure 2-13. Project Icon’s Right-Click Menu
2-20 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Folder Icon Right-Click Menu

The selected folder icon (or) right-click menu (Figure 2-14) provides
a “container” context from which you can perform these “local” operations:

• Add or delete a folder

• Add files to the folder

• View folder properties

File Icon Right-Click Menu

The selected file icon (or or) right-click menu (Figure 2-15 on
page 2-22) provides a file context from which you can:

• Open the selected file for editing

• Build the file

• Remove the file from a project

• Specify options for the file

• View the file’s properties

Figure 2-14. Folder Icon Right-Click Menu
VisualDSP++ 3.5 User’s Guide 2-21
for 16-Bit Processors

VisualDSP++ Windows
File icon commands apply to the selected file in the Project window,
not to a source file in an editor window.

Project Folders

Project window folders (and) organize files within a project. You
can specify properties for folders.

Folders can be nested to any depth. Folders carry no attributes to the build
process, as they do not reflect the file system. Folders do not appear in
directory listings, as in Windows Explorer.

When you add files to the project tree with automatic file placement, each
file is placed in the first folder that has been configured with the same file
extension. After automatic placement, you can manually move a file
anywhere.

To move a file out of one folder and into another folder, select the file and
drag it onto the other folder.

Figure 2-15. File Icon Right-Click Menu
2-22 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Project Files

In the Project window, files are represented by the following icons.

The files appear in an expandable and collapsible node tree.

Source files are the C/C++ language or assembly language files in your
project. Source files provide the project with code and data. You can add,
delete, and modify source files.

Each project must include an .LDF file, which contains command input
for the linker. If you do not include an .LDF file in the project, the project
is built with a default .LDF file.

A DSP project can also include data files and header files.

Table 2-6. Icons in the Project Window

Icon Description

Files that use project options

Files that use options that differ from project options

Files excluded from the current configuration

Enabled (active) makefile
VisualDSP++ 3.5 User’s Guide 2-23
for 16-Bit Processors

VisualDSP++ Windows
Project Window Icons for Source Code Control (SCC)

Icons in the Project window indicate source code control (SCC) status. Files
with a green check mark () are under SCC and are checked in. Files with a
red check mark () are checked out of SCC. When a file is not connected
to a controlled copy under SCC, the file icon has no check mark.

The following file icons indicate SCC status.

Table 2-7. SCC Status Icons

Icon Description

File is under SCC and is checked in

File is under SCC and is checked out

Project file is checked out

File includes a file-specific build command and is checked out

Makefile is checked out

File is excluded from the build and is checked out
2-24 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
File Associations

VisualDSP++ associates these file extensions as the input to particular
DSP code development tools:

Note the following.

• VisualDSP++ is case insensitive to file extensions.

• VisualDSP++ supports C++, but VisualDSP does not sup-
port C++.

Table 2-8. File Associations

Tool File Extensions

Compiler .C, .CPP, and .CXX

Assembler .ASM, .S, and .DSP

Linker .LDF, .DLB, and .DOJ
VisualDSP++ 3.5 User’s Guide 2-25
for 16-Bit Processors

VisualDSP++ Windows
Automatic File Placement

Automatic file placement enables you to drag and drop files into designated
folders on the Project page in the Project window. This feature saves time
when you add files to a project.

Folder properties that you specify and file placement rules determine where
files are placed. By default, project folders are associated with the file exten-
sions listed in Table 2-9.

File Placement Rules

The following rules dictate file placement when you add files to a project.

• Dragging and dropping files

When you drag and drop a file onto the Project page, the file is added
to the first folder associated with the file’s extension. The Project page
accepts dragged files only when a project is opened.

• Using menu commands to add files

Files are added to the folders that you select on the Project page. If
you add a file to a project that has no folders, the file is added at the
project level (root level).

If you select the project node or a file node, the file is added to the
first folder associated with the file’s extension.

Table 2-9. Files Associated with Project Folders

Folder Default Associations

Source Files .C, .CPP, .CXX, .ASM, .DSP, .S

Header Files .H, .HPP, .HXX

Linker Files .LDF, .DLB, .DOJ

Kernel Files .VDK
2-26 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Example

You create a folder labeled “C Source Files” and specify it with .C, .CPP,
and .CXX file extensions. You create a second folder labeled “Asm Files”
and associate it with .ASM files.

If you drag three files (file1.cpp, file1.asm, and file2.c) into the
Project window, file1.cpp and file2.c go into the C Source Files
folder, and file1.asm goes into the Asm Files folder.

After automatic file placement, you can manually move a file
anywhere by selecting and dragging the file.

Kernel Page

The Kernel tab of the Project window is available only to VDK-enabled
projects.

From the Kernel page, you can add, modify, and delete kernel elements
such as thread types, priorities, semaphore, and events. VisualDSP++
automatically updates vdk_config.cpp and vdk_config.h to reflect the
changes that you make from the Kernel page.

The example in Figure 2-16 on page 2-28 shows an expanded view of the
elements on the Kernel page for a VDK-enabled project.

Refer to the VisualDSP++ Kernel (VDK) User’s Guide for complete details
about VDK.
VisualDSP++ 3.5 User’s Guide 2-27
for 16-Bit Processors

VisualDSP++ Windows
Figure 2-16. Expanded View of Elements on the Kernel Page
2-28 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Editor Windows

Use editor windows to view and edit project files. You can open an editor
window from the Project window by double-clicking on a file or by
choosing Open File from a file’s right-click menu. Figure 2-17 shows
items that you can customize in editor windows.

You can open as many editor windows as you like and do the following.

• Define color-coded comments, strings, keywords, and tabs

• Preview and print window data

• Load a script

• Define headers and footers

• Set bookmarks

Figure 2-17. Items that can be Customized
VisualDSP++ 3.5 User’s Guide 2-29
for 16-Bit Processors

VisualDSP++ Windows
• Find, replace, use wrap-around search and expression matching

• Go to a specified line number

• Jump to the next or previous syntax error

• Copy, cut, paste, undo and redo more than 500 levels of edits for
each open file

• Enable Editor Tab mode to switch quickly between source files (see
“Editor Tab Mode” on page 2-31).

• Locate matching brace characters and auto-position brace characters
(to line up with the preceding opening brace)

• Open header files from the right-click menu. When you right-click on
a #include statement, choose Open Document “filename.h” to
open that file.

• Drag-and-drop highlighted sections of text (usually a valid source
statement) to an open Expressions window. When dropped, the text
is automatically added to the window and is evaluated.

Right-Click Menu

The editor window’s right-click menu provides these commands:

• Undo or Redo the last edit

• Cut, Copy, or Paste text

• Toggle Bookmark or go to the Next Bookmark

• Display Line Numbers or Go To a specified line number

• Run to Cursor

• Locate Match Brace characters
2-30 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
• Find a specified value by indicating various search parameters

• Select Format (Hex, Float, Unsigned Integer, Integer, Octal)

Editor Tab Mode

Editor Tab mode provides an alternative, tab-based user interface for
managing multiple source files in editor windows. When you enable this
mode from the View menu, a tab for each open source file appears at the
bottom of the editor window. You click the tabs to switch between files.

Figure 2-18 shows an editor window with the Editor Tab option enabled.

Figure 2-18. Editor Tab Mode Enabled
VisualDSP++ 3.5 User’s Guide 2-31
for 16-Bit Processors

VisualDSP++ Windows
Output Window

The Output window does the following.

• Displays standard I/O text messages such as file load status and
error messages

• Displays build status information for the current project build

• Provides access to errors in source files

• Acts as a scripting interface

The Output window shown in Figure 2-19 contains build status
information.

Display the Output window by choosing View and Output Window.

Output Window Tabs

Clicking the Output window’s two tabs, Console and Build, displays
pages that provide different information and capabilities.

Figure 2-19. Build Status Information in the Output Window
2-32 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Build Page

The Build page (Figure 2-20) displays error messages generated during a
build. Double-click on an error message to jump to the offending code in
an editor window.

Scroll through error messages by choosing Next Error or Prev Error from
the Edit menu.

By default, VisualDSP++ output is blue and tool output is black, but you
can change these colors in the Preferences dialog box.

Console Page

From the Output window’s Console page (Figure 2-22 on page 2-42),
you can:

• View VisualDSP++ or target status error messages

• View STDIO output from C/C++ programs

• View I/O (streams) messages

• Scroll through previous commands by pressing the keyboard’s up
arrow (↑) and down arrow (↓) keys

Figure 2-20. Error Messages in the Output Window
VisualDSP++ 3.5 User’s Guide 2-33
for 16-Bit Processors

VisualDSP++ Windows
• Perform multi-line selection, copy, paste, and clear

• Issue script commands and view script command output

• Auto-complete script commands

• Execute a previously issued script command by double-clicking on
the command

• Enter multi-line script commands by adding a backslash character
(\) to the end of a statement

• Use bookmarks

• Toggle a bookmark by pressing Ctrl+F2

• Move to the next bookmark by pressing the keyboard’s F2 key

All text displayed on the Console page is also written to the VisualDSP++
log file.

Output Window Error Messages

The DSP code development tools that perform batch processing can produce
error and warning messages when returning a result. These informational mes-
sages appear on the Build page in the Output window.

Every error is identified with a unique six-character code, such as pp0019, that
is consistent from release to release. Error descriptions include an explanation
of the condition that caused the error and a suggested remedy to fix the prob-
lem. Where applicable, error messages include the source file’s name and the
line number of the offending code.
2-34 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Error Message Severity Hierarchy

Each error message has one or more severity levels.

You can change the severity level of an error marked “discretionary.” You can-
not change the severity level of an error marked “non-discretionary.”

Syntax of Help for Error Messages

In Help, each error message can include several parts. The information that is
displayed depends on the tool and the message.

To view all the details, you must view the error message in the
Help system window. If you run a tool from a command-line inter-
face (such as a Command Prompt window or MS-DOS Prompt
window), the error message shows only the ID code, error text, and
error location.

Table 2-10. Error Message Severity Levels

Severity Level Description

Fatal error Identifies errors so severe that further processing of the input is
suspended. Fatal errors are sometimes called catastrophic errors.

Error Identifies problems that cause the tool to report a failure. An error
might allow further processing of the input to permit additional
problems to be reported.

Warning Identifies situations that do not prevent the tool from processing
the input, but may indicate potential problems

Remark Provides information of possible interest
VisualDSP++ 3.5 User’s Guide 2-35
for 16-Bit Processors

VisualDSP++ Windows
Table 2-11 describes the syntax for error message help.

Table 2-11. Syntax for Error Message Help

Part Description

Identification
code

Six-character code, unique to the error. The first two characters
identify the tool:

• ar (archiver)
• cc (compiler)
• ea (assembler)
• el (expert linker)
• li (linker)
• pp (preprocessor)
• vc (VIDL compiler)
• vu (VCSE)

Error text Text that appears after the identification code in the Output
window

Description Detailed description of the error

Severity The degree of hardship imposed by the error. Some messages can
take more than one severity level. You can change the severity
level of an error marked “discretionary.” You cannot change the
severity level of errors marked “non-discretionary.”

Recovery Extra information, provided only if applicable

Example Example code

How to fix The remedy for correcting the error

Related Information Link(s) to more information
2-36 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
How to Promote, Demote, and Suppress Error Messages

You can change the severity level of an error marked “discretionary.” Refer to
the tools documentation for command-line switches that override error mes-
sage severity. The VisualDSP++ environment’ Project Options dialog box
includes options that override severity.

You can promote, demote, or suppress a discretionary message. For example,
you might promote a remark or warning to an error. You might decide to
demote an error to a warning or remark.

For example, if a condition in the input crashes the tool, you can restrict the
severity level of the problem to ensure that an error (instead of a fatal error) is
reported.

Another way to suppress the reporting of an individual error message is to use
pragmas in the input source via the tool’s command line. For more informa-
tion about pragmas, refer to your processor’s VisualDSP++ 3.5 C/C++
Compiler and Library Manual.

The following examples demonstrate how you can promote, demote, and sup-
press messages. The source file test.c is being compiled.

#include <stdio.h>
int foo(void)
{
printf("In foo\n"); // doesn't return a value
}

int main(void)
{
int x; // no initial value
printf("x = %d\n", x);
return foo();
}

VisualDSP++ 3.5 User’s Guide 2-37
for 16-Bit Processors

VisualDSP++ Windows

• Example 1: Compiling from the Command Line (Interface)

Compiling the test.c file yields these two warning messages:

Note that the compiler appended D to each of the warning messages
(cc0117 and cc0549) to indicate that the message is discretionary.

• Example 2: Promoting Warnings to Errors

Typing $ ccblkfn -c test.c -Werror 549 in a command window
promotes one of the two warnings to an error.

"test.c", line 5: cc0117: {D} warning: non-void function
"foo" should return a value
}
^
"test.c", line 10: cc0549: {D} warning: variable "x" is used
before its value is set
printf("x = %d\n", x);
^
build completed successfully

“test.c”, line 5: error cc0117: {D} warning: non-void function
"foo" should return a value
}
^
“test.c”, line 10: error cc0549: {D} error: variable “x” is used
before its value is set
printf(“x = %d\n”, x);
^

1 error detected in the compilation of “test.c”.
cc219x: Fatal Error: Compilation failed
2-38 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
• Example 3: Demoting Messages to Remarks

You can demote messages to remarks. By default, however, the
compiler does not display anything less significant than a warning.

The -Wremarks flag in the following command outputs the two
warnings plus additional remarks.

$ cc219x -c test.c -Wremarks

The -Wremark 549,117 flag in the following command specifies
that two specific messages be demoted to remarks. The command
produces no output because all the messages are changed to
remarks, which are not displayed.

$ cc219x -c test.c -Wremark 549,117

The following command changes the two warnings to remarks and
then displays all seven remarks.

$ cc219x -c test.c -Wremark 549,117 -Wremarks

• Example 4: Suppressing Messages

The following command suppresses two specific warning messages.
The command outputs five remarks, but the two warnings are not
displayed even though the -Wremarks flag requests all the remarks.

$ cc219x -c test.c -Wsuppress 549,117 -Wremarks

How to Suppress the Reporting of Compiler Warnings and Remarks

You can suppress compiler remarks. You can also suppress compiler warn-
ings and remarks.

You cannot suppress compiler warnings without also suppressing
remarks.
VisualDSP++ 3.5 User’s Guide 2-39
for 16-Bit Processors

VisualDSP++ Windows
You control the output of compiler warnings and remarks from the
Project Options dialog box in VisualDSP++ or from the command line.
Refer to your processor’s compiler, assembler, and linker manuals for
available flags (options).

From the Compile page (Warning category) of the Project Options dialog
box, you can specify the options listed in Table 2-12.

How to View Error Message Details

Each DSP tool error message has associated explanatory text. You can view the
information in the Help window by selecting the six-character error identifier
(for example, cc0251) on the Build page and by pressing the F1 key. A com-
plete explanation of the error message appears in the Help window.

Table 2-12. Options Available from the Compile Page

Option Purpose

Implicit function declarations Warns on all implicit functions. This option corresponds
to the compiler's -flags-compiler command-line
switch.

Functions not inlined Issues a warning when the compiler is unable to generate
inline code for a function that has the inline keyword

Enable remarks Issues remarks, which are diagnostic messages of a milder
nature than warnings. This option corresponds to the
compiler's –Wremarks command-line switch.

Disable all warnings and remarks Withholds warning messages. This option corresponds to
the compiler's –w command-line switch.

Additional options Enables you to enter more compiler options
2-40 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Log File

The VisualDSP++ log file contains all status and error messages written to
the Output window’s Console page.

Figure 2-21 shows a sample log file.

The file path specified in the log file assumes that you installed
VisualDSP++ by accepting the default settings.

All sessions append to the log file. Occasionally, open the file and
delete parts of it (or all of it) to conserve disk space.

Figure 2-21. Example – Portion of a Log File
VisualDSP++ 3.5 User’s Guide 2-41
for 16-Bit Processors

VisualDSP++ Windows
Output Window Customization

You can specify preferences that:

• Configure Output window fonts and colors

• Enable command auto-completion

By default, the Output window resides at the bottom of the main applica-
tion window. You can resize or move the Output window to a different
portion of the screen by dragging it to the selected location. You can dock,
hide, or float the window.

The Output window’s Console page can interact with script engines. All
script input and output is sent to the Console page, shown in Figure 2-22.

These messages are saved to the log file VisualDSP_Log.txt, which is
located in your installation’s Data directory.

Figure 2-22. Messages in the Project Window’s Console Page
2-42 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Right-Click Menu

The Output window’s right-click menu is shown in Figure 2-23.

This menu enables you to:

• Load a script or enable the debugger

• Clear the text in the window or copy selected text

• Toggle bookmarks

• Choose a scripting language

• Print or find text in the window

• Dock, hide, or float the window. (To display the hidden window
choose Output Window from the View menu.)

Figure 2-23. Output Window’s Right-Click Menu
VisualDSP++ 3.5 User’s Guide 2-43
for 16-Bit Processors

VisualDSP++ Windows
Script Command Output

Scripts provide a powerful means of developing full-blown test applica-
tions of DSP systems. VisualDSP++ 3.5 (and higher) includes a
language-independent scripting host that uses the Microsoft ActiveX®
script host framework. This scripting host lets you use multiple scripting
languages that conform to the Microsoft ActiveX script engine.

The main benefit of calling scripts in these languages is that they have
support for COM scripting, which allows access to the VisualDSP++
Automation API. VisualDSP++ supports the following Microsoft ActiveX
script engines (languages):

• Visual Basic® (Scripting Edition)

• JScript®

The Tool Command Language (Tcl) interpreter included with
VisualDSP++ is not a Microsoft ActiveX script engine.
VisualDSP++ permits the use of other script engines (languages)
that are not supported by Analog Devices technical support.

Script output is logged to VisualDSP_log.txt for viewing and analysis. By
default, this file is located in the installation’s Data directory.

In the Output window’s Console view, you can:

• Issue script commands and view script command output

For more information about issuing script commands, refer to
“Extensive Scripting” on page A-34.

• Enable the Microsoft Script Debugger

Right-click in the Output window and choose Enable Debugger.
The debugger steps through code, set breakpoints, and so on. Once
enabled, the debugger stops on the first error encountered in the script.
2-44 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Note that although most script engines (languages) support this
option, some may not. Consult the script engine’s documentation for
further details on whether it supports the debugging interfaces within
the Microsoft ActiveX script engine framework.

• Specify the scripting language

Right-click in the Console view and select a language from a list of
scripting languages installed on your machine.

The name of the current scripting language appears in the status
bar at the bottom of the VisualDSP++ main window, as shown in
Figure 2-24.

• Load a script

You can load a script by selecting Load Script from the File menu,
from the Console view’s right-click menu, or from the editor win-
dow’s right-click menu. The script loads and runs until the script
finishes running or until you halt the script by choosing Halt
Script from the Debug menu.

The Console view supports script command auto-completion if you enable
this feature on the General page in the Preferences dialog box, accessed from
the Settings menu.

The VisualDSP++ installation directory includes example scripts in the
“Scripting Examples” folder located under the DSP family name (for
example, Blackfin) and the Examples folder.

Figure 2-24. Scripting Language Displayed in Status Bar
VisualDSP++ 3.5 User’s Guide 2-45
for 16-Bit Processors

Window Operations
Window Operations

Similar to many Windows applications, VisualDSP++ provides ways to
adjust your view of the user interface.

Window Manipulation

The Window menu commands, shown in Figure 2-25, enable you to
manipulate your windows display and update windows during program
execution. Refer to your Windows documentation for more information.

Right-Click Menu Options

A menu appears when you right-click in a window or on its title bar. The
menu options in Table 2-13 affect window behavior.

Figure 2-25. Window Menu Commands

Table 2-13. Window Right-Click Menu Commands

Option Description

Allow Docking Enables/disables docking

Close Closes the window

Float in Main Window Causes the window to become a normal MDI child window
(like an editor window) and disables its docking ability
2-46 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Scroll Bars and Resize Pull-Tab

Scroll bars appear along the right and bottom edges of the application or
document window, as shown in Figure 2-26.

The scroll boxes inside the scroll bars indicate your vertical and horizontal
location in the document. Use the mouse to scroll to other parts of the
document.

When the application window is not maximized, the resize pull-tab
appears in the lower-right corner of the window. Click and drag the
pull-tab to resize the application window.

Windows: Docked vs. Floating

A window attached to the application’s frame is referred to as a docked
window.

You can detach a window from the main window and move it to another
location anywhere on the desktop. A floating window stands alone, because
it is not docked.

Figure 2-26. Scrolling to Move the Viewing Area
VisualDSP++ 3.5 User’s Guide 2-47
for 16-Bit Processors

Window Operations
Depending on your needs, you can:

• Dock a window to the application’s main window (frame)

• Float a window

A window’s right-click menu provides commands to dock or float the win-
dow. The Allow Docking option and the Float In Main Window option
are mutually exclusive.

Example of a Docked Window

The Project window shown in Figure 2-27 is docked (Allow Docking is
selected).

To prevent a window from docking, hold down the keyboard’s Ctrl key
while dragging the window to another position.

Figure 2-27. Example of a Docked Project Window
2-48 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Examples of Floating Windows

The Project window in Figure 2-28 is floating in the main window (Float
In Main Window is selected).

The Project window in Figure 2-29 is also floating in the main window
(Float In Main Window is selected).

Figure 2-28. Project Window Floating in Main Window (1 of 2)

Figure 2-29. Project Window Floating in Main Window (2 of 2)
VisualDSP++ 3.5 User’s Guide 2-49
for 16-Bit Processors

Window Operations
The Project window in Figure 2-30 is floating, but not in the main win-
dow (Float In Main Window is not selected).

Window Position Rules

The following rules apply to window positions.

• Unless Allow Docking is disabled, a window must reside within
the main window.

• An editor window cannot be docked to the main window.

• A window specified as an MDI child cannot be positioned over a
docked window.

• Unless the Output window is floating in the main window, a
window specified as an MDI child cannot be positioned over the
Output window.

Figure 2-30. Project Window Floating but Not in Main Window
2-50 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Standard Windows Buttons

The standard Windows buttons are located on the right side of the title
bar, as shown in Figure 2-31.

These buttons resize and close the window as described in Table 2-14.

Figure 2-31. Title Bar Showing Standard Window Buttons

Table 2-14. Standard Windows Buttons

Button Name — Purpose

Minimize – reduces the window to its Windows icon

Maximize – enlarges the window to fill the screen

Restore – returns the window to its last non-minimized, non-maximized
position after you maximize the window

Close – closes the application window and exits the program
VisualDSP++ 3.5 User’s Guide 2-51
for 16-Bit Processors

Debugging Windows
Debugging Windows

VisualDSP++ provides debugging windows to display DSP program oper-
ation and results. Table 2-15 describes these windows.

Table 2-15. Debugging Windows

Window Provides

Output A Console page that displays standard I/O text messages such as
file load status, and error messages and streams, and a Build page
that displays build messages. You can interactively enter script
commands and view script output.

Editor Syntax coloring, context-sensitive expression evaluation, and status
icons that indicate breakpoints, bookmarks, and the current PC
position

Disassembly Code in disassembled format. This window provides fill and dump
capability.

Expressions The means to enter an expression and see its value as you step
through program execution

Trace A history of processor activity during program execution, including
buffer depth (instruction lines), cycle count, and instructions exe-
cuted such as memory fetches, program memory writes, and
data/memory transfers (ADPSP-21xx processors only)

Locals All local variables within a function. Use this window with step or
halt commands to display variables as you move through your pro-
gram.

Linear Profiling Results (Simulation only) Samples of the target’s PC register taken at every
instruction cycle, which provides an accurate picture of where
instructions were executed. Linear profiling is much slower than
statistical profiling.

Statistical Profiling Results (JTAG emulation only) Random samples of the target processor’s
program counter (PC) and a graphical display of the resulting sam-
ples, showing where the application spends time

Call Stack A means of moving the call stack back to the previous debug con-
text
2-52 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Register Current values of registers. You can change register contents and
change the number format.

Custom Register Current values of registers. Select the registers that you want to
monitor.

Memory A view of DSP memory. Similar number format and edit features
as register windows, plus fill and dump capability.

BTC Memory A view of background telemetry channel contents in real time. The

window displays the contents of the address that you want to see.
Memory Map The memory map of the selected processor

Plot A graphical display of values from memory addresses. The window
supports linear and FFT (real and complex) visualization modes
and allows you to export an image to a file, the clipboard, or to a
printer.

Multiprocessor Current status of each processor in a multiprocessor system
(ADSP-219x and ADSP-BF561 processors only). This window
allows you to define and manage groups of processors for synchro-
nous multiprocessor commands.

Pipeline Viewer A simulation-only view of instructions in the pipeline and event
details (does not apply to ADSP-218x processors).

Cache Viewer Analysis of a DSP application’s use of cache, which is helpful in opti-
mizing DSP application performance

VDK State History (VDK-enabled projects only) History buffer of threads and events

Target Load (VDK-enabled projects only) Percent of time the target spent in the
idle thread

VDK Status (VDK-enabled projects only) At a program halt, thread state and sta-
tus data

Image Viewer A view of BMP, JPEG, PPM, or MPEG data from DSP memory or
from a file on your PC. You can edit, copy, print, or export image
data.

Table 2-15. Debugging Windows (Cont’d)

Window Provides
VisualDSP++ 3.5 User’s Guide 2-53
for 16-Bit Processors

Debugging Windows
Disassembly Windows

By default, a Disassembly window appears when you open a new session.
You can also open a Disassembly window by choosing View, Debug Win-
dows, and Disassembly.

Figure 2-32 and Figure 2-33 show examples of Disassembly windows, one
with and one without the address bar enabled.

Figure 2-32. Disassembly Window with Address Bar
2-54 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Disassembly windows display code in disassembled form, which is useful
for temporarily modifying the code to test a change or to view code when
no source is available. The Disassembly window enables you to examine
the assembly code generated by the C/C++ compiler. Choosing View
Source from the Disassembly window’s right-click menu enables you to
view the C/C++ source code for the loaded file.

To make changes permanent, modify the code and rebuild the project.

Disassembly windows provide:

• Number format and edit features, similar to register windows

• Dump and fill capability

• Symbols at the far left of the window, denoting program execution
stages and pipeline stages

You can enable and disable the display of pipeline symbols while in
mixed mode (C/C++ and assembly).

Figure 2-33. Disassembly Window Without Address Bar
VisualDSP++ 3.5 User’s Guide 2-55
for 16-Bit Processors

Debugging Windows
• An optional address bar that enables you to navigate to an address,
symbol, or expression. The address bar maintains a most recently
used history of visited locations.

To display the address bar, right-click in a Disassembly window
and choose Address Bar. A check mark next to this option on the
right-click menu indicates that this feature is enabled.

By default, the current source line to be executed is highlighted by a
light-blue horizontal bar, as shown in the following example.

You can configure the color of the current source line and other window
items.

Other Disassembly Window Features

From the Disassembly window, you can perform the operations described
in Table 2-16.

Figure 2-34. Current Source Line in the Disassembly Window

Table 2-16. Disassembly Window Operations

To... Place the mouse pointer over...

Move to a different address An address field and double-click. Then select the
address from the ensuing Go To dialog box. Note that
you can also use the address bar to navigate to an
address, symbol, or expression.

Insert or remove a breakpoint An instruction and double-click

Toggle (enable or disable) a breakpoint An instruction and right-click. Then choose the appro-
priate command from the ensuing menu.
2-56 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Right-Click Menu

The Disassembly window’s right-click menu provides access to the com-
mands shown in Figure 2-35.

Figure 2-35. Disassembly Window Right-Click Menus
VisualDSP++ 3.5 User’s Guide 2-57
for 16-Bit Processors

Debugging Windows
Disassembly Window Symbols

Symbols at the far left of the Disassembly window indicate program
execution stages. The display of pipeline stages is available only when your
system is connected to a simulator target.

The symbols displayed at the left of the Disassembly window are shown in
Table 2-17.

Table 2-17. Disassembly Window Symbols

Symbol Description

Current source line

The current instruction is being aborted due to a branch or jump
instruction

A breakpoint is enabled

A breakpoint is disabled
2-58 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Expressions Window

The Expressions window (Figure 2-36) lets you enter an expression to
evaluate in your program. Evaluations are based on the current debug con-
text. Open this window by choosing View, Debug Windows, and
Expressions.

Because of the way registers are saved and restored on the stack, the regis-
ter value on which the expression relies may be incorrect if you change
VisualDSP++’s context from the Call Stack window.

Figure 2-36. Expressions Window
VisualDSP++ 3.5 User’s Guide 2-59
for 16-Bit Processors

Debugging Windows
The Expressions window’s right-click menu (Figure 2-37) includes com-
mands that let you change the display’s number format.

Locals Window

The Locals window displays the value of local variables within a function,
as shown in Figure 2-38. Open this window from the View menu by
choosing Debug Windows and Locals.

Figure 2-37. Expressions Window Right-Click Menu

Figure 2-38. Locals Window
2-60 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Use this window with a Step or Halt command to display the current
value of variables as you move through your program.

Complex variables, C structures, and C++ classes appear with a plus
sign. Click on the plus sign to display all variable information.

The window’s right-click menu provides the commands shown in
Figure 2-39.

Figure 2-39. Locals Window Right-Click Menu
VisualDSP++ 3.5 User’s Guide 2-61
for 16-Bit Processors

Debugging Windows
Trace Window

You perform a trace (also called an execution trace or a program trace) to
analyze the run-time behavior of your DSP program, to enable I/O capa-
bilities, and to simulate source-to-target data streaming. Open a Trace
window by choosing View, Debug Windows, and Trace. Figure 2-40
shows data displayed in a Trace window.

The Trace window displays:

• Buffer depth (Custom depth in Trace Buffer Depth dialog box)

• The clock cycle when the instruction occurred

• The address of the instruction that was executed

• The disassembled instruction

Figure 2-40. Example of Data in a Trace Window
2-62 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Memory results have the following fields.

• Access type (RD or WR)

• Memory type (PM or DM)

• The address, in brackets ([])

• The data value that was written or read

Statistical/Linear Profiling Results Window

To open a profiling results window, choose Tools, Linear Profiling or
Statistical Profiling, and New. Depending on the target, the window’s
title is Statistical Profiling Results or Linear Profiling Results. The win-
dow comprises two panes, as shown in Figure 2-41.

Window Components

The window, which comprises two panes and a status bar, provides a
right-click menu from which you can perform various window functions.

Figure 2-41. Example of a Linear Profiling Results Window
VisualDSP++ 3.5 User’s Guide 2-63
for 16-Bit Processors

Debugging Windows
Left Pane

The window’s left pane displays a list of the executed functions, assembly
source lines, and PCs (with no debug information). The time that each
item spent on execution appears as a histogram and as a percent. The
order of the items in the display is determined by the percentage of global
execution time that each item took to execute.

The left pane includes the information described in Table 2-18.

If you double-click on a line with a function or assembly source line in the
left pane, the right pane displays the corresponding source file and jumps
to the top of that function or assembly source line, respectively. If you
double-click on a PC address with no debug information, the Disassem-
bly window opens to that address.

Table 2-18. Left Pane Information

Column Displays Purpose

Histogram Horizontal bars Graphically represents the execution
percentage

%
-or-
Count

A percent with two decimal
places, for example:

15.01%
-or-
a number

Displays execution in percent or as a
count. Right-click and choose View
Execution Percent to view execution as
a percent, or choose View Sample
Count to view the PC sample count.

Execution Unit Functions, assembly source lines,
and PCs for which no debug
information exists

These items are sorted by the percent-
age of global execution time that each
item took to execute. The highest per-
centage items appear at the top of the
list
2-64 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Right Pane

The right pane includes the information described in Table 2-19.

Status Bar

The status bar at the bottom of the window indicates the total number of
collected PC samples, the total elapsed time, and whether statistical profil-
ing is enabled.

Right-Click Menu

The Statistical Profiling Results and Linear Profiling Results windows
provide a right-click menu. The menu commands depend on the context
(whether you right-click in the left pane or right pane) and the current
settings.

Table 2-20 on page 2-66 describes the menu commands.

Table 2-19. Information in the Right Pane

Column Displays

% Execution percent in text format with two decimal places (for example,
1.03%)
-or-
the PC sample count for each source line

Line Line numbers of the source file

File Entire source file. Each source line occupies one line in the grid control.
VisualDSP++ 3.5 User’s Guide 2-65
for 16-Bit Processors

Debugging Windows
Table 2-20. Profiling Results Window Right-Click Menu Commands

Command Description

Enable Enables or disables profiling

Load Profile Opens the Select a Statistical /Linear Profile to Load dialog box
from which you can load profile data saved from a previous run

Save Profile Saves the current run’s data to a file

Concatenate Profile Merges profiling data stored from a previous run with current data

Clear Profile Clears statistics saved from a previous run

View Execution Percent Displays the execution percent in each execution unit or source
line. This value is the sample count for that execution unit divided
by the total number of samples.

View Sample Count Displays the sample count for that execution unit

Mixed
 -or-
Source

Sets the display mode for C/C++ source lines from the right pane
only. Choose Mixed to display both C/C++ source lines and assem-
bly lines. C/C++ source lines appear in black type, and assembly
lines appear in gray. Profiling data appears for each assembly line.
Choose Source to display only the C/C++ source lines.

Properties Opens the Profile Window Properties dialog box, from which you
can view or change window settings. When you perform linear pro-
filing with the ADSP-BF532 simulator only, you can select display
options such as cache hits, cache misses, execution count, reads,
and writes.
2-66 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Window Operations

You can select various options for the Statistical/Linear Profiling Results
window and perform various window operations.

Changing the Window View

After you specify properties for the Statistical/Linear Profiling Results win-
dow and enable profiling, the profiler collects data when you run a program.
Depending on the filtering options that you select, the window’s Execution
Unit column displays:

• Function names (such as main)

• Single addresses, for example, PC(0x2000)

• Address ranges, for example, [2000–2050]

Single addresses and address ranges are in hexadecimal format. The
“0x” notation, however, appears beside single addresses only.

Displaying a Source File

Double-clicking on a function name in the Execution Unit column not only
displays the source of the function in the right pane but also the profiling data
for each line of the function. Figure 2-42 shows an example of code dis-
played for a function.

Figure 2-42. Code Displayed for a Function
VisualDSP++ 3.5 User’s Guide 2-67
for 16-Bit Processors

Debugging Windows
Working with Ranges

Clicking on the icon in an address range expands or contracts the list of func-
tions within that address range.

When expanded, the list of functions appears and profiling data appear imme-
diately after the address range.

Switching Display Modes

The right-click menu’s Mixed and Source commands simplify switching
between two views. Figure 2-43 shows the source mode view and
Figure 2-44 on page 2-69 shows the mixed mode view.

Figure 2-43. Source Mode View
2-68 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
When you view the window in mixed mode, profiling data for each assembly
line is displayed, as shown in Figure 2-45. Mixed mode displays profiling sta-
tistics for individual assembly instructions.

Figure 2-44. Mixed Mode View

Figure 2-45. Profiling Data for Each Assembly Line (Mixed Mode)
VisualDSP++ 3.5 User’s Guide 2-69
for 16-Bit Processors

Debugging Windows
Filtering PC Samples with No Debug Information

Since you spend most of you time building a “debug version” of your code,
eliminate non-debug code, such as C run-time library initialization code.

Figure 2-46 shows where a lot of time is spent before filtering.

The profiling results after filtering (Figure 2-47) reflect the difference.

Figure 2-46. Profiling Results Before Filtering

Figure 2-47. Profiling Results After Filtering
2-70 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Call Stack Window

The Call Stack window (Figure 2-48) enables you to double-click on a
stack location to move the call stack back to a previous debug context.
Open this window by choosing View, Debug Windows, and Call Stack.

 This window functions with C/C++ code only.

Use this window to analyze the state of parent functions when erroneous
data is being passed to the currently executing function and to see the con-
text from which the current function is being called. You can walk up the
call stack and view local variables in different scopes.

Memory Windows

Memory windows let you:

• View and edit memory contents

• Display the address of a value. Move the mouse pointer over the
value, and hold down the keyboard’s Ctrl key.

• Lock the number of columns currently displayed. This action
resizes the window horizontally without altering the display

• Track one expression

Figure 2-48. Example of the Call Stack Window
VisualDSP++ 3.5 User’s Guide 2-71
for 16-Bit Processors

Debugging Windows
You open memory windows from the Memory menu. For Blackfin proces-
sors, choose BLACKFIN Memory. For ADSP-21xx processors, choose the
type of memory that you want to display: Program, Data, Byte
(ADSP-218x only) or I/O.

Memory windows provide:

• Number format and edit features

• Fill and dump capability

• An optional address bar for fast navigation to recently used
addresses, symbols, or expressions

To display the address bar, right-click in a Memory window and
choose Address Bar. A check mark next to this option on the
right-click menu indicates that this feature is enabled.

Memory Number Formats

The memory windows that follow show examples of different memory
number formats.

Figure 2-49. Example of Blackfin Memory in Binary Format
2-72 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Figure 2-50. Example of Blackfin Memory in Octal Format

Figure 2-51. Example of Blackfin Memory in Hexadecimal Format
VisualDSP++ 3.5 User’s Guide 2-73
for 16-Bit Processors

Debugging Windows
Right-Click Menu

Memory windows provide a right-click menu, shown in Figure 2-52.

These commands enable you to change the number format of the display.

Figure 2-52. Memory Window Right-Click Menu
2-74 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Expression Tracking in a Memory Window

While you step through your code, a memory window configured for expres-
sion tracking shows the memory at the address specified by the expression.

Figure 2-53. Expression Tracking in a Memory Window
VisualDSP++ 3.5 User’s Guide 2-75
for 16-Bit Processors

Debugging Windows
Every time the target halts, the tracking expression is evaluated and the mem-
ory window jumps to that address. For example, if “$PC” is used as the
tracking expression, the memory window behaves like the Disassembly
window.

Note:

• In a memory window, you can configure several expressions for
tracking.

• You can track only one expression at a time in a memory window.

• The active expression appears in the memory window’s title bar.

• The memory window’s right-click menu displays a list of configured
expressions, and you can select one of them for tracking.

• To track multiple expressions, open multiple memory windows and
track one expression per window.
2-76 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Background Telemetry Channel (BTC) Window

Background telemetry channel (BTC) enables VisualDSP++ and a DSP to
exchange data via the JTAG interface while the DSP is executing. Before BTC,
all communication between VisualDSP++ and a DSP took place when the
DSP was in a halted state.

BTC Definitions in Your Program

Background telemetry channels (BTCs) are defined on a per program (.DXE)
basis. The channels are defined when you load a specific program onto a DSP.
You define channels in your program by using simple macros.

The following example code shows channel definitions.

#include "btc.h"

.section data_a;

BTC_MAP_BEGIN

 BTC_MAP_ENTRY ('Channel0', 0xf0001000, 0x00100)

 BTC_MAP_ENTRY ('Channel1', 0xf0002000, 0x01000)

 BTC_MAP_ENTRY ('Channel2', 0xf0003000, 0x10000)

BTC_MAP_END

The first step in defining channels in a program is to include the BTC macros
by using the #include btc.h statement. Then each channel is defined with
the macros. The definitions begin with BTC_MAP_BEGIN, which marks the
beginning of the BTC map. Next, each individual channel is defined with the
BTC_MAP_ENTRY_ASM macro, which takes the parameters described in
Table 2-21 on page 2-78.
VisualDSP++ 3.5 User’s Guide 2-77
for 16-Bit Processors

Debugging Windows
Once the channels are defined, end the BTC map with the BTC_MAP_END
macro, which takes a single parameter. This macro indicates the total number
of channels being defined. After you add the channel definitions, you must
initialize the BTC during the applications startup code by calling the
_btc_init function. After initialization, BTC commands from the host are
processed via the _btc_poll function.

BTC Priority

You can call the _btc_poll function from a polling loop, the handler of an
interrupt, a thread, and so on. Because you decide when to call the _btc_poll
function, you can effectively change the priority of the BTC, as described in
Table 2-22.

Table 2-21. Parameters for the BTC_MAP_ENTRY_ASM Macro

Parameter Description

Name Name of the channel (32 characters max)

Starting address Starting address of the channel in memory

Length Length of the channel in bytes

Table 2-22. Changing BTC Priority

Placing the BTC Call Description

In the handler of a high-priority interrupt The BTC effectively becomes high priority.

In a low-priority interrupt handler The BTC effectively makes the BTC low priority.

In a polling loop It is difficult to predict the priority without knowing the
impact that interrupts have on the overall system.
2-78 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
The priority of the BTC can impact the response time from when the host
requests data and the DSP responds. Once the DSP begins to service the
request, interrupts can still be serviced by the DSP. BTC performance is
affected by the frequency of system interrupts.

The following example shows a simple polling loop written in assembly
language.

[--sp] = rets;

call _btc_init;

rets = [sp++];

pollingLoop:

nop;

[--sp] = rets;

call _btc_poll;

rets = [sp++];

nop;

jump pollingLoop;

The following example is the same polling loop written in C.

btc_init();

while(1)

 btc_poll();

After adding the calls to the initialization and polling functions, you must link
with the BTC library (libbtcxxx.dlb), which contains the initialization and
polling functions and other functions that permit data transfer over the BTC.
VisualDSP++ 3.5 User’s Guide 2-79
for 16-Bit Processors

Debugging Windows
Examples

The BTC Memory window lets you view background telemetry channel
contents in real time. The window displays the contents of the address
that you want to see. You can change the window’s view to meet your
needs.

Open this window by choosing View, Debug Windows, and BTC
Memory.

The view in Figure 2-54 shows the contents of a specified channel only (for
example, Channel1).

Figure 2-54. Viewing Contents of a Specified Channel Only
2-80 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
The view in Figure 2-55 shows the list of currently defined channels and the
contents of the selected channel.

Figure 2-55. Viewing Defined Channels and Contents of a Selected Channel
VisualDSP++ 3.5 User’s Guide 2-81
for 16-Bit Processors

Debugging Windows
Right-Click Menu

Table 2-23 describes the BTC Memory window’s right-click menu.

Table 2-23. BTC Memory Window’s Right-Click Menu

Command Purpose

Go To Opens the Go To dialog box, in which you specify an
address. The specified address appears in the top-left
corner of the display. The address must be within the
range defined for the channel currently being displayed.

Tip: Double-clicking in the address column also opens
the Go To dialog box.

Show Map or Hide Map Shows or hides a more informative map display of all the
current channel definitions

Show Map displays a channel list. Double-click a chan-
nel to display its contents in the lower portion of the
window.

Hide Map removes the list of channels. The selected
channel remains in the display.

Lock Columns Locks or unlocks the number of columns currently dis-
played in the window

Select Format Specifies how to display data in the window. Choices
include double words (32 bits), words (16 bits), and
bytes (8 bits).

Refresh Rate Specifies the refresh rate, which is used when Auto
Refresh is chosen. The display is updated at the selected
interval.

Auto Refresh Enables the window to refresh itself at given intervals.
The rate is specified by Refresh Rate. Auto Refresh
mode is valid only while the processor is running.

Channel Timeout Specifies the length of time to wait for any single
response from the BTC. If the timeout value is exceeded,
the current transaction ends.
2-82 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Memory Map Windows

The Memory Map window (Figure 2-56) displays the memory map for
the selected processor. Open this window by choosing Memory and
Memory Map.

If no DSP program is loaded into the processor, the memory map displays
all available memory in the processor.

If a program is loaded, the memory map is the map defined in the memory
section of the program’s .LDF file.

For each portion of memory, the window displays the start address, end
address, and width.

Figure 2-56. Memory Map Window
VisualDSP++ 3.5 User’s Guide 2-83
for 16-Bit Processors

Debugging Windows
Register Windows

Depending on your processor, you have access to various register windows
from the Register menu.

The Core submenu shown in Figure 2-57 is available for ADSP-BF535
processors.

Figure 2-57. Register Windows Available from the Core Submenu
2-84 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
The Peripherals submenu shown in Figure 2-58 is available for
ADSP-BF535 processors only.

The Register menu shown in Figure 2-59 on page 2-86 is available for
ADSP-2191 processors.

Figure 2-58. Register Windows Available from the Peripherals Submenu
VisualDSP++ 3.5 User’s Guide 2-85
for 16-Bit Processors

Debugging Windows
Figure 2-59. Register Windows Available for ADSP-2191 Processors
2-86 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Figure 2-60 shows an example of a data register file in a register window.

A register window enables you to:

• View and change register contents

• Change the presentation (number format)

Register window number formats include standard formats, such as hexa-
decimal, octal, and binary. Depending on the DSP, other formats are
available.

You can change a register’s data directly from a register window. The
modified register content is used during program execution. Edits to data
do not affect your source files. To make changes permanent, edit the
source file and rebuild your project.

Figure 2-60. Example of a Register Window
VisualDSP++ 3.5 User’s Guide 2-87
for 16-Bit Processors

Debugging Windows
Stack Windows

Depending on your processor, you have access to various stack windows,
including:

• PC Stack

• Counter Stack

• Loop Stack

• Status Stack

For more information about your processor’s stack windows, consult the
online Help.

Custom Register Windows

While debugging, you can configure and display custom register windows.
To create a custom register window, choose Register, Custom, and
Manage. Then add the registers that you want to display. The custom
register window appears immediately after you create it.

Each custom register window displays a title that you specify and only the
registers that you choose to monitor. The custom register window shown
in Figure 2-61 displays the contents of five registers.

Figure 2-61. Example of a Custom Register Window
2-88 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Multiprocessor Window

Multiprocessor capability applies only to processors such as the
ADSP-2192-12 and ADSP-BF561, which support multiprocessing.

Use the Multiprocessor window (Figure 2-62) to select and control the
different processors in a multiprocessor debug session.

The window consists of two pages, Status and Groups.

Multiprocessor Groups

If a session contains three processors (A, B, and C) and a group is created
that contains A and C, the MP Run command runs A and C only, and B
remains unaffected.

Figure 2-62. Multiprocessor Window
VisualDSP++ 3.5 User’s Guide 2-89
for 16-Bit Processors

Debugging Windows
Focus

Processor focus changes, depending on the currently selected window. To
move focus among the processors, click on a processor listed in the Multi-
processor window (Figure 2-62 on page 2-89).

You can pin a register window, a memory window, or Disassembly win-
dow to a specific processor. Select the processor in the Multiprocessor
window and right-click in the window that you want to pin. Then choose
Pin to Processor to lock the window to the selected processor. A window
pinned to a processor always displays data from that processor, regardless
of the currently focused processor.

For example, if a register window is pinned to Processor 1 and a memory
window is pinned to Processor 2, selecting the register window moves the
focus to Processor 1. Selecting the memory window moves the focus to
Processor 2. The Multiprocessor window’s Status page reflects the change
in focus.

Right-Click Menu

The Multiprocessor window’s right-click menu offers these commands:

Figure 2-63. Multiprocessor Window’s Right-click Menu
2-90 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Multiprocessor Window Pages

The Multiprocessor window has two tabbed pages, Status and Groups.

Status Page

The Status page (Figure 2-64) shows the status of each processor in a mul-
tiprocessor system. The processor with focus is highlighted with a
horizontal bar.

You can change focus by clicking on a processor in the list.

Figure 2-64. Multiprocessor Window – Status Page
VisualDSP++ 3.5 User’s Guide 2-91
for 16-Bit Processors

Debugging Windows
Groups Page

The Groups page (Figure 2-65) shows the current list of multiprocessor
groups. A Default group is created when you create a new multiprocessor
session. The members of the Default group are the processors that you
checked off under Multiprocessor System in the New Session dialog box.

From the Groups page, you can assign one or more processors to a group
to apply a multiprocessor operation (MP Run, MP Halt, MP Step, MP
Reset, and MP Restart) to only the processors in the currently selected
group.

Right-clicking on the Group page displays a context menu that lets you
add or remove a group.

Figure 2-65. Multiprocessor Window – Groups Page
2-92 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Pipeline Viewer Window

The Pipeline Viewer window (Figure 2-66) enables you to view instruc-
tions in the pipeline and event details. Open this window by choosing
View, Debug Windows, and Pipeline Viewer.

 Pipelining is available only for simulation targets.

Column headings refer to pipeline stages for the processor’s core registers.
Refer to your processor’s Hardware Reference for details.

Figure 2-66. Example of a Pipeline Viewer Window
VisualDSP++ 3.5 User’s Guide 2-93
for 16-Bit Processors

Debugging Windows
Right-Click Menu

The Pipeline Viewer window’s right-click menu provides the commands
described in Table 2-24.

Table 2-24. Pipeline Viewer Right-Click Menu

Item Purpose

Enabled Enables and disables collection of pipeline data while running or step-
ping

Clear Clears the current sample buffer

Display Format Controls the display format of data

Address shows the hexadecimal-formatted address of the pipeline stage
(for example, 0x1234). Use this format to follow a particular address’s
route through the pipeline.

Disassembly disassembles the instruction at that address and shows the
opcode mnemonic, similar to a Disassembly window. Use this format to
determine why a particular event is occurring.

Opcode format is the hexadecimal representation of the disassembly
mnemonic.

Save Opens the Save As dialog box, from which you export the collected data
to a text file

Properties Opens the Pipeline Viewer Properties dialog box, from which you view
and specify properties (buffer and display depth, display format, column
widths, grid lines, and the appearance of stages) for the Pipeline Viewer
window. You can also modify window colors.
2-94 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Pipeline Viewer Properties Dialog Box

The Pipeline Viewer Properties dialog box enables you to specify how
(amount and format) the Pipeline Viewer window displays pipeline events.
Table 2-25 describes the Pipeline Viewer properties.

The Colors tab lets you specify the colors displayed in the Pipeline Viewer
window. The current color appears under Current Color. You can click a
color in the color palette or click Other to specify a custom color. Use the
Reset button to restore the default colors.

Table 2-25. Pipeline Viewer Properties

Property Item Purpose

Buffer depth Specifies the total number of pipeline samples to retain at any time.
When this buffer overflows, the oldest data shifts out to make room
for new samples. The default is 100.

Display depth Specifies the number of samples to display.
Adjust this number to meet your performance needs. The lower the
depth, the faster the target can run. This option cannot be set
greater than the Buffer depth. The default is 20.

Display format Specifies the data’s format

Address includes the hexadecimal-formatted address of the pipeline
stage (for example, 0x1234).

Disassembly includes the opcode mnemonic, similar to the format
displayed in a Disassembly window.

Opcode format is the hexadecimal representation of the disassembly
mnemonic.

Show gridlines Toggles the display of gridlines in the window. The default is On.

Auto-size columns Automatically sizes all columns to have the same width as samples
are collected. The default is On.

Stages to view Specifies the stages to appear in the window. Note that all stages are
collected, but you view only the stages that you select to appear.
VisualDSP++ 3.5 User’s Guide 2-95
for 16-Bit Processors

Debugging Windows
Pipeline Viewer Window Event Icons

Table 2-26 shows the Pipeline Viewer window icons that indicate
Blackfin pipe stage events.

Table 2-27 shows the Pipeline Viewer window icons that indicate
ADSP-219x pipe stage events.

Table 2-26. Icons for Blackfin Pipe Stage Events

Icon Event Description

Abort The instruction in the pipeline stage has been aborted.

Bubble
A stall in the previous pipeline stage created an empty slot in this
pipeline stage.

Stall
A stage has stalled. The stall reasons for Blackfin processors are
listed in Appendix B.

Fetch
The pipeline stage was ready to decode but latencies in the mem-
ory prevented the fetch pipe from providing an input in time.

Kill
This status is similar to an abort but is caused by an interrupt,
refetch, branch, or mispredicted conditional branch.

Multi
A stage contains a multicycle opcode such as pushpopreg, LINK,
or UNLINK.

Table 2-27. Icons for ADSP-219x Pipe Stage Events

Icon Event Description

Abort A stage in the pipeline contains an aborted instruction.

Bubble
The stage following a stall in the pipeline contains an empty
slot.

Stall
A stall has occurred at a stage in the pipeline. The stall reasons
for Blackfin processors are listed in Appendix C.
2-96 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Pipeline Instruction Event Details

In the Pipeline Viewer window, moving the cursor over a Pipeline Viewer
event icon displays pipeline event details, which appear in a tool tip (mes-
sage) box, shown in Figure 2-67.

A pipeline event can include the details described in Table 2-28.

Figure 2-67. Tool Tip Box Showing Pipeline Event Details

Table 2-28. Pipeline Event Details

Item Displays

Address Address of the pipeline stage at that cycle (if valid)

Instruction Assembly instruction of that address (if valid)

Type Type of event

Cause Cause of the event condition

Details Further explanation of the cause of the event (if applicable)
VisualDSP++ 3.5 User’s Guide 2-97
for 16-Bit Processors

Debugging Windows
Cache Viewer

The VisualDSP++ Cache Viewer provides a means to visualize a processor's
cache and find problem areas. The tool shows how instructions are being exe-
cuted. You can use this valuable information to boost your application's
performance.

The Cache Viewer window (Figure 2-68) provides a view of each instruc-
tion’s execution characteristics. Cache Viewer information indicates the type
of event and describes the cause of the event. Each instruction that executes
from cache is marked with an H (hit) or an M (miss). Hits represent cache
instructions executed without a stall. Misses identify instructions that had to
be fetched from slower parts of memory because they were not found in cache.

Figure 2-68. Viewing a Cache Event's Details in the Cache Viewer
2-98 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Use the hit or miss information to increase an application's performance by
locating instructions in the cache when they are needed. Ensuring that no
cache misses are in frequently executed areas of an application (as highlighted
by the profiler utility) is a critical step in optimizing your application's soft-
ware performance.

As shown in Figure 2-68, the Cache Viewer window enables you to view the
details of any cache event. These descriptive details help you understand the
cause of the cache event. Use this information to isolate areas where perfor-
mance can be improved.

For example, based on cache event details, you might:

• Modify an application's lay-out in memory to avoid cache thrashing

• Prefetch instructions to avoid compulsory misses

• Lock down ways in the cache to avoid a conflict miss with a frequently
accessed instruction

Open the Cache Viewer window by choosing View, Debug Windows, and
Cache Viewer.

The Cache Viewer consists of several tabbed pages, described in
Table 2-29.

Table 2-29. Cache Viewer Pages

Page Displays

Configuration Cache configuration information

Detailed View Location (set and way) of cache events

History List of cache events

Performance Cache performance metrics

Histogram A plot of cache activity

Address View Cache events on an Address vs. Cycle plot
VisualDSP++ 3.5 User’s Guide 2-99
for 16-Bit Processors

Debugging Windows
The Cache Viewer window’s right-click menu (described in Table 2-30)
enables you to read, write, and step an event log, a file that records cache
events.

The event log file does not include icons. Thus, the Cache Viewer
window’s Detailed View page does not display icons.

Stepping enables you to execute one cache event at a time from the cache
events log file. The event is displayed on the Detailed View, History, and
Histogram pages. When stepping is configured, a check mark () appears
next to Step on the right-click menu. By default, this option is enabled when
a cache events log file is opened for reading.

Table 2-30. Cache Viewer Window’s Right-Click Menu

Menu Option Description

Enabled Enables and disables collection of cache data while the target is
running or stepping

Clear Clears all displays and deletes all stored cache data

Map References Opens the Map References dialog box, from which you specify
the cache reference map (start address and end address)

Event LogvRead Opens the File Open dialog box, from which you select and
open a cache event log file. The log file data is used by the Cache
Viewer window’s Configuration view.

Event LogvWrite Opens the File Save dialog box, from which you save a cache
event log file. Events are written to this log file.

Event LogvStep Executes one cache event at a time from the cache event log file.
The event displays in the Detailed View, History, and Histo-
gram pages of the Cache Viewer window.

By default, this option is enabled when a cache log file is opened
for reading.

Properties Opens the Cache Viewer Properties dialog box, from which
you specify the Cache Viewer window’s appearance
2-100 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Configuration Page

The Configuration page (Figure 2-69) displays configuration information
for configured cache.

The Cache Selection pull-down (top of dialog box) lists cache displays. If
more than one cache is configured, you can use this list to change cache
displays.

The Cache Configuration list box (below the Cache Selection pull-down)
displays a list of items and their values. The first three items (Cache Name,
Number of Sets, and Number of Ways) are required. The target may display
additional items, such as Cache Size and Line Size. The list of items depends
on the selection in the Cache Selection pull-down.

Figure 2-69. Configuration Page
VisualDSP++ 3.5 User’s Guide 2-101
for 16-Bit Processors

Debugging Windows
Detailed View Page

The Detailed View page (Figure 2-70) displays a grid depicting cache sets
(rows) and cache ways (columns).

Data received from a cache event is placed in the cell corresponding to the
cache set and way. The most recent events are highlighted.

Each cell has an icon and text entry. The icon indicates the type of cache event
that occurred (hit or miss). Depending on the objects you choose to display,
you can display details, such as reference address, PC address, cycle count,
event type, event description, and so on.

Figure 2-70. Detailed View Page
2-102 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
You can display tooltips showing details for the most recent cache event. The
appearance of a lock icon in the column header indicates that the cache way is
locked.

A reference map icon in the Set # column indicates the results of the reference
mapper function. Double-clicking on a cell switches the display to the history
view (History page) for the selected cell.

History Page

The History page (Figure 2-71) displays detailed information for each cache
event that occurred in the selected set and way.

Figure 2-71. History Page
VisualDSP++ 3.5 User’s Guide 2-103
for 16-Bit Processors

Debugging Windows
You select the set and way from the pull-down control or by double-click-
ing a cell on the Detailed View page.

You can specify the number of cache events stored. You can sort the rows by
clicking on any particular column heading. An up arrow in a column heading
indicates an ascending sort order, and a down arrow indicates a decending sort
order.

Table 2-31 describes the history information for cache events.

Table 2-31. History Information for Cache Events

Item Description

Index # Shows the order in which the cache events were received. The
index starts at zero and increments each time an event is received.

Set # Displays the set number where the cache event occurred

Way # Displays the way number where the cache event occurred

Cycle Displays the cycle count when the cache event occurred

PC Address Displays the PC address of the cache event

Ref Address Displays the reference address of the cache event

Symbol Lookup Displays the symbol name when the reference address resolves to a
symbol in memory

Valid Displays the cache line valid flag (Yes or No)

Event Type Displays the cache event type, such as Hit or Miss

Description Displays the cache event’s description
2-104 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Performance Page

The Performance page (Figure 2-72) shows a list of performance metrics
(items and values), which are determined by the target.

The target updates this list. The update rate, however, is not predetermined.

Figure 2-72. Performance Page
VisualDSP++ 3.5 User’s Guide 2-105
for 16-Bit Processors

Debugging Windows
Histogram Page

The Histogram page (Figure 2-73) shows a plot of the total number of cache
events that occurred in each cache set.

A vertical line is displayed for each cache set. The line starts at zero and ends at
the total number of events. Use this plot to identify the most active cache sets.

Figure 2-73. Histogram Page
2-106 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Address View Page

The Address View page (Figure 2-74) displays cache events on an Address vs.
Cycle plot. Use this view to display the cache events for the specified addresses
over time.

Events are displayed as icons, identical to the icons used in the detailed view. A
start address and count are required. You can enter the start address as a hexa-
decimal value or a symbol. Click the browse (…) button to browse for a
symbol.

The count determines the number of addresses displayed. After you enter a
start address and count, click Update to display the event data. Horizontal
and vertical scroll bars enable you to scroll the view.

Figure 2-74. Address View Page – Address Range View
VisualDSP++ 3.5 User’s Guide 2-107
for 16-Bit Processors

Debugging Windows
VDK Status Window

The VDK Status window (Figure 2-75) is available when an executable is
built with VDK support enabled. Open this window by choosing View,
VDK Windows, and Status.

Figure 2-75. VDK Status Window
2-108 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
When you halt execution of a VDK program, VisualDSP++ reads data for
threads, semaphores, events, event bits, device flags, memory pools and mes-
sages and displays the state and status data in this window.

When one of the above VDK entities is created, it is added to the display. An
entity is removed from the display when it is destroyed.

Initially, information is displayed in a collapsed state, which shows only the
name of the entity and, in some cases, its current state. When a thread is in the
Ready state, its priority is displayed.

Clicking the plus sign next to the name of an entity expands the view.

The possible thread states are as follows.

• Running

• Ready

• SemaphoreBlocked

• EventBlocked

• DeviceFlagBlocked

• MessageBlocked

• SemaphoreBlockedWithTimeout

• EventBlockedWithTimeout

• DeviceFlagBlockedWithTimeout

• MessageBlockedWithTimeout

• Sleeping

• Unknown

Refer to the VisualDSP++ Kernel (VDK) User’s Guide for details.
VisualDSP++ 3.5 User’s Guide 2-109
for 16-Bit Processors

Debugging Windows
VDK State History Window

VDK state history is available only for DSP executables with VDK sup-
port. During execution of a VDK-enabled program, thread and event data are
collected in a history buffer if Full Instrumentation has been specified for
the project. When you halt a running program, the history buffer data is plot-
ted in the VDK State History window, described in Figure 2-76. Some
features become available only when the data cursor is enabled. Open this
window by choosing View, VDK Windows, and History.

Figure 2-76. Example of a VDK State History Window
2-110 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Each thread appears as a horizontal bar (thread status bar). The ThreadID and
the name of the thread type appear to the left of the bar. When a thread is
destroyed, the name of the thread type is no longer displayed. Each thread
event appears as an arrow above a thread.

Thread Status and Event Colors

Threads and events are coded by color, based on thread status and event type.
The colors appear in the horizontal bars (threads) and colored arrows (events)
used throughout the plot. Events of the same type are drawn in the same
color.

Right-click on the plot and choose Legend to display legends that define
each color in the VDK State History window. To customize colors,
right-click on the plot and choose Properties.

Trace thread switch history by following the thin green line, which winds
through the display, passing under threads to indicate the running thread at
any particular time. When a context switch occurs and changes the running
thread, a vertical green line is drawn from the previously running thread to the
next running thread.

When you use the data cursor, a yellow triangle to the left of a thread name
identifies the currently running thread.
VisualDSP++ 3.5 User’s Guide 2-111
for 16-Bit Processors

Debugging Windows
Window Operations

The status bar (at the bottom of the plot) on the State History page shows
the event’s details and thread status when the data cursor is enabled. Event
details include the event type, the tick when the event occurred, and an
event value. The value for a thread-switched event indicates the thread
being switched in or out.

Right-click on the plot and choose Data Cursor to activate the data cur-
sor, which is used to display event and thread status details. Based on the
event that occurred, the thread status changes. Press the keyboard’s right
arrow key or left arrow key to move to the next or previous event. When
the data cursor hits a thread switch event, it moves to the thread being
switched in. The yellow triangle to the left of the thread name indicates
the currently active thread.

You can zoom in on a region to examine that area in more detail. Hold the
left mouse button down while dragging the mouse to create a selection
box. Then release the mouse button to expand the plot. To restore the
plot to its original scale, right-click on the plot and choose Reset Zoom.

Right-Click Menu

The VDK State History window’s right-click menu provides easy access
to operations you can perform from the state history plot.
2-112 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Target Load Window

Clicking the Target Load tab from the VDK State History window dis-
plays the Target Load window. A target load plot (Figure 2-77) shows the
percentage of time that the target spent in the Idle thread.

A load of 0% indicates that VDK spent all of its time in the Idle thread. A
load of 100% indicates that the target did not spend any time in the Idle
thread.

Load data is processed by means of a moving window average.

Figure 2-77. Example Target Load Window
VisualDSP++ 3.5 User’s Guide 2-113
for 16-Bit Processors

Debugging Windows
About Debugging Windows

This section describes useful information about debugging windows.

Editor Window Features

An editor window provides:

• Status icons

• Expression evaluation

• Two view formats (source mode or mixed mode)

Syntax Coloring

Specify colors to help you locate information in the types of files listed in
Table 2-32.

Table 2-32. File Types That Support Syntax Coloring

File Type File Extension

Assembly .ASM

C .C

Linker Description Files .LDF

C++ .CPP

Header .H

Script Various extensions, such as .JS and .VBS
2-114 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Right-Click Menu

The editor window’s right-click menu provides the commands shown in
Figure 2-78.

Note the following.

• The available number formats under Select Format are
DSP-dependent.

• An additional command, Source Script, is available when you are
editing a script.

Figure 2-78. Editor Window’s Right-Click Menu
VisualDSP++ 3.5 User’s Guide 2-115
for 16-Bit Processors

Debugging Windows
Editor Window Symbols

The editor window’s gutter (left margin) displays icons that indicate
breakpoints, bookmarks, and the current position of the program counter
(PC). Table 2-33 describes these icons.

Bookmarks

Bookmarks are pointers in editor windows. You bookmark a location to
return to it quickly later.

Context-Sensitive Expression Evaluation

You can evaluate an expression in an editor window only if your .DXE pro-
gram is loaded for debugging.

As you move the mouse pointer over a variable, with the pointer still on
top of the variable, VisualDSP++ evaluates the variable. If the variable is
in scope, the value appears in a tool tip window.

Table 2-33. Editor Window Symbols

Symbol Indicates

The current source line to be executed (PC location)

An enabled breakpoint

A disabled breakpoint

A bookmark
2-116 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Viewing an Expression

You can view an expression in different ways. When the editor window is
in mixed mode, you can view an expression by moving the pointer over a
register in an assembly instruction. The register contents are displayed in a
tool tip.

Highlighting an Expression

You can highlight an expression in the editor window and then move the
pointer on top of the highlighted expression to display its value in a tool
tip.

Source Mode vs. Mixed Mode

You can specify an editor window’s display format. Your two options are
source mode and mixed mode.

Source Mode

Source mode, shown in Figure 2-79, displays C code only.

Figure 2-79. Editor Window in Source Mode Format
VisualDSP++ 3.5 User’s Guide 2-117
for 16-Bit Processors

Debugging Windows
Mixed Mode

Mixed mode displays the assembled code after the line of the correspond-
ing C code. The assembly code takes a specified color.

Note:

• You must compile the source file with debugging information to
view the source file in mixed mode.

• You can enable and disable the display of pipeline symbols while in
mixed mode.

Figure 2-80 shows an example of the mixed mode format.

Figure 2-80. Editor Window in Mixed Mode
2-118 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Expressions in an Expression Window

Table 2-34 describes the types of expressions that you can enter in an
Expressions window.

The Expressions window displays the current value of each expression as
you step through your program.

The evaluation of expressions is based on the current debug context. For
example, if you enter expression “a” and a global variable “a” exists, you
see its value. If you then step into a function that has local variable “a”,
you see the local value until the debug context leaves the function. When a
variable goes out of context, a string displays next to the variable to inform
you that the variable is out of context.

The expressions described above are C expressions. The current syntax
also allows you to use registers in expressions. For example, the following
is a valid expression.

$R0 + $I0

Register expressions and C expressions can be mixed in an expression.

Table 2-34. Types of Expressions Allowed in an Expressions Window

Expression Description

Memory address Precede memory identifiers with a $ sign, for
example: $dm(0xF0000000)

Register expression Precede register names with a $ sign, for example: $r0, $r1,
$ipend, $po, or $imask

C/C++ statements Use standard C/C++ arithmetic and logical operators.
VisualDSP++ 3.5 User’s Guide 2-119
for 16-Bit Processors

Debugging Windows
Register expressions follow these rules:

• Precede register names with a $ character.

• Register names can be uppercase or lowercase characters.

• Registers have no context. A register expression always evaluates to
the current value of the register.

Number Formats

You can select the number format used to display a particular register win-
dow or memory window. The available number formats, which depend on
your processor family, can include those listed in Figure 2-81.

Figure 2-81. Available Number Formats
2-120 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
The following windows are examples of different number formats.

The window in Figure 2-82 appears in hexadecimal format.

The window in Figure 2-83 appears in octal format.

Figure 2-82. Memory Window in Hex Format

Figure 2-83. Memory Window in Octal Format
VisualDSP++ 3.5 User’s Guide 2-121
for 16-Bit Processors

Debugging Windows
The window in Figure 2-84 appears in binary format.

The window in Figure 2-85 appears in signed integer format.

Figure 2-84. Data Register Window in Binary Format

Figure 2-85. Data Register Window in Signed Integer Format
2-122 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Plot Windows

Use a plot window to display a plot, which is a visualization of values
obtained from DSP memory. You can display one or multiple plot win-
dows by choosing View, Debug Windows, Plot, and New.

Figure 2-86 shows an example of a plot in a plot window.

You specify the contents and presentation of the plot. You can modify a
plot’s configuration and immediately view the revised plot.

From a plot window, you can zoom in on a potion of a plot or view the
values of a data point.

You can print a plot, save the plot image to a file, or save the plot’s data to
a file. For details, refer to the online Help in VisualDSP++.

Figure 2-86. Example of a Plot Window
VisualDSP++ 3.5 User’s Guide 2-123
for 16-Bit Processors

Debugging Windows
Plot Window Features

Plot windows include a status bar, tool bar, and a right-click menu.

Status Bar

The status bar, located at the bottom of the plot window, displays the plot
type and other information, depending on the plot type and other
settings.

The following examples show different plot information displayed on the
status bar.

In a waterfall plot, the status bar indicates the azimuth and elevation view-
ing angles. If you zoom in on a region, the status bar indicates that zoom
is enabled. When you use the data cursor, the status bar shows the selected
point’s data value.

When a plot window’s auto-refresh mode is enabled in BTC mode, the status
bar indicates current buffer capacity (for example, 89%) and data logging
status.

Buffer capacity, which dynamically changes between 0 and 100%, indicates
the portion of the buffer currently in use. The ideal size is a little below 100%.
Readings of 100% indicate that data loss.

Figure 2-87. Examples of Status Bar Information for Plots
2-124 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Table 2-35 describes the data logging status indicators in a plot window.

Tool Bar

The plot window’s toolbar provides buttons for recording and playing back
streaming data and a box for specifying streamed data (.BIN) file names.

Table 2-35. Data Logging Status Indicators in a Plot Window

Status Indicates

Record Real-time data being displayed is also being saved (logged) to a .BIN file.

Live Data is being displayed in real time.

Playback A previously saved data (log) file is being viewed.

Figure 2-88. Plot Window’s Toolbar
VisualDSP++ 3.5 User’s Guide 2-125
for 16-Bit Processors

Debugging Windows
Right-Click Menu

The plot window’s right-click menu is shown in Figure 2-89.

This menu provides access to the standard window options (docking, clos-
ing, and floating in the main window) and to the plot window features
described in Table 2-36 on page 2-127.

Figure 2-89. Plot Window’s Right-Click Menu
2-126 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Table 2-36. Plot Window Operations

Feature Description

Data Cursor Displays the data value associated with the position of the plot win-
dow’s data cursor. View the value on the left side of the plot window’s
status bar. Press the keyboard’s arrow keys to move around on the
graph.

Reset Zoom Resets the plot window to its initial full-scale display

Configure Opens the Plot Configuration dialog box, from which you can add,
remove, or modify data sets. You can also change the plot type and
rename the plot.

Modify Settings Opens the Plot Setting dialog box from which you can customize
the plot’s appearance. You can specify plot settings (grids, colors, mar-
gins, fonts, axes, and so on) and settings for each data set (data pro-
cessing).

Save Settings Saves plot configuration settings for future use. The configuration is
stored, but not the data. You can retrieve settings (.VPS file) and load
new plot data.

Export Exports the plot image to various destinations including the Win-
dows clipboard. Save the plot image as a file (JPG, GIF, TIF, EPS,
TXT, or DAT format) or print a hard copy.

Auto Refresh Enables a plot window to refresh automatically based on settings that
you specify. The auto-refresh timer starts. Streaming data is read and
displayed. When you deselect this option, the timer is stopped and
streaming data is not processed.

Auto Refresh Settings Enables you to configure options that control auto-refresh settings for
plot windows. These settings determine the method in which mem-
ory is transferred.
VisualDSP++ 3.5 User’s Guide 2-127
for 16-Bit Processors

Debugging Windows
Plot Window Statistics

You can view various statistics (mean, standard deviation, signal-to-noise ratio
(SNR), minimum data value, and maximum data value) while displaying a
plot. Note that statistics apply only to the portion of data that is visible. When
the plot is zoomed, the statistics are re-calculated only for the visible area.

Figure 2-90 shows statistics displayed for a portion of audio data.

For details about viewing statistics, refer to the VisualDSP++ online Help.

Figure 2-90. Statistics Displayed for a Portion of Audio Data
2-128 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Plot Configuration

A plot configuration comprises two parts: data values and presentation
(configuration) settings.

A plot window must contain at least one data set, a series of data values in
DSP memory. You create data sets in the Plot Configuration dialog box,
shown in Figure 2-91.

You specify the type of plot (for example, waterfall), the memory location,
the number of values, the axis associated with each data set, and other
options that identify the data. Note that 3-D plots require additional spec-
ifications for row and column counts.

The Settings button enables you to configure presentation options (such
as titles, grids, fonts, colors, and axis presentation) for each data set. You
can recall a plot from a saved settings file (.VPS). VisualDSP++ uses these
settings and reads DSP memory to display a plot in a plot window.

Figure 2-91. Plot Configuration Dialog Box
VisualDSP++ 3.5 User’s Guide 2-129
for 16-Bit Processors

Debugging Windows
Plot Window Presentation

You can customize the presentation of a plot window to fit your needs.
You configure presentation settings from the Plot Setting dialog box,
which you can invoke as follows.

• Right-click from within a plot window

• Click the Settings button from in Plot Configuration dialog box

The Plot Settings dialog box provides the tabs shown in Figure 2-92.

Options on the tab pages enable you to configure the plot window’s pre-
sentation. On the Style page, for example, you can easily specify symbols
for a data set as well as line type and width, as shown in Figure 2-93.

Figure 2-92. Tabs in the Plot Setting Dialog Box

Figure 2-93. Line Styles
2-130 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
In addition to the many presentation options, you can select a rectangular
area, as shown in Figure 2-94, and zoom in on it.

Figure 2-94. Zooming In on a Selected Area
VisualDSP++ 3.5 User’s Guide 2-131
for 16-Bit Processors

Debugging Windows
Plot Presentation Options

You can configure a plot’s presentation. Depending on the type of plot,
many options are available.

In the Plot Settings dialog box, these options are grouped by function on
tabbed pages, described in Table 2-37.

You can specify a plot’s presentation options before you generate the plot
(while configuring the plot), or you can specify plot options after generat-
ing the plot.

Table 2-37. Plot Settings Options by Page

Page Options That You Can Specify

General Title and subtitle, grid lines, margins, background colors, and
legend

2-D Axis For X-axis and Y-axis: axis titles, start and increment values,
scales

3-D Axis For X-axis, Y-axis, and Z-axis: axis titles, Z-axis settings, step
sizes, scale multipliers, color and mesh

Font Font name, color, and size

Style For a data set: line type, width, color; symbol and type

Data Processing For a data set: data processing algorithm, sample rate, number of
stored traces, and triggering
2-132 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Image Viewer

The VisualDSP++ Image Viewer window enables you to perform these
operations:

• View an image. You can display BMP, JPEG, PPM, or MPEG data
from DSP memory or from a file on your PC.

• Configure image attributes such as number of pixels, bits per pixel,
and image format

• Correct the gamma attributes of an image. For a color image, you can
adjust the red, green, and blue pixel values. On a grayscale image, you
can adjust darkness only.

• Copy an image to the Windows clipboard

• Print an image or save it to a file

• Export an Image

You select the image source (from DSP memory or a file on your PC) and
specify image attributes. If the image is located in DSP memory, you must
specify the image’s address, size, and format.

To open the Image Viewer window, choose View, Debug Windows, and
Image Viewer.
VisualDSP++ 3.5 User’s Guide 2-133
for 16-Bit Processors

Debugging Windows
The Image Viewer window, shown in Figure 2-95, renders the image and
provides scroll bars and buttons for zooming in and out.

As you move the mouse over the image, the status bar indicates:

• DSP address where the selected pixel is located

• Red, green, and blue (RGB) pixel values for color images, intensity
values for gray-scale images

• Pixel coordinates (column and row)

Pixel color depth is 24 bits for color images and 8 bits for
gray-scale images.

Figure 2-95. Image Viewer Window
2-134 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Right-Click Menu

Figure 2-96 shows the Image Viewer window’s right-click menu.

Table 2-38 describes the menu commands.

Figure 2-96. Image Viewer Window’s Right-Click Menu

Table 2-38. Right-Click Menu Commands

Command Purpose

Configure Opens the Image Configuration dialog box, from which you
can specify image attributes

Update Now Reads the image data from DSP memory

Reset Zoom Displays the image in its original size

Export Opens the Export Image dialog box, from which you can copy
or print the image

Gamma Adjust Opens the Gamma Correction dialog box, from which you can
adjust image color
VisualDSP++ 3.5 User’s Guide 2-135
for 16-Bit Processors

Debugging Windows
Image Configuration Dialog Box

When using the Image Viewer, you must configure specifications for the
image. Table 2-39 describes the buttons and fields in the Image Configura-
tion dialog box.

Play Video Plays an MPEG video clip

Stop Video Ends the playing of a video clip

Table 2-39. Buttons and Fields in the Image Configuration Dialog Box

Item Purpose

DSP Memory Specifies Image or Video

File Specifies a file on your PC. You then specify the file name and
path. Clicking Browse opens the Select Image Import File dialog
box, from which you navigate to the file.

Memory selection Specifies the memory

Image start address (hex) Specifies the first location of the image data

Horizontal pixels Specifies the number of horizontal pixels

Vertical pixels Specifies the number of vertical pixels

Bits per pixel Specifies the number of bits per pixel. For color images, only
24 bits per pixel are currently allowed. For grayscale images, only
8 bits per pixel are currently allowed.

Stride Specifies the skip count. The default is one.

Image format Specifies the format (RGB or Gray Scale)

Video bytes Specifies the number of bytes (video images only)

Pack data Specifies the storage of continuous bytes of RGB pixel data in tar-
get memory. When this option is not selected, each component of
the pixel data is stored in a separate memory location.

Table 2-38. Right-Click Menu Commands (Cont’d)

Command Purpose
2-136 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Environment
Gamma Correction Dialog Box

When using the Image Viewer, you can adjust the image gamma. For color
images, you can adjust red, green, and blue independently or in tandem. For
grayscale images, you can only adjust the black-white balance.

Table 2-40 describes the buttons and fields in the Gamma Correction dialog
box.

Export Image Dialog Box

When using the Image Viewer, you can export an image to the Windows clip-
board, a file, or to the printer.

The Export Image dialog box contains the buttons and fields described in
Table 2-41.

Table 2-40. Buttons and Fields in the Gamma Correction Dialog Box

Item Purpose

Red Specifies the red value

Green Specifies the green value

Blue Specifies the blue value

Link Adjusts the red, green, and blue values at the same time (not for video
images)

Gray Specifies the black value (grayscale images only)

Table 2-41. Buttons and Fields in the Export Image Dialog Box

Item Purpose

Clipboard Copies the image to the Windows clipboard

File Specifies a file name and path. The file name and path appear in the text
box. Click Browse to navigate your system.

Printer Sends the image to the default printer
VisualDSP++ 3.5 User’s Guide 2-137
for 16-Bit Processors

Debugging Windows
2-138 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

3 DEBUGGING

This chapter describes VisualDSP++ debugging tools that you use during

single-processor and multiprocessor debug sessions. The topics are orga-
nized as follows.

• “Debug Sessions” on page 3-2

• “Code Analysis Tools” on page 3-7

• “Program Execution Operations” on page 3-11

• “Simulation Tools” on page 3-16

• “Image Viewer” on page 3-17

• “Plots” on page 3-18

• “Flash Programmer” on page 3-26
VisualDSP++ 3.5 User’s Guide 3-1
for 16-Bit Processors

Debug Sessions
Debug Sessions

You run the DSP projects that you develop as sessions (debug sessions).

A session is defined by the elements described in Table 3-1.

When you set up a session, you set the focus on a series of more specific
elements.

The target platform and processor settings specify the debug session. A
default session name is automatically generated. You can further identify
the session by modifying the default name, choosing a more meaningful
name.

 A well-chosen name can prevent confusion later.

Table 3-1. Specifying a Debug Session

Element Description

Debug target The debug target is the software module that controls a type of
debug target (a simulator or emulator).
The simulator is software that mimics the behavior of a DSP chip.
Simulators are used to test and debug processor code before a DSP
chip is manufactured.
An emulator is software that “talks” to a hardware board that con-
tains one or more actual DSP chips.

Platform For a given debug target, several platforms may exist. For a simula-
tor, the platform defaults to the identically named DSP simulator.
When the debug target is an EZ-ICE® board, the platform is the
board in the system on which you want to focus. When the debug
target is a JTAG emulator, the platforms are the individual JTAG
chains.

Processor Multiple processors can exist for a given debug target and platform.
When you create an executable file, the processor is specified by the
Linker Description File (.LDF) and other source files.
3-2 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Debug Session Management

You can run several debug sessions at once and can dynamically switch
between sessions.

You typically run multiple debug sessions to write different versions of
your program to compare their operating efficiencies. Another reason for
running multiple sessions is to debug completely different programs with-
out having to run multiple instances of VisualDSP++.

Simulation vs. Emulation

When connected to a simulator session, you may open as many sessions as
your system’s memory can handle.

When connected to actual hardware through an emulator, you can have
only one debug session connected to one emulator at any time. If multiple
emulators are installed and are connected to multiple target boards, one
debug session may be connected to each individual emulator.

When connected to a JTAG emulator, one debug session only may
be connected to each physical target/emulator combination. Other-
wise, contention issues may arise. Upon switching to a different
session, VisualDSP++ detaches from the old session before attach-
ing to the new session.

Breakpoints

You can set breakpoints in your executable program. A breakpoint may be
set at any address in program memory. Program execution halts at the
address at which the breakpoint is located.

 In addition to software breakpoints, you may also use hardware
breakpoints in an emulator debug session.
VisualDSP++ 3.5 User’s Guide 3-3
for 16-Bit Processors

Debug Sessions
Watchpoints

Watchpoints are like breakpoints. Watchpoints, however, trap on a speci-
fied condition.

You can set watchpoints on registers, stacks, and memory ranges. When
the condition is reached, program execution halts and all windows update.

 Watchpoints are available during simulation only.

Multiprocessor (MP) Debugging

Often, performance-based products require two or more DSPs. A system
built with multiple DSPs is called a multiprocessor system, and a system
built with a single DSP is called a single-processor system. Multiprocessor
debugging is available only for processors such as the ADSP-2192-12 and
ADSP-BF561, which support multiprocessing.

Setting Up a Multiprocessor Debug Session

The first step in setting up a multiprocessor debug session is to develop a
multiprocessing project by using the multiprocessing capabilities of the
linker and an LDF file to describe the multiprocessing system.

Refer to your DSP’s Linker and Utilities Manual, especially the sections
about SHARED_MEMORY{} and MPMEMORY{} commands.

The second step is to use the VisualDSP++ Configurator utility to
describe the hardware to the VisualDSP++ software if you are running a
JTAG emulator session. VisualDSP++ uses this description when you set
up your debug session. Refer to your DSP’s Hardware Reference for infor-
mation about the VisualDSP++ Configurator.

If you are running a multiprocessor simulator debug session, select the
desired configuration from the Platforms list in the New Session dialog
box. After specifying your hardware system, build your project.
3-4 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
The first time that you launch VisualDSP++ for a new project, the New
Session dialog box opens to enable you to configure the MP session. The
next time you launch VisualDSP++, the debug session is automatically
configured for you.

Debugging a Multiprocessor System

Debugging a multiprocessor system requires that you synchronously run,
step, halt, and observe program execution operations in all the processors
at once.

The following capabilities help to speed a multiprocessor debug session.

• Multiprocessor debug commands that operate like the commands
that you use while debugging a single processor, except that they
work synchronously on all active processors in the currently selected
MP group

• Multiprocessor window

The Status page enables you to view the status of each processor
and switch processor focus.

The Group page enables you to group processors into multiple,
logical units to which all MP commands are applied.

• Window pinning. Note that you can use pinning and the processor
status items in the Multiprocessor window with single-processor
debug commands to debug individual processors in an MP session.

• Window color specification

Focus and Pinning

In a multiprocessor debug session, you often have to examine the behavior
of a single processor to better understand its interaction with the other
processors on the target.
VisualDSP++ 3.5 User’s Guide 3-5
for 16-Bit Processors

Debug Sessions
When you debug a single processor in an MP session, the processor being
debugged has the focus.

By pinning a window to a processor, you dedicate the window, such as a
memory window, to a particular processor in a multiprocessor group. Pin-
ning statically associates a window to a specific processor.

Before debugging, open and pin the register windows and Memory
windows you plan to use. If you do not pin them, these windows
display information for any processor that has focus.

When a window is pinned to a processor, a pin icon appears in the win-
dow’s upper-left corner.

For example:

Window Title Bar Information

Figure 3-1 shows a pinned window in a multiprocessor debug session.

Figure 3-1. Pinned Window in a Multiprocessor Debug Session
3-6 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
The title bar of a pinned window shows:

• Processor name

• Pushpin icon to indicate that the window is pinned

• Window title

• Number format, such as Hexadecimal (for windows that support
multiple formats)

Additional Focus Indication

If configured, VisualDSP++ shades unfocused windows with a specified
color. You can specify the background color of focused and unfocused
windows.

Code Analysis Tools

You use code analysis tools to examine your code’s behavior and locate
areas that may be optimized for better performance.

VisualDSP++ provides these code analysis tools:

• Statistical profiles and linear profiles

• DSP memory plots

Statistical Profiles and Linear Profiles

VisualDSP++ provides two profiling methods that measure program per-
formance by sampling the target’s Program Counter (PC) register to
collect data. During program development you use linear profiling with
simulator targets, and you use statistical profiling with emulator targets.
VisualDSP++ 3.5 User’s Guide 3-7
for 16-Bit Processors

Code Analysis Tools
The Linear Profiling Results window and Statistical Profiling Results
window display the data collected by these two profiling methods and
indicate where the application is spending its time.

The window’s title (Linear Profiling Results or Statistical Profiling
Results) depends on whether this tool is used during simulation or
emulation.

Simulation

Linear profiling with the simulator is not statistical because the simulator
samples every PC executed. This feature provides an accurate and com-
plete picture of what was executed in your program.

Linear profiling is much slower than statistical profiling. Simulator targets
support linear profiling but do not support statistical profiling.

Emulation

A statistical profile measures the performance of a DSP program by sam-
pling the target’s PC register at random intervals while the target is
running the DSP program. The areas of the program where most of the
PCs are concentrated are where most of the time is spent in executing the
program.

Statistical profiling provides a more generalized form of profiling that is
well suited to JTAG emulator debug targets. Emulator targets do not sup-
port linear profiling.

JTAG sampling is completely non-intrusive, so the process does not incur
additional run-time overhead.
3-8 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Traces

A trace captures a history of processor activity during program execution.
You run a trace (also called an execution trace or a program trace) to ana-
lyze the run-time behavior of your DSP program, enable I/O capabilities,
and simulate source to target data streaming.

A trace includes the following information.

• Buffer depth (instruction lines)

• Cycle count

• Instructions executed such as memory fetches, program memory
writes, and data/memory transfers

Viewing the disassembled instructions that were performed can also help
you to analyze code behavior.
VisualDSP++ 3.5 User’s Guide 3-9
for 16-Bit Processors

Code Analysis Tools
DSP Memory Plots

You can display DSP memory as a plot in a plot window, as shown in
Figure 3-2.

You can visualize the DSP memory data and process it by using a data
processing algorithm. You can choose from multiple plot types and can
specify the plot’s data and presentation.

You can modify a plot’s configuration and immediately view the revised
plot. From a plot window, you can zoom in on a portion of a plot or view
the values of a data point. You can print a plot, save the plot image to a
file, or save the plot’s data to a file.

Figure 3-2. Example Plot Window Displaying DSP Memory
3-10 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Program Execution Operations

When you start up VisualDSP++, by default, it attaches to the previous ses-
sion. You can override this behavior, and instead, force VisualDSP++ to start a
new session.

When you load and run your program, use VisualDSP++ features to step,
break, and halt the program.

Selecting a New Debug Session at Startup

If you had a problem, such as a corrupted workspace, in your last debug ses-
sion, use the following procedure to force a fresh session at startup.

Note: VisualDSP++ must be closed before performing the following
procedure.

1. Hold down the keyboard’s Ctrl key.

Do not release the Ctrl key until the Session List dialog box appears,
as described in the next step.

2. Invoke VisualDSP++ as you normally do.

Typical methods include the using the Windows Start button
sequences, clicking desktop icons, or using Windows Explorer.

The Session List dialog box appears.

3. Specify and activate a debug session.

If you launch VisualDSP++ in stand-alone mode, ensure that the
session is configured correctly before you load your program.
VisualDSP++ 3.5 User’s Guide 3-11
for 16-Bit Processors

Program Execution Operations
Loading the DSP Executable Program

Once you specify the debug session, you can begin the session by loading
the DSP executable program.

After a successful build of the target executable, VisualDSP++, if config-
ured, loads the executable automatically to the current session when the
session processor type matches the project’s processor. When the current
session processor does not match the project’s processor type, you are
prompted to choose another session.

If automatic load is not configured, VisualDSP++ does not try to load the
executable automatically after a successful build.

 The target must be an executable (.DXE) file.

This debugging feature saves time, as you do not have to load the execut-
able target manually, and you can start to debug right after a successful
build of the project.

Using Program Execution Commands

You can run program execution commands from the Debug menu or by
clicking toolbar buttons.

Executable files run until an event such as a breakpoint, watchpoint, or
user-issued Halt command stops execution. When program execution
halts, all windows are updated to current addresses and values.

Use the commands described in Table 3-2 on page 3-13 to control pro-
gram execution.
3-12 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Restarting the Program

You can set the Program Counter to the first address of the interrupt vec-
tor table.

Performing a Restart During Simulation

In the simulator, restart works like a reset; however, the target’s memory
does not change. All registers are reset to their initial values.

Memory is not reset. Thus, C and assembly global variables are not
reset to their original values. Your program may behave differently
after a restart. To re-initialize these values, reload your .DXE file.

Table 3-2. Commands Used to Control Program Execution

Command Description

Run Runs an executable. The program runs until an event stops it, such as a
breakpoint or user intervention. When program execution halts, all
windows update to current addresses and values.

Halt Stops program execution. All windows are updated after the processor
halts. Register values that have changed are highlighted, and the status
bar displays the address where the program halted.

Run to Cursor Runs the program to the line where you left your cursor. You can place
the cursor in editor windows and Disassembly windows.

Step Over (C/C++ code only in an editor window) Single steps forward through
program instructions. If the source line calls a function, the function
executes completely, without stepping through the function instruc-
tions.

Step Into (editor window or Disassembly window) Single steps through the pro-
gram one C/C++ or assembly instruction at a time. Encountered func-
tions are entered.

Step Out Of (C/C++ code only in an editor window) Performs multiple steps until
the current function returns to its caller, and stops at the instruction
immediately following the call to the function.
VisualDSP++ 3.5 User’s Guide 3-13
for 16-Bit Processors

Program Execution Operations
Performing a Restart during Emulation

In the emulator, restart works exactly like a reset. Only registers with
default reset values are affected. All other registers remain unchanged.

Using Breakpoints

An enabled breakpoint halts program execution at a specific instruction or
address. You can enable and disable breakpoints as well as add and delete
breakpoints.

A disabled breakpoint is set up, but not turned on. A disabled breakpoint
does not stop program execution. It is dormant and may be used later.

A break occurs when the conditions that you specify are met.

 You can quickly place an unconditional breakpoint at an address in a Dis-
assembly window or editor window by using one of these options:

• Select the address and click the Toggle Breakpoint button .

• Double-click on the line in the Disassembly or editor window.

Symbols in the left margin of a Disassembly window or editor window
indicate breakpoint status, as shown in Table 3-3.

Table 3-3. Breakpoint Status Symbols

Symbol Indicates

An enabled (set) breakpoint

A disabled breakpoint (recognized, but cleared)
3-14 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Using Unconditional and Conditional Breakpoints

You can configure a breakpoint to occur when the Program Counter
reaches a specific address. This type of breakpoint is an unconditional
breakpoint, because it occurs when it is reached.

You can configure a breakpoint to occur when various conditions (crite-
ria) are met. This type is called a conditional breakpoint. The conditions
may include:

• A user-defined expression that must evaluate to TRUE

• A skip (count) that specifies the number of times to skip over the
breakpoint before finally halting

If both an expression and skip are set, execution stops when the break-
point is reached “n” times when the expression is TRUE, where n
represents the skip count. When the expression is empty, execution stops
when the breakpoint is reached “n” times.

Using Watchpoints

Similar to breakpoints, watchpoints stop program execution when
user-specified conditions are satisfied. Watchpoints, however, allow you to
set a condition such as a memory read or stack pop, to halt events.

 You can use watchpoints only during simulation.

Watchpoints, unlike breakpoints, are not attached to a specific address. A
watchpoint halts anywhere in your program once the watchpoint condi-
tions are satisfied.
VisualDSP++ 3.5 User’s Guide 3-15
for 16-Bit Processors

Simulation Tools
Simulation Tools

Before you even have the processor, you can use interrupts and data
streams within VisualDSP++ to simulate the processor’s behavior.

Interrupts

Use interrupts to simulate external interrupts in your program. When you
use interrupts with watchpoints and streams, your program simulates real
world operation of your DSP system.

Input/Output Simulation (Data Streams)

In many products, processors exist as part of a larger system where they
can act as a host or a slave. They can drive other devices or take part in
processing a subset of data. Because of their extensive I/O capabilities,
Analog Devices processors excel in these roles.

You can use data streams to transmit data between:

• A device and a file

• A device and a device

• A device in one processor and a device in another processor in a multi-
processor system

Using background telemetry channel (BTC) technology, VisualDSP++
permits the streaming of data from a target DSP without halting the DSP.
This capability applies to both simulation and emulation targets.

The plot window receives and displays a stream of data from DSP mem-
ory. If the target supports background telemetry, the plot window reads
memory and updates the display without halting the target. Otherwise,
the plot window halts the processor, reads memory, updates the plot, and
resumes the processor.
3-16 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
The plot window allows data to be streamed to (or from) a binary data
file. You can convert the data file into ASCII format to input it to other
applications such as MATLAB and Excel.

The DSP application may collect and transfer data in four different ways:

• Sampling a test point over time

• Transferring a data array over BTC at a specified point in the DSP
application

• Using GetMem() directly

• Periodically halting the target to read memory

Image Viewer

The VisualDSP++ Image Viewer enables you to perform these operations:

• View an image. You can display BMP, JPEG, PPM, or MPEG data
from DSP memory or from a file on your PC.

• Correct the gamma attributes of an image. For a color image, you can
adjust the red, green, and blue pixel values. On a grayscale image, you
can adjust darkness only.

• Copy an image to the Windows clipboard

• Print an image or save it to a file

• Export an Image

You select the image source (from DSP memory or a file on your PC) and
specify image attributes. If the image is located in DSP memory, you must
specify the image’s address, size, and format.

For more information about Image Viewer, see “Image Viewer” in
Chapter 2, Environment.
VisualDSP++ 3.5 User’s Guide 3-17
for 16-Bit Processors

Plots
Plots

VisualDSP++’s data plotting capability helps you to visualize data in the
processor’s memory.

Plot Types

You specify a plot as one of the plot types described in Table 3-4.

The X, Y, and Z values are read from processor memory.

Table 3-4. Available Plot Types

Plot Type Description Requires

Line Displays points connected by a
line

Y value for each data point

X-Y Similar to a line plot, but also
uses X-axis data

X value and Y value for each
data point

Constellation Displays a symbol at each data
point

X value and Y value for each
data point

Eye diagram Typically used to show the sta-
bility of a time-based signal

Y value for each data point

Waterfall 3-D plot typically used to show
the change in frequency content
of signal over time

Z value for each data point

Spectrogram 2-D plot displays amplitude data
as a color intensity

Z value for each data point
3-18 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Line Plots

A line plot (shown in Figure 3-3) displays a range of processor memory
values connected by a line. The values read from processor memory are
assigned to the Y-axis. The corresponding X-axis values are automatically
generated.

You can plot multiple data sets on a single graph.

Figure 3-3. Line Plot Example
VisualDSP++ 3.5 User’s Guide 3-19
for 16-Bit Processors

Plots
X-Y Plots

An X-Y plot (shown in Figure 3-4) requires an X value and a Y value for
each data point. Unlike a line plot, an X-Y plot requires the X-axis data.

The X data and Y data are specified separately in a user-defined memory
location. The number of X and Y points must be equal.

Figure 3-4. X-Y Plot Example
3-20 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Constellation Plots

A constellation plot (shown in Figure 3-5) displays a symbol at each (X,Y)
data point.

The X and Y data are specified separately in a user-defined processor
memory location. The number of X and Y points must be equal.

Figure 3-5. Constellation Plot Example
VisualDSP++ 3.5 User’s Guide 3-21
for 16-Bit Processors

Plots
Eye Diagrams

An eye diagram plot (shown in Figure 3-6) is typically used to show the
stability of a time-based signal. The more defined the eye shape, the more
stable the signal.

This plot works like a storage oscilloscope by displaying an overlapped his-
tory of a time signal. The eye diagram plot processes the input data and
optionally looks for a threshold crossing point (default is 0.0). A trace is
plotted when the threshold crossing is reached. Plotting continues for the
remainder of the trace data.

When a breakpoint occurs (or a step is performed), the plot data is
updated and a new trace is plotted. The eye diagram uses a data shifting
technique that stores the desired number of traces in a plot buffer (default
is ten traces). When the number of traces is exceeded, the first trace shifts
out of the buffer and the new trace shifts into the last buffer location. This
technique is referred to as first in, first out (FIFO).

You can modify options for threshold value, rising trigger, falling trigger,
and the number of overlapping traces.

Figure 3-6. Eye Diagram Plot Example
3-22 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Waterfall Plots

A waterfall plot (shown in Figure 3-7) is typically used to show the change
in frequency content of signal over time.

The plot comprises multiple line plot traces in a 3-D view. Each line plot
trace represents a slice of the waterfall plot.

The easiest way to create a waterfall plot is to define a 2-D array in C code
(a grid). The first array dimension is the number of rows in the grid, and
the second dimension is the number of columns in the grid. The number
of columns is equal to the number of data points in each line trace.

Figure 3-7. Waterfall Plot Example
VisualDSP++ 3.5 User’s Guide 3-23
for 16-Bit Processors

Plots
A time-based signal is sampled at a predefined sampling rate and stored as
a slice in the grid (row 0, columns 0–N).

Figure 3-8 shows a grid of sampled data.

The next time signal is sampled and stored (in row 1, columns 0–N). This
process continues until all the rows are filled.

By default, an FFT performed on each slice results in a frequency output
display. You can use a color map on the 3-D Axis page of Color Settings
dialog box to enhance the display. Each color corresponds to a range of
amplitude values.

The plot output displays a legend showing each color and associated range
of values.

You can rotate the waterfall plot to any desired azimuth and elevation by
using the keyboard’s arrow keys.

Figure 3-8. Grid of Sampled Data
3-24 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Spectrogram Plots

A spectrogram plot (shown in Figure 3-9) displays the same data as a 3-D
waterfall plot, except in a 2-D format.

Each (X,Y) location displays as a color representing the amplitude of the
data. By default, an FFT performed on each slice results in a frequency
output display. A legend displays the colors and associated range of values.

Figure 3-9. Spectrogram Plot Example
VisualDSP++ 3.5 User’s Guide 3-25
for 16-Bit Processors

Flash Programmer
Flash Programmer

The VisualDSP++ Flash Programmer provides a convenient, generic interface
to numerous processors and flash memory devices. This utility simplifies the
process of changing data values on a flash device and modifying its memory.
You no longer have to remove the flash memory from the board, use a separate
Flash Programmer, and then replace the flash.

Flash Devices

Flash memory parts are non-volatile memories that can be read, programmed,
and erased. In most applications, flash devices store:

• Boot code that the processor loads at startup

• Data that must persist over time and through the loss of power

Flash device programming is typically performed with a device programmer at
the factory or by the application developer. When a flash device is wired
appropriately to the processor, you can use the processor to program the flash
device.

Flash Programmer Functions

Use the Flash Programmer to:

• Load a flash algorithm (driver) program onto the processor at any time

• Obtain the flash manufacturer and device codes

• Reset the flash

• Program the flash from an Intel Hex data file

• Fill portions of flash memory with a value and quickly “punch-in” data

• Erase the entire flash
3-26 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
• Erase a single sector

• Send custom commands to the driver for batch processes or
user-defined behavior

The utility stores the most recently used information in the registry for
retrieval when the utility is next started up, and a status indicator shows the
utility’s current state.

Flash Driver

To use the Flash Programmer utility, you must first load a flash driver onto the
processor. The driver is a DSP application that interfaces with the Flash Pro-
grammer and performs all the interaction with the flash device. Analog
Devices supplies sample drivers for use on certain EZ-KIT Lite™ evaluation
systems.
VisualDSP++ 3.5 User’s Guide 3-27
for 16-Bit Processors

Flash Programmer
Flash Programmer Window

Figure 3-10 shows the Flash Programmer window.

Figure 3-10. Flash Programmer Window
3-28 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Debugging
Table 3-5 describes the fields and buttons in the Flash Programmer window.

Table 3-5. Flash Programmer Window Controls

Control Description

Control/Status

Driver file Specifies the path and name of the driver file. Type the path and file name or
browse to select the driver.

Load Driver Loads the specified driver onto the processor

Man. code Specifies the flash memory’s manufacturer code. You must first load the driver to
view this data.

Device code Displays the flash memory’s device code. You must first load the driver to view
this data.

Part description Displays the flash memory’s part description. You must first load the driver to
view this data.

Status Displays the utility’s current status

Red – The utility is not ready. You must load a driver.

Green – The utility is ready to process a command.

Yellow – The utility is busy processing a command.

Load File

Data file Specifies the data file. Type the path and file name or browse to select the file.

Note: Only valid Intel Hex files may be used. The VisualDSP++ loader produces
files in this format.

Verify Flash Compares the flash’s current contents against an Intel Hex data file. This pro-
cedure assumes that a driver has been loaded

Load File Loads the specified data file onto the flash memory device

Global Options

Erase all Erases all of the device’s memory

Erase based on
map

Erases based on a sector map
VisualDSP++ 3.5 User’s Guide 3-29
for 16-Bit Processors

Flash Programmer
Global Options (Cont’d)

Erase affected Erases only the portion of flash affected by the write

No erase Does not erase flash

Verifying while
writing flash

Verifies each performed write by ensuring that what was written matches
what is read back from flash

Advanced Options

Enable Enables advanced features

Selecting this control enables the fields and buttons below it.

Clearing this control disables (grays out) the fields and buttons.

Offset Specifies the first address in which to place data

Value Specifies the data value to be written

Count Specifies the number of locations to be written

Stride Specifies the number of locations to skip between each write. Typically, this is
0x1. Entering 0x2 specifies every other location.

Fill Flash Loads the specified data value onto the flash memory device

Erase Sector Erases the specified sector from the flash device

Edit Map Opens the Sector Map dialog box, which enables you to select the sector (or
sectors) you want to erase. This function assumes that a driver has been loaded.
Note: Erasure is constricted by the selected Global Erase Option.

Erase All Erases the flash device’s entire memory

Reset Flash Resets the internal state of the flash device and places it into read mode without
modifying its contents

Command Specifies the custom command to be run

Send Sends the specified custom command to the driver. The value entered in
Command is interpreted as a hexadecimal value; for example, 10 is interpreted
as 10 hexadecimal or 16 decimal.

Table 3-5. Flash Programmer Window Controls (Cont’d)

Control Description
3-30 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

A REFERENCE INFORMATION

This appendix contains a collection of useful information to help you

understand VisualDSP++ and speed up DSP program development. The
information is organized as follows.

• “Glossary” on page A-2

• “File Types” on page A-24

• “Keyboard Shortcuts” on page A-27

• “IDDE Command-Line Parameters” on page A-33

• “Extensive Scripting” on page A-34

• “Toolbar Buttons” on page A-38

• “Text Operations” on page A-43

• “Online Help Features and Operations” on page A-48
VisualDSP++ 3.5 User’s Guide A-1
for 16-Bit Processors

Glossary
Glossary

The following terms are important toward understanding VisualDSP++.

Application Programming Interface (API) functions

A set of functions available to an applications programmer. These
functions, which are part of an application, can be accessed by
other applications. For VDK, a library of C/C++ functions and
assembly macros that define VDK services. These services are
essential for kernel-based application programs. The services
include interrupt handling, thread management, and semaphore
management.

archiver

The VisualDSP++ archiver, elfar.exe, combines object files
(.DOJ) into library files (.DLB), which serve as a reusable resource
for project development. The linker searches library files for rou-
tines (library members) that are referred toby other objects, and
links them in your executable program.

breakpoint

User-defined halt in an executable program. Toggle breakpoints
(turn them on or off) by double-clicking on a location in a Disas-
sembly window or editor window.

break condition

Hardware condition under which the target breaks and returns
control of the target back to the user. For example, a break condi-
tion could be set up to occur when address 0x8000 is read from or
written to.
A-2 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
build

Performing a build (or project build) refers to the operations (pre-
processing, assembling, and linking) that VisualDSP++ performs
on projects and files. During a build, VisualDSP++ processes the
files in your project that have been modified (or depend on files
that have been modified) since the previous build. A build differs
from a rebuild all. During a rebuild all, VisualDSP++ processes all
the files in the project, regardless whether they have been modified.

build type

Replaced by “configuration”

channel

A transmission path between two communicating locations, usually
the smallest subdivision of a transmission system. For VDK, a
FIFO queue into which messages sent to a thread are placed. Each
thread has 15 channels with messages being received in priority
order from the lowest numbered channel to the highest.

COFF

Common Object File Format. VisualDSP++ does not support COFF
formatted files.

configuration (or project configuration)

You develop a project in stages (configurations). By default, a
project includes two configurations: Debug and Release. A
configuration refers to the collection of options (tool chain and
individual options for files) specified for the configuration. You
can add a configuration to your project at any time. You can delete
a customized configuration that you created, but you cannot delete
the Debug or Release configurations.
VisualDSP++ 3.5 User’s Guide A-3
for 16-Bit Processors

Glossary
context switch

A process of saving/restoring the processor’s state. The scheduler
performs the context switch in response to the system change.

A hardware interrupt can occur and change the state of the system
at any time. Once the processor’s state has changed, the currently
running thread may be swapped with a higher-priority thread.
When the kernel switches threads, the entire processor’s state is
saved and the processor’s state for the thread being switched in is
restored. This process is known as a context switch.

critical region

A sequence of instructions whose execution cannot be interrupted
or swapped out. Suspending all interrupt service routines (ISRs)
before calling the critical region ensures that the execution of a crit-
ical region is not interrupted. Once the critical region routine has
been completed, ISRs are enabled.

CROSSCORE

Analog Devices DSP development tools, which provide easier and
more robust methods for engineers to develop and optimize systems by
shortening product development cycles for faster time-to-market.
CROSSCORE components include the VisualDSP++ software devel-
opment environment and EZ-KIT Lite evaluation systems and
Emulators for rapid on-chip debugging.

current directory

Directory in which the .DPJ file is saved. The build tools use the
current directory for all relative file path searches. See also “default
directories.”
A-4 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
data set

A series of data values in DSP memory used as input to a plot. You
can create data sets and configure the data for each data set. You
specify the memory location, the number of values, and other
options that identify the data. 3-D plots require additional specifi-
cations for row and column counts.

Debug configuration

For a debug configuration, you can accept the default options, or
you can specify the options you want and save them. The configu-
ration refers to the specified options for all the tools in the tool
chain. See also “configuration.”

debug session

The combination of a target and a platform. For example, a session
can be a JTAG emulator target connected to a platform consisting
of five ADSP-BF535s. Another example of a debug session is an
ADSP-BF535 EZ-KIT Lite target connected to an ADSP-BF535
EZ-KIT Lite board.

The DSP projects you develop are run as debug sessions. The two
types of sessions are hardware and software. The processor, target,
and platform define the session. When you set up a session, you set
the focus on a series of more specific elements.

debug target

The communication channel between VisualDSP++ and a DSP (or
group of DSPs). Targets include simulators, emulators, and
EZ-KIT Lite evaluation systems. Several targets may be installed on
your system. Simulator targets, such as the ADSP-TS101 Cycle
Accurate SHARC Simulator, differ from emulator targets in that
the processor exists only in software.
VisualDSP++ 3.5 User’s Guide A-5
for 16-Bit Processors

Glossary
The Summit-ICE emulator communicates with one or more physi-
cal devices over the host PC’s PCI bus. The Apex-ICE™ emulator
communicates with a device through the PC’s USB port.

default intermediate and output file directories

These file directories (folders) are \Debug (for the debug configura-
tion) and \Release (for the release configuration). By default,
VisualDSP++ creates these directories as children of the directory
in which the .DPJ file is saved, which is called the project’s current
directory. See also “current directory.”

dependencies

VisualDSP++ uses dependency information to determine which
files, if any, are updated during a build. If an included header file is
modified, VisualDSP++ builds the source files that include
(#include) the header file, regardless of whether the source files
have been modified since the previous build.

dependency files

Usually user files or system header (*.H) files, these files are refer-
enced from a source file by a preprocessor #include command.

device

A single processor. With regard to JTAG emulation and the JTAG
EZ-ICE Configurator, a device refers to any physical chip in the
JTAG chain.

device driver

A user-written model that abstracts the hardware implementation
from the application code. User code accesses device drivers
through a set of device driver API functions.
A-6 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
DWARF-2

Format for debugging source-level assembly code via improved line
and symbol information

editor window

A document window that displays a source file for editing. When
an editor window is active, you can move about within the window
and perform typical text editing activities such as searching, replac-
ing, copying, cutting, pasting, and so on.

ELF

Executable Linking Format

emulator

Hardware used to connect a PC to a DSP target board to allow
application software to be downloaded and debugged from within
the VisualDSP++ environment. Emulator software performs the
communications that enable you to see how your DSP code affects
processor performance.

event

A signal (similar to a semaphore or message) used to synchronize
multiple threads in a system. An event is a logical switch, having
two binary states (available/true and unavailable/false) that control
thread execution. When an event becomes available, all pending
(waiting) threads in the wait list are set to be ready-to-run. When
an event is available and a thread pends on it, the thread continues
running and the event remains available.

To facilitate error handling, threads can specify a timeout period
when pending on an event.
VisualDSP++ 3.5 User’s Guide A-7
for 16-Bit Processors

Glossary
An event is a code object of global scope, so any thread can pend
on any event. Event properties include the EventBit mask, Event-
Bit value, and combination type. Events are statically allocated and
enumerated at run-time. An event cannot be destroyed, but its
properties can be changed (see Blueelem text).

event bit

A flag set or cleared to post the event. The event is posted (avail-
able) when the current values of the system Event Bits match the
event bit’s mask and event bits’ values defined by the event's com-
bination type.

A system has one and only one Event Bits word, the size of a data
word minus one: fifteen bits for ADSP-219x DSPs; thirty-one bits
for ADSP-21xxx, ADSP-BF53x, and ADSP-TSxxx processors.

executable file

A file or program that has been written and built in VisualDSP++

EZ-KIT Lite

A development board, software, and cable for evaluating a particular
processor. The kit includes fundamental debugging software to facili-
tate architecture evaluations via a PC-hosted tool set. Use the kit to
evaluate Analog Devices DSPs, learn about DSP applications, simulate
and debug applications, and prototype applications.

focus

Refers to the active processor in a multiprocessor (MP) session that
you are debugging
A-8 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
ICE

In-Circuit Emulator. Analog Devices offers emulators that provide
non-intrusive target-based debugging of DSP systems. An emulator
can single-step or execute a DSP at full speed to enable you to view or
alter DSP register and memory contents.

interrupt

An external or internal condition detected by the hardware inter-
rupt controller. In response to an interrupt, the kernel processes a
subroutine call to a predefined Interrupt Service Routine (ISR).

Interrupts have the following specifications.

Latency – interrupt disable time. The period between the interrupt
occurrence and the first ISR’s executed instruction.

Response – interrupt response time. The period between the inter-
rupt occurrence and a context switch.

Recovery – interrupt recovery time. The period needed to restore
the processor’s context and to start the return-from-interrupt
(RTI) routine.

Interrupt Service Routine (ISR)

A routine executed as a response to a software interrupt or hard-
ware interrupt. VDK supports nested interrupts, which means that
the kernel recognizes other interrupts, services interrupts, or both
with higher priorities while executing the current ISR. VDK ISRs
are written in assembly language. VDK reserves the timer and the
lowest priority (reschedule) interrupt.
VisualDSP++ 3.5 User’s Guide A-9
for 16-Bit Processors

Glossary
JTAG

Joint Test Action Group. This committee is responsible for imple-
menting the IEEE boundary scan specification, enabling in-circuit
emulation of ICs.

JTAG ICE configurator

See "VisualDSP++ configurator."

kernel

The main module of a real-time operating system. The kernel loads
first and permanently resides in the main memory and manages
other modules of the real-time operation system. Typical services
include context switching and communication management
between OS modules.

keyboard shortcuts

The keyboard provides a quick means of running the commands
that are used most often, such as simultaneously typing the key-
board’s Ctrl and G keys (indicated with the symbols Ctrl+G) to go
to a line in a file.

librarian

A utility that groups object files into library files. When you link
your program, you can specify a library file and the linker automat-
ically links any file in the library that contains a label used in your
program. Source code is provided so you can adapt the routines to
your needs.
A-10 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
library files

The VisualDSP++ archiver, elfar.ex, combines object files (.DOJ)
into library files (.DLB), which serve as a reusable resource for
project development. The linker searches library files for routines
(library members) that are referred to from other objects, and links
them into your executable program.

linear profiling

A debugging feature that samples the target’s PC register at every
instruction cycle. Linear profiling gives an accurate picture of
where instructions were executed, since every PC value is collected.
The trade-off, however, is that linear profiling is much slower than
statistical profiling. A display of the resulting samples appears in
the Linear Profiling Results window, which graphically indicates
where the application is spending its time. Simulator targets sup-
port linear profiling. See also “Statistical profiling.”

linker

The linker creates executable files, shared memory files, and overlay
files from separately assembled object and library files. It assigns
memory locations to code and data in accordance with a
user-defined .LDF file, which describes the memory configuration
of the target system.

Linker Description Files (LDFs)

LDFs describe the target system and maps your program code within
the system memory and processors. The .LDF file creates an executable
file using the target system memory map and defined segments in your
source files.
VisualDSP++ 3.5 User’s Guide A-11
for 16-Bit Processors

Glossary
loader

A utility that transforms an executable file into a boot file. The
loader creates a small kernel, which is booted into internal memory
at chip reset to enable a program of arbitrary size to be loaded into
the processor’s internal and external memory.

makefile

VisualDSP++ can export a makefile (make rule file), based on your
project options. Use a makefile (.MAK) to automate builds outside
of VisualDSP++. The output make rule is compatible with the gnu-
make utility (GNU Make V3.77 or higher) or other make utilities.

memory pool

An area of memory containing a specified number of uniformly
sized blocks of memory available for allocation and subsequent use
in an application. The number and size of the blocks in a particular
memory pool are defined at pool creation.

message

For VDK, a signal (similar to an event or semaphore) used to syn-
chronize two threads in a system or to communicate information
between threads. A message is sent to a specified channel on the
recipient thread (and can optionally pass a reference to a payload to
facilitate the transfer of data between threads). Posting a message
takes a deterministic amount of time and may incur a context
switch.

mixed mode

One of the two editor window display formats (the other being
source mode). Mixed mode displays assembled code after the line
of the corresponding C code.
A-12 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
multiprocessor system

A system built with multiple DSPs. Often, performance-based
products require two or more DSPs. A system built with a single
DSP is called a single-processor system. Debugging a multiprocessor
system requires that you synchronously run, step, halt, and observe
program execution operations in all the processors at once. The
SHARC simulator does not support this capability.

non-bootable PROM image file

Splitter output, consisting of PROM files that cannot be used to
boot-load a system

outdated file

A file that has been edited since the last time it was built

payload

For VDK, an arbitrary amount of data associated with a message. A
reference to the payload can be passed between threads as part of a
message to enable the recipient thread to access the data buffer that
contains the payload.

pinning a window

A technique that statically associates a window to a specific
processor.

pipelining

A feature that enables you to analyze and tune your code for optimal
performance. For ADSP-219x, Blackfin, and TigerSHARC processors,
VisualDSP++ provides a simulation-only debugging window (Pipe-
line Viewer) to help you visualize the pipeline by displaying pipeline
stalls and aborts. For SHARC processors, the Disassembly window
displays symbols (F, D, or E) to indicate an instruction’s pipeline stage.
VisualDSP++ 3.5 User’s Guide A-13
for 16-Bit Processors

Glossary
platform

The device with which a target communicates. For simulation, a
platform is typically one or more processors of the same type. For
emulation, you specify the platform with the VisualDSP++ config-
urator, and the platform can be any combination of devices.

The platform represents the hardware upon which one or more
devices reside. You typically define a platform for a particular tar-
get. For example, if three emulators are installed on your system, a
platform selection might be emulator two.

Several platforms may exist for a given debug target. For a simula-
tor, the platform defaults to the identical DSP simulator. When the
debug target is a JTAG emulator, the platforms are the individual
JTAG chains. When the debug target is an EZ-KIT Lite board, the
platform is the board in the system on which you wish to focus.
Note that JTAG emulation does not apply to ADSP-218x DSPs.

preemptive kernel

A priority-based kernel in which the currently running thread of
the highest priority is preempted, or suspended, to give system
resources to the new highest-priority thread

processor

An individual chip contained on a specific platform within a target.
When you create the executable file, the processor is specified in
the Linker Description File (.LDF) and other source files.
A-14 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
profiling

A technique used during simulation to examine program execution
within selected ranges of code. Profiling helps you determine: percent-
age of time spent executing instructions, number of clock cycles spent
executing instructions, number of instructions executed, and the num-
ber of times memory is read or written.

The profiler is non-intrusive. It does not report on execution
within a called function (daughter function). You use profiling to
monitor program memory. By watching one or more profile
ranges, you can find areas of code that may be optimized for better
performance. A profile session must include one memory range at a
minimum. For each range, you must specify a start and end
address. You can use symbols or hexadecimal numbers to represent
addresses.

project

This term refers to the collection of source files and tool configura-
tions used to create a DSP program. Through a project, you can
add source files, define dependencies, and specify build options
related to producing your output executable program. A project file
(.DPJ) stores your program’s build information.

VisualDSP++ enables you to manage projects from start to finish in
an integrated user interface. Within the context of a DSP project,
you define project and tool configurations, specify project-wide
and individual file options for debug or release modes of project
builds, and create source files. VisualDSP++ facilitates easy move-
ment among editing, building, and debugging activities.

project configuration

This configuration includes all of the settings (options) for the
tools used to build a project.
VisualDSP++ 3.5 User’s Guide A-15
for 16-Bit Processors

Glossary
Project file tree display

See “Project window.”

Project window

This window displays your project’s files in a tree view, which can
include folders to organize your project files. Right-clicking on an
icon (the project itself, a folder, or a file) opens a menu, providing
actions you can perform on the selected item. Double-clicking on
the project icon or a folder icon opens or closes the tree list. Dou-
ble-clicking a file icon opens the file in an editor window.

real-time operating system (RTOS)

A software executive that handles DSP algorithms, peripherals, and
control logic. The RTOS comprises these components: kernel,
communication manager, support library, and device drivers. An
RTOS enables structured, scalable, and expandable DSP applica-
tion development while hiding OS complexity.

rebuild all

See “build.”

registers

For information on available registers, see the corresponding pro-
cessor documentation or view the associated online Help.

Release configuration

You can accept the default set of options, or you can specify the
options you want and save them. The configuration refers to the
specified options for all the tools in the tool chain. See also
“configuration.”
A-16 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
reset

This command resets the processor to a known state and clears
processor memory.

restart

This command sets your program to the first address of the inter-
rupt vector table. Unlike a reset, you do not need to reload
memory.

right-click

This action opens a right-click menu (sometimes called a context
menu, pop-up menu, or shortcut menu). The commands that
appear depend on the context (what you are doing). Right-click
menus provide access to many commonly used commands.

round-robin scheduling

For VDK, a scheduling scheme whereby all threads at a given pri-
ority are given processor time automatically in fixed duration
intervals. Round-robinpriorities are specified at build time.

scheduler

For VDK, a kernel component responsible for scheduling system
threads and interrupt service routines. VDK is a priority-based
kernel in which the highest-priority thread is executed first.

scripting

You can interact with the IDDE by using a single command or a script
file. Scripting languages include VBScript, JavaScript, and Tcl. Output
displays in the Console view of the Output window. The output is also
logged to the VisualDSP_log.txt file.
VisualDSP++ 3.5 User’s Guide A-17
for 16-Bit Processors

Glossary
semaphore

For VDK, a signal (similar to an event or message) used to synchro-
nize multiple threads in a system. A semaphore is a data object
whose value is zero or a positive integer (limited by the maximum
set up at creation time). The two states (available/greater than zero
and unavailable/zero) control thread execution. Unlike an event,
whose state is automatically calculated, a semaphore is directly
manipulated. Posting a semaphore takes a deterministic amount of
time and may incur a context switch.

serial port data

You can automatically transfer serial port (SPORT) data to and
from on-chip memory by using DMA block transfers. Each serial
port offers a time division multiplexed (TDM) multichannel mode.

session

See “debug session.”

session name

Although the choice of target, platform, and processor define the
session, you may want to further identify the session. You can
modify the default session name when you first create the debug
session to prevent confusion later. A session name can be any string
and can include space characters. There is no limit to the number
of characters in a session name, but the Session List dialog box can
display about 32 characters.

shortcuts

See “keyboard shortcuts.”
A-18 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
signal

For VDK, a method of communicating between multiple threads.
VDK supports four types of signals: semaphores, events, messages,
and device flags.

simulator

The simulator is software that mimics the behavior of a DSP chip.
Simulators are often used to test and debug DSP code before the
DSP chip is manufactured.

The simulator runs an executable program in software similar to
the way a processor does in hardware. The simulator also simulates
the memory and I/O devices specified in the .LDF file. Visu-
alDSP++ lets you interactively observe and alter the data in the
processor and in memory. The simulator reads executable files. A
simulator’s response time is slower than that of an emulator.

source files

The C/C++ language and assembly language files that make up
your project. Other source files that a project uses, such as the .LDF
file, contain command input for the linker, and dependency files
(data files and header files). View source files in editor windows.

source mode

One of the two editor window display formats (the other being
mixed mode). Source mode displays C code only.

splitter

A PROM splitter utility that transforms an executable file into a
non-boot-loadable image. This file is loaded onto external DSP
memory.
VisualDSP++ 3.5 User’s Guide A-19
for 16-Bit Processors

Glossary
statistical profiling

A debugging feature that provides a more generalized form of pro-
filing that is well suited to JTAG emulator debug targets. With
statistical profiling, VisualDSP++ randomly samples the target pro-
cessor’s program counter (PC) and presents a graphical display of
the resulting samples in the Statistical Profiling Results window.
This window graphically indicates where the application is spend-
ing time.

JTAG sampling is completely non-intrusive so the process does not
incur additional run-time overhead. See also “linear profiling.”
JTAG emulation does not apply to ADSP-218x DSPs.

stepping

A technique for moving through source or assembly code to
observe instruction execution

streams

A debug tool used during simulation to drive other devices or take part
in processing a subset of data. Use streams to simulate data input and
output.

symbols

Labels for sections, subroutines, variables, data buffers, constants,
or port names. For more information, refer to the related build tool
documentation.

system configurator

For VDK, the system configuration control is accessible from the
Kernel page of the Project window. The Kernel page provides a
graphical representation of the data contained in the vdk.h and
vdk.cpp

files.
A-20 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
target

See “Debug target.”

threads

For VDK, a kernel system component that performs a predeter-
mined function and has its own share of system resources. VDK
supports multithreading, a run-time environment with concur-
rently executed independent threads.

Threads are dynamic objects that can be created and destroyed at
run-time. Thread objects can be implemented in C, C++, or assem-
bly language. A thread’s properties include an ID, priority, and
current state (wait, ready, run, or interrupted). Each thread main-
tains its own C/C++ stack.

ticks

The system level timing mechanism. Every system tick is a timer
interrupt.

tool chain

The collection of tools (utilities) used to build a project
configuration

trace

Provides a history of program execution. A trace is sometimes
called an execution trace or a program trace. Trace results show
how the program arrived at a certain point and show program
reads, writes, and memory fetches. SHARC processors do not sup-
port traces.
VisualDSP++ 3.5 User’s Guide A-21
for 16-Bit Processors

Glossary
unscheduled regions

For VDK, a sequence of instructions whose execution can be inter-
rupted, but cannot be swapped out. The kernel acknowledges and
services interrupts when an unscheduled region routine is running.

VDK

See “VisualDSP++ Kernel (VDK).”

VisualDSP++

An Integrated Development and Debugging Environment (IDDE)
for Analog Devices DSP development tools

VisualDSP++ Configurator

Previously called JTAG ICE Configurator, use this utility to describe
the hardware to VisualDSP++ when you connect to a JTAG emulator
session. VisualDSP++ requires this description to set up the debug
session.

VisualDSP++ Kernel (VDK)

The RTOS kernel from Analog Devices, VDK a software executive
between DSP algorithms, peripherals, and control logic. The kernel is
integrated with the Integrated Development and Debugging Envi-
ronment (IDDE), assembler, compiler, and linker programs into
the DSP development tool chain.

VDK is supported on the ADSP-219x, SHARC, TigerSHARC,
and Blackfin processors. Refer to the VisualDSP++ Kernel (VDK)
User’s Guide for details.
A-22 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
watchpoints

For simulation only. Similar to breakpoints, watchpoints stop pro-
gram execution. Watchpoints, however, allow you to set up
conditions, such as a memory read or stack pop. Unlike break-
points, watchpoints are not attached to a specific address. The
program halts when a watchpoint’s conditions are met. SHARC
DSPs do not support watchpoints.

workspace

You can open multiple windows and place them anywhere you
want. After you open and arrange your windows, you can save the
layout (configuration) as a workspace setting, which you can recall
(load) at a later time. Each debug session’s default workspace is
automatically saved when you close the debug session and is auto-
matically restored when you load that session.
VisualDSP++ 3.5 User’s Guide A-23
for 16-Bit Processors

File Types
File Types

Table A-1 describes the files used to build a project.

Table A-1. Files Used with VisualDSP++

Extension Name Purpose

.ASM Assembly source file Source file comprising assembly language
instructions

.C C source file Source file comprising ANSI standard C
code and Analog Devices extensions

.CPP

.CXX

.HPP

.HXX

C++ source file Preprocessed compiler files that are
inputs to the C/C++ compiler. These
files comprise ANSI standard C++ code.

.DPJ Project file Contains a description of how your
source files combine to build an execut-
able program

.LDF Linker Description File Linker command source file is a text file
that contains commands for the linker in
the linker’s scripting language

.IS

.PP

.S

Intermediate files Preprocessed assembly files generated by
the preprocessor

.DOJ Assembler Object file Binary output of the assembler

.DLB Archiver file Archiver’s binary output in ELF format

.H Header file Dependency file used by the preproces-
sor, and a source file for the assembler
and compiler

.H Loader output For ADSP-2192-12 DSPs, the C-language
header file output of the boot loader utility
(BLU)

.DAT Data file Dependency file used by the assembler
for data initialization
A-24 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
.DLO

.DXE

.OVL

.SM

Debugging files Binary output files from the linker in
ELF/DWARF format

.MAP Linker Memory Map file Optional output for the linker. This text
file contains memory and symbol infor-
mation for executable files.

.TCL

.TC8
Tools Command Language
files

Tcl scripting language files used to script
work

.OBJ Assembled Object file (Previous releases only, replaced by .DOJ)
Output of the assembler

.LST Listing file Optional file output by the assembler

.BNM

.H

.LDR

Loader format files The loader’s output in ASCII format.
Different varieties exist. Used to create
boot PROMS.

.IDM Loader output file For ADSP-218x DSPs, an IDMA
boot-loadable image

.BNM

.BNU

.BNL

PROM splitter output files For ADSP-218x DSPs, splitter binary out-
put (middle, upper, and lower)

.H_#

.S_#

.STK

PROM format files The loader’s output in ASCII format.
Different varieties exist. Used to create
boot PROMS.

.ACH Architecture file (Previous releases only, replaced by .LDF)

.TXT Linker Command-
Line file

(Previous releases only, replaced by .LDF)
ASCII text file that contains
command-line input for the linker

.EXE Debugging file (Used in previous releases, replaced by
.DXE)

.EXE Compiled simulation file Enables faster execution speed compared
to a standard .DXE program

Table A-1. Files Used with VisualDSP++ (Cont’d)

Extension Name Purpose
VisualDSP++ 3.5 User’s Guide A-25
for 16-Bit Processors

File Types
.VDK VisualDSP++ Kernel Sup-
port file

Enables VDK support

.JS

.VBS
Script files Enable you to script work for test appli-

cations. Scripting languages let you
access the Automation API to interact
with the IDDE.

.DSP Assembly source file Source file comprising assembly language
instructions

.MAK

.MK
Makefiles The output make rule file is used for

project builds

.DPG Project group An .XML file containing information
about projects

.IDL VCSE input VCSE Interface Definition Language
(VIDL) specification

.XML Manifest Used by New Component Package Wizard
when packaging a component for distribu-
tion

Table A-1. Files Used with VisualDSP++ (Cont’d)

Extension Name Purpose
A-26 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Keyboard Shortcuts

VisualDSP++ includes keyboard shortcuts (also called shortcut keys) for
the operations that you use most often. These keyboard shortcuts appear
in the tables below. You can also run commands by:

• Choosing a command from a drop-down menu on the menu bar

• Clicking a toolbar button

• Right-clicking from a particular context, such as from the Project
window

• Clicking a configured user tool

• Clicking a button within a dialog box

• Running a Tcl script (from the File menu or Output window)

• Choosing a command from the application’s control menu

Working with Files

When working with files, use the keyboard shortcuts listed in Table A-2.

Table A-2. Keyboard Shortcuts for Working with Files

Action Key(s)

Open a new file Ctrl+N

Open an existing file Ctrl+O

Save a file Ctrl+S

Print a file Ctrl+P

Go to the next window F6

Go to the previous window Shift+F6
VisualDSP++ 3.5 User’s Guide A-27
for 16-Bit Processors

Keyboard Shortcuts
Moving Within a File

To move within a file, use the keyboard shortcuts listed in Table A-3.

Table A-3. Keyboard Shortcuts for Moving Within a File

Action Key(s)

Move the cursor to the left one character Left Arrow (←)

Move the cursor to the right one character Right Arrow (→)

Move the cursor to the beginning of the file Ctrl+Home

Move the cursor to the end of the file Ctrl+End

Move the cursor to the beginning of the line Home

Move the cursor to the end of the line End

Move the cursor down one line Down Arrow (↓)

Move the cursor up one line Up Arrow (↑)

Move the cursor one page down Page Down

Move the cursor one page up Page Up

Move the cursor right one tab Shift

Move the cursor left one tab Shift+Tab

Move the cursor left one word Ctrl+Left Arrow (←)

Move the cursor right one word Ctrl+Right Arrow (→)

Move to the matching brace character within a file Ctrl+B

Go to the next bookmark F2

Go to a line Ctrl+G

Find text Ctrl+F

Find the next occurrence of text F3
A-28 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Cutting, Copying, Pasting, Moving Text

To edit text, use the keyboard shortcuts listed in Table A-4.

Selecting Text Within a File

To select text within a file, use the keyboard shortcuts listed in Table A-5.

Table A-4. Keyboard Shortcuts for Editing Text

Action Key(s)

Copy text Ctrl+C or Ctrl+Insert

Copy text Select with cursor and Ctrl+drag

Cut text Ctrl+X or Shift+Delete

Delete text Delete (selection or forward)

Delete text Backspace (selection or backward)

Move text Select with cursor and drag

Move selected text right one tab Tab

Move selected text left one tab Shift+Tab

Paste text Ctrl+V or Shift+Insert

Undo the last edit Ctrl+Z or Alt+Backspace

Redo an edit command Shift+Ctrl+Z

Replace text Ctrl+H or Ctrl+R

Table A-5. Keyboard Shortcuts for Selecting Text Within a File

Action Key(s)

Select all text in a file Ctrl+A

Select the character on the left Shift+Left Arrow (←)

Select the character on the right Shift+Right Arrow (→)
VisualDSP++ 3.5 User’s Guide A-29
for 16-Bit Processors

Keyboard Shortcuts
Working with Bookmarks in an Editor Window

When working with bookmarks in an editor window, use the keyboard
shortcuts listed in Table A-6.

Select all text to the beginning of the file Shift+Ctrl+Home

Select all text to the end of the file Shift+Ctrl+End

Select all text to the beginning of the line Shift+Home

Select all text to the end of the line Shift+End

Select all text to the line below Shift+Down Arrow (↓)

Select all text to the line above Shift+Up Arrow (↑)

Select all text to the next page Shift+PgDn

Select all text to the above page Shift+PgUp

Select the word on the left Shift+Ctrl+Left Arrow (←)

Select the word on the right Shift+Ctrl+Right Arrow (→)

Select by column Place cursor, press and hold down Alt and drag the
cursor (selects by column-character instead of by

line-character)

Table A-6. Keyboard Shortcuts for Bookmarks

Action Key(s)

Toggle a bookmark Ctrl+F2

Go to next bookmark F2

Table A-5. Keyboard Shortcuts for Selecting Text Within a File (Cont’d)

Action Key(s)
A-30 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Building Projects

To build projects, use the keyboard shortcuts listed in Table A-7.

Using Keyboard Shortcuts for Program Execution

For program execution, use the keyboard shortcuts listed in Table A-8.

Table A-7. Keyboard Shortcuts for Building Projects

Action Key(s)

Build the current project F7

Build only the current source file Ctrl+F7

Table A-8. Keyboard Shortcuts for Program Execution

Action Key(s)

Load a program Ctrl+L

Reload a program Ctrl+R

Dump to file Ctrl+D

Run F5

Multiprocessor run Ctrl+F5

Run to cursor Ctrl+F10

Halt Shift+F5

Step over F10

Step into F11

Multiprocessor step Ctrl+F11

Step out of Alt+F11

Halt a script Ctrl+H
VisualDSP++ 3.5 User’s Guide A-31
for 16-Bit Processors

Keyboard Shortcuts
Working with Breakpoints

When working with breakpoints, use the keyboard shortcuts listed in
Table A-9.

Obtaining Online Help

To obtain online Help, use the keyboard shortcuts listed in Table A-10.

Miscellaneous

For windows and workspaces, use the keyboard shortcuts listed in
Table A-11.

Table A-9. Keyboard Shortcuts for Breakpoints

Action Key(s)

Open the Breakpoints dialog box Alt+F9

Enable/disable a breakpoint Ctrl+F9

Toggle (add or remove) a breakpoint F9

Table A-10. Keyboard Shortcuts for Obtaining Online Help

Action Key(s)

View online Help for the selected object F1

Obtain context-sensitive Help for controls (buttons, fields,
menu items)

Shift+F1

Table A-11. Miscellaneous Keyboard Shortcuts

Action Key(s)

Refresh all windows F12

Select workspace 1 through 10 Alt+1 … Alt+0
A-32 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
IDDE Command-Line Parameters

You can invoke VisualDSP++ from a DOS command line.

Syntax:

idde.exe [-f script_name]

 [-s session_name]

 [-p project_name]

Note: Specify the full path to idde.exe.

Table A-12 describes the idde.exe command-line parameters.

Examples:

idde.exe -f "c:\\scripts\\myscript.tcl"

idde.exe -s "My BF535 JTAG Emulator Session"

idde.exe -p "c:\\projects\\myproject.dpj"

Table A-12. idde.exe Command-Line Parameters

Item Description

-f script_name Loads and executes the Tcl script specified by script_name. Use
this parameter to automate regression tests. You can also manipu-
late VisualDSP++ by running a Tcl script from a library of com-
mon Tcl commands that you create. If an error is encountered
while executing this script, VisualDSP++ automatically exits.

-s session_name Specifies the session to which VisualDSP++ connects when it
starts. The session must already exist. This parameter is useful
when you are debugging more than one target board. Having mul-
tiple shortcuts to idde.exe allows you to run a different session.
This overrides VisualDSP++’s default behavior of always connect-
ing to the last session.

-p project_name Specifies the project to load at startup. The project must already
exist.
VisualDSP++ 3.5 User’s Guide A-33
for 16-Bit Processors

Extensive Scripting
Extensive Scripting

You can issue script commands from a command line, from the Output
window’s Console view, from a menu, from an editor window, or from a
user tool.

• From a command line

Load a script from a command window with an idde command by
typing:

idde -f <filename>

Optionally, add -s and the session name to specify a previously
created session. When no session name is specified, the last session
is used.

If the script encounters an error during execution, VisualDSP++
automatically exits.

• From the Output window

Load a script from the Output window’s Console view by typing
one of the following commands.

For the Microsoft ActiveX script engine, type:

Idde.LoadScript (filename)

For Tcl, type:

source filename

As in C/C++, use a backslash (\) as an escape character. If you spec-
ify paths in the Windows environment, you must escape the escape
character, as shown in this example:

c:\\my_dir\\my_subdir\\my_file.tcl
A-34 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
For Tcl only, you can also use forward slashes to delimit directories
in a path, as shown in this example:

source c:/my_dir/my_subdir/my_file.tcl

Command execution is deferred until a line is typed without a
trailing backslash. This feature permits the entry of an entire block
of code (or entire procedure) for the script interpreter to evaluate at
once.

Use the built-in Idde object to easily access the properties and meth-
ods of the VisualDSP++ Automation API when using a Microsoft
ActiveX script engine. For example:

Idde.ActiveSession.ActiveProcessor

Evaluate expressions by using the “?” when a Microsoft ActiveX script
engine is selected. For example:

? Idde.FullName

• From a menu

You can quickly issue frequently used scripts. From the File menu,
choose Recent Scripts and then select the script.
VisualDSP++ 3.5 User’s Guide A-35
for 16-Bit Processors

Extensive Scripting
• From an editor window

In an open editor window that contains a script, right-click and
choose Load Script, as shown in Figure A-1.

• From a user tool

From a toolbar, click a user tool or choose a user tool from the
Tools menu.

Figure A-1. Running a Script from an Editor Window
A-36 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
You can invoke a script (such as .js or .vbs) automatically when you launch
VisualDSP++ from a shortcut set up on your Window’s desktop or Start but-
ton. Right-click on the shortcut and select Properties and the Shortcut tab.
Then append -f and the name of the script file to the executable file in the
Target text box.

The example shown in Figure A-2 runs myscript.js automatically when
idde.exe is launched.

Figure A-2. Example of Loading a Script from a Shortcut
VisualDSP++ 3.5 User’s Guide A-37
for 16-Bit Processors

Toolbar Buttons
Toolbar Buttons

The toolbar, which comprises separate toolbars, provides quick mouse
access to commands.

The toolbar is a Windows docking bar. You can move it to different areas
of the screen by dragging it to the selected location.

Table A-13. Toolbar Buttons

Button Purpose

Creates a new document

Opens an existing document

Saves the active document or template with the same name

 Saves all open files that have been modified, including files not in the current
project

Prints the active document

Loads a program into the target

Reloads the most recent program into the target

Cuts selected data from the document and store it on the clipboard

Copies the selection to the clipboard

Pastes the contents of the clipboard at the insertion point
A-38 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information

Undoes previous edit command (multilevel undo)

 Redoes the command undone by the previous Undo command (multilevel
redo)

Finds a text block in an editor window

Finds again or repeats the previous find command

Replaces the selected text with other text

Searches through files for text or regular expressions

Goes to or moves to the specified location

Displays the current source file

Toggles the bookmark at selected line in the active editor window

Goes to the next bookmarked line in the editor window

Goes to the previous bookmarked line in the editor window

Clears all bookmarks in the editor window

Opens the online Help to the Search page

Table A-13. Toolbar Buttons (Cont’d)

Button Purpose
VisualDSP++ 3.5 User’s Guide A-39
for 16-Bit Processors

Toolbar Buttons
 Provides context-sensitive Help for a button command or portion of
VisualDSP++

Opens the About VisualDSP++ dialog box

Adds a source file to the project

Removes a selection from the project

Opens an existing project

Saves the open project

Opens the Project Options dialog box, where you specify project options

Builds the selected source file

Builds the project (update outdated files)

Builds all files in the project

Stops the current project build

Arranges windows as tall non-overlapping tiles

Arranges windows as wide non-overlapping tiles

Table A-13. Toolbar Buttons (Cont’d)

Button Purpose
A-40 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information

Arranges windows so they overlap

Closes all open windows

Refreshes all the debugging windows

Runs (starts or continues) the current program

Restarts the current program

Stops the current program

Resets the target

Toggles a breakpoint for the current line

Clears all current breakpoints

Enables or disables one breakpoint

Disables all breakpoints

Steps one line

Steps over the current statement

Table A-13. Toolbar Buttons (Cont’d)

Button Purpose
VisualDSP++ 3.5 User’s Guide A-41
for 16-Bit Processors

Toolbar Buttons

Steps out of the current function

Runs the program to the line containing the cursor

Opens the Expressions window

Opens the Locals window

Opens the Call Stack window

Opens the Disassembly window

Runs the command associated with the user tool (one of ten)

Opens the associated workspace (one of ten)

Table A-13. Toolbar Buttons (Cont’d)

Button Purpose
A-42 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Text Operations

VisualDSP++ allows you to use regular expressions and tagged expressions
in find/replace operations and comments in your code.

Regular Expressions vs. Normal Searches

Normally, when you search for text, the search mechanism scans for an
exact, character-by-character match of the search string, which does not
have to be an entire word. Every character in the search string is examined.
If there are embedded spaces, for instance, the exact number is matched.

Regular expression matching provides much more flexibility and power
than a normal search. A regular expression can be a simple string, which
yields the same matches as normal searches. Some characters in a regular
expression string, however, have special interpretations, which provide
greater flexibility.

For example, with regular expression matching, you can find the
following.

• All occurrences of either hot or cold

• Occurrences of for followed by a left parenthesis, with any number
of intervening spaces

• A ; (semicolon) only when it is the last character on a line

• The string ADSP followed by a sequence of digits

You can use a regular expression as the search pattern for replacement. In
that case, there are ways to identify and recover the variable portions of
the matched strings.
VisualDSP++ 3.5 User’s Guide A-43
for 16-Bit Processors

Text Operations
Specific Special Characters

Regular expressions assign special meaning to the following characters.

If you need to match on one of these characters, you must escape it by pre-
ceding it with a backslash (\). Thus, \^ matches the ^ character, yet ^
matches the beginning of the line.

Table A-14. Special Search Characters

Character Description

^ A caret matches the beginning of the line

$ A dollar sign matches the end of the line

. A period (.) matches any character

[abc]
A bracketed sequence of characters matches one character, which may be
any of the characters inside the brackets. Thus, [abc] matches an a, b,
or c.

[0-9]

This shorthand form is valid within the sequence brackets. It specifies a
range of characters, from first through last, exactly as if they had been
written explicitly.
Ranges may be combined with explicit single characters and other ranges
within the sequence. Thus, [-+.0-9] matches any constituent character
of a signed decimal number; and [a-zA-Z0-9_] matches a valid identi-
fier character, either lowercase or uppercase.
Ranges follow the ordering of the ASCII character set.

[^abc]
[^0-9]

A caret (^) that is the first character of a sequence matches all characters
except for the characters specified after the caret.

(material)

The material inside the parentheses can be any regular expression. It is
treated as a unit, which can be used in combination with other expres-
sions.
Parenthesized material is also assigned a numerical tag, which may be
referenced by a replace operation.
A-44 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Special Rules for Sequences

The normal special character rules of regular expressions do not apply
within a bracketed sequence. Thus, [*&] matches an asterisk or
ampersand.

Certain characters have special meaning within a sequence. These include
^ (not), - (range), and] (end of sequence). By placing these characters
appropriately, you can specify these characters to be part of the sequence.

To search for a right bracket character, place] as the first character of the
search string. To search for a hyphen character, place - as the first charac-
ter of the search string after], if present. Place a caret anywhere in the
search string except at the front, where it means “not.”

Repetition and Combination Characters

The characters described in Table A-15 extend the meaning of the imme-
diately preceding item. This item may be a single character, a sequence in
braces, or an entire regular expression in parentheses.

Table A-15. Match Characters

Character Description

*

An asterisk matches the preceding any number of times, including none at all.
Thus, ap*le matches apple, aple, appppple and ale.

For example, ^ *void matches only when void occurs at the beginning of a
line and is preceded by zero or more spaces.

+
A plus character matches the preceding any number of times, but at least one
time. Thus, ap+le matches apple and aple, but does not match ale.

?
A question mark matches the preceding either zero or one time, but not more.
Thus, ap?le matches ale and aple, but nothing else.

|

The pipe character (|) matches either the preceding or following item. For
example, (hot)|(cold) matches either hot or cold.

Spaces are characters. Thus, (hot) | (cold) matches “hot “or” cold”.
VisualDSP++ 3.5 User’s Guide A-45
for 16-Bit Processors

Text Operations
Match Rules

If multiple matches are possible, the *, +, and ? characters match the long-
est candidates. The | character matches the left-hand alternative first.

For more information, see the many reference texts available on this topic,
such as Mastering Regular Expressions, Powerful Techniques for Perl and
Other Tools by Jeffrey E. F. Friedl, (c) 1997 O'Reilly & Associates, Inc.

Tagged Expressions in Replace Operations

Use a tagged expression as part of the string in the Replace field for a
replace operation.

You must enclose a tagged expression between parentheses characters.
In the Replace field, the operators in Table A-16 represent tagged expres-
sions from the Find field.

The replace expression can specify an ampersand (&) character, meaning
that the & represents the substring that was found. For example, if the sub-
string that matched the regular expression is “abcd”, a replace expression
of “xyz&xyz” changes it to “xyzabcdxyz”. The replace expression can also
be expressed as “xyz\0xyz”, where the “\0” indicates a tagged expression
representing the entire substring that was matched. Similarly, you can
have another tagged expression represented by “\1”, “\2”.

Table A-16. Using Tagged Expressions in Replace Operations

Find field Replace field

Entire matched sub string \0

Tagged expressions within parentheses () from left to right \1 \2 \3 \4 \5
\6 \7 \8 \9

Entire match expression &
A-46 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Although the tagged expression 0 is always defined, the tagged
expressions 1, 2, and so on, are defined only when the regular
expression used in the search has enough sets of parenthesis. Some
examples are shown in Table A-17.

Comment Start and Stop Strings

You use start comment strings and stop comment strings for comment
highlighting colors. Table A-18 describes the two types of comment
strings that you can set for each file type.

Table A-17. Examples of Replace Operations

String Search Replace Result

Mr. (Mr)(\.) \1s\2 Mrs.

abc (a)b(c) &-\1-\2 abc-a-c

bcd (a|b)c*d &-\1 bcd-b

abcde (.*)c(.*) &-\1-\2 abcde-ab-de

cde (ab|cd)e &-\1 cde-cd

Table A-18. Start and Stop Comment Strings

String Purpose

! Starts an assembly style, single-line comment

/* Starts a C/C++ style, multi-line comment

// Starts a C/C++ style, single-line comment

Carriage return Ends a single-line comment (C and Assembly)

*/ Ends a C/C++ style, multi-line comment

(blank) Ends a C/C++ style, single-line comment
VisualDSP++ 3.5 User’s Guide A-47
for 16-Bit Processors

Online Help Features and Operations
Online Help Features and Operations

This section describes online Help features and explains how to:

• Use the Help window

• Invoke online Help

• View context-sensitive Help

• Use the Help window’s navigation buttons

• Copy example code from Help

• Print Help

• Book-mark frequently used help topics

• Navigate in online Help

• Use the search features

• View and print online manuals

• Use the About VisualDSP++ dialog box

Using the Help Window

The Help window comprises three parts:

• The Navigation pane provides tabbed pages (Contents, Index,
Search, and Favorites) that show different navigational views.

• The Viewing pane displays the selected object (topic, Web page,
video, .PDF file, application).

• Toolbar buttons enable you to navigate or specify options.
A-48 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Figure A-3 shows the parts of the VisualDSP++ Help window.

Invoking Online Help

You can invoke online Help from VisualDSP++ or from the Windows
Start button. You can also access Help manually via Windows Explorer.

To access online Help from the VisualDSP++ Help menu, choose Con-
tents, Search, or Index.

To access online Help from the Windows Start button, click the Start
button and choose Programs, Analog Devices, VisualDSP 3.5 for 16-Bit
Processors, and VisualDSP++ Documentation.

Figure A-3. Parts of the VisualDSP++ Help Window
VisualDSP++ 3.5 User’s Guide A-49
for 16-Bit Processors

Online Help Features and Operations
The Help function is programmed to look for the Help system in the
VisualDSP++ Help folder.

By default, the VisualDSP++ software installation procedure places the
complete set of Help files (except the Getting Started Guide) in the instal-
lation’s Help folder.

If you receive an error message after invoking Help, the Help system:

• May not have been loaded onto your PC

• May have been deleted

• May reside in a directory other than the default directory

To locate the help (.CHM) files manually, use the Windows Search function
as follows.

1. Record the Help file (.CHM) named in the error message.

2. From the Windows Start button, choose Search and For Files or
Folders. Enter the name of the .CHM file from step 1.

3. After locating the file, launch it manually by clicking the file name
from the Search Results window or from Windows Explorer.

Viewing Context-Sensitive Help

You can view context-sensitive Help (help pertinent to your current activ-
ity) for various items in VisualDSP++.

VisualDSP++’s context-sensitive Help is linked to toolbar buttons, menu
commands, windows, and dialog box items.
A-50 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Viewing Menu, Toolbar, or Window Help

1. Click the toolbar’s Help button or press Shift+F1.

The mouse pointer becomes a Help pointer .

2. Move the Help pointer over a menu command, toolbar button, or
window.

3. Click the mouse to open the Help window. A description of the
object appears in the right panel.

Viewing Dialog Box Button or Field Help

Perform one of these actions:

• Select a field or button in a dialog box and press F1 or Shift+F1.

• Click the Question-Mark button in the top-right corner of the
dialog box.

The mouse pointer becomes a Help pointer .

Move the Help pointer over a dialog box control (button or field)
and click the mouse. A description of the object appears in a yellow
pop-up window.

• Position the mouse pointer over a label or control (button or filed)
in a dialog box and right-click.

A What’s This button appears. Move the mouse
pointer over the What’s This button and click.

 “What’s This” Help is not configured for all items.
VisualDSP++ 3.5 User’s Guide A-51
for 16-Bit Processors

Online Help Features and Operations
Viewing Window Help

1. Click the window to make it active.

2. Press the F1 key to open the Help window.

A description of the window appears in the right panel.

Using Help Window Navigation Buttons

You can move through the Help system and view Help topics by using the
Help window’s navigational aids, as shown in Figure A-4.

Figure A-4. Help Window Navigational Aids
A-52 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
 Other standard Microsoft HTML Help buttons are described in Table A-19.

Copying Example Code from Help

You can copy code from the Help system and then paste it into your appli-
cation. Be aware that the copied text may carry unwanted control codes.
For example, if you copy a hyphen with a parameter, the actual code of
the copied hyphen may be an ASCII 0x96 instead of an ASCII 0x2D. The
hyphen may look OK, but it will cause an error when the command runs.

Table A-19. Standard Microsoft HTML Help Buttons

Button Purpose

Hides the Help window’s left pane. This button narrows the Help
window.

Displays the Help window’s left pane. This button restores a full view
after you click Hide.

Highlights the name of the current topic on the Contents page (left
pane). After you jump around the Help system, this button shows the
current topic’s relation to other topics.
VisualDSP++ 3.5 User’s Guide A-53
for 16-Bit Processors

Online Help Features and Operations
Printing Help

You can print a specific Help topic, or you can print multiple Help topics
(an entire section of online Help).

Tip: From the Help window’s Contents page, click , located at the
top of the window.

Bookmarking Frequently Used Help Topics

You can bookmark a topic in online Help just like you might bookmark a
page in a book. This feature is also called setting up favorite places.

Note: Each time you bookmark a Microsoft HTML Help topic, a record is
recorded in the file, HH.DAT. This file not only records VisualDSP++ Help
bookmarks, but also the bookmarks you place in other application Help sys-
tems that use .CHM files.

Once you have placed a bookmark onto a topic, you can view a list of
bookmarked topics and quickly open one.

Table A-20. How to Print Help Topics

To print Do this

Current topic Right-click within the help topic and choose Print.

Selected topic On the Contents page:

Right-click the topic and choose Print.

Entire section of
Help

On the Contents page:

Right-click a book icon or and choose Print. Then choose Print
the selected heading and all subtopics.
A-54 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Placing a Bookmark at a Topic

1. Display the topic.

2. On the left side of the Help window, click the Favorites tab.

3. Click Add.

You can remove a bookmark by selecting the name and clicking
Remove.

The Help system adds the topic and displays it in the alphabetized
list.

Opening a Bookmarked Topic

1. On the left side of the Help window, click the Favorites tab.

2. Perform one of these actions:

• Double-click the topic.

• Select the topic and click Display.

Navigating in Online Help

To move around in the Help system, you can click the following.

• A hyperlink within text. The text is underlined and displayed in a
color that is different from the regular black text.

• A topic listed under a See Also heading. The text is underlined
and displayed in a color that is different from the regular black
text.

• A mini button or its associated text. The button is a small gray
square and the underlined text is in a different color.
VisualDSP++ 3.5 User’s Guide A-55
for 16-Bit Processors

Online Help Features and Operations
• A topic name on the Contents page (Figure A-5)

• An index entry on the Index page (Figure A-6)

• A topic name on the Search page. The bottom portion of the
Search page displays the located topics (hits) that include your
search string.

Figure A-5. Contents Page – Online Manuals Topic

Figure A-6. Index Entries on the Index Page

Click a page icon
to view the topic

Click on an index
entry to view the

 associated topic
A-56 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Using the Search Features

VisualDSP++ Help provides both full-text and advanced search capabili-
ties to help you find information.

Help System Search Rules

Different rules apply for each type of search.

Rules for Full-Text Searches

Observe these rules when formulating queries:

• Searches are not case-sensitive. You can type your search in upper-
case or lowercase characters.

You can search for any combination of letters (a–z) and numbers
(0–9).

• Searches ignore punctuation marks such as the period, colon, semi-
colon, comma, and hyphen.

• Group the elements of your search by using double quotes or
parentheses to set apart each element.

• You cannot search for quotation marks.

Note that if you are searching for a file name with an extension, group the
entire string in double quotes, (“filename.ext”). Otherwise, the period
breaks the file name into two separate terms. The default operation
between terms is AND, which creates the logical equivalent to
filename AND ext.
VisualDSP++ 3.5 User’s Guide A-57
for 16-Bit Processors

Online Help Features and Operations
Rules for Advanced Searches

These rules apply to advanced searches:

• Expressions in parentheses are evaluated before the rest of the
query.

• If a query does not contain a nested expression, it is evaluated from
left to right. For example, “folder NOT file OR project” finds
topics containing the word “folder” without the word “file,” or
topics containing the word “project.” The expression
“folder NOT (file OR project)”, however, finds topics contain-
ing the word “folder” without either of the words “file” or
“project.”

• You cannot nest expressions deeper than five levels.

Full-Text Searches

The full-text search capability enables you to locate every occurrence of a
text string within the Help system. You specify a particular word or
phrase, and the search function finds only the topics that contain that
word or phrase.

You can search previous results, match similar words, and search through
the topic titles only.

A basic search consists of the word or phrase that you want to locate. You
can use similar word matches, a previous results list, or topic titles to fur-
ther define your search.

You can run an advanced search, which uses Boolean operators and wild-
card expressions to further narrow the search criteria. Figure A-7 on
page A-59 shows an example of a Boolean search for “new AND plot”.
A-58 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
To find information with full-text search:

1. Click the Help viewer’s Search tab.

2. In Type in the word(s) to search for, type the word or phrase you
want to find.

3. Select Search previous results to narrow your search.

4. Select Match similar words to find words that are similar to the
search string.

5. Select Search titles only to search only the topic titles.

6. Click the Options button at the top of the Help Viewer win-
dow to highlight all instances of search terms found in topic files.
Then choose Search Highlight On.

7. Click List Topics, select the topic you want, and then click
Display.

Note that you can sort the topic list by clicking the Title, Loca-
tion, or Rank column heading.

Figure A-7. Boolean Search for “new AND plot”
VisualDSP++ 3.5 User’s Guide A-59
for 16-Bit Processors

Online Help Features and Operations
Advanced Search Techniques

You can use the following search techniques to narrow your searches for
more precise results.

• Wildcard expressions

• Boolean operators

• Nested expressions

Using Wildcard Expressions

Wildcard expressions enable you to search for one or more characters by
using a question mark or asterisk. Table A-21 describes the results of these
different kinds of searches.

Table A-21. How to Use Wildcard Expressions to Define a Search

To find Example Results

A single word project Locates topics that contain the word “project.”
Other grammatical variations, such as “projects”
are located.

A phrase “project window”
(note the quotation
characters)

project window

Locates topics that contain the literal phrase
“project window” and all its grammatical varia-
tions.

Without the quotation characters, the query is
equivalent to specifying “project AND window,”
which finds topics containing both of the individ-
ual words, instead of the phrase.

Wildcard
expressions

link*

-or-

.C??

Locates topics that contain the terms “linker,”
“linking,” “links,” and so on. The asterisk cannot
be the only character in the term.

Locates topics that contain the terms “.CPP” or
“.CXX.” The question mark cannot be the only
character in the term.
A-60 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Using Boolean Operators

Use the Boolean AND, OR, NOT, and NEAR operators to precisely
define your search by creating a relationship between search terms.

Insert a Boolean operator by typing the operator (AND, OR, NEAR, or
NOT) or by clicking the arrow button.

Note that if you do not specify an operator, AND is used. For example,
the query call stack is equivalent to call AND stack.

Table A-22 describes the results of using Boolean operators to define a
search.

You cannot use the |, &, or ! characters as Boolean operators. You must
use OR, AND, or NOT.

Table A-22. How to Use Boolean Operators to Define a Search

To find Example Results

Both terms in the same
topic

new AND plot Locates topics that contain both the
words “new” and “plot”

Either term in a topic new OR plot Locates topics that contain either the
word “new” or the word “plot” or both

The first term without the
second term

new NOT plot Locates topics that contain the word
“new”, but not the word “plot”

Both terms in the same
topic, close together

new NEAR plot Locates topics that contain the word
“new” within eight words of the word
“plot”
VisualDSP++ 3.5 User’s Guide A-61
for 16-Bit Processors

Online Help Features and Operations
Using Nested Expressions

Use nested expressions to create complex searches for information. For
example, new AND ((plot OR waterfall) NEAR window) finds topics con-
taining the word “new” along with the words “plot” and “window” close
together, or topics containing “new” along with the words “waterfall” and
“window” close together.

Viewing Online Manuals

VisualDSP++ includes three types of user documentation.

The VisualDSP++ software installation procedure does not copy
PDF versions of books and data sheets or supplemental reference
documentation to the VisualDSP directory.

Table A-23. Types of User Documentation

Files Purpose

.CHM VisualDSP++ online Help system files and VisualDSP++ manuals are pro-
vided in Microsoft HTML Help format. Installing VisualDSP++ automati-
cally copies these files to the VisualDSP\Help folder. Online Help is ideal
for searching the entire tools manual set. Invoke Help from the Visu-
alDSP++ Help menu or via the Windows Start button. The .CHM files
require Internet Explorer 4.0 (or higher) or the installation of a component
that provides a .CHM file viewer.

.PDF Manuals and data sheets in Portable Documentation Format are located in
the installation CD’s Docs folder. Viewing and printing a .PDF file requires
a PDF reader, such as Adobe Acrobat Reader (4.0 or higher). Running
setup.exe on the installation CD provides easy access to these docu-
ments. You can also copy PDF files from the installation CD onto another
disk.

.HTM or .HTML Dinkum Abridged C++ library and FlexLM network license
manager software documentation is located on the installation CD in the
Docs\Reference folder. Viewing or printing these files requires a
browser, such as Internet Explorer 4.0 (or higher). You can copy these files
from the installation CD onto another disk.
A-62 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
Printing Online Documents

You can print documents from the VisualDSP++ Tools Installation
CD-ROM.

To print online documents:

1. Insert the VisualDSP++ Tools Installation CD-ROM in your
CD-ROM drive.

2. Open the Docs folder by using one of these options:

• From the VisualDSP++ Tools Installation main menu,
click View Documentation. (If the main menu does not
appear, run setup.exe.)

• In Windows Explorer, select your CD-ROM drive (for exam-
ple, d:) and open the Docs folder.

3. Open the folder where the document is located.

The Data Sheets folder contains copies of DSP data sheets.

The Hardware Manuals folder contains copies of hardware manuals.

The Reference folder includes the HTML files that comprise the
Dinkum Abridged C++ library and the FlexLM network license
documentation.

The Tools Manuals folder contains copies of VisualDSP++ tools
manuals.

4. Double-click the document that you want to print. Selecting a PDF
file opens Adobe Acrobat Reader and displays the document. Selecting
an HTML file opens a browser and displays the document.

5. From the File menu, choose Print and specify the pages that you
want to print (and other print options).
VisualDSP++ 3.5 User’s Guide A-63
for 16-Bit Processors

Online Help Features and Operations
Using the About VisualDSP++ Dialog Box

Selecting the About VisualDSP++ option from the Help menu opens the
About VisualDSP++ dialog box, which provides access to the following
types of support information.

• Software versions

The General page (Figure A-8) provides information about your ver-
sion of VisualDSP++. This information includes the name of the
registered user and company, the version of IDDE and its build date,
and directory path in which VisualDSP++ is installed.

Figure A-8. General Page
A-64 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
• License management

The Licenses page (Figure A-9) provides a centralized view of your
current licenses. You can view license status and perform all necessary
licensing activities (installing, registering, and validating).

Figure A-9. Licenses Page
VisualDSP++ 3.5 User’s Guide A-65
for 16-Bit Processors

Online Help Features and Operations
• Component versions

The Components page (Figure A-10) displays a list of your system’s
components and provides information (name, version, provider) about
your debug target, symbol manager, and processor library.

Figure A-10. Components Page
A-66 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Reference Information
• Tools

The Tools page (Figure A-11) displays a list of your system’s tools.
Each tool includes a description, version number, and the name of the
company that developed it.

Figure A-11. Tools Page
VisualDSP++ 3.5 User’s Guide A-67
for 16-Bit Processors

Online Help Features and Operations
• Links to support on the Web

The Support page (Figure A-12) provides direct links to various Web
pages that contain support information such as application notes, code
examples, the DSP Knowledgebase, IC and tools anomalies and
workarounds, manuals and datasheets, product comparisons, tools
updates, and more. You can also generate the body of an email that
automatically contains your system’s description.

Figure A-12. Support Page
A-68 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

B SIMULATION OF BLACKFIN
PROCESSORS

This appendix provides Blackfin simulator-specific information.
The information is organized as follows.

• “Peripheral Support in Simulators” on page B-2

• “Special Considerations for Peripherals” on page B-6

• “Simulator Instruction Timing Analysis for ADSP-BF535 Proces-
sors” on page B-7

• “Simulator Instruction Timing Analysis for ADSP-BF531,
ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors” on
page B-17

• “Multicycle Instructions and Latencies” on page B-20

• “Compiled Simulation” on page B-41
VisualDSP++ 3.5 User’s Guide B-1
for 16-Bit Processors

Peripheral Support in Simulators
Peripheral Support in Simulators

Use the following key for the tables in this section.

Table B-1 summarizes peripheral support in the ADSP-BF535 simulator.

Key

Implemented

NA Not applicable

NP Not planned for implementation

FR Planned for a future release

Table B-1. Peripheral Support in the ADSP-BF535 Simulator

Peripheral Support Modeled Streamable Bootable

SPORT NA

UART NA

PCI NP NP NP

USB NP NP NP

Flags NA

System Timers NA

RTC NA NA

EBIU NP NA NA

SPI NP

Watch Unit NP NA NA

Trace Unit NP NA NA

Core Timer NA
B-2 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Table B-2 summarizes peripheral support in the ADSP-BF535 compiled
simulator.

MEMDMA NA

PROM FR NA FR

Table B-2. Peripheral Support in the ADSP-BF535 Compiled Simulator

Peripheral Support Modeled Streamable Bootable

SPORT FR

UART FR FR FR

PCI NP NP NP

USB NP NP NP

Flags NA

System Timers FR FR NA

RTC FR NA NA

EBIU NP NA

SPI FR FR NP

Watch Unit FR NA NA

Trace Unit FR NA NA

Core Timer FR NA

MEMDMA NA

PROM NP NA NP

Table B-1. Peripheral Support in the ADSP-BF535 Simulator (Cont’d)

Peripheral Support Modeled Streamable Bootable
VisualDSP++ 3.5 User’s Guide B-3
for 16-Bit Processors

Peripheral Support in Simulators
Table B-3 summarizes peripheral support in the ADSP-BF533 simulator.

Table B-4 summarizes peripheral support in the ADSP-BF533 compiled
simulator.

Table B-3. Peripheral Support in the ADSP-BF533 Simulator

Peripheral Support Modeled Streamable Bootable

SPORT FR

UART FR FR FR

Flags FR FR NA

System Timers NA

RTC FR NA NA

EBIU FR NA NA

PPI NP

SPI FR FR NP

Watch Unit NA NA

Trace Unit NA NA

Core Timer FR NA

Watch Dog Timer FR NA NA

PROM NP NA NP

Table B-4. Peripheral Support in the ADSP-BF533 Compiled Simulator

Peripheral Support Modeled Streamable Bootable

SPORT FR FR FR

UART FR FR FR

Flags NP NP NA

System Timers FR FR NA

RTC NP NP NA
B-4 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Table B-5 summarizes peripheral support in the ADSP-BF561 simulator.

EBIU NP NP NA

PPI FR FR NP

SPI FR FR NP

Watch Unit FR NA NA

Trace Unit FR NA NA

Core Timer FR NA

Watch Dog Timer FR NA NA

PROM NP NA FR

Table B-5. Peripheral Support in the ADSP-BF561 Simulator

Peripheral Support Modeled Streamable Bootable

SPORT FR FR FR

UART FR FR FR

Flags FR FR NA

System Timers NA

RTC FR NA NA

EBIU FR NA NA

PPI NP

SPI FR FR NP

Watch Unit FR NA NA

Trace Unit FR NA NA

Core Timer FR NA

Table B-4. Peripheral Support in the ADSP-BF533 Compiled Simulator

Peripheral Support Modeled Streamable Bootable
VisualDSP++ 3.5 User’s Guide B-5
for 16-Bit Processors

Special Considerations for Peripherals
Special Considerations for Peripherals

This section describes the limitations of the simulation software models.

Universal Asynchronous Receiver/Transmitter
Peripheral

You can manipulate all the UART configuration bits. Currently, you can-
not simulate the data error (Framing Error, Parity Error, Break Interrupt)
conditions or the Modem Status register status bits (Data Carrier Detect,
Ring Indicator, Data Set Ready, Clear To Send). You can specify Set
Break in the Line Control register, but this setting has no effect. The cur-
rent simulator does not model the IRCR register.

Timer (TMR) Peripheral

In Width Capture (WDTH_CAP) mode, the timer counts the number of
clocks in both the width and period. The waveform that the timer reads is
attached via the Streams dialog box in VisualDSP++.

You can attach a file to the following device names.

• TIMER0_WDTH_CAP

• TIMER1_WDTH_CAP

• TIMER2_WDTH_CAP

Watch Dog Timer FR NA NA

PROM FR NA FR

Table B-5. Peripheral Support in the ADSP-BF561 Simulator (Cont’d)

Peripheral Support Modeled Streamable Bootable
B-6 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
The format of the input file is as follows.

PERIOD_COUNT

WIDTH_COUNT

PERIOD_COUNT

WIDTH_COUNT

In WDTH_CAP mode, the timer reads two 32-bit values from the input file.
The first value is the number of pulses (clocks) in the period. The second
value is the number of pulses in the width.

When PULSE_HI is set, the timer delivers high widths and low periods.
When PULSE_HI is not set, the timer delivers low widths and high periods.

Simulator Instruction Timing Analysis for
ADSP-BF535 Processors

The ADSP-BF535 Family Simulator is a core cycle-accurate simulator
with an eight-stage pipeline. The simulator models all the sequencer and
memory events of the ADSP-BF535 processor.

The Pipeline Viewer enables you to understand the execution timing of
your program. It shows the flow of instructions through the pipeline and
any stalls due to sequencer or memory events. For information about
configuring and using the Pipeline Viewer, see “Pipeline Viewer Window”
on page 2-93 or the VisualDSP++ on-line Help.

The Pipeline Viewer for the ADSP-BF535 processor displays stages
Decode through Writeback. The first two stages of the pipeline,
IF1 and IF2, are not displayed because the information, provided
by the simulator, in those stages is not significant.
VisualDSP++ 3.5 User’s Guide B-7
for 16-Bit Processors

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
Stall Reasons

The stall reasons are grouped in three categories:

• Multicycle instructions latencies (see “Multicycle Instructions and
Latencies” on page B-20)

• Instructions latencies (see “Instruction Latencies” on page B-25)

• L1 data memory latencies (see “L1 Data Memory Stalls” on
page B-32)

They are reported in the Pipeline Viewer as:

• Data address generator (DAG) read-after-write (RAW) hazard

• Data register (dreg) hazard: two cycle

• Dreg register (dreg) hazard: one cycle

• Memory stall

• Memory-mapped register (MMR) stall

• CSYNC stall

• SSYNC or IDLE SYNC stall

• Raise stall

• Single-step (SS) mode

• RET read after write

• Unidentified stall
B-8 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Kill Reasons

The kill reasons are as follows.

• Branch Kill – change of flow

• Mispredict – mispredicted conditional change of flow

• Refetch – refetch, such as following an IDLE instruction

• Interrupt – interrupt/exception

Pipeline Viewer Window Examples

Figure B-1 shows a RAW hazard stall.

These stalls are detected in the Decode stage. The instruction stalls there
until all DAG registers required and updated in later pipe stages are
available.

In this example, the instruction “I0 = R0;” in the Execute1 (cycle 16),
Execute2 (cycle 17) and Execute3 (cycle 18) stage is stalling the instruc-
tion “R4 = [I0++];” in the Decode stage. This stall is caused by the first
instruction because it updates the value of I0 in stage Writeback, while the
second instruction needs the value of I0 in the Address stage to increment
I0.

Figure B-1. RAW Hazard Stall
VisualDSP++ 3.5 User’s Guide B-9
for 16-Bit Processors

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
Figure B-2 shows a fetch stall.

Fetch stalls are detected in the Decode stage and are caused by memory
latencies when an instruction is fetched.

In this example, two fetch stalls appear in the Decode stage (cycles 14 and
15) because of a memory latency when instruction “R1 = 0;” is fetched.
These fetch latencies are then propagated in the pipeline: stage “Address”
(cycles 15 and 16), stage “Execute 1” (cycles 16 and 17), and so on.

Pipeline Viewer Window Messages

When you hold the Ctrl key down and pause the mouse over a pipeline
viewer event icon indicating instructions, the Pipeline Viewer window
displays informational messages. An example is shown in Figure B-4 on
page B-19.

These types of messages may appear:

• Stalls detected

• Kills detected

• Multicycle instruction messages

Figure B-2. Fetch Stall
B-10 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Pipeline Viewer Detail View Stall Event Messages

Table B-6 shows the messages that occur when a stall is detected.

Table B-6. Stalls Detected Messages (ADSP-BF535)

Message Explanation Example

ICache miss Instruction cache miss

IAU empty Instruction alignment unit empty

DCache miss Data cache miss

DCache store buffer
full

Data cache buffer overflow. The processor stalls
until the FIFO moves forward and a space is free.

DCache load while
store pending

A load access collides with a pending store access
in the store buffer. (They are tying to access the
same address.)

DCache load while
store pending w/ size
mismatch

Load access size is different from that of the store
access. The buffer must be flushed before the
load can be carried out.

DCache bank collision The addresses in a dual- memory access com-
mand are accessing the same minibank. It does
not matter whether both are loads, or load and
store.

SYNC with store pend-
ing

SYNC instructions force all speculative, transient
in the core/system to be completed before pro-
ceeding.

SSYNC;

EU->MUL/MAC RAW
hazard

Execution unit, Multiply or Multiply accumulate
with a read after write hazard

R0 = R1 + R0;
P0 = R0;

RETx RAW hazard Writing to one of the RETx (RETS, RETI,
RETX, RETN, or RETE) registers immediately
followed by the corresponding return instruc-
tions.

RETX = R0;
RTX;

Dagreg WAW hazard Writing to one of the DAG registers, and imme-
diately writing to it again.

I3 = R3;
I3 += M0;

Dagreg RAW hazard Writing to one of the DAG registers, and imme-
diately reading

I3 = R3;
[I3] = R7;
VisualDSP++ 3.5 User’s Guide B-11
for 16-Bit Processors

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
dsp32alu implied ireg
dependency RAW haz-
ard

ccMV preg->dreg RAW
hazard

A conditional move of a preg into a dreg, fol-
lowed by a read of the dreg

If CC R0 = P1;
R0 = R1;

ccMV dreg->dreg RAW
hazard

A conditional move of a dreg into a dreg, fol-
lowed by a read of the source dreg

If CC R0 = R1;
R2 = R0;

ccMV dpreg->preg
RAW hazard

A conditional move of a dreg into a preg, fol-
lowed by a read of the preg

If CC P0 = R1;
P1 = P0 ;

loopsetup WAW hazard A LSETUP instruction followed by another
LSETUP, both writing to the same LC reg

LSETUP
(LS,LE)LC0=P0;
LSETUP
(LS,LE)LC0=P1;

loopsetup while lc is
nonzero

Using an LSETUP instruction and writing a
value other than zero to the Lcreg

LSETUP
(LS,LE)LC0=P0;
Nop;

loop top/bot RAW haz-
ard

Writing to a loop top/bottom register, followed
by a read of the same register

LT0 = R0;
R2 = LT0;

write to loop cnt stall A write to a LCreg, followed by any op LC0 = R0;
Nop; (any op)

multicycle ALU2op
instruction

A two-operand ALU instruction requiring more
than one cycle to complete

R0 *= R1;

multicycle DAG
instruction

[--SP] =
(R7:0,P5:0);

CC2dreg RAW hazard Reading the CC register into a dreg, and then
reading that register

R0 = CC;
CC = R0;

Mac/video after regmv
sysreg to dreg raw haz-
ard

Register move of a system register to a dreg, fol-
lowed by a MAC or video instruction

R0 = LC0;
R2.H = R1.L * R0.H;

Regmv sysreg to dreg
followed by ALU op
dreg raw hazard

Writing a system register to a dreg, followed by
an ALU operation using that dreg as an operand

R0 = LC0;
R2 = R1 + R0;

Table B-6. Stalls Detected Messages (ADSP-BF535) (Cont’d)

Message Explanation Example
B-12 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Video after extracted
3-input add dreg raw
hazard

Extracted 3-input add
followed by special
dsp32 instruction

Search followed by exu
operation dreg raw haz-
ard

A search instruction followed by any execution
instruction with an operand of a dreg used in the
search instruction

(R3,R0) = search R1
(LE);
R2.H =R1.L * R0.H;

Regmv hazard: preg to
dreg -> dreg to sys/preg
RAW

A register move of a preg to a dreg, followed by
another register move of that same dreg to a sys-
tem register or preg

R0 = P0;
ASTAT = R0;

Regmv hazard: sysreg
to dreg -> dreg to dreg
RAW

A register move of a system register to a dreg, fol-
lowed by another register move of that same dreg
to a dreg

R0 = ASTAT;
R1 = R0;

Regmv hazard: sysreg
to dreg -> dreg to sysreg
RAW

A register move of a system register to a dreg, fol-
lowed by another register move of that same dreg
to a system register

R0 = LC0;
ASTAT = R0;

Regmv hazard: sysreg
to areg -> dreg to areg
WAW

A register move of a system register to an accu-
mulator register, followed by another register
move of a dreg to the same accumulator register

A0.w = LC0;
A0 =R0;

Regmv hazard: sysreg
to areg -> preg to areg
WAW

A register move of a system register to an accu-
mulator register, followed by another register
move of a preg to that same accumulator register

A0.w = LC0;
A0 =P0;

Regmv hazard: sysreg
to areg -> areg to areg
WAW

A register move of a system register to an accu-
mulator register, followed by another register
move of an accumulator register to that same
accumulator register

A0.w = LC0;
A0 =A1;

Regmv hazard: sysreg
to areg -> areg to dreg
RAW

A register move of a system register to an accu-
mulator register, followed by another register
move of that same accumulator register to a dreg

A0.w = LC0;
R0 =A0;

Table B-6. Stalls Detected Messages (ADSP-BF535) (Cont’d)

Message Explanation Example
VisualDSP++ 3.5 User’s Guide B-13
for 16-Bit Processors

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
Kills Detected Messages

Table B-7 shows the messages that occur when a kill is detected.

Regmv hazard: sysreg
to areg -> areg to sysreg
RAW

A register move of a system register to an accu-
mulator register, followed by another register
move of that same accumulator register to a sys-
tem register

A0.w = LC0;
ASTAT = A0.w;

Regmv hazard: sysreg
to areg -> load to areg
WAW

A register move of a system register to an accu-
mulator register, followed by a load to the same
accumulator register

A0.w = LC0;
A0.w = [I0];

Regmv hazard: sysreg
to areg -> exu op using
areg RAW

A register move of a system register to an accu-
mulator register, followed by any execution unit
operation using that accumulator register as an
operand

A0.w = LC0;
A0 = A0(S);

AQreg hazard: move to
AQ -> exu op using AQ
RAW

CCreg hazard: move to
CC -> exu op using CC
RAW

Table B-7. Kills Detected Messages (ADSP-BF535)

Message Explanation Example

change-of-flow kill A branch CALL (P0);

rti change-of-flow kill Return from interrupt kills RTI;

mispredicted
change-of-flow kill

Kills due to mispredicted
branches

R0 = 0; CC = R0;
If CC JUMP next (bp);

hardware loop bottom kill

interrupt kill Instructions in the pipeline are
killed due to an interrupt

RAISE 1

Table B-6. Stalls Detected Messages (ADSP-BF535) (Cont’d)

Message Explanation Example
B-14 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Multicycle Instructions

Multicycle instructions are a category of instructions that cannot be com-
pleted in less than two cycles. Consequently, the extra cycles generated by
such an instruction cannot be removed without removing the multicycle
instruction itself.

In Figure B-3, multicycle instruction “[--SP] = (R7:6, P5:3)” enters the
pipeline Decode stage at cycle 16 and takes five cycles to complete (1 cycle
per register to push on the stack SP). The next instruction “R7 = 0” takes
only one cycle.

For details about multicycle instructions, see “Multicycle Instructions and
Latencies” on page B-20.

sync kill SYNC instructions force all
speculative, transient in the
core/system to be completed
before proceeding, killing
instructions in the pipe

SSYNC;

Figure B-3. Example of a Multicycle Instruction in the Pipeline Viewer

Table B-7. Kills Detected Messages (ADSP-BF535) (Cont’d)

Message Explanation Example
VisualDSP++ 3.5 User’s Guide B-15
for 16-Bit Processors

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
Abbreviations in Pipeline Viewer Messages

Table B-8 shows abbreviations that may appear in the Pipeline Viewer
window.

Table B-8. Abbreviations in the Pipeline Viewer Window

Abbreviation Meaning

ALU Arithmetic Logic Unit operations (Logical ops, Bit ops, Shift/Rotate ops,
Arithmetic ops excluding Mult, Vector ops excluding Mult/MAC)

ALU2op A two-operand ALU instruction

AQreg

CC2dreg CC register move to a dreg

ccMV Conditional move

CCreg CC register. This multipurpose flag typically holds the result of an arithmetic
comparison.

DAG Data Address Generator unit

Dagreg A DAG register (for example, P5-0, I3-0, M3-0, B3-0, and L3-0)

dreg Data register (for example, R7-0 or A1-0)

Dsp32alu A 32-bit DSP ALU instruction

EXU Execution unit

IAU Instruction Alignment Unit

MAC Multiplier/Accumulator Unit

MUL Multiplier Unit operations (for example, Vector Multiply, 32-bit Multiply,
Vector MAC)

preg Pointer register (for example, P5-0, FP, USP, or SSP)

RAW Read after write

regmv A register move

sysreg System Register (for example, LC1/0, LB1/0, LT1/0, SYSCFG, SEQSTAT,
ASTAT, RETS, RETI, RETX, RETN, RETE, CYCLES, and CYCLE2)
B-16 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Simulator Instruction Timing Analysis for
ADSP-BF531, ADSP-BF532, ADSP-BF533,
and ADSP-BF561 Processors

The simulator for the ADSP-BF531, ADSP-BF532, ADSP-BF533, and
ADSP-BF561 processors is a core cycle-accurate simulator with a ten-stage
pipeline. The simulator models all sequencer and memory events.

The Pipeline Viewer enables you to understand the execution timing of
your program. It shows the flow of instructions through the pipeline and
any stalls due to sequencer or memory events. For information about
configuring and using the Pipeline Viewer, see “Pipeline Viewer Window”
on page 2-93 or the VisualDSP++ on-line Help.

Stall Reasons

The stall reasons are as follows.

• Data address generator (DAG) read-after-write (RAW) hazard

• Memory stall

• Memory-mapped register (MMR) stall

• Unidentified stall

• Data register (dreg) hazard: two cycle

WAW Write after write

Video Video operations (video pixel operations)

Table B-8. Abbreviations in the Pipeline Viewer Window (Cont’d)

Abbreviation Meaning
VisualDSP++ 3.5 User’s Guide B-17
for 16-Bit Processors

Simulator Instruction Timing Analysis for ADSP-BF531,
ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors
• Dreg hazard: one cycle

• CSYNC stall

• SSYNC or IDLE SYNC stall

• LSETUPO and not LPO_ALLOWED

• Awkward loop

• Raise stall

• SS mode

• RET read after write

Kill Reasons

The kill reasons are as follows.

• Branch Kill – change of flow

• Mispredict – mispredict conditional change of flow

• Interrupt – interrupt/exception

• Refetch – refetch, such as following an IDLE instruction
B-18 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Pipeline Viewer Window Examples

Figure B-4 shows a RAW hazard stall.

These stalls are detected in the Decode stage. The instruction stalls until
all DAG registers required and updated in later pipe stages are available.

In the example, I0=R5 in the Execute3 stage is stalling the instruction in
decode, which wants to increment I0.

Figure B-5 shows an MMR stall.

MMR stalls occur in E1 while the MMR value is being returned.

Figure B-4. RAW Hazard Stall

Figure B-5. MMR Stall
VisualDSP++ 3.5 User’s Guide B-19
for 16-Bit Processors

Multicycle Instructions and Latencies
Figure B-6 shows a branch kill.

In this example, an unconditional control transfer kills several stages that
were behind it. Fetching begins at the destination of the control transfer
instruction after the killed stages.

Multicycle Instructions and Latencies

This section contains a description of all Blackfin processor multicycle
instructions and latencies.

Multicycle behavior exists when an instruction, sometimes only under cer-
tain circumstances, is completed in more than one cycle. This cycle loss
cannot be avoided without removing the instruction that caused it.

A latency condition exists when a pair of instructions incur extra cycles
between them because of their proximity to each other in the code. You
can avoid a latency condition’s cycle loss by separating the two instruc-
tions by as many instructions as cycles lost. Each multicycle and latency
entry indicates whether it is currently supported in the simulation
environment.

Figure B-6. Branch Kill
B-20 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
All multicycle and latency conditions described here are native to the first
implementation of Blackfin processor architecture. Future implementa-
tions may be different. The tables in this section show the cycle latencies
of the 10x core processors, represented by the ADSP-BF532 and the
ADSP-BF535 processor.

Multicycle Instructions

All instructions not mentioned here are completed in one cycle. This sec-
tion describes instructions that take more than one cycle. Instruction
names are consistent with the Blackfin Processor Instruction Set Reference.
The cycle counts in the following examples represent the entire cycle time
of the instruction shown.

Push Multiple or Pop Multiple

PushPopMultiple is completed in n cycles, where n is the number of regis-
ters pushed or popped.

32-Bit Multiply (modulo 232)

Table B-9. PushPopMultiple Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

[--SP] = (R7:0,P5:0); 14 cycles 14 cycles

(R7:0,P5:3) = [SP++]; 11 cycles 11 cycles

Table B-10. Bit Multiply Instruction and Cycles

Instruction ADSP-BF532 ADSP-BF535

R0 *= R1; 3 cycles 5 cycles
VisualDSP++ 3.5 User’s Guide B-21
for 16-Bit Processors

Multicycle Instructions and Latencies
Call and Jump

Conditional Branch

The number of cycles that a branch takes depends on the prediction as
well as the actual outcome.

Table B-11. Call and Jump Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

CALL 0x22; 5 cycles 4 cycles

CALL (PC + P0); 5 cycles 4 cycles

CALL (P0); 5 cycles 4 cycles

JUMP 0x22; 5 cycles 4 cycles

JUMP (PC + P0); 5 cycles 4 cycles

JUMP (P0); 5 cycles 4 cycles

Table B-12. Conditional Branch Cycles

Prediction taken not taken

Outcome taken not taken taken not taken

Cycle Time BF532 BF535 BF532 BF535 BF532 BF535 BF532 BF535

4 cycles 4 cycles 8 cycles 7 cycles 8 cycles 7 cycles 1 cycle 1 cycle
B-22 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Return

Core and System Synchronization

Linkage

Table B-13. Return Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

RTX; 5 cycles 7 cycles1

1 Best case

RTE; 5 cycles 7 cycles1

RTN; 5 cycles 7 cycles1

RTI; 5 cycles 7 cycles

RTS; 5 cycles 4 cycles

Table B-14. Core and System Synchronization Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

CSYNC; 10 cycles 7 cycles

SSYNC; 10 cycles 7 cycles

Table B-15. Linkage Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

LINK 8; 3 cycles 4 cycles

UNLINK; 2 cycles 3 cycles
VisualDSP++ 3.5 User’s Guide B-23
for 16-Bit Processors

Multicycle Instructions and Latencies
Interrupts and Emulation

Testset

The TESTSET instruction is a multicycle instruction that is executed in a
variable number of cycles. It is dependent on the cycles needed for a read
acknowledge from off-core L2 memory and whether the address being
tested is both in the cache and dirty. The number of cycles is determined
as follows.

cycles = 1 (instruction) + 1 (stall) + x (read ack) + y (cache penalty)

In an optimum environment, x would be 5 and y would be zero. If the
address resides in a dirty line, y is determined by the cycles to fill the dirty
line plus any core boundary latencies. The address should not reside dirty
in the cache as the address contents are meant to be updated across multi-
ple processors and not be a local variable. This instruction is dependent on
off-core conditions, so it is not modeled by the simulation environment.

Table B-16. Interrupts and Emulation Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

RAISE 10; 3 cycles 3 cycles

EXCPT 3; 3 cycles 7 cycles

EMUEXCPT; 3 cycles 3 cycles1

1 Best case as determined by physical characteristics of external memory

STI R4; 3 cycles 3 cycles1

Table B-17. TESTSET Instruction

Instruction ADSP-BF535

TESTSET (P0); 7+ cycles1

1 Best case as determined by physical characteristics of external memory
B-24 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Instruction Latencies

In addition to being based on instruction, instruction latencies are contin-
gent on placement of specific instruction pairs relative to one another.
You can avoid them by separating them by as many instructions as the
number of cycles incurred between them. For example, if a pair of instruc-
tions incur a 2-cycle latency, separating them by two instructions will
eliminate that latency.

In the tables that follow note that bold type identifies register dependen-
cies within the instruction pairs. No bold type in an entry means that the
latency condition will occur regardless of what registers are used. For a list
of accumulator to data register (Areg2Dreg), math, video, multiply, and
ALU ops, as well as register groupings, see “Instruction Groups” on
page B-39 and “Register Groups” on page B-40. Instruction names are
consistent with the Blackfin Processor Instruction Set Reference.

Calculate the total cycle time of each entry by adding the cycles taken by
the instruction to the number of stall cycles for the instruction.

Accumulator to Data Register Latencies

Table B-18. Accumulator to Data Register Latencies

Description

Example
<cycles + stalls > instruction

BF532 BF535

dreg = Areg2Dreg op
video op using dreg
as src

1
1 + 1

< 1 > R1 = R6.L * R4.H (IS);
< 1 + 2 > R5 = BYTEOP1P (R3:2, R1:0);

dreg = Areg2Dreg op
rnd12/rnd20 using
dreg as src

1
1

< 1 > R4.L = (A0 = R3.H*R1.H);
< 1 + 1 > R0.H = R2 + R4 (RND12);

dreg = Areg2Dreg op
shift/rotate op using
dreg as src

1
1

< 1 > R4.L = (A0 = R3.H*R1.H);
< 1 + 1 > R1 = ROT R2 BY R4.L;
VisualDSP++ 3.5 User’s Guide B-25
for 16-Bit Processors

Multicycle Instructions and Latencies
Register Move Latencies

In each of the following cases the stall condition occurs when the same
register is used in both instructions.

dreg = Areg2Dreg op
add on sign using
dreg as src

1
1

< 1 > R0.H=R0.L=SIGN(R2.H)*R3.H+SIGN(R2.L)*R3.L;
< 1 + 1 > R6.H=R6.L= SIGN(R0.H)*R1.H+SIGN(R0.L)*R1.L;

dreg = math op
Areg2Dreg op using
dreg as src

1
1

< 1 > R2 = R3 + R1;
< 1 + 1 > R4.H = R2.L * R0.H;

Table B-19. Register Move Latencies

Description

Example
<cycles + stalls > instruction

ADSP-BF532 ADSP-BF535

dreg = sysreg
ALU op using dreg as src
(or vector ALU op)

1
1
1
1

< 1 > R0 = LC0;
< 1 + 1 > R2 = R1 + R0;
< 1 > R2 = LC0;
< 1 + 1 > R1.L = R2 (RND);

dreg = preg
sysreg = dreg

1
1

< 1 > R0 = P0;
< 1 + 1 > ASTAT = R0;

dreg = sysreg
dreg = dreg

1
1

< 1 > R0 = ASTAT;
< 1 + 1 > R1 = R0;

dreg = sysreg
multiply/video op with dreg as src

1
1 + 1

< 1 > R0 = LC0;
< 1 + 2 > R2.H = R1.L * R0.H;

dreg = sysreg
accreg = dreg

1
1

< 1 > R0 = LC0;
< 1 + 1 > A0 = R0;

Table B-18. Accumulator to Data Register Latencies (Cont’d)

Description

Example
<cycles + stalls > instruction

BF532 BF535
B-26 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
preg = dreg
any processor op using preg

1
1 + 4

< 1 > P0 = R3;
< 1 + 3 > R0 = P0;

dagreg = dreg
any processor op using dagreg

1
1 + 4

< 1 > I3 = R3;
< 1 + 3 > R0 = I3;

dreg = sysreg
sysreg = dreg

1
1

< 1 > R0 = LC0;
< 1 + 1 > ASTAT = R0;

accreg = sysreg
accreg = dreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > A0 = R0;

accreg = sysreg
accreg = preg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > A0.w = P0;

accreg = sysreg
accreg = accreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > A1 = A0;

accreg = sysreg
dreg = accreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > R0.L = A0.x;

accreg = sysreg
sysreg = accreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > ASTAT = A0.w;

accreg = sysreg
math op using accreg as src

1
1

< 1 > A1.x = LC0;
< 1 + 1 > R1.H = (A0+=A1);

accreg = sysreg
POP to accreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > A0.w = [SP ++];

POP to dagreg
any processor op using dagreg

1
1 + 3

< 1 > I3 = [SP++];
< 1 + 3 > R0 = I3;

LOAD/POP to preg
any processor op using preg

1
1 + 3

< 1 > P3 = [SP++];
< 1 + 3 > R0 = P3;

R0.L = R1.L+R2.L
R3 = R0.H*R4.L

The 10x core considers register halves to be independent, so
this condition is not a register hazard.

Table B-19. Register Move Latencies (Cont’d)

Description

Example
<cycles + stalls > instruction

ADSP-BF532 ADSP-BF535
VisualDSP++ 3.5 User’s Guide B-27
for 16-Bit Processors

Multicycle Instructions and Latencies
Move Conditional and Move CC Latencies

In each of the following cases the stall condition occurs when the same
register is used in both instructions.

Table B-20. Move Conditional and Move CC Latencies

Description

Example(s)
<cycles + stalls > instruction

ADSP-BF532 ADSP-BF535

dreg = CC
if CC dreg = dreg

1
1

< 1 > R0 = CC;
< 1 + 1 > if CC R1 = R0;

if CC dreg = dreg
multiply/video op using dreg as src

1
1 + 1

1
1 + 1

< 1 > if CC R0 = R1;
< 1 + 1 > R2.H = R1.L * R0.H;
< 1 > if CC R1 = R3;
< 1 + 1 > SAA (R3:2, R1:0);

if CC dreg = preg
math op using dreg as src

1
1
1
1

< 1 > if CC R0 = P0;
< 1 + 1 > R2 = R1 + R0;
< 1 > if CC R3 = P1;
< 1 + 1 > SAA (R3:2, R1:0);

dreg = CC
math op using dreg as src

1
1
1
1

< 1 > R0 = CC;
< 1 + 2 > R2.H = R1.L * R0.H;
< 1 > R1 = CC;
< 1 + 2 > SAA (R3:2, R1:0);

dreg = CC
CC = dreg

1
1

< 1 > R0 = CC;
< 1 + 2 > CC = R0;

if CC preg = dpreg
any op using preg

1
1 + 4

< 1 > if CC P0 = R1;
< 1 + 3 > R4 = P0;

if CC dreg = dpreg
CC = dreg

1
1

< 1 > if CC R0 = R1;
< 1 + 1 > CC = R0;
B-28 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Loop Setup Latencies

Table B-21. Loop Setup Latencies

Description

Example
<cycles + stalls > instruction

BF532 BF535

loop setup
loop setup with same LC

1
1 + 6

< 1 > LSETUP (top1, bottom1) LC0 = P0;
< 1 + 1 > LSETUP (top2, bottom2) LC0 = P1;

modification of LT or LB
loop setup with same loop registers

1
1 + 9

< 1 > LT0 = [SP++];
< 1 + 3 > LSETUP (top, bottom) LC0 = P0;

loop setup with LC0 and LC0 != 0
any processor op

1
1

< 1 > LSETUP (top, bottom) LC0 = P0;
< 1 + 1 > NOP;

loop setup with LC1 and LC1 != 0
any processor op

1
1

< 1 > LSETUP (top, bottom) LC1 = P0;
< 1 + 1 > NOP;

LC0/LC1 reg written to
any processor op

1
1 + 9

< 1 > LC0 = R0;
< 1 + 4 > NOP;

LT0/LB0 written to and LC0 != 0
any processor op

1
1 + 9

< 1 > LT0 = [SP++];
< 1 + 4 > NOP;

LT1/LB1 written to and LC1 != 0
any processor op

1
1 + 9

< 1 > LB1 = P0;
< 1 + 4 > NOP;

kill while loop buffer is being
written due to: interrupt, exception,
NMI, emulation events

0 3-cycle stall
VisualDSP++ 3.5 User’s Guide B-29
for 16-Bit Processors

Multicycle Instructions and Latencies
Instructions Within Hardware Loop Latencies

The following stall conditions occur when the listed instruction or condi-
tion within a hardware loop results in a 3-cycle stall at the next iteration of
the loop.

• Move conditional or POP into any of the LC/LB/LT registers

• Loop set up through the use of the same loop count registers in the
first 3 instructions of the loop

• Branch in the first 3 instructions of the loop (JUMP, CALL, condi-
tional branch)

• Interrupt or exception in the first 4 instructions of the loop

• CSYNC or SSYNC

• The inner hardware loop’s bottom is strictly within the outer hard-
ware loop’s first four instructions.

• If the inner hardware loop’s bottom is equal to the outer hardware
loop’s bottom, a 3-cycle stall applies to each iteration of the inner
loop in addition to the 3-cycle stall of the outer loop.

• RTS, RTN, RTE, RTX, RTI

• If the loop’s top instruction is not executed in the first iteration of
the loop, a one-time 3-cycle stall penalty is incurred at the begin-
ning of the second iteration (for example, a jump into the hardware
loop to any instruction but the first).

• None of the above applies to the 10x core. The 10x core stalls when
the loop start does not directly follow the LSETUP. This condition
causes a one-time 3-cycle stall while the loop buffer is filled at the
beginning of the second loop iteration.

• LSETUP to the same loop count register in the shadow of a previ-
ous LSETUP is held in D code until the first LSETUP commits.
B-30 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Instruction Alignment Unit Empty Latencies

If the instruction alignment unit (IAU) is empty of the next instruction,
that next instruction incurs a 1-cycle stall while the IAU is being filled.
The following conditions can result in an IAU empty stall.

• Instruction cache miss or SRAM fetch miss

• Change of flow to an instruction address aligned across a 64-bit
boundary

• The second instruction after a hardware loop is aligned across a
64-bit boundary

• The sixth instruction within a hardware loop is aligned across a
64-bit boundary

Table B-22. Instruction Alignment Unit Empty Latencies

Description
Example(s)

<cycles + stalls > instruction

BF532 BF535

Move register or POP to I0 or I1
SAA,BYTEOP2P,BYTEOP3P

1
1 + 4

< 1 > I1 = [SP++];
< 1 + 5 > R0 = BYTEOP3P (R1:0, R1:0) (HI);

Move register or POP to I0 or I1
BYTEOP1P/16P/16M, BYTEUNPACK

1
1 + 4

< 1 > I0 = R0;
< 1 + 5 > R3 = BYTEOP1P (R3:2, R1:0);

Write to return register (RT[S,N,E,X,I])
return op

1
1 + 4

1
1 + 4

< 1 > RETI = P0;
< 1 + 4 > RTI;
< 1 > RETS = P3;
< 1 + 4 > RTS;

math op
video op with RAW data dependency

1
1 + 1

< 1 > R3 = R2 + R4;
< 1 + 1 > SAA (R3:2, R1:0);

dreg = search
math op using dreg

1
1 + 2

< 1 > (R3, R0) = SEARCH R1 (LE);
< 1 + 2 > R2.H = R1.L * R0.H;
VisualDSP++ 3.5 User’s Guide B-31
for 16-Bit Processors

Multicycle Instructions and Latencies
L1 Data Memory Stalls

L1 data memory (DM) stalls are incurred through reading or writing from
L1 data memory. Accesses can either be direct (to or from DM SRAM) or
indirect (to or from DM cache). Some of these stalls are multicycle
instruction conditions (they occur as a result of a specific instruction).

Some stalls are latency conditions (they occur only when the two offend-
ing instructions are too close). The specifics are described in each entry.
The following memory configurations apply to the ADSP-BF535 proces-
sor. Note that the causal factors in offending instructions and the stall
consequences appear in bold type.

Minibank Access Collision

This section describes the following stalls.

• SRAM access

• Cache access

core and system MMR access < 1 + 2 > R0 = [P0]; // P0 = MMR address

L0/B0 = dreg
I0 modulo update

In general, any length and base dagreg
assignment to a dreg followed by the
corresponding index dagreg modulo
update

1 + 4
1 + 4
1 + 4
1 + 4
1 + 4
1 + 4
1 + 4
1 + 4

< 1 > L0 = R0;
< 1 + 3 > R1 = [I0++];
< 1 > B1 = R2;
< 1 + 3 > I1 += 4;
< 1 > L2 = R3;
< 1 + 3 > R4 = [I2++M2];
< 1 > B3 = R5;
< 1 + 3 > I3 += M2;

Table B-22. Instruction Alignment Unit Empty Latencies (Cont’d)

Description
Example(s)

<cycles + stalls > instruction

BF532 BF535
B-32 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
SRAM Access (1-Cycle Stall)

This stall can occur only when an instruction accesses a bank configured
as SRAM. The memory regions associated with SRAM banks are calcu-
lated when an offset is added to the value of SRAM_BASE_ADDRESS MMR. The
start addresses for banks A and B are:

• Bank A: (SRAM_BASE_ADDRESS << 22) + 0x000000

• Bank B: (SRAM_BASE_ADDRESS << 22) + 0x100000

The minibanks are contiguous 4096 byte (4KB) chunks within the A and
B address space. With two simultaneous accesses (via a multi-issue instruc-
tion) to the same minibank, a 1-cycle stall is incurred. For example:

(I0 is address 0x001348, I1 is address 0x001994)

R1 = R4.L * R5.H (IS), R2 = [I0++], [I1++] = R3;
<1 cycle stall> (due to a collision in the second minibank in

superbank A)

A collision occurs regardless of whether the accesses are both loads, or load
and store. If the first access is a load (DAG0) and the second is a store
(DAG1), the cycles incurred are seen by the store buffer (see 3.4.0). Since
the SRAM_BASE_ADDRESS value must be 4MB aligned (thus each minibank
starts at 0xXXXXX000), it is easy to determine if two addresses are going to
collide in a minibank. If ((addr1>>12)==(addr2>>12)), a collision occurs.

Cache Access (1-Cycle Stall)

This stall can occur only when one or both banks are configured as cache.

Only One Bank is Configured as Cache

In this case, data memory accesses are always cached to the same super-
bank, so you have to determine only the cache minibank. You must first
find out how much data bank memory is modeled in the implementation
of the Blackfin processor that you are using.
VisualDSP++ 3.5 User’s Guide B-33
for 16-Bit Processors

Multicycle Instructions and Latencies
The standard Blackfin processor architecture model is 16 KB, thus four
4-KB minibanks. In this case you have to look at only bits 13 and 12 of
the address to see what minibank the data memory access is cached to.

Every time the available bank memory is doubled, another bit must be
used. For example, if an implementation of Blackfin processor architec-
ture has 32 KB of data bank memory (eight 4-KB memory banks), bits 14,
13, and 12 must be used.

Table B-23. Minibanks Selected for 16KB of Data Bank Memory

Addr[13:12] Minibank Selected

00 minibank 1 (0x0000–0x1000)

01 minibank 2 (0x1000–0x2000)

10 minibank 3 (0x2000–0x3000)

11 minibank 4 (0x3000–0x4000)

Table B-24. Minibanks Selected for 32KB of Data Bank Memory

Addr[14:12] Minibank Selected

000 minibank 1 (0x0000–0x1000)

001 minibank 2 (0x1000–0x2000)

010 minibank 3 (0x2000–0x3000)

011 minibank 4 (0x3000–0x4000)

100 minibank 5 (0x4000–0x5000)

101 minibank 6 (0x5000–0x6000)

110 minibank 7 (0x6000–0x7000)

111 minibank 8 (0x7000–0x8000)
B-34 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
For simplicity, this document assumes the standard 16-KB data memory
model. If the addresses in a dual memory access (multi-issue) instruction
is cached to the same minibank, a 1-cycle stall is incurred.

(I0 is address 0x002348, I1 is address 0x002994)

R1 = R4.L * R5.H (IS), R2 = [I0++], [I1++] = R3;
<1 cycle stall> (due to a collision in minibank 3)

A collision occurs regardless of whether the accesses are both loads, or load
and store. If the first access is a load (DAG0) and the second is a store
(DAG1), the cycles incurred are seen by the store buffer (see “Store Buffer
Overflow” on page B-37). If (Addr1[13:12]== Addr2[13:12]), a collision
occurs.

Both Banks Are Configured as Cache

If both banks are cacheable, you must determine which superbank the
accesses are cached to (in addition to the minibank) to determine whether
a stall exists. This information depends on the value of the DCBS bit of
the DMEM_CONTROL MMR. If DCBS is 1, address bit 23 is used as bank select.
If DCBS is 0, address bit 14 is used as bank select.

(Note that these values are used for the 16-KB implementation of Blackfin
processor data memory). Refer to “Cache Access” for details about how to
determine the minibank. The following table assumes that DCBS is 0.

Table B-25. Superbank, Minibank Selected When DCBS is 0

Addr[14:12] Superbank, Minibank Selected

000 superbank A, minibank 1 (0x0000–0x1000)

001 superbank A, minibank 2 (0x1000–0x2000)

010 superbank A, minibank 3 (0x2000–0x3000)

011 superbank A, minibank 4 (0x3000–0x4000)

100 superbank B, minibank 1 (0x0000–0x1000)
VisualDSP++ 3.5 User’s Guide B-35
for 16-Bit Processors

Multicycle Instructions and Latencies
If the addresses in a dual memory access (multi-issue) instruction is cached
to the same superbank and minibank, a 1-cycle stall is incurred.

(I0 is address 0x002348, I1 is address 0x002994)

R1 = R4.L * R5.H (IS), R2 = [I0++], [I1++] = R3;
<1 cycle stall> (due to a collision in minibank 3)

A collision occurs regardless of whether the accesses are both loads, or load
and store. If the first access is a load (DAG0) and the second is a store
(DAG1), the cycles incurred are seen by the store buffer (see “Store Buffer
Overflow” on page B-37).

When DCBS is 0 and (Addr1[14:12]== Addr2[14:12]), a collision
occurs. When DCBS is 1 and (Addr1[23,13:12]== Addr2[23,13:12]), a
collision occurs.

MMR Access

A read from any MMR space (on-core and off-core) results in a 2-cycle
stall because the Blackfin processor architecture must wait for acknowl-
edgement from the peripherals mapped to the MMRs being accessed.

(I0 contains an address between 0xFFC00000 and 0xFFE00000)

R2 = [I0++]; (In Supervisor Mode)
<2 cycle stall>

101 superbank B, minibank 2 (0x1000–0x2000)

110 superbank B, minibank 3 (0x2000–0x3000)

111 superbank B, minibank 4 (0x3000–0x4000)

Table B-25. Superbank, Minibank Selected When DCBS is 0 (Cont’d)

Addr[14:12] Superbank, Minibank Selected
B-36 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
System Minibank Access Collision

A system access occurs when some external device, such as another proces-
sor in a multiple core system, accesses Blackfin processor architecture L1
memory. Whenever the system accesses a minibank currently being
accessed by the core, a <1-cycle stall> is incurred because system memory
accesses have higher priority than core accesses.

Store Buffer Overflow

The store buffer is a 5-entry FIFO that manages Blackfin processor
instruction stores to L1 and L2 memory. All instruction stores must go
through the store buffer. Thus, if the buffer is full, the Blackfin processor
stalls until the FIFO moves forward and a space is freed.

The earliest time that a store can leave the buffer is 4 instructions (not
cycles necessarily) after it was entered. Consequently, under ideal circum-
stances a continuous series of stores will take up 4 out of the 5 slots in the
store buffer. If only one of the stores is delayed by an extra cycle, no pen-
alty is imposed as the store buffer has 5 slots. Many scenarios can cause the
store buffer to become full. To account for them, you must keep track of
the proximity of stores and how many cycles they each take.

If a multicycle store is required, you must be sure that it is not followed
too closely by other stores as they may become backed up. Here is a list of
multicycle stores:

• Stores to non-cacheable memory (for example, MMR space)

• Stores to external L2 memory (memory addressed beyond L1
SRAM)

• Minibank conflict where the store is from DAG1 (the second
access in a load/store multi-issue instruction—see “Minibank
Access Collision” on page B-32)
VisualDSP++ 3.5 User’s Guide B-37
for 16-Bit Processors

Multicycle Instructions and Latencies
Store Buffer Load Collision

This section describes cases where a load access collides with a pending
store access in the store buffer because they have the same address (refer to
section “Store Buffer Overflow” on page B-37 for a description of the
store buffer).

Load/Store Size Mismatch

If the load access’s size (8 bit, 16 bit, 32 bit) is different from that of the
store access, the store buffer must be flushed before the load can be carried
out. The stall time depends on how many stores are currently in the buffer
and how long they each take to complete.

W [P0] = R0;
<N cycle stall as the buffer is flushed>

R1 = B [P0];

Store Data Not Ready

The data portion of a store does not necessarily have to be ready when it is
entered into the store buffer. Store data coming from the dagregs and
pregs has no delay, but all other store data is delayed by 3 instructions. If a
load access collides with a store whose data is not ready, the Blackfin pro-
cessor stalls for 3 cycles.

W [P0] = R0;
<3 cycles>
R1 = W [P0];

[P0] = P3;
<0 cycles>
R1 = [P0];
B-38 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Instruction Groups

All instruction group members conform to naming conventions used in
the Blackfin Processor Instruction Set Reference. Instruction groups
described are not necessarily mutually exclusive in that the same instruc-
tion can belong to multiple groups.

Table B-26. Math Ops Instruction Groups

Math Ops

Video Ops Mult Ops ALU Ops

Video Pixel Ops Vector Multiply Logical Ops

32-bit Multiply Bit Ops

Vector MAC Shift/Rotate Ops

Arithmetic Ops (except Mult)

Vector Ops (except Mult/MAC)

Table B-27. Areg2Dreg Ops Instruction Groups

Areg2Dreg Ops

MAC to half reg MAC to data reg Vector Multiply

RND12 RND20 Add on Sign

Modify – Increment, only this case: [dreg|dreg_hi|dreg_lo] = (A0 += A1);
VisualDSP++ 3.5 User’s Guide B-39
for 16-Bit Processors

Multicycle Instructions and Latencies
Register Groups

Table B-28. Allreg Register Groups

allreg

dreg preg sysreg dagreg

R0 P0 ASTAT I0

R1 P1 RETS I1

R2 P2 RETX I2

R3 P3 RETI I3

R4 P4 RETN M0

R5 P5 RETE M1

R6 FP LC0 M2

R7 SP LT0 M3

statbits accreg LB0 L0

ASTAT [0]: AZ A0 LC1 L1

ASTAT [1]: AN A0.x LT1 L2

ASTAT [2]: AC A0.w LB1 L3

ASTAT [3]: AV0 A1 CYCLES B0

ASTAT [4]: AV1 A1.x CYCLES2 B1

ASTAT [5]: CC A1.w SEQSTAT B2

ASTAT [6]: AQ SYSCFG B3
B-40 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Compiled Simulation

A traditional simulator decodes and interprets one instruction at a time.
Each executed instruction often requires repeated decoding. Compiled
simulation removes the overhead of having to repeatedly decode each
instruction.

Compiled simulation is a process whereby the .DXE file loaded into a tradi-
tional simulator is converted into an .EXE file that is executed directly on
the system hosting VisualDSP++. The execution speed of a compiled sim-
ulation program is greater than that of a standard .DXE program.

Compiled simulation employs a simulation compiler that preprocesses
instructions in the .DXE file and generates an intermediate C++ source pro-
gram. This program is compiled and linked with a standard set of libraries to
produce an .EXE file that effects the simulation of the original .DXE file.
Within VisualDSP++, you interact with the .DXE file as in traditional simula-
tion. You do not directly interact with the .EXE file.

In a compiled simulation session, loading and executing the .DXE file loads
and executes the corresponding .EXE file. You can view the .DXE file in disas-
sembled form, set breakpoints, run, step, display registers and memory, and so
on. The compiled simulation debug target maps user requests to the appropri-
ate operations in the .EXE file and returns the results to the IDDE. You can
also invoke an .EXE file in stand-alone mode from the command line.

To prepare a program for compiled simulation, you can begin with either
of the following.

• The source files from which the .DXE was built

• An existing .DXE file
VisualDSP++ 3.5 User’s Guide B-41
for 16-Bit Processors

Compiled Simulation
Program Preparation Starting from Source Files

To prepare a program for compiled simulation by using source files, per-
form the following tasks from within the VisualDSP++ environment.

1. Specify a debug session for compiled simulation.

2. Create a compiled simulation project containing the source files.

3. Build the compiled simulation project to create the .DXE and .EXE
files.

4. Perform one of these actions:

• Execute the program within VisualDSP++ by loading the
.DXE program. This action causes the .EXE program to be
loaded. Run or step the program in the normal way.

• Execute the program outside of VisualDSP++ by opening a
command window and entering the name of the .EXE file. If
the program uses streams, append –streamfile=<filename>
to the command.

Specifying a Session for Compiled Simulation

To run the .EXE file under the control of VisualDSP++, you must config-
ure the debug session for compiled simulation as follows.

1. From the VisualDSP++ Session menu, choose New Session to
open the New Session dialog box.

2. In the Debug target box, select Blackfin Family Compiled Simula-
tor from the drop-down list.

3. In the Platform box, select Blackfin Family Compiled Simulator
from the drop-down list.
B-42 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
4. In the Processor box, select one of these processors: ADSP-BF531,
ADSP-BF532, ADSP-BF533, or ADSP-BF535.

At present, only the Blackfin family processors are supported.

5. In the Session name box, enter a name for this session.

6. Click OK.

Specifying Project Options for Compiled Simulation

When built, a compiled simulation project compiles the sources to the
.DXE file and then invokes the compiled simulation driver to construct the
corresponding .EXE file.

To create a project for compiled simulation:

1. From the Project menu, choose New to open the Save New
Project As dialog box.

2. Enter a file name and click Save.

The Project Options dialog box appears.

3. Click the Project tab.

4. From the Processor drop-down list, select one of these processors:
ADSP-BF531, ADSP-BF532, ADSP-BF533, or ADSP-BF535.

At present, only the Blackfin family processors are supported.

5. In the Type box, select Compiled simulation file from the
drop-down list.
VisualDSP++ 3.5 User’s Guide B-43
for 16-Bit Processors

Compiled Simulation
6. (Optional) Click the Compiled Simulation tab and from the Com-
piler Optimization drop-down list select the optimization level
that the driver will request of the compiler that builds the .EXE file.
Your options are:

• None (default) – no optimizations requested. This selection
typically results in the shortest build time.

• Medium – requests optimization configured to produce a
significant improvement in simulation execution speed.
This selection results in longer build time.

• Maximum – requests all optimizations available to achieve
the fastest possible execution speed. This selection can pro-
duce build times that are significantly longer than those
produced by the Medium setting.

Medium and Maximum differ in effect only if -cmvs is specified in
the Additional options box.

7. (Optional) On the Compiled Simulation page, enter –cmvs in the
Additional options box to select the Microsoft Visual C++ com-
piler (6.0 or 6.1) for compilation.

The –cmvs option does not apply unless the Microsoft Visual C++
compiler (6.0 or 6.1) is installed on your system.

8. Click OK.

9. Build the project to create the .DXE and .EXE files.
B-44 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Program Preparation Starting from an Existing .DXE
File

Invoke the compiled simulator driver at the command line to generate the
.EXE file from the .DXE file. You can invoke the .EXE file in stand-alone
mode from the command line or from within a VisualDSP++ compiled
simulation session.

You can invoke the compiled simulation driver (simcc.exe) from the
command line to produce an executable .EXE file from a .DXE file. You can
then run the executable to simulate the .DXE.

The simcc command syntax is:

simcc -chip [switches and parameters] dxe-filename

Table B-29 describes the simcc command and command-line items
(switches and parameters).

Table B-29. simcc Command and Command-Line Items

Item Description

simcc Runs the compiled simulation driver

–chip Specifies the processor. Valid selections are –BF531, –BF532, –BF533, or –
BF535.

–o exe–filename Specifies the name of the output .EXE file. By default, the output file has
the same name as dxe-filename with an .EXE extension.

–0 Optimizes code (at the medium level) in the generated .EXE file

–0max Optimizes code (at the maximum level) in the generated .EXE file

dxe–filename Specifies the input .DXE file

–help Displays available simcc options

–cmvs Selects the Microsoft Visual C++ 6.0 or 6.1 compiler for compilation. This
choice may result in improved compilation speed.
Note that –cmvs applies only if Microsoft Visual C++ 6.0 or 6.1 is installed
on your system.
VisualDSP++ 3.5 User’s Guide B-45
for 16-Bit Processors

Compiled Simulation
Execution of an .EXE File from the Command Line

When the generated .EXE file is executed from the command line, you config-
ure stream support by supplying a stream configuration file as an argument to
the .EXE file. The stream configuration file is read at program startup, and the
specified streams are created and opened.

The command syntax is:

<exe-filename> [-streamfile=<streamfile>]

Note that <streamfile> is the stream configuration file. The file format is
described as follows.

• Each line in the file represents one stream.

• The input is case insensitive.

• The file is a text file with a .TXT extension.

The syntax of each line is:

filename device [address] direction [flags] [format]

The filename must be the first entry on each line, but the other entries
may appear in any order. Double brackets ([]) denote optional entries.
B-46 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of Blackfin Processors
Table B-30 describes the line parameters in the stream configuration file.

Table B-30. Line Parameters in the Stream Configuration File

Item Description

filename The name of the data file to be read or written. If the name contains
embedded spaces, it must appear within quotes.

device One of the following peripherals.
• memory – denotes memory as the input or output device
• spt0 – denotes serial port 0 as the input or output device
• spt1 – denotes serial port 1 as the input or output device

address The device’s memory address, which is required for a memory stream.
The address can be hexadecimal (prefix 0x or 0X), octal (prefix 0), or
decimal.

direction The stream direction, which is either of the following.
• input
• output

Flags Stream characteristics, as defined by either of the following.
• circular – causes the program to continue reading data from the

start of the file when the end of file is reached
• nocircular (default)

Format The file’s data format, which is one of the following.
• hexadecimal (default)
• octal
• binary
• signed integer
• unsigned integer
• integer
• signed fractional
• unsigned fractional
• fractional

Note: Unless preceded by unsigned, integer and fractional denote signed
values.
VisualDSP++ 3.5 User’s Guide B-47
for 16-Bit Processors

Compiled Simulation
B-48 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

C SIMULATION OF ADSP-21XX
PROCESSORS

This appendix provides simulator-specific information for ADSP-219x

processors. Boot simulation also applies to ADSP-218x processors.

Example programs for the ADSP-219x peripherals in this appendix are in
the Simulator Peripheral Examples folder. To view the examples, open
the Analog Devices folder and then open:

VisualDSP 3.5 16-Bit\219x\Examples\Simulator Peripheral Examples

The information is organized as follows.

• “Peripheral Support in Simulators” on page C-2

• “General-Purpose I/O (GPIO) or Flag I/O (FIO) Peripheral” on
page C-4

• “Host Port Interface (HPI) Peripheral” on page C-6

• “Serial Peripheral Interface (SPI)” on page C-11

• “Serial Port (SPORT) Peripheral” on page C-19

• “Universal Asynchronous Receiver/Transmitter (UART) Periph-
eral” on page C-23

• “Timer (TMR) Peripheral” on page C-26

• “Memory DMA (MEMDMA) Peripheral” on page C-32

• “Simulator Instruction Timing Analysis Overview” on page C-36

• “Boot Simulation” on page C-46
VisualDSP++ 3.5 User’s Guide C-1
for 16-Bit Processors

Peripheral Support in Simulators
Peripheral Support in Simulators

Use the following key for the tables in this section.

Table C-1 summarizes peripheral support in the ADSP-2191 simulator.

Key

Implemented

NA Not applicable

NP Not planned for implementation

Table C-1. Peripheral Support in the ADSP-2191 Simulator

Peripheral Support Model Streamable Bootable

EMI NA NP

GPIO NP

Host Port NP

SPI0 NP

SPI1 NP

SPT0 NP

SPT1 NP

SPT2 NP

UART NP

Timer NA NA

MEMDMA NA NA

INTC NA NA

Boot PROM NA

Programmable Flags NP NP NA
C-2 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Table C-2 summarizes peripheral support in the ADSP-2192-12 simulator.

Table C-3 summarizes peripheral support in the ADSP-218x simulator.

Table C-2. Peripheral Support in the ADSP-2192-12 Simulator

Peripheral Support Model Streamable Bootable

Timer NP NA

USB NP NP

PCI NP NP

Table C-3. Peripheral Support in the ADSP-218x Simulator

Peripheral Support Model Streamable Bootable

Timer NP NP

SPORT NP

IDMA NP

BDMA
VisualDSP++ 3.5 User’s Guide C-3
for 16-Bit Processors

General-Purpose I/O (GPIO) or Flag I/O (FIO) Peripheral
General-Purpose I/O (GPIO) or Flag I/O
(FIO) Peripheral

The GPIO peripheral provides flag I/O functionality. The 16 flag I/O bits
are grouped as a 16-bit register. The behavior of the bits is controlled with
ten, 16-bit registers as shown in Table C-4. Each pin/bit is independent of
the others. The reset value of all GPIO registers is 0 (zero).

Table C-4. GPIO Registers

Register Address Description

Direction 0x1800 Controls whether bits are input or output (output = 1)
You can alter this value while the program is running.

Control and Status
(two registers)

0x1802 Write 1 to clear. Clears the value of output bits.

0x1803 Write 1 to set. Sets the value of output bits.

Note: Input bits are read-only. Both registers can be read for current status.

Interrupt Mask A
(two registers)

0x1804 Write 1 to clear. Clears bits in Interrupt Mask A.

0x1805 Write 1 to set. Sets bits in Interrupt Mask A.

Note: Both registers can be read for the current Mask A value.

Interrupt Mask B
(two registers)

0x1806 Write 1 to clear. Clears bits in Interrupt Mask B.

0x1807 Write 1 to set. Sets bits in Interrupt Mask B.

Note: Both registers can be read for current Mask B value.

Polarity 0x1808 Relation between GPIO bits and chip pins
(reverse = 1)

Interrupt Sensitivity 0x180A Level or edge sensitive interrupts (edge = 1)

Interrupt Edge Sensitivity 0x180C Double- or single-edge sensitive (double = 1)
C-4 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Input and Output Handling

Use streams to simulate GPIO flags. The input values are read from
stream GPIO.RX, and the output values are written to stream GPIO.TX.
Only bits currently set as input bits are changed from the input stream,
and only bits currently set as output bits are written to the output stream.

You can individually set the GPIO flags by using the signal interface,
which overrides the streams for the bits in question. Any input bit that has
no signal or stream input value is either set to 0 (zero) initially, or is
returned to its previous value.

GPIO Window in VisualDSP++

You can view the GPIO register from the GPIO window.

To open the GPIO window:

1. From the Registers menu, choose Peripherals.

2. Choose GPIO.

When you set registers from the window, their values are updated
immediately.
VisualDSP++ 3.5 User’s Guide C-5
for 16-Bit Processors

Host Port Interface (HPI) Peripheral
Host Port Interface (HPI) Peripheral

The ADSP-2191 Host Port Interface peripheral enables you to simulate
host-port functionality. The peripheral supports DMA-controlled accesses
and external host-initiated accesses.

The Host Port has ten registers to control its operation.

• Host Port Configuration register (0x1C01)

• Host Port Page register (0x1C02)

• Host Port Status register (0x1C03)

The DMA Control register conforms to the standard ADSP-2191
DMA descriptors.

• DMA Descriptor Pointer register (0x1D00)

• DMA Configuration register (0x1D01)

• DMA Page register (0x1D02)

• DMA Address register (0x1D03)

• DMA Count register (0x1D04)

• DMA Next Descriptor Pointer register (0x1D05)

• DMA Descriptor Ready register (0x1D06)
C-6 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Input and Output

The Host Port has three associated streams to handle input, output, and
external control.

• HOST.RX – Data input is from this stream. Data for DMA and
external host-initiated writes to memory is read from the input
stream.

• HOST.TX – Data output goes to this stream. Data from DMA
and external host-initiated reads from memory is written to this
output stream.

• HOST.CONTROL – External host-initiated operations are con-
trolled from this control stream. Commands are read from this file
and carried out until the end of the file is reached or the STOP
command is found.

DMA operations have priority over external initiated operations, and,
consequently, force the suspension of any external-initiated operations
until the DMA operation is finished. Processing of the external initiated
operations then resumes from the point at which they were suspended.

External-Initiated Control File Commands

The control file is a stream file, which is a list of numbers. You must con-
struct this file if you have to simulate external host-initiated operations.

The C header file hostcommands.h, used in the VisualDSP++ build, is
included to ensure that the exact definitions are available. They are docu-
mented in “Command Bit Definitions” on page C-8.

In the control file, any line that is blank or zero is skipped. On the same
peripheral cycle, the control file is read until a command is reached. Argu-
ments, however, are expected on the line immediately following their
command. Therefore, they can be zero.
VisualDSP++ 3.5 User’s Guide C-7
for 16-Bit Processors

Host Port Interface (HPI) Peripheral
Processing of the control file continues during DMA operations until any
of the following occur.

• External initiated direct operation – This operation is delayed until
the DMA operation is finished.

• Stop command – This command stops processing.

• Wait for DMA command – This command suspends the control
file until a DMA interrupt occurs.

Command Bit Definitions

The following bit definitions are used to construct the HPI commands.
The word is read from the control file and decoded. If the word requires
arguments, subsequent words are read to provide the arguments (such as
counts for repeated operations).

• #define HOST_DIRECT (0x100)

An external host-initiated direct operation

The particular direct operation is specified in the lower 8 bits.

In the case of a burst operation, the number of operations is
specified as an argument.

For extra bit definitions, see “External-Initiated Direct Operation
Bit Definitions” on page C-9.

• #define HOST_DELAY (0x200)

Provides a delay

The number of peripheral cycles is specified as an argument.

• #define HOST_REPEAT (0x300)

The Next command is repeated a specified number of times.
C-8 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
The number of repetitions is specified as an argument.

• #define HOST_NULL (0x400)

No operation

Provides a one peripheral cycle delay

No argument

• #define HOST_STOP (0x500)

Terminates processing of the control file until a reset operation
occurs

No argument

• #define HOST_WAIT_FOR_DMA (0x600)

Suspends processing of the control file until a host DMA interrupt
is generated

No argument

External-Initiated Direct Operation Bit Definitions

For external-initiated direct operations, the following bits further define
the operation.

• #define HOST_READ (0x00)

A host-port read, memory-write operation

• #define HOST_WRITE (0x01)

A host port write, memory read operation

Data memory (HSC0) or IO memory (HSC1)
VisualDSP++ 3.5 User’s Guide C-9
for 16-Bit Processors

Host Port Interface (HPI) Peripheral
• #define HOST_HSC0 (0x02)

Simulates the external pin HSC0 being high

• #define HOST_HSC1 (0x04)

Simulates the external pin HSC1 being high

• #define HOST_MEMHOST_HSC0

• #define HOST_ONCHIP_IOHOST_HSC1

Provided for convenience

• #define HOST_SLAVE (0x00)

A single direct operation

• #define HOST_BURST (0x08)

A burst operation

The number of accesses is specified by an argument.

• #define HOST_LATCH (0x00)

The operation is conducted with Address Latch Enable.

• #define HOST_CYCLE (0x10)

The operation is conducted with Address Cycle Control.
C-10 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Host Port Window in VisualDSP++

You can view the host port registers from the Host Port window.

To open the Host Port window:

1. From the Registers menu, choose Peripherals.

2. Choose Host.

Unsupported Features

Packing is not simulated. Words are read from and written to stream files
as complete words.

Example – DMA Transfer to the Host Port

The HPI example sets up a DMA transfer to the host port and generates
an interrupt upon completion.

Set up a stream file to accept the output from the stream HOST.TX.

This example is located in the following folder.

Simulator Peripheral Examples\HPI

Serial Peripheral Interface (SPI)

The SPI peripheral module provides industry-standard synchronous serial
link functionality. Two SPI peripherals are on the ADSP-2191 DSP.

In the external four-wire interface, only the MOSI and MISO pins are simu-
lated while SPICLK and PIO_nSPISSIN are not. You can use the stream
interface with the MOSI and MISO pins only.
VisualDSP++ 3.5 User’s Guide C-11
for 16-Bit Processors

Serial Peripheral Interface (SPI)
The simulator supports DMA and non-DMA modes as both master and
slave, which takes into account baud rates but not clock phase and
polarity.

The simulator supports the following SPI registers.

• Control[15:0] – Control

• Flag[15:0] – Flag (content is ignored)

• Status[6:0] – Status

• TDBR[15:0] – Transmit Data Buffer

• RDBR[15:0] – Receive Data Buffer

• Baud [15:0] – Baud Rate

• RDBR_SHADOW[15:0] – Receive Data Buffer (Shadow)

• DMA Current Pointer [15:0]

• DMA Configuration [15:0]

• DMA Start Page [8:0]

• DMA Start Address [15:0]

• DMA Word Count [15:0]

• DMA Next Descriptor [15:0]

• DMA Descriptor Ready [0]

• DMA Interrupt [0]
C-12 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
SPI Global Status and Control

Table C-5 describes the bits in the SPI Global Status and Control register.

The mode fault error bit in the SPIFLG register is not supported.

The configuration bits in Table C-6 do not affect the simulator.

Table C-5. Register Bits

Bit Status[6:0] Global Status and Control

0 SPIF Single-word transfer complete

1 MODF Mode fault error for master device (not supported)

2 TXE Transmission error: transmission occurred with no new data
in TDBR

3 TXS TDBR status: 0 = empty, 1 = full

4 RBSY Receive error: data is received with RDBR full

5 RXS RBDR status: 0 = empty, 1 = full

6 TXCOL Transmit collision error: possible corrupted data transmitted

Table C-6. Register Bits that Do Not Affect Simulation

Bit Config[15:0] SPI Configuration Register

4 PSSE PIO_nSPISSIN input for master

5 EMISO MISO pin as output

10 CPHA Clock phase

11 CPOL Clock polarity

13 WOM Open drain data output
VisualDSP++ 3.5 User’s Guide C-13
for 16-Bit Processors

Serial Peripheral Interface (SPI)
SPI Signal Usage

The following signals are not recognized.

• PIO_nSPISSIN

• SPICLK

Modes of Operation

Master mode and slave mode can each be operated with or without DMA.

Master Mode Operation (No DMA)

The core writes to SPICTL and SPIBAUD to configure the device as master
and to set the word length and baud rate. Transfer starts upon a write to
TDBR or a read from RDBR, depending on the configuration of the TIMOD
bits in SPICTL. Data is read from the MISO pin into RDBR and sent out to
the MOSI pin from TDBR.

If TDBR remains empty or RDBR remains full, the SPI operates according to
the SZ and GM bits in the SPICTL register. The simulator does not generate
the programmed clock pulses on SPICLK during transmission.

Slave Mode Operation (No DMA)

Slave mode operation is summarized as follows.

1. The core writes to SPICTL to configure the device as slave and to set
the word length.

2. In hardware, the transfer starts once a falling edge of the
PIO_nSPISSIN is detected.

The simulator does not simulate transitions of the PIO_nSPISSIN
pin. Therefore, transmission starts as soon as slave mode is properly
set and the SPI device is enabled.
C-14 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
3. Transmission ends after the proper number of clock cycles but not
when PIO_nSPISSIN is released.

4. Data is read from the MOSI pin into RDBR, and is sent out to the
MISO pin from TDBR.

If TDBR remains empty or RDBR remains full, the SPI operates according to
the SZ and GM bits in the SPICTL register. The simulator does not synchro-
nize transmission on SPICLK active edges.

Master Mode DMA Operation

Master mode DMA operation is summarized as follows.

1. The core writes to SPICTL and SPIBAUD to configure the device as
master and to set the word length and baud rate. TIMOD bits are set
to the “Transmit or Receive with DMA” mode.

2. The core generates one or more descriptor blocks in page 0 of the
memory space.

3. The core writes to the DMA Configuration register to enable the
DMA engine.

4. If the device is configured for transmit operation, the transfer starts
when the DMA engine reads data from memory into the DMA
buffer. If the device is configured for receive operation, the transfer
starts when the DMA engine reads data from DMA buffer into
memory.

5. Data is read from the MISO pin into RDBR and is sent out to the MOSI
pin from TDBR until the DMA Word Count register reaches 0.

If TDBR remains empty or RDBR remains full, the SPI operates according to
the SZ and GM bits in the SPICTL register.

The simulator does not generate the programmed clock pulses on SPICLK
during transmission.
VisualDSP++ 3.5 User’s Guide C-15
for 16-Bit Processors

Serial Peripheral Interface (SPI)
Slave Mode DMA Operation

Slave mode DMA operation is summarized as follows.

1. The core writes to SPICTL to configure the device as slave and to set
the word length. TIMOD bits are set to the “Transmit or Receive
with DMA” mode.

2. The core generates a DMA receive descriptor block in page 0 of the
memory space.

3. The core writes to the DMA Configuration register to enable the
DMA engine. The head of the descriptor block is written to the
DMA Next Descriptor register.

4. In hardware the transfer starts once a falling edge of the
PIO_nSPISSIN is detected. Note that the simulator does not simu-
late transitions of the PIO_nSPISSIN pin. Therefore, transmission
starts as soon as the slave mode DMA is properly set and the SPI
device is enabled.

5. Transmission ends when the DMA Word Count register reaches 0.

6. The core can continue by queuing the next command buffer
descriptor block.

7. Data is read from the MOSI pin into RDBR and is sent to the MISO pin
from TDBR.
C-16 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
SPI with Streams

The SPI can read and write from the MISO and MOSI pins by using the
streams functionality in VisualDSP++.

You can attach a file to the following device names.

SPI0.MISO

SPI0.MOSI

SPI1.MISO

SPI1.MOSI

The format of the input file is as follows.

Data0

Data1

…

DataN

Data can be 8 or 16 bits long, depending on the word length set in the
SPICTL register.

The MISO and MOSI pins are used as input or output pins, depending on
whether the SPI device is configured as master or slave.

Slave Mode DMA Example

This example is located in the following folder:

Simulator Peripheral Examples\SPI

The example reads data from the SPI0.MOSI pin to a memory buffer by
using DMA, and compares the input with internal values.
VisualDSP++ 3.5 User’s Guide C-17
for 16-Bit Processors

Serial Peripheral Interface (SPI)
After you load the project and build the executable file, choose Streams
from the Tools menu to attach the SPI0.MOSI pin to the following input
file (provided with the example).

0x0001

0x0002

0x0004

0x0008

0x0010

0x0020

0x0040

0x0080

0x0100

0x0200

0x0400

0x0800

0x1000

0x2000

0x4000

0x8000

For information about using streams, refer to the VisualDSP++ on-line
Help.
C-18 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Serial Port (SPORT) Peripheral

The Serial Port peripheral provides a simulation of serial port functional-
ity. The module supports all modes of operation, including Direct
Memory Access (DMA), Multichannel Mode (MCM), and inter-
rupt-driven modes for both transmit (TX) and receive (RX). Additionally,
the zero-fill, sign-extend, and A-Law/µ-Law companding data types are
supported on transmit and receive. The ADSP-2191 has three serial ports,
which are supported in the simulator.

The Serial Port has the following registers in memory mapped register
space plus the offsets shown in Table C-7, Table C-8, and Table C-9.

Table C-7. MCM Select and Configuration Registers

MCM Select and Configuration
Registers

SPT0 SPT1 SPT2

TX Channel Select MTCS[0:7] 0x0A09-10 0x0C09-10 0x0E09-10

RX Channel Select MRCS[0:7] 0x0A11-18 0x0C11-18 0x0E11-18

Multichannel Configuration (register 1) 0x0A19 0x0C19 0x0E19

Multichannel Configuration (register 2) 0x0A1A 0x0C1A 0x0E1A

Table C-8. Configuration and Status Registers

Configuration and Status Registers SPT0 SPT1 SPT2

Serial Port TX Configuration 0x0A00 0x0C00 0x0E00

Serial Port RX Configuration 0x0A01 0x0C01 0x2E01

Serial Port TX Buffer 0x0A02 0x0C02 0x0E02

Serial Port RX Buffer 0x0A03 0x0C03 0x0E03

Serial Port TX Serial Clock Divisor 0x0A04 0x0C04 0x0E04

Serial Port RX Serial Clock Divisor 0x0A05 0x0C05 0x0E05

Serial Port TX Frame Synch Divisor 0x0A06 0x0C06 0x0E06
VisualDSP++ 3.5 User’s Guide C-19
for 16-Bit Processors

Serial Port (SPORT) Peripheral
Serial Port RX Frame Synch Divisor 0x0A07 0x0C07 0x0E07

Serial Port Status 0x0A08 0x0C08 0x0E08

Table C-9. DMA Control Registers

DMA Control Registers (these conform
to the standard ADSP-2191 DMA
descriptors)

SPT0 SPT1 SPT2

RX DMA Descriptor Pointer 0x0B00 0x0D00 0x0F00

RX DMA Configuration 0x0B01 0x0D01 0x0F01

RX DMA Page 0x0B02 0x0D02 0x0F02

RX DMA Address 0x0B03 0x0D03 0x0F03

RX DMA Count 0x0B04 0x0D04 0x0F04

RX DMA Next Descriptor Pointer 0x0B05 0x0D05 0x0F05

RX DMA Descriptor Ready 0x0B06 0x0D06 0x0F06

RX DMA IRQ Status 0x0B07 0x0D07 0x0F07

TX DMA Descriptor Pointer 0x0B80 0x0D80 0x0F80

TX DMA Configuration 0x0B81 0x0D81 0x0F81

TX DMA Page 0x0B82 0x0D82 0x0F82

TX DMA Address 0x0B83 0x0D83 0x0F83

TX DMA Count 0x0B84 0x0D84 0x0F84

TX DMA Next Descriptor Pointer 0x0B85 0x0D85 0x0F85

TX DMA Descriptor Ready 0x0B86 0x0D86 0x0F86

TX DMA IRQ Status 0x0B87 0x0D87 0x0F87

Table C-8. Configuration and Status Registers (Cont’d)

Configuration and Status Registers SPT0 SPT1 SPT2
C-20 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Input and Output

Each of the three serial ports has two standard VisualDSP++ data streams.

• SPT0: SPT0.TX, SPT0.RX

• SPT1: SPT1.TX, SPT1.RX

• SPT2 SPT2.TX, SPT2.RX

You can use these streams to associate an input data file with the RX of
SPT0, SPT1, or SPT2 or to capture the values of TX into a file. Values in
a stream are associated with the RX/TX parallel registers in the serial
ports, not the actual serial pins. Therefore, for each “word” received by the
SPORT, a value is consumed or generated in the stream file. Simulation of
the transfer duration includes consideration of the frame synch and clock
divisors.

To associate files with SPT RX/TX, choose Streams from the Settings
menu.

Serial Port Windows in VisualDSP++

The serial port registers appear in the Serial Port window.

To view these registers:

1. From the Registers menu, choose Peripherals.

2. Choose SPT0, SPT1, or SPT2.

These windows provide a compact view of all the registers for each
SPORT. You can access individual status and configuration register fields
by creating custom register windows.
VisualDSP++ 3.5 User’s Guide C-21
for 16-Bit Processors

Serial Port (SPORT) Peripheral
Unsupported Features

You can manipulate all the serial port configuration bits. Configuration
related to frame synchs does not always have a significant impact on the
simulation. For example, although the FSR bits are used, the following
DSP capabilities are not simulated.

• Internal or external synch

• Synch polarity

• Early or late synch

Serial clock and frame synch divisor registers are simulated. Therefore,
they impact the duration required to transfer words.

Example – SPORT DMA

The example program (spt) is located in the following folder.

Simulator Peripheral Examples\Sport

The example uses an input stream and performs a DMA to memory.

To run the example, open the README.txt file and follow the instructions.
C-22 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Universal Asynchronous
Receiver/Transmitter (UART) Peripheral

The ADSP-2191 UART peripheral provides a simulation of UART port
functionality. It supports all modes of operation, including Direct Mem-
ory Access (DMA) and interrupt driven modes for both transmit (TX) and
receive (RX).

Table C-10 lists the UART registers used to control its operation.

The Phantom addresses appear in the VisualDSP++ IOM memory
display. The registers are not addressable by user code at those
locations.

Table C-10. UART Registers

Configuration and Status Real Phantom (if different)

UART Transmit Hold Register (THR) 0x1400

UART Divisor Latch (Low Byte) (DLL) 0x1400 0x1408

UART Receive Buffer Register (RBR) 0x1400 0x1409

UART Interrupt Enable Register (IER) 0x1401

UART Divisor Latch (High Byte) (DLH) 0x1401 0x140A

UART Interrupt Identification Register (IIR) 0x1402

UART Line Control Register (LCR) 0x1403

UART Modem Control Register (MCR) 0x1404

UART Line Status Register (LSR) 0x1405

UART Modem Status Register (MSR) 0x1406

UART Scratch Register (SCR) 0x1407
VisualDSP++ 3.5 User’s Guide C-23
for 16-Bit Processors

Universal Asynchronous Receiver/Transmitter (UART) Peripheral
Table C-11 lists the DMA Control registers.

Input and Output

Each UART has two standard VisualDSP++ data streams:

• UART.TX

• UART.RX

Table C-11. DMA Control Registers

DMA Control Registers (these conform to the standard
ADSP-2191 DMA descriptors)

SPT0

RX DMA Descriptor Pointer 0x1500

RX DMA Configuration 0x1501

RX DMA Page 0x1502

RX DMA Address 0x1503

RX DMA Count 0x1504

RX DMA Next Descriptor Pointer 0x1505

RX DMA Descriptor Ready 0x1506

RX DMA IRQ Status 0x1507

TX DMA Descriptor Pointer 0x1580

TX DMA Configuration 0x1581

TX DMA Page 0x1582

TX DMA Address 0x1583

TX DMA Count 0x1584

TX DMA Next Descriptor Pointer 0x1585

TX DMA Descriptor Ready 0x1586

TX DMA IRQ Status 0x1587
C-24 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
UART Window in VisualDSP++

The serial port registers appear in the UART window.

To view these registers:

1. From the Registers menu, choose Peripherals.

2. Choose UART to open the UART window.

This window provides a compact view of all the registers for the UART.
You can access individual status and configuration register fields by creat-
ing a custom register window.

Unsupported Features

You can manipulate all the UART configuration bits. Currently, you can-
not simulate the data error (Framing Error, Parity Error, Break Interrupt)
conditions or the Modem Status status bits (Data Carrier Detect, Ring
Indicator, Data Set Ready, Clear To Send). You can specify Set Break in
the Line Control (LCR) register, but this setting has no effect. The cur-
rent simulator does not model the IRCR register.

Example

The UART example performs a 32-word DMA receive after configuring
the interrupt controller, the SPORT, and the DMA engine.

This example is located in the following folder.

Simulator Peripheral Examples\UART
VisualDSP++ 3.5 User’s Guide C-25
for 16-Bit Processors

Timer (TMR) Peripheral
Timer (TMR) Peripheral

The ADSP-2191 DSP Timer peripheral provides general-purpose timer
functionality. The ADSP-2191 DSP has three timer peripherals that are
external to the core.

The simulator supports each of the three functional modes:

• PWM_OUT Mode – Pulse Width Modulation

• WDTH_CAP Mode – Pulse Width and Period Capture

• EXT_CLK Mode – External Event Watchdog

Each timer has one bidirectional chip pin, TMR_PIN, and one auxiliary
module input pin, AUX_IN. The simulator does not, however, distinguish
between these two pins (as described below).

The simulator supports the architected registers for each timer. These reg-
isters are:

• Config [15:0] – Configuration

• Width [31:0] – Pulse Width

• Period [31:0] – Pulse Period

• Counter [31:0] – Timer Counter
C-26 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Timer Global Status and Control

Table C-12 describes the bits in the Timer Global Status and Control
register.

Table C-12. Timer Global Status and Control Register Bits

Bit Status[15:0] Global Status and Control

0 IRQ0 Timer 0 IRQ “Write one to clear” (also an output)

1 IRQ1 Timer 1 IRQ “Write one to clear” (also an output)

2 IRQ2 Timer 2 IRQ “Write one to clear” (also an output)

3 Reserved Timer 3 (reserved)

4 OVF_ERR0 Timer 0 Counter overflow

5 OVF_ERR1 Timer 1 Counter overflow

6 OVF_ERR2 Timer 2 Counter overflow

7 Reserved Timer 3 (reserved)

8 TIMEN0 Timer 0 – “Write one to set”

9 TIMEN0 Timer 0 – “Write one to clear”

10 TIMEN1 Timer 1 – “Write one to set”

11 TIMEN1 Timer 1 – “Write one to clear”

12 TIMEN2 Timer 2 – “Write one to set”

13 TIMEN2 Timer 2 – “Write one to clear”

14 Reserved Timer 3 (reserved)

15 Reserved Timer 3 (reserved)
VisualDSP++ 3.5 User’s Guide C-27
for 16-Bit Processors

Timer (TMR) Peripheral
Table C-13 describes the bits in the Timer Configuration register. Note
that bit 5 does not affect the simulator.

Table C-13. Timer Configuration Register Bits

Bit Config[15:0] Timer Configuration Register Simulator Semantics

1:0 MODE_FIELD 00 – Reset State - unused
01 – PWM_OUT Mode
10 – WDTH_CAP Mode
11 – EXT_CLK Mode

2 PULSE_HI 1 – Positive Active Pulse
0 – Negative Active Pulse

3 PERIOD_CNT 1 – Count to end of Period
0 – Count to end of Width

4 IRQ_ENA 1 – Interrupt Request Enable
0 – Interrupt Request Disable

5 AUX_IN_SEL 1 – AUX_IN Select
0 – TMR_PIN Select

For input the simulator
uses streams as described
below. When you use
streams as input to the tim-
ers, no distinction is made
between AUX_IN and
TMR_PIN.

15:6 Unused
C-28 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Timer Signal Usage

The signals listed in Table C-14 are not recognized. Note that “NA”
designates not applicable.

Modes of Operation

The modes of operation are:

• PWM (Pulse Width Modulation)

• Width capture

• External clock

Timer with Streams Usage

This section describes the timer with streams usage.

WDTH_CAP Mode

In width capture (WDTH_CAP) mode, the timer counts the number of
clocks in both the width and period. The waveform that the timer reads is
attached via the Streams dialog box in VisualDSP++.

Table C-14. Unrecognized Timer Signals

Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

AUX_IN_SEL Unused 1 – Select AUX_IN Input
0 – Select TMR_PIN Input

Unused

TMR_AUX_IN Unused Auxiliary Input waveform Unused

WAKE_UP NA NA NA
VisualDSP++ 3.5 User’s Guide C-29
for 16-Bit Processors

Timer (TMR) Peripheral
You can attach a file to the following device names.

• TIMER0_WDTH_CAP

• TIMER1_WDTH_CAP

• TIMER2_WDTH_CAP

The format of the input file is as follows.

PERIOD_COUNT

WIDTH_COUNT

PERIOD_COUNT

WIDTH_COUNT

In WDTH_CAP mode, the timer reads two 32-bit values from the input
file. The first value is the number of pulses (clocks) in the period. The sec-
ond value is the number of pulses in the width.

When PULSE_HI is set, the timer delivers high widths and low periods.
When PULSE_HI is not set, the timer delivers low widths and high periods.

Example Streams Data File

The timer example is located in the following folder.

Simulator Peripheral Examples\TIMER

If you are using streams with WDTH_CAP mode, your data file should
look like Table C-15.

Table C-15. Streams Data File Attached to TIMER0_WDTH_CAP

Data in File Semantics

0x2 First period value

0x1 First width value
C-30 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
When MODE = WDTH_CAP and PULSE_HI = 0, the resulting waveforms are
described in Table C-16.

To program the timer in WDTH_CAP mode:

1. Write to the Timer Configuration register:

IRQ_ENA = 1

PERIOD_CNT = 0

PULSE_HI = 0

MODE_FIELD = 0x10 = WIDTH_CAP mode

2. Write to the Timer Global Status and Control register to enable
the timer.

The timer, if connected to a data file via the streams interface, now
delivers pulses as outlined above.

0x4 Second period value

0x2 Second width value

0x8 Third period value

0x4 Third width value

Table C-16. Resulting Waveforms

0 1 First pulse chain

0 0 1 1 Second pulse chain

0 0 0 0 1 1 1 1 Third period value

Table C-15. Streams Data File Attached to TIMER0_WDTH_CAP (Cont’d)

Data in File Semantics
VisualDSP++ 3.5 User’s Guide C-31
for 16-Bit Processors

Memory DMA (MEMDMA) Peripheral
External Clock Mode

The external clock is limited to 66.5 MHz. Therefore, the simulator auto-
matically divides the peripheral clock when a timer is enabled in external
clock mode.

Memory DMA (MEMDMA) Peripheral

The Memory DMA (MDMA) peripheral enables you to move data and
instructions between internal memory and off-chip memory. The MDMA
uses the ADSP-219x style of distributed DMA, whereby each DMA chan-
nel is located in the peripheral itself. The MDMA has dedicated Write and
Read DMA channels. This DMA scheme is further based on descriptors,
which describe the type of transfer to be carried out. These descriptors are
managed in internal memory and are downloaded to the MDMA.

For details about DMA in the ADSP-2191, refer to the ADSP-219x/2191
Hardware Reference.

Modes

Of the two DMA modes (Auotbuffer and Descriptor block), only Descrip-
tor block is supported in the MEMDMA peripheral. This mode is set up
as follows.

HEAD refers to the value of the current descriptor.

1. The software memory writes HEAD+1,+2,+3,+4 to internal
memory.

2. The software memory writes HEAD+0 to internal memory. Bit 15
(ownership) must be set to 1.

3. The software I/O writes the DescReady register of the respective
DMA channel (if necessary).
C-32 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
4. The software I/O writes the NXTPTR register of the DMA chan-
nel (only to start the first descriptor).

5. The software I/O writes the Configuration register setting
DMAEn high (only to start the first descriptor).

Note:

• Burst mode is not simulated in the simulator. Therefore, values in
memory show up sooner than they would appear in the hardware.

• Simulation of the MEMDMA is not cycle accurate.
VisualDSP++ 3.5 User’s Guide C-33
for 16-Bit Processors

Memory DMA (MEMDMA) Peripheral
Registers

Table C-17 describes the Write Channel registers.

Table C-17. Write Channel Registers

Address Name Description

0x900 Current PTR Pointer of current descriptor
being worked on

0x901 DMA Config
 DMA Enable (bit 0/1 bit)
 Direction (bit 1/1 bit)
 Interrupt on Completion (bit 2/1 bit)

 Data Type (bit 3/1 bit)
 DMA Buffer Clear (bit 7/1 bit)
 DMA Buffer Status (bit 12/2 bit)
 Ownership (bit 15/1 bit)

Enable Bit - Start transfer
Locked as 1 for Write Channel
Generate interrupt on completion
of transfer
16- or 24-bit transfer
Clear Write channel FIFO
DMA Buffer Status – 00 empty
Descriptor Ownership 0 = DSP, 1
= DMA

0x902 Start Page
 Start Page (bit 0/8 bits)
 Space (bit 8/1 bit)

Page of transfer
0 = mem, 1 = boot

0x903 Start Address Current address of memory writes

0x904 DMA Count Current count of transfer

0x905 Next Descriptor Location of next descriptor

0x906 Descriptor Ready Indicates descriptor is ready for
loading

0x907 IRQSTAT Status of interrupt
C-34 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Table C-18 describes the Read Channel registers.

MEMDMA does not generate errors in the transfer. No errors are
generated as long as the registers are programmed correctly. Refer
to the ADSP-219x/2191 Hardware Reference for more information.

Table C-18. Read Channel Registers

Address Name Description

0x980 Current PTR Pointer of current descriptor being
worked on

0x981 DMA Config
 DMA Enable (bit 0/1 bit)
 Direction (bit 1/1 bit)
 Interrupt on Completion (bit 2/1 bit)

 Data Type (bit 3/1 bit)
 DMA Buffer Clear (bit 7/1 bit)
 DMA Buffer Status (bit 12/2 bit)
 Ownership (bit 15/1 bit)

Enable Bit - Start transfer
Locked as 0 for Read Channel
Generate interrupt on completion of
transfer
16- or 24-bit transfer
Clear Write channel FIFO
DMA Buffer Status – 00 empty
Descriptor Ownership 0 = DSP, 1 =
DMA

0x982 Start Page
 Start Page (bit 0/8 bits)
 Space (bit 8/1 bit)

Page of transfer
0 = mem, 1 = boot

0x983 Start Address Current address of memory writes

0x984 DMA Count Current count of transfer

0x985 Next Descriptor Location of next descriptor

0x986 Descriptor Ready Indicates descriptor is ready for
loading

0x987 IRQSTAT Status of interrupt
VisualDSP++ 3.5 User’s Guide C-35
for 16-Bit Processors

Simulator Instruction Timing Analysis Overview
Example – MEMDMA Transfer

This example demonstrates multiple internal to internal DMA transfers
within the memory of the ADSP-2191 DSP.

The example uses these two methods to check for DMA completion:

• Interrupts: At the end of the first transfer, a DMA completion
interrupt is generated.

• Ownership bit of the Configuration word: The second DMA polls
this bit in memory to see if it is cleared. At the end of the transfer,
the DMA engine writes 0 (zero) to this bit in memory to transfer
the control of DMA descriptor block to the DSP.

The MEMDMA example is located in the following folder.

Simulator Peripheral Examples\MEMDMA

Simulator Instruction Timing Analysis
Overview

The ADSP-219x Family Simulator is a cycle-accurate simulator with a
six-stage pipeline. The simulator functionality models the behavior of the
ADSP-2191 DSP by updating registers, memory, and peripherals. The
processor state is updated after each instruction execution.

The correct execution count trails the execution of the instruction by at
least the length of the sequencer pipeline and maybe more. When you
break execution of the simulator, the cycle count may not be accurate. At
the completion of the program, the cycle count is correct.

The Pipeline Viewer enables you to understand the execution timing of
your program. It shows the flow of instructions through the pipeline and
any stalls due to sequencer or memory events.
C-36 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
For information about configuring and using the Pipeline Viewer, see
“Pipeline Viewer Window” on page 2-93 or the VisualDSP++ on-line
Help.

Cycle-Accurate Simulator

The ADSP-219x Family Simulator is classified as a cycle-accurate
simulator because it models the behavior of the following.

• Instruction set

• Processor sequencer

• Memory hierarchy, including the external SRAM

• Registers, including the MMRs

• All the core peripherals

• All memory transactions

Instruction Pipeline

The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions are required, the DSP executes instructions
from program memory in sequential order by incrementing the
look-ahead address. Using its instruction pipeline, the DSP processes
instructions in six clock cycles:

• Look-Ahead Instruction (LA). The DSP determines the source for
the instruction from inputs to the look-ahead address multiplexer.

• Pre-fetch Instruction (PA) and Fetch Instruction (FA). The DSP
reads the instruction from either the on-chip instruction cache or
from program memory.
VisualDSP++ 3.5 User’s Guide C-37
for 16-Bit Processors

Simulator Instruction Timing Analysis Overview
• Address Decode (AD) and Instruction Decode (ID). The DSP
decodes the instruction and generates conditions that control
instruction execution.

• Execute (PC). The DSP executes the instruction, and completes
the operations specified by the instruction in a single cycle.

These cycles overlap in the pipeline. In sequential program flow, when
one instruction is being fetched, the instruction fetched three cycles previ-
ously is being executed. With few exceptions, sequential program flow has
a throughput of one instruction per cycle. The exceptions are the
two-cycle instructions: 16- or 24-bit immediate data writes to memory
with indirect addressing, long jump (Ljump) and long call (Lcall).

Any non-sequential program flow can potentially decrease the DSP’s
instruction throughput. Non-sequential program operations include:

• Program memory data accesses that conflict with instruction
fetches

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops (of less than five instructions)
C-38 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Delay in the Pipeline Viewer Window

The code sequence in Figure C-1 illustrates the lag.

In the above code sequence, data register Ax0 has just been assigned from
system register CNTR at instruction address 0x00. The instruction at address
0x02 is the next instruction to be executed.

The Pipeline Viewer window shows the execution of the instruction at
address 0.

The Pipeline Viewer window displays:

• Pipeline stages

• Cycle-by-cycle analysis of the instructions passing through the
pipeline stages

Figure C-1. Lag in the Pipeline
VisualDSP++ 3.5 User’s Guide C-39
for 16-Bit Processors

Simulator Instruction Timing Analysis Overview
Figure C-2 shows the functional simulation of the instruction at address 0
through 4. The pipeline analysis of the instructions is displayed in each
stage.

Figure C-3 shows that the instruction at address 0x5 is about to be exe-
cuted. The instructions at addresses 0x00, 0x01, 0x02, 0x03 and 0x04
have already been executed in the cycle-accurate simulator.

Figure C-2. Instruction at Address 0

Figure C-3. Pipeline Commit Stage

The instruction
at address 0x05
is about to be
executed.
C-40 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
The Pipeline Viewer window (Figure C-4) shows that the instruction at
address 0x02 has just reached the commit stage of the timing analysis.

The window highlights the instruction at address 0x02 as it progressed
through the pipeline. Table C-19 compares the cycles required at each
stage.

Figure C-4. Instruction at Address 0x02 Reaches the Commit Stage

Table C-19. Cycles Required at Each Stage

Cycle Stage

2 LADDR. The cycle count has increased by one.

3 PADDR

4 FADDR

5 AADDR

6 DADDR

7 EADDR
VisualDSP++ 3.5 User’s Guide C-41
for 16-Bit Processors

Simulator Instruction Timing Analysis Overview
The Pipeline Viewer window detects a stall (symbolized by) at cycle
6, stage AADDR.

To learn why the stall occurred:

1. Press and hold down the keyboard’s Ctrl key.

2. Move the mouse over the icon.

A message window appears, as shown in Figure C-5, to indicate that the
stall is due to a RAW (read after write) hazard.

In Figure C-5, dag registers (I0,M0) were modified next to a data move
instruction, which also modifies a dag register.

The pipeline increases the cycle count by one cycle for this stall by insert-
ing a stall bubble into the pipeline at cycle 7, stage DADDR.

Figure C-5. Example Message
C-42 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Pipeline Stages

Table C-20 shows the ADSP-219x processor’s pipeline stages.

Pipeline Viewer Window Messages

The Pipeline Viewer window displays informational messages for instruc-
tions indicated with an event icon.

These types of messages may appear:

• Stalls detected

• Aborts detected

Table C-20. Pipeline Stages

Stage Abbreviation in Pipeline Viewer

Look Ahead LADDR

PreFetch Address PADDR

Fetch Address FADDR

Address Decode AADDR

Instruction Decode DADDR

Execution EADDR
VisualDSP++ 3.5 User’s Guide C-43
for 16-Bit Processors

Simulator Instruction Timing Analysis Overview
Stalls Detected Messages

Table C-21 shows the messages that occur when a stall is detected.

Table C-21. Stalls Detected Messages

Message Explanation Example

Indirect Conflict Indirect branch in AADDR with a Dag
modified from the same bank

AY1=DM(12+=2);
Call(I1)(db);

Dag Access Stage A Dag Register is modified next to
Memory Access

IOPG Access Stage AADDR IOPG register is modified
next to an IO Mem access

IOPG=6
IO(0x204)=ax0

Dag Modify Hazard Stage AADDR a Dag is modified next to an
assignment

I1=i5;
Modify(I1+=24);

External Memory
Access

Access to an external memory address

IO Memory Access Access to IO memory IO(0x203)=ax0

Memory Conflict DADDR and EADDR have bus conflict DM(I1+=M0)=0x400;
DM(I1+=M0)=0x000;

Dag read and Write
Hazard

Stage AADDR I1=0xEC00;
DM(I1+=M0)=0x400;

Dag Stall Any other Dag stalls not described in
Viewer
C-44 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
Aborts Detected Messages

Table C-22 shows the messages that occur when an abort is detected.

Table C-22. Aborts Detected Messages

Message Explanation Example

change-of-flow abort A branch CALL (I0)

rti change-of-flow abort Return from interrupt aborts RTI;

mispredicted
change-of-flow abort

Aborts because of mispredicted
branches

AY1=0X0005;
AX1-AY1;
IF GE JUMP _L_50006 [.+12]

hardware loop bottom
abort

interrupt abort Instructions in the pipeline are
aborted because of an interrupt

SETINT 0X05;
VisualDSP++ 3.5 User’s Guide C-45
for 16-Bit Processors

Boot Simulation
Boot Simulation

Table C-23 summarizes the boot simulation support for the ADSP-218x
and ADSP-219x simulator targets.

Simulating Boot Loading for ADSP-218x Targets

Complete the following steps to prepare a boot-loadable program and
simulate boot loading for ADSP-218x targets.

1. Create the splitter output file. For details, see the VisualDSP++ 3.5
Loader and Utilities Manual for 16-Bit Processors.

2. From the Settings menu, choose Simulator and Boot Mode and
ensure that Boot from EPROM is selected.

3. From the Settings menu, choose Simulator and Load ROM File.
Then select the .BNM file to boot.

4. Select Reset from the Debug menu or click the Reset button.
The simulator displays the “BOOTING” status message.

If you are debugging the loader, start debugging here. Otherwise,
proceed to the next step.

Table C-23. Boot Simulation Support for ADSP-21xx Targets

Simulator Target Boot Device/Width Boot Format(s) File Extension

ADSP-2181, ADSP-2184,
ADSP-2185, ADSP-2186,
ADSP-2186, ADSP-2187,
ADSP-2189

PROM Motorola S2
Intel Hex

*.BNM

ADSP-219x No boot simulation support

ADSP-2191, ADSP-2195,
ADSP-2196

PROM, 8 bit or 16 bit Intel Hex 32 *.LDR

ADSP-2192-12 No boot simulation support
C-46 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

Simulation of ADSP-21xx Processors
5. Choose Load Symbols from the File menu and select the .DXE from
which the .BNM was generated.

6. Set a breakpoint at the entry point to your application.

7. Choose Run from the Debug menu, click the Run button, or
press the F5 key.

You may go to breakpoints while the application is loading.
Choose Run again until you stop at the breakpoint for your
application.

8. Debug your application.

Simulating Boot Loading for ADSP-219x Targets

Complete the following steps to prepare a boot-loadable program and simu-
late boot loading for ADSP-2191, ADSP-2195, and ADSP-2196 targets.

1. Create the loader file. For details, see the VisualDSP++ 3.5 Loader
and Utilities Manual for 16-Bit Processors.

2. From the Settings menu, choose Boot, PROM.RX, 8 Bits or 16
Bits, and PROM File.

3. Select the .LDR file.

The “Boot Settings” message is displayed. The boot is set up.

4. Select Reset from the Debug menu or click the Reset button.
The application is loaded.

5. Choose Load Symbols from the File menu and select the .DXE from
which the .LDR was generated.

6. Run your application.
VisualDSP++ 3.5 User’s Guide C-47
for 16-Bit Processors

Boot Simulation
C-48 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

I INDEX

Symbols .JS files, A-24

.ACH files, A-24
.ASM files, 2-25, A-24
.BNL files, A-24
.BNM files, A-24
.BNU files, A-24
.C files, 2-25, A-24
.CPP files, 2-25, A-24
.CXX files, 2-25, A-24
.DAT files, A-24
.DLB files, 2-25, A-24
.DLO files, A-24
.DOJ files, 1-30, 1-32, 1-33, 2-25,

A-24
.DPJ files, 1-56, A-24
.DSP files, 2-25
.DXE files, 1-33, A-24
.EXE files, A-24
.H files, A-24
.H# files, A-24
.HPP files, A-24
.HXX files, A-24
.IDL files, A-24
.IDM files, A-24
.IS files, A-24

.LDF files, 1-32, 1-33, 1-34, 2-25,
A-24

.LDR files, A-24

.LST files, A-24

.MAK files, 1-61, A-24

.MAP files, A-24

.MK files, A-24

.OBJ files, A-24

.OVL files, 1-33, A-24

.PP files, A-24

.S files, 2-25, A-24

.S# files, A-24

.SM files, 1-33, A-24

.STK files, A-24

.TC8 files, A-24

.TCL files, A-24

.TXT files, A-24

.VBS files, A-24

.VDK files, A-24

.XML files, A-24

Numerics
3-D waterfall plots (see waterfall

plots)
VisualDSP++ 3.5 User’s Guide I-1
for 16-Bit Processors

INDEX
A
abbreviations, in Pipeline Viewer

messages (ADSP-BF535), B-16
abort detected messages, Pipeline

Viewer (ADSP-219x), C-45
adding files to your project, 1-25
ADSP-21xx peripherals supported

in simulators, C-2
archiver, 1-43
assembler, 1-32

about, 1-32
input files, 2-25
terms, 1-32

assembling language files into object
files, 1-32

B
background telemetry channel

(BTC)
BTC Memory window, 2-80
changing BTC priority, 2-78
defining channels in your

program, 2-77
Blackfin peripherals supported in

simulators, B-2
bookmarks, 2-116
boot

kernel, 1-45
loading or booting, 1-45

boot simulation, C-46
breakpoints

conditional, 3-15
editor window, 2-116
symbols, 3-14

unconditional, 3-15
BTC Memory window, 2-80
build options

files, 1-27
projects, 1-27

build project, 1-66
build settings, 1-67

custom, 1-67
individual file, 1-67
project wide, 1-67

build type (see configuration)
buttons

appearance on toolbars, 2-10
for Windows functions, 2-51
on built-in toolbars, 2-8

C
C programs, compiling, 1-30
C++ programs, compiling, 1-30
C++ run-time libraries, 1-31
Cache Viewer, 2-98

Address View page, 2-107
Configuration page, 2-101
Detailed View page, 2-102
event log file, 2-100
Histogram page, 2-106
History page, 2-103
Performance page, 2-105

Call Stack window, 2-71
channel definitions (BTC example),

2-77
code

development tools, 1-2, 2-25
file association with tools, 2-25
I-2 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

INDEX
command-line parameters, A-33
commands

on a control menu, 2-5
program execution operation,

3-12
single stepping, 3-12
stepping, 3-12
toolbar buttons, A-38
user tools, 2-13

comments
rules for, A-47
start and stop strings, A-47

compiled simulation
executing an .EXE file from the

command line, B-46
preparing a program from an

existing .DXE file, B-45
preparing a program from source

files, B-42
specifying a session, B-42
specifying project options, B-43

compiler, 1-30
input files, 2-25
options, 1-30, 1-32, 1-33, 1-45

compiling, 1-30
C programs, 1-30
C++ programs, 1-30

conditional breakpoints, 3-15
configuration, 1-65

Debug, 1-65
plot, 2-129
project, 1-65
Release, 1-65

Configurator, VisualDSP++, 3-4

configuring
Plot window, 2-129
plots, 2-129

constellation plots, 3-21
control menu, 2-4, 2-5
conventions used in this manual,

xxxiii
creating

files to add to your project, 1-25
new plot window, 2-129

custom build
options, 1-27
settings, 1-67

custom register windows, 2-88
customer support, xxv
customizing

plot window, 2-129
toolbar, 2-9

cycle accurate simulator, C-37

D
data

files, 1-32
input and output simulation, 3-16
sets, defined, 2-129
transfers, simulating, 1-22

Debug configuration, 1-65
debug sessions

managing, 3-3
multiple, 3-3
multiprocessor, 3-4
running multiple, 3-3
selecting at startup, 3-11
setting up, 3-2
VisualDSP++ 3.5 User’s Guide I-3
for 16-Bit Processors

INDEX
switching, 3-3
viewing list of, 3-3

debugging
features of VisualDSP++, 1-5
IDDE features, 1-5
multiple processors, 3-4
overview of, 1-22
windows used while debugging,

2-52
declarations, 1-34
dependencies, project, 1-66
development tools, 1-2
Disassembly windows, 2-54, 2-55,

2-56
examples, 2-54
features, 2-56
right-click menu, 2-57
symbols, 2-58

docking, 2-46
toolbars, 2-9
windows, 2-46

dotprodc.dxe, automatically
loading, 1-28

DSP
development tools, 1-2
plotting memory, 3-10

E
editing

features, 1-3
files, 1-26

editor files, comments, A-47
Editor Tab mode, 2-31

editor windows
bookmarks, 2-116
Editor Tab mode, 2-31
expression evaluation, 2-116
features, 2-114
source mode vs. mixed mode,

2-117
symbols, 2-116

elfloader.exe, 1-44, 1-45
emulation, 1-22, 3-8

debug session management, 3-3
restarting the program, 3-13
statistical profiling, 3-7

environment, simulating hardware,
1-22

error messages, 2-32, 2-41, 2-52
in the Output window, 2-32
log file, 2-41, 2-42, 2-52

evaluating expressions, 2-116
event log file, 2-100
events

in Pipeline Viewer, 2-96
thread, 2-112
using the data cursor, 2-112

executable, loading, 3-12
Expert Linker, 1-36

overview, 1-36
stack and heap usage, 1-41
window, 1-38

expressions
about, 2-119
C expressions, 2-119
context-sensitive evaluation,

2-116
I-4 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

INDEX
evaluating, 2-116
in an Expressions window, 2-119
register, 2-120
regular, A-43, A-44, A-45, A-46
tagged, A-46, A-47
types of, 2-119
use of, 2-119
viewing value of, 2-116
window, 2-59

Expressions window, 2-59
extensions, DSP project file, A-24
external interrupts, generating, 1-22
eye diagrams, 3-22

example of, 3-22
FIFO, 3-22

EZ-ICE target, 3-2

F
features

new in VisualDSP++, 1-7
project build, 1-4
project management, 1-4
VDK, 1-6
VisualDSP++, 1-2

file and tool options, 1-27
file building options, 1-27
file tree, 2-15

icons, 2-15
Project window, 2-15

files
.ASM, 2-25
.C, 2-25
.CPP, 2-25
.CXX, 2-25

.DLB, 2-25

.DOJ, 1-30, 1-32, 1-33, 2-25

.DPJ, 1-56

.DSP, 2-25

.LDF, 1-32, 1-34, 1-45, 2-25

.MAK, 1-61

.S, 2-25

.VPS, 2-124
assembler, 1-32
associations with tools, 2-25
automatic placement, 2-26
building, 1-68
compiler, 1-30
data, 1-32
DSP project, A-24
event log, 2-100
executable, 1-34
extensions, A-24
header, 1-32
in a project, 2-23
language, 1-32
linker, 1-33, 1-34, 1-45
log, 2-41, 2-42
nested folders in Project window,

2-22
object, 1-32, 1-33
overlay, 1-33
placement rules, 2-26
placing into folders automatically,

2-22
PROM, 1-43
specifying build settings, 1-65
used by DSP projects, A-24
vdk_config.cpp, 2-27
VisualDSP++ 3.5 User’s Guide I-5
for 16-Bit Processors

INDEX
vdk_config.h, 2-27
VisualDSP_Log.txt, 2-42

finding
and replacing tagged expressions,

A-46
regular expressions in find/replace

operations, A-43
Flag IO (FIO) peripheral

ADSP-219x, C-4
Blackfin, B-2

Flash Programmer
flash devices, 3-26
flash driver, 3-27
functions, 3-26
interface window, 3-28
window controls, 3-29

Flash Programmer window, 3-28
floating, 2-49

toolbars, 2-9
window commands, 2-46
windows, 2-47, 2-49, 2-50

focus
multiprocessor debug session,

2-89
pinning, 3-6
window, 3-6

folders
automatic file placement, 2-26
in the Project window, 2-15, 2-22
project, 2-22

format
examples of number formats,

2-121
number formats available, 2-120

functions, displaying local variables,
2-60

G
General page, 1-28
General Purpose IO (GPIO)

peripheral, ADSP-219x, C-4
generating external interrupts, 1-22
global build options, 1-27
glossary, A-2
groups, multiprocessor, 2-89, 2-92

H
hardware simulation, 1-22
header files, 1-32
heaps, usage in Expert Linker, 1-41
Host Port Interface (HPI)

peripheral, ADSP-219x, C-6

I
I/O, hardware simulation data

transfer, 1-22
icons

editor windows, 2-116
Pipeline Viewer events, 2-96
Project window, 2-18

idde.exe, command-line parameters,
A-33

IDL (see Interface Definition
Language)

Image Viewer, 2-133, 3-17
Export Image dialog box, 2-137
Gamma Correction dialog box,

2-137
I-6 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

INDEX
Image Configuration dialog box,
2-136

right-click menu, 2-135
instruction groups, Blackfin

processors, B-39
instruction latencies, Blackfin

processors, B-25
accumulator to data register, B-25
instruction alignment unit empty,

B-31
instructions within hardware

loops, B-30
loop setup, B-29
move conditional and move CC,

B-28
register move, B-26

instruction pipeline (ADSP-219x),
C-37

Interface Definition Language
(IDL), 1-53

interrupts, 3-16
generating, 1-22
hardware simulation, 1-22

J
JTAG emulator, 3-2

breakpoints, 3-14
debug session management, 3-3
debug sessions, 3-3
platforms, 3-2
sampling, 3-8
statistical profiling, 2-63, 3-7

K
kernel (see VDK)
Kernel page, 2-27
keyboard shortcuts, A-27
kills detected messages, Pipeline

Viewer (ADSP-BF535), B-14

L
L1 data memory stalls, B-32

cache access (1-cycle stall), B-33
minibank access collision, B-32
MMR access, B-36
SRAM access (1-cycle stall), B-33
store buffer load collision, B-38
store buffer overflow, B-37
system minibank access collision,

B-37
latencies, B-20
libraries, C++ run-time, 1-31
line plots, 3-19
linear profiling, 3-7
Linear Profiling Results window,

2-63
linker

input files, 2-25
overview, 1-33

Linker Description File, 1-34
linking, object files, 1-33
loader, 1-44
loading

programs, 3-12
scripts from a shortcut, A-37

local build options, 1-27
Locals window, 2-60
VisualDSP++ 3.5 User’s Guide I-7
for 16-Bit Processors

INDEX
locating, text using regular
expressions, A-43

log file, 2-41
logging error messages, 2-52

M
makefiles, 1-61

example makefile, 1-63
Output window, 1-62
rules, 1-62

managing
debug sessions, 3-3
projects, 1-4
source files, 1-4

MDI child windows, 2-46
memory

plots from, 3-10
windows, 2-71

Memory DMA (MDMA)
peripheral, ADSP-219x, C-32

Memory Map window, 2-83
memory windows, 2-72, 2-74

examples, 2-72, 2-121
number formats, 2-120

menu bar, 2-6
menus

application menu bar, 2-6
control menu, 2-4, 2-5
title bar right-click menu, 2-4

messages
aborts detected (ADSP-219x),

C-45
kills detected (ADSP-BF535),

B-14

Pipeline Viewer (ADSP-219x),
C-43

Pipeline Viewer (ADSP-BF535),
B-10

Pipeline Viewer abbreviations
(ADSP-BF535), B-16

stalls detected (ADSP-219x),
C-44

stalls detected (ADSP-BF535),
B-11

written to VisualDSP_Log.txt file,
2-41

mixed mode, 2-118
editor window, 2-117
examples, 2-118
vs. source mode, 2-117

modes, 2-117
mixed, 2-117, 2-118
source, 2-117

multicycle behavior, B-20
multicycle instructions, B-21

32-bit multiply, B-21
ADSP-BF535, B-15
call and jump, B-22
conditional branch, B-22
core and system synchronization,

B-23
interrupts and emulation, B-24
linkage, B-23
push or pop multiple, B-21
return, B-23
testset, B-24

multiprocessing
focus and pinning, 3-5
I-8 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

INDEX
pinning a window to a processor,
2-90

setting the focus, 2-90
setting up an MP debug session,

3-4
multiprocessor, 3-4

(see multiprocessor debug
sessions)

debugging, 3-4, 3-5
groups, 2-92
window tabs, 2-91

multiprocessor debug sessions, 3-4
debugging, 3-5
focus, 3-6, 3-7
Multiprocessor window, 2-89

Multiprocessor window, 2-89
Groups page, 2-92
Status page, 2-91

MyAnalog.com, xxvii

N
nested folders, 2-22
nodes, in Project window, 2-15
number formats, register and

memory windows, 2-120

O
object files, 1-32
operations

program execution, 3-12
program execution commands,

3-12
options

compiler, 1-30

file and tool, 1-27
file building, 1-27
project building, 1-27

Output window, 2-32
Build page, 2-33
capture of all messages, 2-41
Console page, 2-33
customization, 2-42
right-click menu, 2-43

overlays, files, 1-34
overriding, project-wide options,

1-67

P
peripherals

ADSP-219x, simulating, C-1
Blackfin, simulating, B-1
Flag I/O (FIO), ADSP-219x, C-4
General Purpose I/O (GPIO),

ADSP-219x, C-4
Host Port Interface (HPI),

ADSP-219x, C-6
limitations of simulation software

models (Blackfin), B-6
Memory DMA (MDMA),

ADSP-219x, C-32
overview of support in simulators,

ADSP-21xx, C-2
overview of support in simulators,

Blackfin, B-2
Serial Peripheral Interface (SPI),

ADSP-219x, C-11
Serial Port (SPT), ADSP-219x,

C-19
VisualDSP++ 3.5 User’s Guide I-9
for 16-Bit Processors

INDEX
Timer (TMR), ADSP-219x, C-26
Timer (TMR), Blackfin, B-6
Universal Asynchronous

Receiver/Transmitter (UART),
ADSP-219x, C-23

Universal Asynchronous
Receiver/Transmitter (UART),
Blackfin, B-6

PGO (see profile-guided
optimization)

pipeline
instruction (ADSP-219x), C-37
kill reasons (ADSP-BF531,

ADSP-BF532, ADSP-BF533,
ADSP-BF561), B-18

kill reasons (ADSP-BF535), B-9
stage event icons in Pipeline

Viewer, 2-96
stages (ADSP-219x), C-43
stall reasons (ADSP-BF531,

ADSP-BF532, ADSP-BF533,
ADSP-BF561), B-17

stall reasons (ADSP-BF535), B-8
Pipeline Viewer

delay (lag) example (ADSP-219x),
C-39

event details, 2-97
event icons, 2-96
message abbreviations

(ADSP-BF535), B-16
pipeline stages (ADSP-219x),

C-43
properties, 2-95
right-click menu, 2-94

window, 2-93, B-9, B-10, B-15,
B-19, B-20, C-39, C-41, C-42

window messages (ADSP-219x),
C-43

window messages
(ADSP-BF535), B-10

Pipeline Viewer window, 2-93
platforms, DSP configuration, 1-21
plot windows, 2-123, 2-124, 2-129

capabilities, 2-124
creating a new window, 2-129
features, 2-126
presentation of, 2-130
right-click menu, 2-124, 2-126
See also plots
status bar, 2-124

plots
3-D waterfall, 2-129, 3-23
configuration of, 2-129
constellation, 3-21
data sets, 2-129
DSP memory, 3-10
eye diagram, 3-22
line, 3-19
presentation options, 2-132
See also plot windows
spectrogram, 3-25
types of, 3-18
waterfall, 3-23

plotting, DSP memory, 3-10
polling loop (BTC example), 2-79
positioning, windows, 2-50
post-build options, 1-68
I-10 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

INDEX
preferences
IDL font and color for editing,

1-49
load file and advance to main,

1-28
VisualDSP++ and tool output

color, 2-33
Preferences dialog box, 1-28, 2-33
presentation, of plot windows,

2-130
profile-guided optimization (PGO),

1-8
profiles, code analysis, 3-7
profiling, 3-7, 3-8

linear, 3-8
statistical, 3-7, 3-8

Program Counter (PC) register, 3-7,
3-8, 3-13, 3-15

program execution commands, 3-12
program operations

loading the executable program,
3-12

restarting the program, 3-13
selecting a debug session at

startup, 3-11
using breakpoints, 3-14
using program execution

commands, 3-12
using unconditional and

conditional breakpoints, 3-15
using watchpoints, 3-15

programming tips, 1-16
project

build, 1-4, 1-57

build settings, 1-67
building options, 1-27
configurations, 1-65
debugging, 1-5, 1-22
defined, 1-56
dependencies, 1-26
files, 2-23
folders, 2-15
management, 1-4
nodes, 2-15
options, 1-57
subfolders, 2-15
VisualDSP++, 1-56
window, 2-15

Project box (showing active project),
1-59

project groups, 1-58
Project window, 1-24, 2-15, 2-27

about, 2-15
files, 2-15
Kernel page, 1-24, 2-27
nodes, 2-18
Project view nodes, 2-16
rules, 1-70
use of folders, 2-22

projects
development overview, 1-16
development stages, 1-19
programming overview, 1-16
project groups, 1-58

project-wide file and tool options,
1-27

pull-tabs, 2-47
VisualDSP++ 3.5 User’s Guide I-11
for 16-Bit Processors

INDEX
R
register groups, Blackfin processors,

B-40
register windows

custom, 2-88
number format, 2-120

regular expressions, A-43, A-44,
A-45, A-46

Release configuration, 1-65
restarting

program during emulation, 3-13
program during simulation, 3-13

right-click menus, 2-46
commands, 2-46
in plot windows, 2-124

S
SCC (see source code control)
scripts

issuing from a command line,
A-34

issuing from a menu, A-35
issuing from a user tool, A-36
issuing from an editor window,

A-36
issuing from the Output window,

A-34
loading from a shortcut, A-37
viewing script command status,

A-35
scroll bars, descriptions of, 2-47
searches

normal, A-43

regular expressions vs. normal,
A-43

special character rules, A-45
Serial Peripheral Interface (SPI)

peripheral
ADSP-219x, C-11

Serial Port (SPT) peripheral
ADSP-219x, C-19

sessions
debug, 3-3
selecting at startup, 3-11

setting
build options, 1-67
custom build options, 1-27

shortcut keys (see keyboard
shortcuts)

simcc.exe compiled simulation
driver, B-45

simulating
data I/O streams, 3-16
data transfers, 1-22
hardware, 1-22
input/output data, 3-16
interrupts, 1-22

simulation, 3-8
booting, C-46
compiled (Blackfin), B-41
debug session management, 3-3
Flag I/O (FIO) peripheral,

ADSP-219x, C-4
General Purpose I/O (GPIO)

peripheral, ADSP-219x, C-4
Host Port Interface (HPI)

peripheral, ADSP-219x, C-6
I-12 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

INDEX
limitations of software models
(Blackfin), B-6

linear profiling, 3-8
Memory DMA (MEMDMA)

peripheral, ADSP-219x, C-32
of Blackfin processors, B-1
platforms, 1-21
restarting the program, 3-13
Serial Peripheral Interface (SPI),

ADSP-219x, C-11
Serial Port (SPT) peripheral,

ADSP-219x, C-19
Timer (TMR) peripheral,

ADSP-219x, C-26
Timer (TMR) peripheral,

Blackfin, B-6
Universal Asynchronous

Receiver/Transmitter (UART)
peripheral, ADSP-219x, C-23

Universal Asynchronous
Receiver/Transmitter (UART)
peripheral, Blackfin, B-6

simulator
cycle accurate (ADSP-219x),

C-37
overview of ADSP-21xx

peripheral support, C-2
overview of Blackfin peripheral

support, B-2
simulator instruction timing

analysis
ADSP-219x, C-36

ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF561
processors, B-17

ADSP-BF535 processors, B-7
single stepping, available

commands, 3-12
source code control (SCC), 1-60
source files, 1-3

comments, A-47
editing features, 1-3
in a project, 2-23
management, 1-4

source mode, editor windows,
2-117

source windows (see editor
windows)

spectrogram plots, 3-25
example of, 3-25
FFT output, 3-25

splitter, 1-43
stack windows, 2-88
stacks, usage in Expert Linker, 1-41
stalls detected messages

(ADSP-219x), C-44
(ADSP-BF535), B-11

Statistical Profiling Results window,
2-63, 2-64, 2-65

statistical profiling, vs. linear
profiling, 3-7

status bar, 2-13, 2-14, 2-124
examples, 2-13
in plot windows, 2-124

status icons
editor window, 2-116
VisualDSP++ 3.5 User’s Guide I-13
for 16-Bit Processors

INDEX
Pipeline Viewer, 2-96
status messages, log file, 2-41
stepping, available commands,

3-12, 3-13
steps, development

add and edit project source files,
1-25

build a debug version of the
project, 1-28

build a release version of the
project, 1-28

create a project, 1-25
set project options, 1-25

stream configuration file, compiled
simulation (Blackfin), B-46

streams, 3-16
subfolders, in the project tree, 2-15
symbols

Disassembly window, 2-58
editor window, 2-116

T
Target Load window, 2-113
Tcl, A-34, A-35

menu issuance, A-35
technical support, xxv
terms, VisualDSP++, A-2
threads, 2-108

idle, 2-113
status, 2-108, 2-112

Timer (TMR) peripheral
ADSP-219x processors, C-26
Blackfin, B-6

title bar, 2-4
components, 2-3
right-click menu commands, 2-46

TMR (see Timer Peripheral)
toolbars, 2-7, A-38

built-in, 2-8
button appearance, 2-10
customization, 2-9
docked versus floating, 2-9
shape, 2-12

tools
access to, 1-3
code development, 1-2, 2-25
command line access, 1-57
input files, 2-25
project options, 1-57
third-party, 1-3
user configured, 2-13

Tools menu, user tools, 2-13
traces, 2-62, 2-111, 2-132, 3-22,

3-23

U
UART (see Universal Asynchronous

Receiver/Transmitter
peripheral)

unconditional breakpoints, 3-15
Universal Asynchronous

Receiver/Transmitter (UART)
peripheral

ADSP-219x, C-23
Blackfin, B-6

user interface, parts of, 2-1
I-14 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

INDEX
V
variables, global vs. local, 2-119
VCSE, 1-46

component manager, 1-50
component model, 1-47
components, 1-46, 1-48
overview, 1-46
structure of, 1-51
tool chain integration, 1-49
tools, 1-48
user interface, 1-49
wizards, 1-50

VDK, 1-24, 2-27, 2-108, 2-113
about, 1-24
features, 1-6
Kernel page in Project window,

2-27
overview of, 1-6
VDK State History window,

2-110
VDK Status window, 2-108

VDK State History window, 2-110
VDK Status window, 2-108
vdk_config.cpp, 2-27
vdk_config.h, 2-27
VisualDSP++

control menu, 2-5, 2-6
debugging, 1-5, 1-23
editing features, 1-3
editor, 2-29
editor windows, 2-29
environment, 1-2
features, 1-2
file association for tools, 2-25

files, A-24, A-25
glossary, A-2
kernel, 1-24
keyboard shortcuts, A-27
log file, 2-41
menu bar, 2-6, 2-7
overview, 1-1
parts of, 2-2
parts of the user interface, 2-1
programming overview, 1-16
project, 1-56
project build features, 1-3
project development, 1-19
Project window, 2-15, 2-18
purpose, 1-3
source file editing features, 1-3
toolbar, A-38
tools - file association, 2-25

VisualDSP++ Configurator, 3-4

W
watchpoints, 3-15
waterfall plots, 3-23

grid of sampled data, 3-24
rotating, 3-23

windows
BTC Memory, 2-80
Cache Viewer, 2-101
Call Stack, 2-71
debugging, 2-52
Disassembly, 2-54, 2-55, 2-56,

2-57
docked, 2-47, 2-48
editor, 2-114
VisualDSP++ 3.5 User’s Guide I-15
for 16-Bit Processors

INDEX
Expert Linker, 1-38
Expressions, 2-59
Flash Programmer, 3-28
Image Viewer, 2-134
Linear Profiling Results, 2-63
Locals, 2-60
manipulation of, 2-46
MDI, 2-46
memory, 2-72
Memory Map, 2-83
Multiprocessor, 2-89
Output, 2-32, 2-33, 2-43
parts of the user interface, 2-1
pipeline symbols in Disassembly

windows, 2-55, 2-118
Pipeline Viewer, 2-93, B-9, B-10,

B-15, B-19, B-20, C-40, C-41,
C-42

plot, 2-123

Project, 2-15, 2-19
Project view, 2-16
pull-tabs, 2-47
Register, 2-84
right-click menu commands, 2-46
rules for positions, 2-50
scroll bars, 2-47
See also VisualDSP++
stack, 2-88
Statistical Profiling Results, 2-63
Target Load, 2-113
Trace, 2-62
VDK State History, 2-110, 2-112
VDK Status, 2-108

Windows buttons, 2-51

X
X-Y plots, 3-20
I-16 VisualDSP++ 3.5 User’s Guide
for 16-Bit Processors

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Data Sheets

	Contacting DSP Publications

	Notation Conventions

	1 Introduction to VisualDSP++
	VisualDSP++ Features
	Integrated Development and Debugging Environment
	Code Development Tools
	Source File Editing Features
	Project Management Features
	Debugging Features
	VDK Features
	VisualDSP++ 3.5 Features

	License Management
	Licensing Options
	Table 1-1. VisualDSP++ Licenses

	License Status
	Temporary Licenses
	Valid vs. Expired Licenses
	Client Licenses

	License Installation
	Installing a Single-User License
	Installing a Server License
	Installing a Client License

	Software Registration
	Validation Codes
	Product Upgrades

	Product Serial Numbers
	Project Development
	Overview of Programming with VisualDSP++
	DSP Project Development Stages
	Figure 1-1. Project Development Stages
	Simulation
	Evaluation
	Emulation

	Targets
	Simulation Targets
	EZ-KIT Lite Targets
	Emulation Targets

	Platforms
	Table 1-2. Development Stages and Supported Platforms

	Hardware Simulation
	Debugging Overview
	Table 1-3. Tools Used for Simulation and Emulation�

	VisualDSP++ Kernel
	Program Development Steps
	Step 1: Create a Project
	Step 2: Configure Project Options
	Step 3: Add and Edit Project Source Files
	Adding Files to Your Project
	Creating Files to Add to Your Project
	Editing Files
	Managing Project Dependencies

	Step 4: Define Project Build Options
	Configuration
	Project-Wide File and Tool Options
	Individual File and Tool Options

	Step 5: Build a Debug Version of the Project
	Step 6: Create a Debug Session and Load the Executable
	Step 7: Run and Debug the Program
	Step 8: Build a Release Version of the Project

	Code Development Tools
	Compiler
	Table 1-4. Groups of Compiler Options

	C++ Run-Time Libraries
	Assembler
	Linker
	Expert Linker
	Expert Linker Window
	Figure 1-2. Expert Linker Window

	Memory Map Pane Right-Click Menu
	Table 1-5. Memory Map Pane Right-Click Menu�

	Stack and Heap Usage
	Figure 1-3. Memory Map Example After Running a Blackfin Program

	Archiver
	Splitter
	Loader

	VCSE
	VCSE Components
	VCSE Component Model Specification
	VCSE Component Model
	VCSE Tools
	Use of VCSE Components with VisualDSP++

	VCSE User Interface
	Tool Chain Integration
	Wizards
	Component Manager

	Structure of VCSE
	Interface Definition Language (IDL) and Compiler
	Figure 1-4. Files Produced by the VIDL Compiler

	DSP Projects
	What is a Project?
	Project Options
	Figure 1-5. Top Portion of the Project Options Dialog Box

	Project Groups
	Figure 1-6. Project Window
	Figure 1-7. Project Box Showing the Active Project

	Source Code Control (SCC)
	Makefiles
	Figure 1-9. Configuration Box
	makefiles:rules
	makefiles:Output window
	Example Makefile

	Project Configurations
	Table 1-6. Default Project Configurations
	Figure 1-10. Configuration Box

	Customized Project Configurations
	Figure 1-11. Customized Configuration Version2

	Project Build
	Build Options
	Table 1-7. Build Options

	File Building
	Post-Build Options
	Command Syntax
	Table 1-8. Operating System and Required Command Syntax

	Project Dependencies
	Project Rules
	Figure 1-12. Example of Project Files

	VisualDSP++ Help System

	2 Environment
	Parts of the User Interface
	Figure 2-1. Example of VisualDSP++ Main Window
	Title Bar
	Figure 2-2. Example Title Bar (Split into Three Parts to Fit the Page)
	Additional Information in Title Bars
	Title Bar Right-Click Menus
	Figure 2-3. Right-Clicking in the Window’s Title Bar

	Control Menu
	Figure 2-4. VisualDSP++ Control Menu
	Program Icons
	Editor Windows
	Debugging Windows

	Menu Bar
	Figure 2-5. VisualDSP++ Menu Bar

	Command Information
	Toolbars and User Tools
	Built-In Toolbars
	Table 2-1. Built-In Toolbars

	Toolbar Customization
	Toolbars: Docked vs. Floating
	Figure 2-6. Example of a Floating Toolbar

	Toolbar Button Appearance
	Table 2-2. Toolbars in Different Viewing Options�

	Toolbar Shape
	Table 2-3. Toolbars in Two Orientations

	Toolbar Rules
	User Tools
	Figure 2-7. Default User Tools

	Status Bar
	Figure 2-8. The Status Bar’s Appearance Depends on Context
	Table 2-4. Status Bar Information While Editing

	VisualDSP++ Windows
	Project Window
	Figure 2-9. Project Window with Kernel Tab
	Project View
	Figure 2-10. Project View

	Project Dependencies
	Figure 2-11. Projects Dependencies Indicated in the Project View

	Project Nodes
	Table 2-5. Types of Nodes in the Project Window

	Project Page Right-Click Menus
	Project Group Icon Right-Click Menu
	Figure 2-12. Project Group Icon’s Right-Click Menu

	Project Icon Right-Click Menu
	Figure 2-13. Project Icon’s Right-Click Menu

	Folder Icon Right-Click Menu
	Figure 2-14. Folder Icon Right-Click Menu

	File Icon Right-Click Menu
	Figure 2-15. File Icon Right-Click Menu

	Project Folders
	Project Files
	Table 2-6. Icons in the Project Window

	Project Window Icons for Source Code Control (SCC)
	Table 2-7. SCC Status Icons

	File Associations
	Table 2-8. File Associations

	Automatic File Placement
	Table 2-9. Files Associated with Project Folders
	File Placement Rules
	Example

	Kernel Page
	Figure 2-16. Expanded View of Elements on the Kernel Page

	Editor Windows
	Figure 2-17. Items that can be Customized
	Right-Click Menu
	Editor Tab Mode
	Figure 2-18. Editor Tab Mode Enabled

	Output Window
	Figure 2-19. Build Status Information in the Output Window
	Output Window Tabs
	Build Page
	Figure 2-20. Error Messages in the Output Window

	Console Page

	Output Window Error Messages
	Error Message Severity Hierarchy
	Table 2-10. Error Message Severity Levels

	Syntax of Help for Error Messages
	Table 2-11. Syntax for Error Message Help

	How to Promote, Demote, and Suppress Error Messages
	Table 2-12. Options Available from the Compile Page

	Log File
	Figure 2-21. Example – Portion of a Log File

	Output Window Customization
	Figure 2-22. Messages in the Project Window’s Console Page

	Right-Click Menu
	Figure 2-23. Output Window’s Right-Click Menu

	Script Command Output
	Figure 2-24. Scripting Language Displayed in Status Bar

	Window Operations
	Window Manipulation
	Figure 2-25. Window Menu Commands

	Right-Click Menu Options
	Table 2-13. Window Right-Click Menu Commands

	Scroll Bars and Resize Pull-Tab
	Figure 2-26. Scrolling to Move the Viewing Area

	Windows: Docked vs. Floating
	Example of a Docked Window
	Figure 2-27. Example of a Docked Project Window

	Examples of Floating Windows
	Figure 2-28. Project Window Floating in Main Window (1 of 2)
	Figure 2-29. Project Window Floating in Main Window (2 of 2)
	Figure 2-30. Project Window Floating but Not in Main Window

	Window Position Rules
	Standard Windows Buttons
	Figure 2-31. Title Bar Showing Standard Window Buttons
	Table 2-14. Standard Windows Buttons

	Debugging Windows
	Table 2-15. Debugging Windows�
	Disassembly Windows
	Figure 2-32. Disassembly Window with Address Bar
	Figure 2-33. Disassembly Window Without Address Bar
	Figure 2-34. Current Source Line in the Disassembly Window
	Other Disassembly Window Features
	Table 2-16. Disassembly Window Operations

	Right-Click Menu
	Figure 2-35. Disassembly Window Right-Click Menus

	Disassembly Window Symbols
	Table 2-17. Disassembly Window Symbols

	Expressions Window
	Figure 2-36. Expressions Window
	Figure 2-37. Expressions Window Right-Click Menu

	Locals Window
	Figure 2-38. Locals Window
	Figure 2-39. Locals Window Right-Click Menu

	Trace Window
	Figure 2-40. Example of Data in a Trace Window

	Statistical/Linear Profiling Results Window
	Figure 2-41. Example of a Linear Profiling Results Window
	Window Components
	Left Pane
	Table 2-18. Left Pane Information

	Right Pane
	Table 2-19. Information in the Right Pane

	Status Bar
	Right-Click Menu
	Table 2-20. Profiling Results Window Right-Click Menu Commands

	Window Operations
	Changing the Window View
	Displaying a Source File
	Figure 2-42. Code Displayed for a Function

	Working with Ranges
	Switching Display Modes
	Figure 2-43. Source Mode View
	Figure 2-44. Mixed Mode View
	Figure 2-45. Profiling Data for Each Assembly Line (Mixed Mode)

	Filtering PC Samples with No Debug Information
	Figure 2-46. Profiling Results Before Filtering
	Figure 2-47. Profiling Results After Filtering

	Call Stack Window
	Figure 2-48. Example of the Call Stack Window

	Memory Windows
	Memory Number Formats
	Figure 2-49. Example of Blackfin Memory in Binary Format
	Figure 2-50. Example of Blackfin Memory in Octal Format
	Figure 2-51. Example of Blackfin Memory in Hexadecimal Format

	Right-Click Menu
	Figure 2-52. Memory Window Right-Click Menu

	Expression Tracking in a Memory Window
	Figure 2-53. Expression Tracking in a Memory Window

	Background Telemetry Channel (BTC) Window
	BTC Definitions in Your Program
	Table 2-21. Parameters for the BTC_MAP_ENTRY_ASM Macro

	BTC Priority
	Table 2-22. Changing BTC Priority

	Examples
	Figure 2-54. Viewing Contents of a Specified Channel Only
	Figure 2-55. Viewing Defined Channels and Contents of a Selected Channel

	Right-Click Menu
	Table 2-23. BTC Memory Window’s Right-Click Menu

	Memory Map Windows
	Figure 2-56. Memory Map Window

	Register Windows
	Figure 2-57. Register Windows Available from the Core Submenu
	Figure 2-58. Register Windows Available from the Peripherals Submenu
	Figure 2-59. Register Windows Available for ADSP-2191 Processors
	Figure 2-60. Example of a Register Window

	Stack Windows
	Custom Register Windows
	Figure 2-61. Example of a Custom Register Window

	Multiprocessor Window
	Figure 2-62. Multiprocessor Window
	Multiprocessor Groups
	Focus
	Right-Click Menu
	Figure 2-63. Multiprocessor Window’s Right-click Menu

	Multiprocessor Window Pages
	Status Page
	Figure 2-64. Multiprocessor Window – Status Page

	Groups Page
	Figure 2-65. Multiprocessor Window – Groups Page

	Pipeline Viewer Window
	Figure 2-66. Example of a Pipeline Viewer Window
	Right-Click Menu
	Table 2-24. Pipeline Viewer Right-Click Menu

	Pipeline Viewer Properties Dialog Box
	Table 2-25. Pipeline Viewer Properties

	Pipeline Viewer Window Event Icons
	Table 2-26. Icons for Blackfin Pipe Stage Events
	Table 2-27. Icons for ADSP-219x Pipe Stage Events

	Pipeline Instruction Event Details
	Figure 2-67. Tool Tip Box Showing Pipeline Event Details
	Table 2-28. Pipeline Event Details

	Cache Viewer
	Figure 2-68. Viewing a Cache Event's Details in the Cache Viewer
	Table 2-29. Cache Viewer Pages
	Table 2-30. Cache Viewer Window’s Right-Click Menu
	Configuration Page
	Figure 2-69. Configuration Page

	Detailed View Page
	Figure 2-70. Detailed View Page

	History Page
	Figure 2-71. History Page
	Table 2-31. History Information for Cache Events

	Performance Page
	Figure 2-72. Performance Page

	Histogram Page
	Figure 2-73. Histogram Page

	Address View Page
	Figure 2-74. Address View Page – Address Range View

	VDK Status Window
	Figure 2-75. VDK Status Window

	VDK State History Window
	Figure 2-76. Example of a VDK State History Window
	Thread Status and Event Colors
	Window Operations
	Right-Click Menu

	Target Load Window
	Figure 2-77. Example Target Load Window

	About Debugging Windows
	Editor Window Features
	Syntax Coloring
	Table 2-32. File Types That Support Syntax Coloring

	Right-Click Menu
	Figure 2-78. Editor Window’s Right-Click Menu

	Editor Window Symbols
	Table 2-33. Editor Window Symbols

	Bookmarks
	Context-Sensitive Expression Evaluation
	Viewing an Expression
	Highlighting an Expression

	Source Mode vs. Mixed Mode
	Source Mode
	Figure 2-79. Editor Window in Source Mode Format

	Mixed Mode
	Figure 2-80. Editor Window in Mixed Mode

	Expressions in an Expression Window
	Table 2-34. Types of Expressions Allowed in an Expressions Window

	Number Formats
	Figure 2-81. Available Number Formats
	Figure 2-82. Memory Window in Hex Format
	Figure 2-83. Memory Window in Octal Format
	Figure 2-84. Data Register Window in Binary Format
	Figure 2-85. Data Register Window in Signed Integer Format

	Plot Windows
	Figure 2-86. Example of a Plot Window
	Plot Window Features
	Status Bar
	Figure 2-87. Examples of Status Bar Information for Plots
	Table 2-35. Data Logging Status Indicators in a Plot Window

	Tool Bar
	Figure 2-88. Plot Window’s Toolbar

	Right-Click Menu
	Figure 2-89. Plot Window’s Right-Click Menu
	Table 2-36. Plot Window Operations�

	Plot Window Statistics
	Figure 2-90. Statistics Displayed for a Portion of Audio Data

	Plot Configuration
	Figure 2-91. Plot Configuration Dialog Box

	Plot Window Presentation
	Figure 2-92. Tabs in the Plot Setting Dialog Box
	Figure 2-93. Line Styles
	Figure 2-94. Zooming In on a Selected Area

	Plot Presentation Options
	Table 2-37. Plot Settings Options by Page

	Image Viewer
	Figure 2-95. Image Viewer Window
	Right-Click Menu
	Figure 2-96. Image Viewer Window’s Right-Click Menu
	Table 2-38. Right-Click Menu Commands�

	Image Configuration Dialog Box
	Table 2-39. Buttons and Fields in the Image Configuration Dialog Box

	Gamma Correction Dialog Box
	Table 2-40. Buttons and Fields in the Gamma Correction Dialog Box

	Export Image Dialog Box
	Table 2-41. Buttons and Fields in the Export Image Dialog Box

	3 Debugging
	Debug Sessions
	Table 3-1. Specifying a Debug Session�
	Debug Session Management
	Simulation vs. Emulation
	Breakpoints
	Watchpoints

	Multiprocessor (MP) Debugging
	Setting Up a Multiprocessor Debug Session
	Debugging a Multiprocessor System
	Focus and Pinning
	Window Title Bar Information
	Figure 3-1. Pinned Window in a Multiprocessor Debug Session

	Additional Focus Indication

	Code Analysis Tools
	Statistical Profiles and Linear Profiles
	Simulation
	Emulation

	Traces
	DSP Memory Plots
	Figure 3-2. Example Plot Window Displaying DSP Memory

	Program Execution Operations
	Selecting a New Debug Session at Startup
	Loading the DSP Executable Program
	Using Program Execution Commands
	Table 3-2. Commands Used to Control Program Execution

	Restarting the Program
	Performing a Restart During Simulation
	Performing a Restart during Emulation

	Using Breakpoints
	Table 3-3. Breakpoint Status Symbols

	Using Unconditional and Conditional Breakpoints
	Using Watchpoints

	Simulation Tools
	Interrupts
	Input/Output Simulation (Data Streams)

	Image Viewer
	Plots
	Plot Types
	Table 3-4. Available Plot Types

	Line Plots
	Figure 3-3. Line Plot Example

	X-Y Plots
	Figure 3-4. X-Y Plot Example

	Constellation Plots
	Figure 3-5. Constellation Plot Example

	Eye Diagrams
	Figure 3-6. Eye Diagram Plot Example

	Waterfall Plots
	Figure 3-7. Waterfall Plot Example
	Figure 3-8. Grid of Sampled Data

	Spectrogram Plots
	Figure 3-9. Spectrogram Plot Example

	Flash Programmer
	Flash Devices
	Flash Programmer Functions
	Flash Driver
	Flash Programmer Window
	Figure 3-10. Flash Programmer Window
	Table 3-5. Flash Programmer Window Controls�

	A Reference Information
	Glossary
	File Types
	Table A-1. Files Used with VisualDSP++�

	Keyboard Shortcuts
	Working with Files
	Table A-2. Keyboard Shortcuts for Working with Files

	Moving Within a File
	Table A-3. Keyboard Shortcuts for Moving Within a File�

	Cutting, Copying, Pasting, Moving Text
	Table A-4. Keyboard Shortcuts for Editing Text

	Selecting Text Within a File
	Table A-5. Keyboard Shortcuts for Selecting Text Within a File�

	Working with Bookmarks in an Editor Window
	Table A-6. Keyboard Shortcuts for Bookmarks

	Building Projects
	Table A-7. Keyboard Shortcuts for Building Projects

	Using Keyboard Shortcuts for Program Execution
	Table A-8. Keyboard Shortcuts for Program Execution�

	Working with Breakpoints
	Table A-9. Keyboard Shortcuts for Breakpoints

	Obtaining Online Help
	Table A-10. Keyboard Shortcuts for Obtaining Online Help

	Miscellaneous
	Table A-11. Miscellaneous Keyboard Shortcuts

	IDDE Command-Line Parameters
	Table A-12. idde.exe Command-Line Parameters

	Extensive Scripting
	Figure A-1. Running a Script from an Editor Window
	Figure A-2. Example of Loading a Script from a Shortcut

	Toolbar Buttons
	Table A-13. Toolbar Buttons�

	Text Operations
	Regular Expressions vs. Normal Searches
	Specific Special Characters
	Table A-14. Special Search Characters�

	Special Rules for Sequences
	Repetition and Combination Characters
	Table A-15. Match Characters

	Match Rules

	Tagged Expressions in Replace Operations
	Table A-16. Using Tagged Expressions in Replace Operations
	Table A-17. Examples of Replace Operations

	Comment Start and Stop Strings
	Table A-18. Start and Stop Comment Strings

	Online Help Features and Operations
	Using the Help Window
	Figure A-3. Parts of the VisualDSP++ Help Window

	Invoking Online Help
	Viewing Context-Sensitive Help
	Viewing Menu, Toolbar, or Window Help
	Viewing Dialog Box Button or Field Help
	Viewing Window Help

	Using Help Window Navigation Buttons
	Figure A-4. Help Window Navigational Aids
	Table A-19. Standard Microsoft HTML Help Buttons

	Copying Example Code from Help
	Printing Help
	Table A-20. How to Print Help Topics

	Bookmarking Frequently Used Help Topics
	Placing a Bookmark at a Topic
	Opening a Bookmarked Topic

	Navigating in Online Help
	Using the Search Features
	Help System Search Rules
	Rules for Full-Text Searches
	Rules for Advanced Searches

	Full-Text Searches
	Figure A-7. Boolean Search for “new AND plot”

	Advanced Search Techniques
	Using Wildcard Expressions
	Table A-21. How to Use Wildcard Expressions to Define a Search

	Using Boolean Operators
	Table A-22. How to Use Boolean Operators to Define a Search

	Using Nested Expressions

	Viewing Online Manuals
	Table A-23. Types of User Documentation

	Printing Online Documents
	Using the About VisualDSP++ Dialog Box
	Figure A-8. General Page
	Figure A-9. Licenses Page
	Figure A-10. Components Page
	Figure A-11. Tools Page
	Figure A-12. Support Page

	B Simulation of Blackfin Processors
	Peripheral Support in Simulators
	Table B-1. Peripheral Support in the ADSP-BF535 Simulator�
	Table B-2. Peripheral Support in the ADSP-BF535 Compiled Simulator�
	Table B-3. Peripheral Support in the ADSP-BF533 Simulator�
	Table B-4. Peripheral Support in the ADSP-BF533 Compiled Simulator�
	Table B-5. Peripheral Support in the ADSP-BF561 Simulator�

	Special Considerations for Peripherals
	Universal Asynchronous Receiver/Transmitter Peripheral
	Timer (TMR) Peripheral

	Simulator Instruction Timing Analysis for ADSP-BF535 Processors
	Stall Reasons
	Kill Reasons
	Pipeline Viewer Window Examples
	Figure B-1. RAW Hazard Stall
	Figure B-2. Fetch Stall

	Pipeline Viewer Window Messages
	Pipeline Viewer Detail View Stall Event Messages
	Table B-6. Stalls Detected Messages (ADSP-BF535)�

	Kills Detected Messages
	Table B-7. Kills Detected Messages (ADSP-BF535)�

	Multicycle Instructions
	Figure B-3. Example of a Multicycle Instruction in the Pipeline Viewer

	Abbreviations in Pipeline Viewer Messages
	Table B-8. Abbreviations in the Pipeline Viewer Window�

	Simulator Instruction Timing Analysis for ADSP-BF531, ADSP-BF532, ADSP-BF533, and ADSP-BF561 Proc...
	Stall Reasons
	Kill Reasons
	Pipeline Viewer Window Examples
	Figure B-4. RAW Hazard Stall
	Figure B-5. MMR Stall
	Figure B-6. Branch Kill

	Multicycle Instructions and Latencies
	Multicycle Instructions
	Push Multiple or Pop Multiple
	Table B-9. PushPopMultiple Instructions and Cycles

	32-Bit Multiply (modulo 2
	Table B-10. Bit Multiply Instruction and Cycles

	Call and Jump
	Table B-11. Call and Jump Instructions and Cycles

	Conditional Branch
	Table B-12. Conditional Branch Cycles

	Return
	Table B-13. Return Instructions and Cycles

	Core and System Synchronization
	Table B-14. Core and System Synchronization Instructions and Cycles

	Linkage
	Table B-15. Linkage Instructions and Cycles

	Interrupts and Emulation
	Table B-16. Interrupts and Emulation Instructions and Cycles

	Testset
	Table B-17. TESTSET Instruction

	Instruction Latencies
	Accumulator to Data Register Latencies
	Table B-18. Accumulator to Data Register Latencies�

	Register Move Latencies
	Table B-19. Register Move Latencies�

	Move Conditional and Move CC Latencies
	Table B-20. Move Conditional and Move CC Latencies�

	Loop Setup Latencies
	Table B-21. Loop Setup Latencies�

	Instructions Within Hardware Loop Latencies
	Instruction Alignment Unit Empty Latencies
	Table B-22. Instruction Alignment Unit Empty Latencies�

	L1 Data Memory Stalls
	Minibank Access Collision
	SRAM Access (1-Cycle Stall)
	Cache Access (1-Cycle Stall)
	Table B-23. Minibanks Selected for 16KB of Data Bank Memory
	Table B-24. Minibanks Selected for 32KB of Data Bank Memory�
	Table B-25. Superbank, Minibank Selected When DCBS is 0�

	MMR Access
	System Minibank Access Collision
	Store Buffer Overflow
	Store Buffer Load Collision
	Load/Store Size Mismatch
	Store Data Not Ready

	Instruction Groups
	Table B-26. Math Ops Instruction Groups
	Table B-27. Areg2Dreg Ops Instruction Groups

	Register Groups
	Table B-28. Allreg Register Groups

	Compiled Simulation
	Program Preparation Starting from Source Files
	Specifying a Session for Compiled Simulation
	Specifying Project Options for Compiled Simulation

	Program Preparation Starting from an Existing .DXE File
	Table B-29. simcc Command and Command-Line Items�

	Execution of an .EXE File from the Command Line
	Table B-30. Line Parameters in the Stream Configuration File�

	C Simulation of ADSP-21xx Processors
	Peripheral Support in Simulators
	Table C-1. Peripheral Support in the ADSP-2191 Simulator�
	Table C-2. Peripheral Support in the ADSP-2192-12 Simulator
	Table C-3. Peripheral Support in the ADSP-218x Simulator

	General-Purpose I/O (GPIO) or Flag I/O (FIO) Peripheral
	Table C-4. GPIO Registers�
	Input and Output Handling
	GPIO Window in VisualDSP++

	Host Port Interface (HPI) Peripheral
	Input and Output
	External-Initiated Control File Commands
	Command Bit Definitions
	External-Initiated Direct Operation Bit Definitions
	Host Port Window in VisualDSP++
	Unsupported Features
	Example – DMA Transfer to the Host Port

	Serial Peripheral Interface (SPI)
	SPI Global Status and Control
	Table C-5. Register Bits
	Table C-6. Register Bits that Do Not Affect Simulation

	SPI Signal Usage
	Modes of Operation
	Master Mode Operation (No DMA)
	Slave Mode Operation (No DMA)
	Master Mode DMA Operation
	Slave Mode DMA Operation

	SPI with Streams
	Slave Mode DMA Example

	Serial Port (SPORT) Peripheral
	Table C-7. MCM Select and Configuration Registers
	Table C-8. Configuration and Status Registers�
	Table C-9. DMA Control Registers�
	Input and Output
	Serial Port Windows in VisualDSP++
	Unsupported Features
	Example – SPORT DMA

	Universal Asynchronous Receiver/Transmitter (UART) Peripheral
	Table C-10. UART Registers
	Table C-11. DMA Control Registers
	Input and Output
	UART Window in VisualDSP++
	Unsupported Features
	Example

	Timer (TMR) Peripheral
	Timer Global Status and Control
	Table C-12. Timer Global Status and Control Register Bits
	Table C-13. Timer Configuration Register Bits

	Timer Signal Usage
	Table C-14. Unrecognized Timer Signals

	Modes of Operation
	Timer with Streams Usage
	WDTH_CAP Mode
	Example Streams Data File
	Table C-15. Streams Data File Attached to TIMER0_WDTH_CAP�
	Table C-16. Resulting Waveforms

	External Clock Mode

	Memory DMA (MEMDMA) Peripheral
	Modes
	Registers
	Table C-17. Write Channel Registers
	Table C-18. Read Channel Registers

	Example – MEMDMA Transfer

	Simulator Instruction Timing Analysis Overview
	Cycle-Accurate Simulator
	Instruction Pipeline
	Delay in the Pipeline Viewer Window
	Figure C-1. Lag in the Pipeline
	Figure C-2. Instruction at Address 0
	Figure C-3. Pipeline Commit Stage
	Figure C-4. Instruction at Address 0x02 Reaches the Commit Stage
	Table C-19. Cycles Required at Each Stage�
	Figure C-5. Example Message

	Pipeline Stages
	Table C-20. Pipeline Stages

	Pipeline Viewer Window Messages
	Stalls Detected Messages
	Table C-21. Stalls Detected Messages�

	Aborts Detected Messages
	Table C-22. Aborts Detected Messages

	Boot Simulation
	Table C-23. Boot Simulation Support for ADSP-21xx Targets
	Simulating Boot Loading for ADSP-218x Targets
	Simulating Boot Loading for ADSP-219x Targets

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

