
W 3.5
Loader Manual

 for 16-Bit Processors

 Revision 1.0, October 2003

Part Number
82-000035-04

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, the VisualDSP logo, Blackfin, the
Blackfin logo, CROSSCORE, the CROSSCORE logo, and EZ-KIT Lite
are registered trademarks of Analog Devices, Inc.

VisualDSP++ and the VisualDSP++ logo are trademarks of Analog
Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

 CONTENTS
PREFACE

Purpose of This Manual .. xi

Intended Audience .. xi

Manual Contents ... xii

Technical or Customer Support .. xii

Supported Processors ... xiii

Product Information ... xiii

MyAnalog.com ... xiv

Embedded Processor and DSP Product Information xiv

Related Documents ... xv

Online Technical Documentation .. xv

From VisualDSP++ .. xvi

From Windows .. xvi

From the Web ... xvii

Printed Manuals .. xvii

VisualDSP++ Documentation Set .. xvii

Hardware Manuals ... xviii

Datasheets ... xviii

Contacting DSP Publications .. xviii
VisualDSP++ 3.5 Loader Manual iii
for 16-Bit Processors

Notation Conventions ... xix

INTRODUCTION

Program Development Flow .. 1-1

Compiling and Assembling ... 1-2

Linking ... 1-2

Loading and Splitting .. 1-2

Boot-loadable Files Versus Non-bootable Files 1-4

Booting Modes ... 1-5

No-boot Mode .. 1-5

PROM Booting Mode ... 1-6

Host Booting Mode .. 1-6

Boot Kernels .. 1-7

Loader Tasks ... 1-8

Loader Files .. 1-8

File Searches ... 1-9

BLACKFIN PROCESSOR LOADER/SPLITTER

Blackfin Processor Booting .. 2-2

ADSP-BF535 Processor Booting .. 2-3

ADSP-BF535 Processor On-Chip Boot ROM 2-4

ADSP-BF535 Processor Second-Stage Loader 2-6

ADSP-BF535 Processor Boot Streams 2-8

Output Loader Files .. 2-9

Global Headers and Blocks ... 2-11
 iv VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

Contents
Flags ... 2-13

ADSP-BF535 Processor Memory Ranges 2-13

Second-Stage Loader Restrictions 2-14

ADSP-BF531/BF532/BF533 Processor Booting 2-16

ADSP-BF531/BF532/BF533 Processor On-Chip Boot ROM 2-17

ADSP-BF531/BF532/BF533 Processor Boot Streams 2-19

Blocks and Block Headers ... 2-19

Flags of Block Header ... 2-20

Initialization Blocks .. 2-21

ADSP-BF531/BF532/BF533 Processor Memory Ranges 2-25

ADSP-BF531/BF532/BF533 Processor SPl Memory Boot Sequence
2-26

ADSP-BF561 Processor Booting .. 2-28

ADSP-BF561 Processor Boot Streams 2-29

ADSP-BF561 Processor Memory Ranges 2-34

ADSP-BF561 Processor Initialization Blocks 2-35

ADSP-BF561 Multiple .DXE Booting 2-36

ADSP-BF531/BF532/BF533 and ADSP-BF561 Multiple .DXE Booting
 2-37

Blackfin Processor Loader Guide ... 2-40

Using Loader Command Line .. 2-40

File Searches ... 2-41

File Extensions .. 2-41

Command-Line Switches ... 2-42

Using Base Loader ... 2-47
VisualDSP++ 3.5 Loader Manual v
for 16-Bit Processors

Using Second-Stage Loader ... 2-49

Using ROM Splitter .. 2-51

No-boot Mode ... 2-53

ADSP-219X DSP LOADER/SPLITTER

ADSP-219x DSP Booting ... 3-2

ADSP-219x DSP Boot Modes ... 3-3

ADSP-219x DSP Boot Kernel ... 3-4

ADSP-219x DSP Boot Streams ... 3-4

Parallel EPROM Boot Streams .. 3-4

Block Headers .. 3-5

Data Blocks .. 3-6

ADSP-219x DSP Multiple .DXE Support 3-7

Host Booting .. 3-10

UART Booting ... 3-11

Serial EPROM Booting ... 3-12

No-booting ... 3-12

Enriching Boot EPROMs with No-boot Data 3-16

ADSP-219x DSP Loader Guide .. 3-19

ADSP-219x Loader Command-Line Reference 3-19

File Searches ... 3-20

File Extensions ... 3-20

Loader Switches .. 3-21
 vi VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

Contents
ADSP-2192-12 DSP LOADER

ADSP-2192 DSP Booting ... 4-2

ADSP-2192 DSP Reset Types .. 4-2

ADSP-2192 DSP RTBL .. 4-4

Building .DXE Files .. 4-5

Creating a .EXE File ... 4-6

Reference RTBL .. 4-7

ADSP-2192 DSP RBTL and Overlays 4-8

Using Overlay Symbols ... 4-9

ADSP-2192 DSP Loader Guide .. 4-10

Single-Processor Command Line .. 4-10

Two-Processor Command Line .. 4-11

File Searches ... 4-12

File Extensions .. 4-13

Loader Command-Line Switches .. 4-13

ADSP-218X DSP LOADER/SPLITTER

ADSP-218x DSP Loader Guide ... 5-1

Boot Modes ... 5-2

Determining Boot Modes .. 5-4

EPROM Booting (BDMA) .. 5-6

ADSP-218x BDMA Loader Command-Line Reference 5-7

File Searches ... 5-9

File Extensions .. 5-9
VisualDSP++ 3.5 Loader Manual vii
for 16-Bit Processors

Loader Switches .. 5-9

Host Booting (IDMA) .. 5-11

ADSP-218x IDMA Loader Command-Line Reference 5-13

No Booting ... 5-13

ADSP-218x DSP Splitter Guide .. 5-15

Using Splitter .. 5-15

ADSP-218x Splitter Command-Line Reference 5-16

FILE FORMATS

Source Files .. A-2

C/C++ Source Files ... A-2

Assembly Source Files .. A-3

Assembly Initialization Data Files .. A-3

Header Files .. A-4

Linker Description Files .. A-4

Linker Command-Line Files .. A-5

Build Files .. A-5

Assembler Object Files .. A-5

Library Files .. A-6

Linker Output Files .. A-6

Memory Map Files .. A-7

Loader Output Files in Intel Hex-32 Format A-7

Splitter Output Files in ASCII Format A-9

Debugger Files .. A-9

Format References .. A-10
 viii VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

Contents
INDEX
VisualDSP++ 3.5 Loader Manual ix
for 16-Bit Processors

 x VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

 PREFACE

Thank you for purchasing Analog Devices development software for

digital signal processor (DSP) applications.

Purpose of This Manual
The VisualDSP++ 3.5 Loader Manual for 16-Bit Processors contains infor-
mation on how to use the loader/splitter to convert executable files into
boot-loadable (or non-bootable) files for 16-bit fixed-point ADSP-21xx
DSPs and Blackfin® processors. These files are then programmed/burned
into an external memory device within your target system.

Intended Audience
The primary audience for this manual is DSP programmers who are
familiar with Analog Devices DSPs. This manual assumes that the audi-
ence has a working knowledge of the appropriate DSP architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
DSPs can use this manual but should supplement it with other texts, such
as Hardware Reference and Instruction Set Reference manuals, that describe
your target architecture.
VisualDSP++ Loader Manual xi
for 16-Bit Processors

Manual Contents
Manual Contents
The manual contains:

• Chapter 1, “Introduction”

• Chapter 2, “Blackfin Processor Loader/Splitter”

• Chapter 3, “ADSP-219x DSP Loader/Splitter”

• Chapter 4, “ADSP-2192-12 DSP Loader”

• Chapter 4, “ADSP-218x DSP Loader/Splitter”

• Appendix A, “File Formats”

Technical or Customer Support
You can reach DSP Tools Support in the following ways.

• Visit the DSP Development Tools website at
www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA
 xii VisualDSP++ Loader Manual
for 16-Bit Processors

Preface
Supported Processors
The name “ADSP-21xx” refers to two families of Analog Devices 16-bit,
fixed-point processors. VisualDSP++ for ADSP-21xx DSPs currently
supports the following processors.

• ADSP-218x family DSPs: ADSP-2181, ADSP-2183,
ADSP-2184/84L/84N, ADSP-2185/85L/85M/85N,
ADSP-2186/86L/86M/86N, ADSP-2187L/87N,
ADSP-2188L/88N, and ADSP-2189M/89N

• ADSP-219x family DSPs: ADSP-2191, ADSP-2192-12,
ADSP-2195, ADSP-2196, ADSP-21990, ADSP-21991,
and ADSP-21992

The name “Blackfin” refers to a family of Analog Devices 16-bit, embed-
ded processors. VisualDSP++ currently supports the following Blackfin
processors.

• Blackfin Processors: ADSP-BF531, ADSP-BF532 (formerly
ADSP-21532), ADSP-BF533, ADSP-BF535 (formerly
ADSP-21535), ADSP-BF561, and AD6532

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.
VisualDSP++ Loader Manual xiii
for 16-Bit Processors

Product Information
MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:
Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

Embedded Processor and DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/processors, which provides access to technical publica-
tions, datasheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49 (0) 089 76 903 557 (Europe)

• Access the Digital Signal Processor Division’s FTP website at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com
 xiv VisualDSP++ Loader Manual
for 16-Bit Processors

Preface
Related Documents
For information on product related development software, see the follow-
ing publications.

For hardware information, refer to your DSP’s Hardware Reference manual
and datasheet.

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system and tools
manuals, Dinkum Abridged C++ library, and FlexLM network license
manager software documentation. You can easily search across the entire
VisualDSP++ documentation set for any topic of interest. For easy print-
ing, supplementary .PDF files for the tools manuals are also provided.

A description of each documentation file type is as follows.

VisualDSP++ 3.5 Getting Started Guide for 16-Bit Processors

VisualDSP++ 3.5 User’s Guide for 16-Bit Processors

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

VisualDSP++ 3.5 C/C++ Compiler and Library Manual for Blackfin Processors

VisualDSP++ 3.5 C/C++ Compiler and Library Manual for ADSP-219x DSPs

VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs

VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors

VisualDSP++ 3.5 Assembler and Preprocessor Manual for Blackfin Processors

VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and ADSP-219x DSPs

VisualDSP++ 3.5 Kernel (VDK) User’s Guide for 16-Bit Processors

VisualDSP++ 3.5 Component Software Engineering User’s Guide for 16-Bit Processors

Quick Installation Reference Card
VisualDSP++ Loader Manual xv
for 16-Bit Processors

Product Information
If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by rerunning the Tools installation.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices Web site.

From VisualDSP++

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items
(toolbar buttons, menu commands, and windows).

From Windows

In addition to shortcuts you may have constructed, there are many ways
to open VisualDSP++ online Help or the supplementary documentation
from Windows.

Help system files (.CHM files) are located in the Help folder, and .PDF files
are located in the Docs folder of your VisualDSP++ installation. The Docs
folder also contains the Dinkum Abridged C++ library and FlexLM net-
work license manager software documentation.

File Description

.CHM Help system files and VisualDSP++ tools manuals.

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files require a browser, such as Inter-
net Explorer 4.0 (or higher).

.PDF VisualDSP++ manuals in Portable Documentation Format, one .PDF file for each
manual. Viewing and printing a .PDF file require a PDF reader, such as Adobe
Acrobat Reader (4.0 or higher).
 xvi VisualDSP++ Loader Manual
for 16-Bit Processors

Preface
Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

Using the Windows Start Button

Access VisualDSP++ online Help by clicking the Start button and choos-
ing Programs, Analog Devices, VisualDSP++ for 16-bit processors , and
VisualDSP++ Documentation.

From the Web

To download the tools manuals, point your browser at
www.analog.com/technology/dsp/developmentTools/gen_purpose.html.

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

VisualDSP++ manuals may be purchased through Analog Devices
Customer Service at 1-781-329-4700; ask for a Customer Service
representative. The manuals can be purchased only as a kit. For additional
information, call 1-603-883-2430.
VisualDSP++ Loader Manual xvii
for 16-Bit Processors

Product Information
If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto http://www.analog.com/salesdir/continent.asp.

Hardware Manuals

Hardware reference and instruction set reference manuals can be ordered
through the Literature Center or downloaded from the Analog Devices
Web site. The phone number is 1-800-ANALOGD (1-800-262-5643).
The manuals can be ordered by a title or by product number located on
the back cover of each manual.

Datasheets

All datasheets can be downloaded from the Analog Devices Web site. As a
general rule, any datasheet with a letter suffix (L, M, N) can be obtained
from the Literature Center at 1-800-ANALOGD (1-800-262-5643) or
downloaded from the Web site. Datasheets without the suffix can be
downloaded from the Web site only—no hard copies are available. You
can ask for the datasheet by a part name or by product number.

If you want to have a datasheet faxed to you, the phone number for that
service is 1-800-446-6212. Follow the prompts and a list of datasheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested datasheets are available.

Contacting DSP Publications
Please send your comments and recommendation on how to improve our
manuals and online Help. You can contact us at
dsp.techpubs@analog.com.
 xviii VisualDSP++ Loader Manual
for 16-Bit Processors

Preface
Notation Conventions
The following table identifies and describes text conventions used in this
manual.

! Additional conventions, which apply only to specific chapters, may
appear throughout this document.

! Code has been formatted to fit this manual’s page width.

Example Description

Close command
(File menu)

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close
command appears on the File menu.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

A note, providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution, providing information about critical design or program-
ming issues that influence operation of a product. In the online version
of this book, the word Caution appears instead of this symbol.
VisualDSP++ Loader Manual xix
for 16-Bit Processors

Notation Conventions
 xx VisualDSP++ Loader Manual
for 16-Bit Processors

1 INTRODUCTION

The majority of this manual describes the loader program (or loader util-

ity) as well as the process of loading and splitting, the final phase of a DSP
application program’s development flow. The process of initializing
on-chip and off-chip memories, is often referred to as booting.

The majority of this chapter applies to all 16-bit processors. Information
applicable to a particular target processor, or to a particular processor fam-
ily, is provided in the following chapters.

• Chapter 2, “Blackfin Processor Loader/Splitter” on page 2-1

• Chapter 3, “ADSP-219x DSP Loader/Splitter” on page 3-1

• Chapter 4, “ADSP-2192-12 DSP Loader” on page 4-1

• Chapter 5, “ADSP-218x DSP Loader/Splitter” on page 5-1

Program Development Flow
The flow can be split into three phases:

1. “Compiling and Assembling”

2. “Linking”

3. “Loading and Splitting”

A brief description of each phase is as follows.
VisualDSP++ 3.5 Loader Manual 1-1
for 16-Bit Processors

Program Development Flow
Compiling and Assembling
Input source files are compiled and assembled to yield object files. Source
files are text files containing C/C++ code, compiler directives, possibly a
mixture of assembly code and directives, and, typically, preprocessor com-
mands. Refer to the VisualDSP++ 3.5 Assembler and Preprocessor Manual
or the VisualDSP++ 3.5 C/C++ Compiler and Library Manual for informa-
tion about the assembler and compiler source files.

Linking
Under the direction of the Linker Description File (LDF) and linker set-
tings, the linker consumes separately assembled object and library files to
yield an executable file. If specified, shared memory and overlay files are
also produced. The linker output conforms to the Executable and Link-
able Format (ELF), an industry-standard format for executable files. The
linker also produces map files and other embedded information used by
the debugger (DWARF-2).

These executable files (.DXE) are not readable by the processor hardware
directly. They are neither supposed to be burned onto a EPROM or Flash
memory device. Executable files are consumed by VisualDSP++ debugging
targets, such as the simulator or emulator. Refer to the VisualDSP++ 3.5
Linker and Utilities Manual for 16-Bit Processors and online Help for infor-
mation about linking and debugging.

Loading and Splitting
Upon completing the debug cycle, the processor hardware needs to run on
its own, without any debugging tools connected. After power-up, proces-
sor memories need to be initialized to be booted. Therefore, the linker
output must be transformed to a format readable by the processor. This
process is handled by the loader/splitter utility. The loader/splitter uses
the debugged and tested executable as well as shared memory and overlay
files as inputs to yield a processor-loadable file.
1-2 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

Introduction
VisualDSP++ includes two loader/splitter programs:

• elfloader.exe for ADSP-BF5xx and ADSP-219x processors

• elfspl21.exe for ADSP-218x processors

You can run the loader/splitter from the IDDE. In order to do so, change
you project’s type from DSP Executable to DSP Loader File. If preferred,
the command-line interface is also available.

Loader operations depend on loader options, which control how the
loader processes executable files, letting you select features such as kernels,
boot modes, and output file formats. These options are set on the Load
page of the Project Options dialog box in the VisualDSP++ environment
or on the loader’s command line. Option settings on the Load page corre-
spond to switches typed on the command line.

The loader/splitter output is either a boot-loadable or non-bootable file
(described in the following “Boot-loadable Files Versus Non-bootable
Files”). The output is meant to be loaded onto the target. There are sev-
eral ways to use the output:

• Download the loadable file into the processor’s PROM space on an
EZ-KIT Lite board via the Flash Programmer plug-in. Refer to
VisualDSP++ Help or the EZ-KIT Lite Evaluation System Manual
for information on the Flash Programmer.

• Use VisualDSP++ to simulate booting in a simulator session (where
supported). Load the loader file and then reset the processor to
debug the booting routines. No hardware is required: just point to
VisualDSP++ 3.5 Loader Manual 1-3
for 16-Bit Processors

Program Development Flow
the location of the loader file, letting the simulator to do the rest.
You can step through the boot kernel code as it brings the rest of
the code into memory.

• Store the loader file in an array on a multiprocessor system. A mas-
ter (host) processor has the array in its memory, allowing a full
control to reset and load the file into the memory of a slave
processor.

Boot-loadable Files Versus Non-bootable Files
A boot-loadable file is transported into and run from a processor’s internal
memory (on-chip boot ROM). (Note: This is different for ADSP-218x
processors.) The file is then programmed (burned) into an external mem-
ory device within your target system. The loader outputs files in
industry-standard file formats, such as Intel hex-32 and Motorola S,
which are readable by most EPROM burners. For advanced usage, other
file formats are supported.

A non-bootable EPROM-image file executes from the processor’s external
memory, bypassing the build-in boot mechanisms. Preparing a non-boota-
ble EPROM image is called splitting. In most cases, developers working
with 16-bit processors use the loader instead of the splitter.

A processor’s booting sequence and an application program’s design dic-
tate the way you call the loader/splitter programs to consume and
transform executables. For 16-bit processors, splitter and loader features
are handled by a single program. The splitter is invoked by a completely
different set of command-line switches than the loader. Refer to the guide
sections of the following chapters for information about splitting.
1-4 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

Introduction
Booting Modes
A fully debugged program can be automatically downloaded to the proces-
sor after power-up or after a software reset. This process is called booting.
The way the loader creates a boot-loadable file depends upon how your
program is booted into the processor.

Once an executable is fully debugged, it is ready to be converted into a
processor-loadable file.

The exact boot mode of the processor is determined by sampling one or
more of input flag pins. Booting sequences, highly processor-specific, are
detailed in the following chapters.

ADSP-218x, ADSP-219x, and Blackfin processors support different boot
mechanisms. Generally spoken, the following schemes can be used to pro-
vide program instructions to the processors after reset.

• “No-boot Mode”

• “PROM Booting Mode”

• “Host Booting Mode”

No-boot Mode
The processors starts fetching and executing instructions from
EPROM/Flash memory devices directly. This scheme does not require any
loader mechanism. It is up to the user program to initialize volatile
memories.

The splitter utility helps to generate a file that can be burned into the
PROM memory.
VisualDSP++ 3.5 Loader Manual 1-5
for 16-Bit Processors

Booting Modes
PROM Booting Mode
After reset, the processor starts reading data from any parallel or serial
PROM device. The PROM stores a formatted boot stream rather than raw
instruction code. Beside application data, the boot stream contains addi-
tional data, such as destination addresses and word counts. A small
program called kernel or loader kernel (described on page 1-7) parses the
boot stream and initializes memories accordingly. The loader kernel runs
on the target processors. Depending on the architecture, the loader kernel
may execute from on-chip boot ROM or may be pre-loaded from the
PROM device into on-chip SRAM and execute from there.

The loader utility generates the boot stream from the linker’s executable
file and stores it to file format that can be burned into the PROM.

Host Booting Mode
In this scheme, the target processor is slave to a host system. After reset,
the processor delays program execution until it gets signalled by the host
system that the boot process has completed. Depending on hardware capa-
bilities, there are two different methods of host booting. In the first case,
the host system has full control over all target memories. It halts the target
while it is initializing all memories as required. In the second case, the
host communicates by a certain handshake with the loader kernel running
on the target processor. This kernel may execute from on-chip ROM or
may be pre-loaded by the host devices into the target’s SRAM by any
boot-strapping scheme.

The loader/splitter utility generates a file that can be consumed by the
host device. It depends on the intelligence of the host device and on the
target architecture whether the host expects raw application data or a for-
matted boot stream.
1-6 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

Introduction
In this context, a boot-loadable file is a file that stores instruction code in
a formatted manner in order to be processed by a boot kernel. A
non-bootable file stores raw instruction code. Note that in some case, a
single file may contain both types of data.

Boot Kernels
A (loader) boot kernel refers to the resident program in the boot ROM
space responsible for booting the processor. Alternatively (or in absence of
the boot ROM), the boot kernel can be pre-loaded from the boot source
by a boot-strapping scheme.

When a reset signal is sent to the processor, the processor starts booting
from a PROM, host device, or through a communication port. For exam-
ple, a ADSP-218x/219x processor brings a 256-word program in internal
memory for execution. This small program is called a boot kernel. The
boot kernel then brings the rest of the booting routines into the proces-
sor’s memory. Finally, the boot kernel overwrites itself with the final block
and jumps to the beginning of the application program.

On the ADSP-219x DSPs, the highest 16 locations in page 0 program
memory and the highest 272 locations in page 0 data memory are reserved
for use by the ROM boot routines (typically for setting up DMA data
structures and for bookkeeping operations). Ensure that the boot sequence
entry code or boot-loaded program do not need to initialize this space at
boot time. However, the program can use these locations at run-time.

Some of the newer Blackfin processors (ADSP-BF531, ADSP-BF532, and
ADSP-BF533) do not require a boot kernel: the advanced on-chip boot
ROM allows the entire application program body to be booted into the
internal memory of the processor. The on-chip boot ROM for the former
processors behaves similar to the second-stage loader of ADSP-BF535 pro-
cessors. The boot ROM has the capability to parse address and count
information for each bootable block.
VisualDSP++ 3.5 Loader Manual 1-7
for 16-Bit Processors

Loader Tasks
Loader Tasks
Common tasks perform by the loader include:

• Processing loader option settings or command-line switches.

• Formatting the output .LDR file according to user specifications.
Supported formats are binary, ASCII, hex-32, and more. Valid file
formats are described in Appendix A on page A-1.

• Packing the code for a particular data format: 8- or 16-bit.

• If specified, adding a boot kernel on top of the user code.

• If specified, preprogramming the location of the .LDR file in
PROM space.

• Specifying processor IDs for multiple input .DXEs for a multipro-
cessor system.

Loader Files
The loader/splitter output is essentially the same executable code as in the
input .DXE file. The loader repackages the executable, as illustrated in
Figure 1-1.

Processor code in a loader file is split into blocks. Each code block is
marked with a tag that contains information about the block, such as a
number of words or destination in processor’s memory. Depending on the
processor family, there may be additional information in the tag. Com-
mon block types are “zero” (memory is filled with 0s); non-zero (code or
data); and final (code or data). Depending on the processor family, there
may be other block types.
1-8 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

Introduction
File Searches
File searches are important in the loader operation. The loader supports
relative and absolute directory names, default directories. File searches
occur as follows.

• Specified path—If you include relative or absolute path informa-
tion in a file name, the loader searches only in that location for the
file.

• Default directory—If you do not include path information in the
file name, the loader searches for the file in the current working
directory.

• Overlay and shared memory files—the loader recognizes overlay
memory files but does not expect these files on the command line.
Place the files in the same directory as the executable file that refers
to them. The loader can locate them when processing the
executable.

Figure 1-1. .DXE Files versus .LDR Files

Code

Data

Symbols

Debug Information

.DXE File

Code

Data

Symbols

Debug Information

.LDR File

A .DXE file includes:
Symbol table and section

information
Target processor's memory

layout
Degugging information

Code instructions

An .LDR file includes:
DSP instructions (code and
data)
Rudimentary formatting

All of the debugging information
has been taken out of the file
VisualDSP++ 3.5 Loader Manual 1-9
for 16-Bit Processors

Loader Files
When providing an input or output file as a loader/splitter command-line
parameter, use the following guidelines.

• Enclose long file names within straight quotes, “long file name”.

• Append the appropriate file extension to each file.
1-10 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

2 BLACKFIN PROCESSOR
LOADER/SPLITTER

This chapter explains how the loader/splitter program (elfloader.exe) is

used to convert executable files (.DXE) into boot-loadable or non-bootable
files for the ADSP-BF5xx Blackfin processors.

Refer to “Introduction” on page 1-1 for the loader overview; the introduc-
tory material applies to all processor families. Loader operations specific to
ADSP-BF5xx Blackfin processors are detailed in the following sections.

• “Blackfin Processor Booting” on page 2-2

Provides general information on various booting modes, including
information on second-stage kernels:

• “ADSP-BF535 Processor Booting” on page 2-3

• “ADSP-BF531/BF532/BF533 Processor Booting” on
page 2-16

• “ADSP-BF561 Processor Booting” on page 2-28

• “Blackfin Processor Loader Guide” on page 2-40

Provides reference information on the loader’s command-line syn-
tax and switches.
VisualDSP++ Loader Manual 2-1
for 16-Bit Processors

Blackfin Processor Booting
Blackfin Processor Booting
Figure 2-1 is a simplified view of the Blackfin processor’s booting
sequence.

A Blackfin processor can be booted from an 8- or 16-bit Flash/PROM
memory or an 8-,16-, or 24-bit addressable SPI memory. (24-bit address-
able SPI memory booting supported only on ADSP-BF531/BF532/BF533
processors.) There is also a no-boot option (bypass mode), in which execu-
tion occurs from a 16-bit external memory.

At powerup, after the reset, the processor transitions into a boot mode
sequence configured by the BMODE pins. These pins can be read through
bits in the System Reset Configuration Register (SYSCR). The BMODE pins
are dedicated mode-control pins; that is, no other functions are shared
with these pins.

Figure 2-1. Blackfin Processors: Booting Sequence

ADSP-BF53x
Processor

Booting
upon

RESET

Target System

External
Memory

Assembler
and/or

Compiler
Linker LoaderSource Files

.ASM, .C, .CPP .DOJ .DXE

.LDR
2-2 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
! Refer to the processor’s data sheet and Hardware Reference for more
information on system configuration, peripherals, registers, and
operating modes.

ADSP-BF535 Processor Booting
Upon reset, an ADSP-BF535 processor jumps to an external 16-bit mem-
ory for execution (if BMODE = 000) or to the on-chip boot ROM (if
BMODE = 001, 010, 011). Table 2-1 summarizes booting modes and code
execution start addresses for ADSP-BF535 processors.

A description of each boot mode is as follows.

• “ADSP-BF535 Processor On-Chip Boot ROM” on page 2-4

• “ADSP-BF535 Processor Second-Stage Loader” on page 2-6

• “ADSP-BF535 Processor Boot Streams” on page 2-8

• “ADSP-BF535 Processor Memory Ranges” on page 2-13

Table 2-1. ADSP-BF535 Processor Boot Mode Selections

Boot Source BMODE[2:0] Execution Start Address

Execute from 16-bit external memory (Async Bank 0);
no-boot mode (bypass on-chip boot ROM)

000 0x2000 0000

Boot from 8-bit/16-bit Flash memory 001 0xF000 00001

1 The processor jumps to this location after the booting is complete.

Boot from 8-bit address SPI0 serial EEPROM 010 0xF000 00001

Boot from 16-bit address SPI0 serial EEPROM 011 0xF000 00001

Reserved 111—100 N/A
VisualDSP++ Loader Manual 2-3
for 16-Bit Processors

Blackfin Processor Booting
ADSP-BF535 Processor On-Chip Boot ROM

The on-chip boot ROM for the ADSP-BF535 processor does the follow-
ing (Figure 2-2).

1. Sets up Supervisor mode by exiting the RESET interrupt service rou-
tine and jumping into the lowest priority interrupt (IVG15).

2. Checks whether the RESET was a software reset and if so, whether to
skip the entire boot sequence and jump to the start of L2 memory
(0xF000 0000) for execution. The on-chip boot ROM does this by
checking bit 4 of the SYSCR. If bit 4 is not set, the on-chip boot
ROM performs the full boot sequence. If bit 4 is set, the on-chip
boot ROM bypasses the full boot sequence and jumps to 0xF000
0000. The register settings are shown in Figure 2-3.

Figure 2-2. ADSP-BF535 Processors: On-Chip Boot ROM

ADSP-BF535 Processor

4-Byte Header (N)

2nd Stage Loader
or

Application
Code

PROM/Flash or SPI Device

2nd Stage Loader
or

Application
Code

N
Bytes

0x0
L2 Memory

(0xF000 0000)

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader
or

Application
Code
2-4 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
3. Finally, if bit 4 of the SYSCR register is not set, the on-chip boot
ROM performs the full boot sequence. The full boot sequence
includes:

" Checking the boot source (either Flash/PROM or SPI mem-
ory) by reading BMODE[2:0] from the SYSCR register.

" Reading the first four bytes from location 0x0 of the exter-
nal memory device. These four bytes contain the byte count
(N), which specifies the number of bytes to boot in.

" Booting in N bytes into internal L2 memory starting at loca-
tion 0xF000 0000.

" Jumping to the start of L2 memory for execution.

The on-chip boot ROM boots in N bytes from the external memory. These
N bytes can define the size of the actual application code or a second-stage
loader (boot kernel) that boots in the application code.

Figure 2-3. ADSP-BF535 Processors: System Reset Configuration Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

BMODE 2-0 - RO
 000 - Bypass boot ROM,
 execute from 16-bit-wide
 external memory.
 001 - Use boot ROM to load
 from 8-bit/16-bit FLASH.
 010 - Use boot ROM to configure
 and load boot code from
 SPI0 serial ROM
 (8-bit address range).
 011 - Use boot ROM to configure
 and load boot code from
 SPI0 serial ROM
 (16-bit address range).
 100-111 - Reserved

0 0 0 0 0 0 0 0 0 0 0 0 X X X Reset = dependent on pin values

System Reset Configuration Register (SYSCR)

X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
 0 - Use BMODE to determine
 boot source.
 1 - Start executing from the
 beginning of on-chip L2 memory
 (or the beginning of ASYNC Bank 0
 when BMODE[2:0] = b#000).
VisualDSP++ Loader Manual 2-5
for 16-Bit Processors

Blackfin Processor Booting
ADSP-BF535 Processor Second-Stage Loader

The only situation where a second-stage loader is unnecessary is when the
application code contains only one section starting at the beginning of L2
memory (0xF000 0000).

A second-stage loader must be used in applications in which multiple seg-
ments reside in L2 memory or in L1 memory and/or SDRAM. In
addition, a second-stage loader must be used to change the wait states or
hold time cycles for a Flash/PROM booting or to change the baud rate for
a SPI boot (see “Command-Line Switches” on page 2-42 for more infor-
mation on these features).

When a second-stage loader is used for booting, the following sequence
takes place.

1. Upon RESET, the on-chip boot ROM downloads N bytes (the
second-stage loader) from external memory to address 0xF000 0000
in L2 memory (Figure 2-4).

Figure 2-4. ADSP-BF535 Processors: Booting With Second-Stage Loader

ADSP-BF535 Processor

4-Byte Header (N)

2nd Stage Loader

PROM/Flash or SPI Device

2nd Stage Loader
or

Application
Code

N
Bytes

0x0
L2 Memory

(0xF000 0000)

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader

Application
Code/Data
2-6 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
2. The second-stage loader copies itself to the bottom of L2 memory.

3. The second-stage loader boots in the application code/data into the
various memories of the Blackfin processor.

Figure 2-5. ADSP-BF535 Processors: Copying Second-Stage Loader

Figure 2-6. ADSP-BF535 Processors: Booting Application Code

ADSP-BF535 Processor

4-Byte Header (N)

2nd Stage Loader

PROM/Flash or SPI Device

2nd Stage Loader
or

Application
Code

0x0
L2 Memory

(0xF000 0000)

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader

Application
Code/Data

2nd Stage Loader

ADSP-BF535 Processor

4-B yte Header (N)

2 nd S tage Loade r

0x 0

A pplication
Code/Data

A

B

C

PROM/Flash or SPI Device

2nd Stage Loader
or

Application
Code

L2 Memory
(0xF000 0000)

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader

A

B

L1 Memory

C

SDRAM
VisualDSP++ Loader Manual 2-7
for 16-Bit Processors

Blackfin Processor Booting
4. Finally, after booting, the second-stage loader jumps to the start of
L2 memory (0xF000 0000) for application code execution
(Figure 2-7).

ADSP-BF535 Processor Boot Streams

The loader generates the boot stream and places the boot stream in the
output loader file (.LDR). The loader prepares the boot stream in such a
way that the on-chip boot ROM and the second-stage loader can correctly
load the application code and data to the processor memory. Therefore,
the boot stream contains not only the user application code but also
header and flag information that is used by the on-chip boot ROM and
the second-stage loader.

Figure 2-7. ADSP-BF535 Processors: Starting Application Code

ADSP-BF535 Processor

4-Byte Header (N)

2nd Stage Loader

0x0

Application
Code/Data

A

B

C

PROM/Flash or SPI Device

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader

A

B

L1 Memory

L2 Memory
(0xF000 0000)

C

SDRAM
2-8 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
Diagrams in this section illustrate boot streams utilized by the
ADSP-BF535 processor’s boot kernel. The elements are covered as
follows.

• “Output Loader Files” on page 2-9

• “Global Headers” on page 2-12

• “Block Headers” on page 2-13

• “Flags” on page 2-13

Output Loader Files

An output loader file for 8-bit PROM/Flash booting and 8-/16-bit
addressable SPI booting without the second-stage loader:

4-Byte Header for
Byte Count (N)

Byte 0

Byte 1

Byte 2

Byte 3

........

........

........

Output .LDR File

Application
Code

Byte Count for
Application Code

D7 D0
VisualDSP++ Loader Manual 2-9
for 16-Bit Processors

Blackfin Processor Booting
An output loader file for 16-bit PROM/Flash booting without the sec-
ond-stage loader:

An output loader file for 8-bit PROM/Flash booting and 8- or 16-bit
addressable SPI booting with the second-stage loader or kernel:

4-Byte Header for
Byte Count (N)

Byte 0

Byte 1

Byte 2

Byte 3

........

........

Output .LDR File

Byte Count for
2nd Stage Loader

0x00

0x00

0x00

0x00

0x00

D15 D8 D7 D0

Application
Code
(N words)

........

0x00

0x00

0x00

4-Byte Header for
Byte Count (N)

Byte 0

Byte 1

Byte 2

Byte 0

Byte 1

Byte 2

........

Output .LDR File

2nd Stage Loader
(N Bytes)

Byte Count for
2nd Stage Loader

D7 D0

Application
Code
(in blocks)

........
2-10 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
An output loader file for 16-bit PROM/FLASH booting with the sec-
ond-stage loader or kernel:

Global Headers and Blocks

Following kernel code and kernel address in a loader file, there is a 4-byte
global header. The header provides the global settings for a booting
process:

4-Byte Header for
Byte Count (N)

Byte 0

Byte 1

Byte 2

Byte 0

........

Byte 2

........

Output .LDR File

2nd Stage Loader

Byte Count for
2nd Stage Loader

0x00

0x00

0x00

0x00

0x00

Byte 1

Byte 3

Byte 5

D15 D8 D7 D0

Byte 4

........

Application
Code
(in blocks)

Byte Count (N)

2nd Stage Loader

2nd Stage Loader
Address

Global Header

Size of Application
Code (N1)

Application Code

Output .LDR File

Address of the Bottom of L2 Memory
from which 2nd Stage Loader runs

Byte Count for
2nd Stage Loader

4 Bytes

N Bytes

4 Bytes

4 Bytes

4 Bytes

N1 Bytes

See "Global Header"
VisualDSP++ Loader Manual 2-11
for 16-Bit Processors

Blackfin Processor Booting
A block is the basic structure of the output .LDR file for application code
when the second-stage loader is used. All the application code is grouped
into blocks. A block always has a block header an a block body if it is a
non-zero block. A block does not have a block body if it is a zero block. A
block header is illustrated below:

Global Headers

A global header for 8- and 16-bit PROM/Flash booting:

A global header for 8- and 16-bit addressable SPI booting:

Start Address
of Block 1

Size of Application
Code (N1)

Byte Count
of Block 1

Flag for Block 1

Body of Block 1

Start Address
of Block 2

Byte Count
of Block 2

......

4 Bytes

4 Bytes

2 Bytes

Byte Count (N)

2nd Stage Loader

2nd Stage Loader
Address

Global Header

Size of Application
Code (N1)

Application Code

Output .LDR File

4 Bytes

N Bytes

4 Bytes

4 Bytes

4 Bytes

N1 Bytes

Block
Header

Block

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Number of hold time cycles: 3 (default)
Number of wait states: 15 (default)
1 = 16-bit PROM/Flash, 0 = 8-bit PROM/Flash: 0 (default)

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Baud rate: 0 = 500 kHz (default), 1 = 1 MHz, 2 = 2 MHz
2-12 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
Block Headers

A block header has three words: 4-byte clock start address, 4-byte block
byte count, and 2-byte flag word.

Flags

The ADSP-BF535 block flag word’s bits are illustrated below.

ADSP-BF535 Processor Memory Ranges

Second-stage loaders are available for ADSP-BF535 processors in Visu-
alDSP++ 3.0 and higher. They allow booting to:

• L2 memory (0xF000 0000)

• L1 memory

" Data Bank A SRAM (0xFF80 0000)

" Data Bank B SRAM (0xFF90 0000)

" Instruction SRAM (0xFFA0 0000)

" Scratchpad SRAM (0xFFB0 0000)

• SDRAM

" Bank 0 (0x0000 0000)

" Bank 1 (0x0800 0000)

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit 15: 1 = Last Block, 0 = Not Last Block Bit 0: 1 = Zero Fill, 0 = No Zero Fill
VisualDSP++ Loader Manual 2-13
for 16-Bit Processors

Blackfin Processor Booting
" Bank 2 (0x1000 0000)

" Bank 3 (0x1800 0000)

! SDRAM must be initialized by user code before any instructions or
data are loaded into it.

For more information see “Using Second-Stage Loader” on page 2-49.

Second-Stage Loader Restrictions

When using the second-stage loader:

• The bottom of L2 memory must be reserved during booting. These
locations can be reallocated during runtime. The following loca-
tions pertain to the current second-stage loaders.

" For 8- and 16-bit PROM/Flash booting, reserve
0xF003 FE00–0xF003 FFFF (last 512 bytes).

" For 8- and 16-bit addressable SPI booting, reserve
0xF003 FD00–0xF003 FFFF (last 768 bytes).

• If segments reside in SDRAM memory, configure the SDRAM reg-
isters accordingly in the second-stage loader kernels before booting.

" Modify section of code called “SDRAM setup” in the
second-stage loader and rebuild the second-stage loader.

• Any segments residing in L1 instruction memory
(0xFFA0 0000–0xFFA0 3FFF) must be 8-byte aligned.

" Declare segments, within the .LDF file, that reside in L1
instruction memory at starting locations that are 8-byte
aligned (for example, 0xFFA0 0000, 0xFFA0 0008,
0xFFA0 0010, and so on).

" Or use the .ALIGN 8; directives in the application code.
2-14 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
! The two reasons for this restriction are:

• Core writes into L1 instruction memory are not allowed.

• DMA from an 8-bit external memory is not possible since
the minimum width of the External Bus Interface Unit
(EBIU) is 16 bits.

Load bytes into L1 instruction memory by using the instruction test com-
mand and data registers, as described in the Memory chapter of the
appropriate Hardware Reference manual. These registers transfer 8-byte
sections of data from external memory to internal L1 instruction memory.
VisualDSP++ Loader Manual 2-15
for 16-Bit Processors

Blackfin Processor Booting
ADSP-BF531/BF532/BF533 Processor Booting
Upon reset, an ADSP-BF531/BF532/BF533 processor jumps to the
on-chip boot ROM (if BMODE = 01, 11) or jumps to 16-bit external mem-
ory for execution (if BMODE = 00) located at 0xEF00 0000. Table 2-2 shows
booting modes and execution start addresses for ADSP-BF531,
ADSP-BF532, and ADSP-BF533 processors.

A description of each boot mode is as follows.

• “ADSP-BF531/BF532/BF533 Processor On-Chip Boot ROM” on
page 2-17

• “ADSP-BF531/BF532/BF533 Processor Boot Streams” on
page 2-19

Table 2-2. ADSP-BF531/BF532/BF533 Processor Boot Mode Selections

Boot Source BMODE[1:0]
Execution Start Address

ADSP-BF531
ADSP-BF532

Processors

ADSP-BF533
Processor

Execute from 16-bit External ASYNC Bank0
memory (no-boot mode or bypass on-chip boot
ROM)

00 0x2000 0000 0x2000 0000

Boot from 8- or 16-bit Prom/Flash 01 0xFFA0 8000 0xFFA0 0000

Reserved 10 0xFFA0 8000 0xFFA0 0000

Boot from a 8-, 16-, or 24-bit addressable SPI
memory

11 0xFFA0 8000 0xFFA0 0000
2-16 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
ADSP-BF531/BF532/BF533 Processor On-Chip Boot ROM

The on-chip boot ROM for ADSP-BF531/BF532/BF533 processors does
the following.

1. Sets up supervisor mode by exiting the RESET interrupt service rou-
tine and jumping into the lowest priority interrupt (IVG15).

2. Checks whether the RESET was a software reset and if so, whether to
skip the entire boot sequence and jump to the start of L1 memory
(0xFFA0 0000 for ADSP-BF533 processor; 0xFFA0 8000 for
ADSP-BF531 and ADSP-BF532 processors) for execution. The
on-chip boot ROM does this by checking bit 4 of the System Reset
Configuration Register (Figure 2-8). If bit 4 is not set, the on-chip
boot ROM performs the full boot sequence. If bit 4 is set, the
on-chip boot ROM bypasses the full boot sequence and jumps to
the start of L1 memory.

3. Eventually, if bit 4 of the SYSCR register is not set, the on-chip boot
ROM performs the full boot sequence (Figure 2-9).

Figure 2-8. ADSP-BF533 Processors: System Reset Configuration Register

00000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE[1:0] (Boot Mode)- RO
 00 - Bypass boot ROM,
 execute from 16-bit
 external memory
 01 - Use boot ROM to load
 from 8-bit flash
 10 - Use boot ROM to configure
 and load boot code from
 SPI serial ROM
 (8-bit address range)
 11 - Use boot ROM to configure
 and load boot code from
 SPI serial ROM
 (16-bit address range)

0 0 0 0 0 0 0 0 X X

Reset = dependent on pin
values

System Reset Configuration Register (SYSCR)
X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
 0 - Use BMODE to determine
 boot source
 1 - Start executing from the
 beginning of on-chip L1
 memory or the beginning of
 ASYNC Bank 0 when
 BMODE[1:0] = b#00

0xFFC0 0104
VisualDSP++ Loader Manual 2-17
for 16-Bit Processors

Blackfin Processor Booting
The booting sequence for ADSP-BF531, ADSP-BF532, and
ADSP-BF533 processors is quite different from that of ADSP-BF535 pro-
cessors. The on-chip boot ROM for the former processors behaves similar
to the second-stage loader of ADSP-BF535 processors. The boot ROM
has the capability to parse address and count information for each boota-
ble block. This alleviates the need for a second-stage loader for
ADSP-BF531/BF532/BF533 processors because a full application can be
booted to the various memories with just the on-chip boot ROM.

The loader converts the application code (.DXE) into the loadable file by
parsing the code and creating a file that consists of different blocks. Each
block is encapsulated within a 10-byte header which is illustrated in
Figure 2-9 and detailed in the following section. These headers, in turn,
are read and parsed by the on-chip boot ROM during booting. The
10-byte header provides all the information the on-chip boot ROM
requires: where to boot the block to, how many bytes to boot in, and what
to do with the block.

Figure 2-9. ADSP-BF531/BF532/BF533 Processors: Booting Sequence

ADSP-BF531/BF532/BF533 Processor

10-Byte Header for Block 1

App.
Code/
Data

Block 1

PROM/Flash or SPI Device

A

L1 Memory
Block 1

SDRAM

Block 2

0xEF00 0000

On-Chip
Boot ROM

Block 3 10-Byte Header for Block 2

Block 2

10-Byte Header for Block 3

Block 3

Block n

........

10-Byte Header for Block n

........
2-18 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
ADSP-BF531/BF532/BF533 Processor Boot Streams

The following sections describe the boot stream, header, and flag frame-
work for ADSP-BF531, ADSP-BF532, and ADSP-BF533 processors.

• “Blocks and Block Headers” on page 2-19

• “Flags of Block Header” on page 2-20

• “Initialization Blocks” on page 2-21

The ADSP-BF531/BF532/BF533 processor boot stream is similar to the
boot stream that uses a second-stage kernel of ADSP-BF535 processors
(detailed in “ADSP-BF535 Processor Boot Streams” on page 2-8). How-
ever, since the former processors do not employ a kernel, their boot
streams do not include the kernel code and the associated 4-byte header
on the top of the kernel code. There is also no 4-byte global header.

Blocks and Block Headers

As the loader converts the code from an input .DXE file into blocks com-
prising the output loader file, each block is getting preceded by a 10-byte
header (Figure 2-10), followed by a block body (if it is a non-zero block)
or no block body (if it is a zero block). A description of the header struc-
ture can be found in Table 2-3.

Table 2-3. ADSP-BF531/BF532/BF533 Block Header Structure

Bit Field Description

Address 4-byte address at which the block resides in memory.

Count 4-byte number of bytes to boot.

Flag 2-byte flag containing information about the block “Flags of Block
Header” on page 2-20 describes the flag structure.
VisualDSP++ Loader Manual 2-19
for 16-Bit Processors

Blackfin Processor Booting
Flags of Block Header

Refer to the following figure and Table 2-4 for the flag’s bit descriptions.

Figure 2-10. ADSP-BF531/BF532/BF533 Processor Boot Stream Structure

DXE1 Byte Count

H eade r fo r D X E1 C ount

Header for Block 1

Block 1

Header for Block 2

Block 2

Header for DXE2 Count

......

......

......

......

DXE2 Byte Count

4-Byte A ddress

4 -Byte C ount

2 -Byte Flag

10-B y te H eader

B lock

S ee F lag Inform a tion

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Last Block:
 1 = last block, 0 = not last block

Ignore Block: 1 = ignore block, 0 = do not ignore block
Initialization Block: 1 = init block, 0 = non-init block
Processor Type: 1 = ADSP-BF533
 0 = ADSP-BF531/BF532
Zero-Fill: 1 = zero fill block, 0 = non-zero fill block
Bits 14–5 are reserved for future use
2-20 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
Initialization Blocks

The -init filename option directs the loader to produce an initialization
block from the code of the initialization section of the named file. The ini-
tialization block is placed at the top of a loader file. It is executed before
the rest of the code in the loader file is booted into the memory (see
Figure 2-11).

Following execution of the initialization block, the booting process con-
tinues with the rest of data blocks until it encounters a final block (see
Figure 2-12). The initialization code example follows in Listing 2-1

Table 2-4. Flag Structure

Bit Field Description

Zero-Fill Block Indicates that the block is a buffer filled with zeros. Zero Block is not included
within loader file. When the loader parses through the .DXE file and encounters
a large buffer with zeros, it creates a zero-fill block to reduce .LDR file size and
boot time. If this bit is set, there is no data in the block.

Ignore Block Indicates that the block is not to be booted into memory; skips the block and
move on to the next one. Currently is not implemented for application code.

Initialization
Block

Indicates that the block is to be executed before booting. The initialization
block indicator allows the on-chip boot ROM to execute a number of instruc-
tions before booting the actual application code. When the on-chip boot ROM
detects an Init Block, it boots the block into internal memory and makes a
CALL to it (Initialization code must have a RTS at the end).
This option allows the user to run initialization code (such as SDRAM initial-
ization) before the full boot sequence proceeds. Figure 2-11 and Figure 2-12
illustrate the process. Initialization code can be included within the .LDR file by
using the -init switch (see “-init filename” on page 2-43).

Processor Type Indicates the processor, either ADSP-BF531/BF532 or ADSP-BF533. After
booting is complete, the cn-chip boot ROM jumps to 0xFFA0 0000 for a
ADSP-BF533 processor and to 0xFFA0 8000 for a ADSP-BF531/BF532 pro-
cessor.

Last Block Indicates that the block is the last block to be booted into memory. After the
last block, the processor jumps to the start of L1 memory for application code
execution. When it jumps to L1 memory for code execution, the processor is
still in Supervisor Mode and in the lowest priority interrupt (IVG15).
VisualDSP++ Loader Manual 2-21
for 16-Bit Processors

Blackfin Processor Booting
Figure 2-11. ADSP-BF531/BF532/BF533: Initialization Block Execution

Figure 2-12. ADSP-BF531/BF532/BF533: Booting Application Code

ADSP-BF531/BF532/BF533 Processor

Header for Init Block

App.
Code/
Data

Init Block

PROM/Flash or SPI Device

A

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Chip
Boot ROM

1eader for L1 Block

L1 Block

Header for SDRAM Block

SDRAM Block

Block n

........

10-Byte Header for Block n
2-22 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
Listing 2-1. Initialization Block Code Example

/* This file contains 3 sections: */

/* 1) A Pre-Init Section–this section saves off all the

DSP registers onto the stack.

2) An Init Code Section–this section is the initialization

code which can be modified by the customer

As an example, an SDRAM initialization code is supplied.

The example setups the SDRAM controller as required by

certain SDRAM types. Different SDRAMs may require

different initialization procedure or values.

3) A Post-Init Section–this section restores all the register

from the stack. Customers should not modify the Pre-Init
and Post-Init Sections. The Init Code Section can be

modified for a particular application.*/

#include <defBF532.h>

.SECTION program;

/**********************Pre-Init Section************************/

[--SP] = ASTAT; /* Stack Pointer (SP) is set to the end of */

[--SP] = RETS; /* scratchpad memory (0xFFB00FFC) */

[--SP] = (r7:0); /* by the on-chip boot ROM */

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;

[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/*******************Init Code Section**************************/

/*******Please insert Initialization code in this section******/

/***********************SDRAM Setup****************************/

Setup_SDRAM:

P0.L = EBIU_SDRRC & 0xFFFF;

/* SDRAM Refresh Rate Control Register */
VisualDSP++ Loader Manual 2-23
for 16-Bit Processors

Blackfin Processor Booting
P0.H = (EBIU_SDRRC >> 16) & 0xFFFF;

R0 = 0x074A(Z);

W[P0] = R0;

SSYNC;

P0.L = EBIU_SDBCTL & 0xFFFF;

/* SDRAM Memory Bank Control Register */

P0.H = (EBIU_SDBCTL >> 16) & 0xFFFF;

R0 = 0x0001(Z);

W[P0] = R0;

SSYNC;

P0.L = EBIU_SDGCTL & 0xFFFF;

/* SDRAM Memory Global Control Register */

P0.H = (EBIU_SDGCTL >> 16) & 0xFFFF;//

R0.L = 0x998D;

R0.H = 0x0091;

[P0] = R0;

SSYNC;

/*********************Post-Init Section************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++];

(r7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/**/

RTS;
2-24 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
ADSP-BF531/BF532/BF533 Processor Memory Ranges

The on-chip boot ROM on ADSP-BF531, ADSP-BF532, and
ADSP-BF533 Blackfin processors allows booting to the following memory
ranges.

• L1 memory

• ADSP-BF531 processor

" Data Bank A SRAM (0xFF80 4000–0xFF80 7FFF)

" Instruction SRAM (0xFFA0 8000–FFA0 BFFF)

• ADSP-BF532 processor

" Data Bank A SRAM (0xFF80 4000–0xFF80 7FFF)

" Data Bank B SRAM (0xFF90 4000–0xFF90 7FFF)

" Instruction SRAM (0xFFA0 8000–FFA1 3FFF)

• ADSP-BF533 processor

" Data Bank A SRAM (0xFF80 0000–0xFF80 7FFF)

" Data Bank B SRAM (0xFF90 000–0xFF90 7FFF)

" Instruction SRAM (0xFFA0 0000–FFA1 3FFF)

• SDRAM memory

" Bank 0 (0x0000 0000–0x07FF FFFF)

! Booting to scratchpad memory (0xFFB0 0000) is not supported.

! SDRAM must be initialized by user code before any instructions or
data are loaded into it.
VisualDSP++ Loader Manual 2-25
for 16-Bit Processors

Blackfin Processor Booting
ADSP-BF531/BF532/BF533 Processor SPl Memory Boot Se-
quence

The ADSP-BF531/BF532/BF533 processors support booting from 8-,
16-, or 24-bit addressable SPI memories (BMODE = 11).

To determine the memory type connected to the processor (8-, 16-, or
24-bit), the processor sends signals to the SPI memory until it responds
back. The SPI memory does not respond back until it is properly
addressed.

The on-chip boot ROM does the following.

1. Sends a READ command, 0x03, then does a dummy READ.

2. Sends an address byte, 0x00, then does a dummy READ.

3. Sends another byte, 0x00, and verifies if the incoming byte is a
zero. If the byte is a zero, an 8-bit addressable SPI memory device
is connected.

4. If the incoming byte is not a zero, the on-chip boot ROM sends
another byte, 0x00, and verifies if the incoming byte is a zero. If the
byte is a zero, a 16-bit addressable SPI memory device is
connected.

5. If the incoming byte is not a zero, the on-chip boot ROM sends
another byte, 0x00, and verifies if the incoming byte is a zero. The
last byte is a zero when a 24-bit addressable SPI memory device is
connected.
2-26 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
The MISO line must be pulled high for BMODE = 11. Since the MISO line is
pulled up high, the processor receives one of the following.

• A 0xFF if the part is not responding back with valid data

• A 0x00 if the part is responding back with valid data.

! The boot uses Slave Select 2 that maps to PF2. The on-chip boot
ROM sets the Baud Rate register to “133”, which, based on a
133 MHz system clock, results in a 133 MHz/(2*133) = 500 kHz
baud rate.

Analog Devices recommends the following SPI memory devices.

• 8-bit addressable SPI memory: 25LC040 from Microchip
(http://www.microchip.com/download/lit/pline/mem-
ory/spi/21204c.pdf)

• 16-bit addressable SPI memory: 25CL640 from Microchip
(http://www.microchip.com/download/lit/pline/mem-
ory/spi/21223e.pdf)

• 24-bit addressable SPI memory: M25P80 from STMicroelectronics
(http://www.st.com/stonline/books/pdf/docs/8495.pdf)
VisualDSP++ Loader Manual 2-27
for 16-Bit Processors

Blackfin Processor Booting
ADSP-BF561 Processor Booting
The booting sequence for the ADSP-BF561 dual-core processor is similar
to the ADSP-BF531/BF532/BF533 processor booting sequence (described
on page 2-16). Differences occur because the ADSP-BF561 processor has
two cores: core A and core B. After reset, core B remains idle, but core A
executes the on-chip boot ROM located at address 0xEF00 0000.

! Please refer to Chapter 3 of the ADSP-BF561 Hardware Reference
Manual for information about the processor’s operating modes and
states. Please refer to “System Reset and Power up Configuration”
for background information on reset and booting.

The boot ROM loads an application program from an external memory
device and starts executing that program by jumping to the start of
core A’s L1 instruction SRAM, at address 0xFFA0 0000.

Table 2-5 summarizes the boot modes and execution start addresses for
ADSP-BF561 processors.

Just like the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561
boot ROM uses the interrupt vectors to stay in supervisor mode. The boot
ROM code transitions from the RESET interrupt service routine into the
lowest priority user interrupt service routine (Int 15) and remains in the

Table 2-5. ADSP-BF561 Processor Boot Mode Selections

Boot Source BMODE [2:0] Execution Start Address

Reserved 000 Not applicable

Boot from 8-bit/16-bit PROM/Flash memory 001 0xFFA0 0000

Boot from 8-bit addressable SPI0 serial EEPROM 010 0xFFA0 0000

Boot from 16-bit addressable SPI0 serial EEPROM 011 0xFFA0 0000

Reserved 111–100 Not applicable
2-28 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
ISR. The boot ROM then checks to see if it has been invoked by a soft-
ware reset by examining bit 4 of the System Reset Configuration Register
(SYSCR).

If bit 4 is not set, the boot ROM presumes that a hard reset has occurred
and performs the full boot sequence. If bit 4 is set, the boot ROM under-
stands that the user code has invoked a software reset and restarts the user
program by jumping to the beginning of core A’s L1 memory
(0xFFA0 0000), bypassing the entire boot sequence.

When developing an ADSP-BF561 processor application, you start with
compiling and linking your application code into an executable file
(.DXE). The debugger loads the.DXE into the processor’s memory and exe-
cutes it. With two cores, two.DXE files can be loaded at once. In the
real-time environment, there is no debugger, which allows the boot ROM
to load the executables into memory.

ADSP-BF561 Processor Boot Streams

The loader converts the.DXE into a boot stream file (.LDR) by parsing the
executable and creating blocks. Each block is encapsulated within a
10-byte header. The .LDR file is burned into the external memory device
(Flash, PROM, or EEPROM). The boot ROM reads the external memory
device, parsing the headers and copying the blocks to the addresses where
they reside during program execution. After all the blocks are loaded, the
boot ROM jumps to address 0xFFA0 0000 to execute the core A program.

! When running code on both cores, the core A program is responsi-
ble for releasing core B from the idle state by clearing bit 5 in
core A’s System Configuration Register. Then core B begins execu-
tion at address 0xFF60 0000.

Multiple .DXE files are often combined into a single boot stream.
VisualDSP++ Loader Manual 2-29
for 16-Bit Processors

Blackfin Processor Booting
Unlike the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561
boot stream begins with a 4-byte global header, which contains informa-
tion about the external memory device. The global header also contains a
signature in the upper 4 bits that prevents the boot ROM from trying to
read a boot stream from a blank device.

Following the global header is a .DXE count block, which contains a 32-bit
byte count for the first .DXE in the boot stream. Though this block con-
tains only a byte count, it is encapsulated by a 10-byte block header, just
like the other blocks.

The 10-byte header tells the boot ROM where in memory to place each
block, how many bytes to copy, and whether the block needs any special
processing. The header structure is the same as that of the
ADSP-BF531/BF532/BF533 processors (described in “Blocks and Block
Headers” on page 2-19). Each header contains a 4-byte start address for
the data block, a 4-byte count for the data block, and a 2-byte flag word,
indicating whether the data block is a “zero-fill” block or a “final block”
(the last block in the boot stream).

Table 2-6. ADSP-BF561 Global Header Structure

Bit Field Description

0 1 = 16-bit Flash, 0 = 8-bit Flash; default is 0

1–4 Number of wait states; default is 15

5 Unused bit

6–7 Number of hold time cycles for Flash; default is 3

8–10 Baud rate for SPI boot: 00 = 500k, 01 = 1M, 10 = 2M.

11–27 Reserved for future use

28–31 Signature that indicates valid boot stream
2-30 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
For the .DXE count block, the address field is irrelevant since the block is
not going to be copied to memory. The “ignore bit” is set in the flag word
of this header, so the boot loader does not try to load the .DXE count but
skips the count. For more details, see “Flags of Block Header” on
page 2-20

Following the .DXE count block are the rest of the blocks of the first .DXE.

A bit-by-bit description of the boot steam is presented in Table 2-7.
When learning about the ADSPP-BF561 boot stream structure, keep in
mind that the count byte for each .DXE is, itself, a block encapsulated by a
block header.

Table 2-7. ADSP-BF561 Processor Boot Stream Structure

Bit Field Description

0–7 LSB of the Global Header

8–15 8-15 of the Global Header

16–23 16-23 of the Global Header

24–31 MSB of the Global Header

32–39 LSB of the address field of 1st DXE count block (no care)

40–47 8-15 of the address field of 1st DXE count block (no care)

48–55 16-23 of the address field of 1st DXE count block (no care)

56–63 MSB of the address field of 1st DXE count block (no care)

64–71 LSB (4) of the byte count field of 1st DXE count block

72–79 8-15 (0) of the byte count field of 1st DXE count block

80–87 16-23 (0) of the byte count field of 1st DXE count block

88–95 MSB (0) of the byte count field of 1st DXE count block

96–103 LSB of the flag word of 1st DXE count block – ignore bit set

104–111 MSB of the flag word of 1st DXE count block

112–119 LSB of the first 1st .DXE byte count
VisualDSP++ Loader Manual 2-31
for 16-Bit Processors

Blackfin Processor Booting
120–127 8–15 of the first 1st .DXE byte count

128–135 16–23 of the first 1st .DXE byte count

136–143 24–31 of the first 1st .DXE byte count

144–151 LSB of the address field of the 1st data block in 1st .DXE

152–159 8–15 of the address field of the 1st data block in 1st .DXE

160–167 16–23 of the address field of the 1st data block in 1st .DXE

168–175 MSB of the address field of the 1st data block in 1st .DXE

176–183 LSB of the byte count of the 1st data block in 1st .DXE

184–191 8–15 of the byte count of the 1st data block in 1st .DXE

192–199 16–23 of the byte count of the 1st data block in 1st .DXE

200–207 MSB of the byte count of the 1st data block in 1st .DXE

208–215 LSB of the flag word of the 1st block in 1st .DXE

216–223 MSB of the flag word of the 1st block in 1st .DXE

224–231 Byte 3 of the 1st block of 1st .DXE

232–239 Byte 2 of the 1st block of 1st .DXE

240–247 Byte 1 of the 1st block of 1st .DXE

248–255 Byte 0 of the 1st block of 1st .DXE

256–263 Byte 7 of the 1st block of 1st .DXE

… And so on …

… LSB of the address field of the nth data block of 1st .DXE

… 8–15 of the address field of the nth data block of 1st .DXE

… 16–23 of the address field of the nth data block of 1st .DXE

… MSB of the address field of the nth data block of 1st .DXE

… LSB of the byte count field of the nth block of 1st .DXE

Table 2-7. ADSP-BF561 Processor Boot Stream Structure (Cont’d)

Bit Field Description
2-32 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
… 8–15 of the byte count field of the nth block of 1st .DXE

… 16–23 of the byte count field of the nth block of 1st .DXE

… MSB of the byte count field of the nth block of 1st .DXE

… LSB of the flag word of the nth block of 1st .DXE

… MSB of the flag word of the nth block of 1st .DXE

… …

… Byte 1 of the nth block of 1st .DXE

… Byte 0 of the nth block of 1st .DXE

LSB of the address field of 2nd .DXE count block (no care)

8–15 of the address field of 2nd .DXE count block (no care)

And so on…

Table 2-7. ADSP-BF561 Processor Boot Stream Structure (Cont’d)

Bit Field Description
VisualDSP++ Loader Manual 2-33
for 16-Bit Processors

Blackfin Processor Booting
ADSP-BF561 Processor Memory Ranges

The on-chip boot ROM of the ADSP-BF561 processor can load a full
application to the various memories of both cores. Booting is allowed to
the following memory ranges. The boot ROM clears these memory ranges
before booting in a new application.

• Core A

" L1 Instruction SRAM (0xFFA0 0000–0xFFA0 3FFF)

" L1 Instruction Cache/SRAM (0xFFA1 0000–0xFFA1 3FFF)

" L1 Data Bank A SRAM (0xFF80 0000–0xFF80 3FFF)

" L1 Data Bank A Cache/SRAM (0xFF80 4000–0xFF80 7FFF)

" L1 Data Bank B SRAM (0xFF90 0000–0xFF90 3FFF)

" L1 Data Bank B Cache/SRAM (0xFF90 4000–0xFF90 7FFF)

• Core B

" L1 Instruction SRAM (0xFF60 0000–0xFF6 03FFF)

" L1 Instruction Cache/SRAM (0xFF61 0000–0xFF61 3FFF)

" L1 Data Bank A SRAM (0xFF40 0000–0xFF40 3FFF)

" L1 Data Bank A Cache/SRAM (0xFF40 4000–0xFF40 7FFF)

" L1 Data Bank B SRAM (0xFF50 0000–0xFF50 3FFF)

" L1 Data Bank B Cache/SRAM (0xFF50 4000–0xFF50 7FFF)

• Four Banks of Configurable Synchronous DRAM
(0x0000 0000–(up to) 0x1FFF FFFF)
2-34 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
The boot ROM does not support booting to core A scratch mem-
ory (0xFFB0 0000–0xFFB0 0FFF) and to core B scratch memory
(0xFF70 0000–0xFF70 0FFF). Data that needs to be initialized prior
to runtime should not be placed in scratch memory.

ADSP-BF561 Processor Initialization Blocks

An initialization block or a second-stage loader must be used to initialize
the SDRAM memory of the ADSP-BF561 processor before any instruc-
tions or data are loaded into it.

The initialization block is identified by a bit in the flag word of the
10-byte block header. When the boot ROM encounters an initialization
block in the boot stream, it loads the block and executes it immediately.
The initialization block must save and restore registers and return to the
boot ROM, so the boot ROM can load the rest of the blocks. For more
details, see “Flags of Block Header” on page 2-20.

Both the initialization block and second stage loader can be used to force
the boot ROM to load a specific .DXE from the external memory device if
the boot ROM stores multiple executable files. The initialization block
can manipulate the R0 or R3 register, which the boot ROM uses as external
memory pointers for Flash/PROM or SPI memory boot, respectively.

After the processor returns from the initialization block, the boot ROM
continues to load blocks from the location specified in the R0 or R3 regis-
ter, which can be any .DXE in the boot stream. This option requires the
starting locations of specific executables within external memory. The R0
or R3 register must point to the 10-byte count header, as illustrated in
“ADSP-BF531/BF532/BF533 and ADSP-BF561 Multiple .DXE Boot-
ing” on page 2-37.
VisualDSP++ Loader Manual 2-35
for 16-Bit Processors

Blackfin Processor Booting
ADSP-BF561 Multiple .DXE Booting

A typical dual-core application is separated into two executable files; one
for each core. The default linker description files (LDFs) for the
ADSP-BF561 processor creates two separate executable files (p0.dxe and
p1.dxe) and some shared memory files (sml2.sm and sml3.sm). By modify-
ing the LDF, it is possible to create a dual-core application that combines
both cores into a single .DXE file. This is not recommended unless the
application is a simple assembly language program which does not link
any C runtime libraries. When using shared memory and/or C runtime
routines on both cores, it is best to generate a separate .DXE file for each
core. The loader combines the contents of the shared memory files
(sml2.sm, sml3.sm) into the .DXE file for core A (p0.dxe).

The boot ROM only loads one single executable before the ROM jumps
to the start of core A instruction SRAM (0xFFA0 0000). When two .DXEs
must be loaded, a second stage loader should be used. The second stage
boot loader must start at 0xFFA0 0000. The boot ROM loads and executes
the second stage loader. A default second stage loader is provided for each
boot mode and can be customized by the user.

Unlike the initialization block, the second-stage loader takes full control
over the boot process and never returns to the boot ROM.

The second-stage loader can use the .DXE byte count blocks to find spe-
cific .DXE s in external memory.

The default second stage loader uses the last 1024 bytes of L2 memory.
The area must be reserved during booting but can be reallocated at
runtime.
2-36 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
ADSP-BF531/BF532/BF533 and ADSP-BF561 Multiple
.DXE Booting

This section describes how to boot more than one .DXE file into a
ADSP-BF531/BF532/BF533 and ADSP-BF561 processor. The informa-
tion presented in this section applies to all of the named processors. For
additional information on the ADSP-BF561 processor, refer to
“ADSP-BF561 Multiple .DXE Booting” on page 2-36.

The ADSP-BF531/BF532/BF533 and ADSP-BF561 loader file structure
and the silicon revision of 0.1 and higher allow to boot multiple .DXE files
into a single processor from external memory. Each executable file is pre-
ceded by a 4-byte count header, which is the number of bytes within the
executable, including headers. This information can be used to boot a spe-
cific .DXE into the processor. The 4-byte .DXE count block is encapsulated
within a 10-byte header to be compatible with the silicon revision 0.0. For
more information, see “Blocks and Block Headers” on page 2-19.

Booting multiple executables can be accomplished by one of the following
methods.

1. Use the second-stage loader switch, “-l userkernel”. This option
allows to use your own second-stage loader or kernel.

After the second-stage loader gets booted into internal memory via
the on-chip boot ROM, it has full control over the boot process.
Now the second-stage loader can use the .DXE byte counts to boot
in one or more .DXEs from external memory.
VisualDSP++ Loader Manual 2-37
for 16-Bit Processors

Blackfin Processor Booting
2. Use the initialization block switch, “-init filename”, where “file-
name” is the name of the executable file containing the init code.
This option allows you to change the external memory pointer and
boot a specific .DXE via the on-chip boot ROM.

A sample initialization code is included in Listing 2-2. The R0 and
R3 registers are used as external memory pointers by the on-chip
boot ROM. The R0 register is for Flash/PROM boot, and R3 is for
SPI memory boot. Within the initialization block code, change the
value of R0 or R3 to point to the external memory location at which
the specific application code starts. After the processor returns
from the initialization block code to the on-chip boot ROM, the
on-chip boot ROM continues to boot in bytes from the location
specified in the R0 or R3 register.

Figure 2-13. ADSP-BF531/BF32/BF33/BF561: Multi-Application Booting

10-Byte Header for Count

4-Byte Count for 1st DXE

1st DXE Application

10-Byte Header for Count

4-Byte Count for 2nd DXE

2nd DXE Application

10-Byte Header for Count

4-Byte Count for 3rd DXE

3rd DXE Application

10-Byte Header for Count

4-Byte Count for 4th DXE

.......................

.......................

10-Byte Header for Block 1

Block 1

10-Byte Header for Block 2

10-Byte Header for Block 3

Block 2

Block 3
........................
2-38 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
Listing 2-2. Initialization Block Code Example for Multiple .DXE Boot

#include <defBF532.h>

.SECTION program;

/*******Pre-Init Section***************************************/

[--SP] = ASTAT;

[--SP] = RETS;

[--SP] = (r7:0);

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;
[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/**/

/*******Init Code Section**************************************

R0.H = High Address of DXE Location (R0 for Flash/Prom Boot,

R3 for SPI boot)

R0.L = Low Address of DXE Location. (R0 for Flash/Prom Boot,

R3 for SPI boot)

***/

/*******Post-Init Section**************************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++];

/* MAKE SURE NOT TO RESTORE

R0 for Flash/Prom Boot, R3 for SPI Boot */

(r7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/**/

RTS;
VisualDSP++ Loader Manual 2-39
for 16-Bit Processors

Blackfin Processor Loader Guide
Blackfin Processor Loader Guide
Loader operations depend on the loader options, which control how the
loader processes executable files, letting you select features such as boot
mode, boot kernel, and output file format. These options are specified on
the loader’s command line or via the Load page of the Project Options
dialog box in the VisualDSP++ environment. The Load page consists of
multiple panes and is the same for all Blackfin processors. When you open
the Load page, the default loader settings for the selected processor are
already set.

! Option settings on the Load page correspond to switches displayed
on the command line.

These sections describe how to produce a bootable or non-bootable loader
file (.LDR):

• “Using Loader Command Line” on page 2-40

• “Using Base Loader” on page 2-47

• “Using Second-Stage Loader” on page 2-49

• “Using ROM Splitter” on page 2-51

Using Loader Command Line
The Blackfin loader uses the following command-line syntax.

For a single input file:

elfloader sourcefile -proc processor [-switch …]

For multiple input files:

elfloader sourcefile1 sourcefile2 … -proc processor [-switch …]
2-40 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
where:

• sourcefile—Name of the executable file (.DXE) to be processed
into a single boot-loadable or non-bootable file. An input file name
can include the drive and directory. For multiprocessor or multiin-
put systems, specify multiple input .DXEs. Put the input filenames
in the order in which you want the loader to process the files.
Enclose long file names within straight-quotes, “long file name”.

• -proc processor—Part number of the processor (for example,
ADSP-BF531) for which the loadable file is to be built. Provide a
processor part number for every input .DXE if designing multipro-
cessor systems. If the processor is not specified, the default is
ADSP-BF535.

• -switch …—One or more optional switches to process. Switches
select operations and modes for the loader.

! Command-line switches may be placed on the command line in
any order, except the order of input files for a multiinput system.
For a multiinput system, the loader processes the input files in the
order presented on the command line.

File Searches

File searches are important in the loader processing. The loader supports
relative and absolute directory names, default directories. File searches
occur as described on page 1-9.

File Extensions

Some loader switches take a file name as an optional parameter. Table 2-8
lists the expected file types, names, and extensions.
VisualDSP++ Loader Manual 2-41
for 16-Bit Processors

Blackfin Processor Loader Guide
Command-Line Switches

A summary of the loader command-line switches appear in Table 2-9.

Table 2-8. File Extensions

Extension File Description

.DXE Loader input files, boot-kernel files, and initialization files.

.LDR Loader output file.

.KNL Loader output files containing kernel code only when two output files are selected.

Table 2-9. Blackfin Loader Command-Line Switches

Switch Description

-b prom
-b flash
-b spi

Specifies the boot mode. The -b switch directs the loader to prepare a
boot-loadable file for the specified boot mode. Valid boot modes
include PROM, Flash, and SPI.
If -b does not appear on the command line, the default is -b prom.

-baudrate # Accepts a baud rate for SPI booting only.
Note: Currently supported only for ADSP-BF535 processors.
Valid baud rates and corresponding values (#) are:
• 500K—500 kHz, the default
• 1M—1 MHz
• 2M—2 MHz
Boot kernel loading supports an SPI baud rate up to 2 MHz.

-enc dll_filename Encrypts the data stream from the application .DXE files. If the file-
name parameter does not appear on the command line, the encryp-
tion algorithm from the default ADI’s file is used.

-kenc dll_filename Specifies the user encryption file for the data stream from the kernel
file. If the filename parameter does not appear on the command line,
the encryption algorithm from the default ADI’s file is used.

-f hex
-f ASCII
-f binary

Specifies the boot file’s format. The -f switch prepares a boot-load-
able file in the specified format (Intel hex 32, ASCII, binary)
If the -f switch does not appear on the command line, the default
boot-mode format is hex for Flash/PROM, and ASCII for SPI.
2-42 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
-h
 or
-help

Invokes the command-line help, outputs a list of command-line
switches to standard output, and exits. By default, the -h switch alone
provides help for the loader driver. To obtain a help screen for your
target Blackfin processor, add the -proc switch to the command
line. For example: type elfloader -proc ADSP-BF535 -h to
obtain help for the ADSP-BF535 processor.

-ghc # Specifies a 4-bit value (global header cookie) for bits 31–28 of the
global header.

-HoldTime # Allows the loader to specify a number of hold-time cycles for
PROM/Flash boot. The valid values (#) are from 0 through 3. The
default value is 3.
Note: Currently supported only for ADSP-BF535 processors.

-init filename Directs the loader to include the initialization block from the named
file. The loader places the code from the initialization section of the
specified .DXE file in the boot stream. The kernel loads the block and
then calls it. It is the responsibility of the code within the block to
save/restore state/registers and then perform a RTS back to the ker-
nel.
Note: This switch cannot be applied to ADSP-BF535 processors.

-kb prom
-kb flash
-kb spi

Specifies the boot mode (PROM, Flash, or SPI) for the boot kernel
output file if you select to generate two output files from the loader:
one for the boot kernel and another for the user application code.
This switch must be used in conjunction with the -o2 switch.
If the -kb switch is absent on a command line, the loader generates
the file for the boot kernel in the same boot mode as used to output
the user application code file.

-kf hex
-kf ascii
-kf binary

Specifies the output file format (hex, ASCII, or binary) for the boot
kernel if you select to output two files from the loader: one for the
boot kernel and another for user application code.
This switch must be used in conjunction with the -o2 switch. If the
-kf switch is absent from the command line, the loader generates the
file for the boot kernel in the same format as for the user application
program.

Table 2-9. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description
VisualDSP++ Loader Manual 2-43
for 16-Bit Processors

Blackfin Processor Loader Guide
-kp # Specifies a hex PROM/Flash output start address for kernel code. A
valid value is between [0x0, 0xFFFFFFFF]. The specified value will
not be used if no kernel or/and initialization code is included in the
loader file.

-kWidth # Specifies the width of the boot kernel output file when there are two
output files: one for boot kernel and one for user application code.
Valid values are:
• 8 or 16 for PROM or Flash boot kernel
• 8 for SPI boot kernel
If this switch is absent from the command line, the default file width
is:
• the -width parameter when booting from PROM/Flash
• 8 when booting from SPI.
This switch should be used in conjunction with the -o2 switch.

-l userkernel Specifies the user’s boot kernel. The loader utilizes the user-specified
kernel and ignores the default boot kernel if there is one.
Note: Currently, only ADSP-BF535 processors have default kernels.

-M Generates make dependencies only, no output file will be generated.

-maskaddr # Masks all EPROM address bits above or equal to #.
For example, -maskaddr 29 (default) masks all the bits above and
including A29 (ANDed by 0x1FFF FFFF). For example,
0x2000 0000 becomes 0x0000 0000. The valid #s are integers 0
through 32, but based on your specific input file, the value can be
within a subset of [0,32].
This switch requires -romsplitter and affects the ROM section
address only.

-MaxBlockSize # Specifies the maximum block byte count, which must be a multiply
of 16.

-MM Generates make dependencies while producing the output files.

-Mo filename Writes make dependencies to the named file.
The -Mo option is for use with either the -M or -MM option. If -Mo is
not present, the default is a <stdout> display.

Table 2-9. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description
2-44 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
-Mt filename Specifies the make dependencies target output filename.
The -Mt option is for use with either the -M or -MM option. If -Mt is
not present, the default is the name of the input file with the .LDR
extension.

-no2kernel Produces the output file without the boot kernel but uses the
boot-strap code from the internal boot ROM. The boot stream gener-
ated by the loader is different from the one generated by the boot ker-
nel.
Note: Currently supported only for ADSP-BF535 processors.

-o filename Directs the loader to use the specified filename as the name for the
loader’s output file. If the filename is absent, the default name is the
name of the input file with an .LDR extension.

-o2 Produces two output files: one for the Init block (if present) and boot
kernel and another for the user application code.
To have a different format from the application code output file, use
the -kb -kf -kwidth switches to specify the boot mode, the boot
format, and the boot width for the output kernel file.
If you intent to use the -02 switch, do not combine it with:
• -nokernel on ADSP-BF535 processors
• -l filename and/or -init filename on

ADSP-BF531/BF532/BF535/BF561 processors.

-p # Specifies a hex PROM/Flash output start address for the application
code. A valid value is between [0x0, 0xFFFFFFFF]. A specified value
must be greater than that specified by -kp if both kernel and/or ini-
tialization and application code are in the same output file (do not
use -o2).

-proc processor Specifies the target processor.
The processor can be one of the following: ADSP-BF531,
ADSP-BF532, ADSP-BF533, ADSP-BF535, and ADSP-BF561.

-romsplitter Creates a non-bootable image only. This switch overwrites the -b
switch and any other switch bounded by the boot modes.
Note: In the .LDF file, declare memory segments to be ‘splitted’ as
type “ROM”. The splitter skips “RAM” segments, resulting in an empty
file if all segments are declared as “RAM”.
The -romsplitter switch supports hex and ASCII formats.

Table 2-9. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description
VisualDSP++ Loader Manual 2-45
for 16-Bit Processors

Blackfin Processor Loader Guide
-ShowEncryptionMessage Displays a message returned from the encryption function.

-si-revision version Provides a silicon revision of the specified processor.
The version parameter represents a silicon revision of the processor
specified by the -proc switch. The revision version takes one of two
forms:
• One or more decimal digits, followed by a point, followed by one

or two decimal digits. Examples of revisions are: 0.0; 1.12;
23.1. Version 0.1 is distinct from and “lower” than version
0.10. The digits to the left of the point specify the chip tapeout
number; the digits to the right of the point identify the metal
mask revision number. The number to the right of the point can-
not exceed decimal 255.

• A none version value is also supported, indicating that the
VDSP++ tool should ignore silicon errata.

This switch either generates a warning about any potential anomalous
conditions or generates an error if any anomalous conditions occur.
Note: In the absence of the silicon revision switch, the loader selects
the greatest silicon revision it is aware of, if any.
Note: In the absence of the version parameter (a valid version
value)—-si-revision alone or with an invalid value—the loader
generates an error.

-v Outputs verbose loader messages and status information, as the
loader processes files.

-waits # Specifies the number of the wait states for external access. Valid
inputs are 0 through 15. Default is 15. Wait states apply to the
Flash/PROM boot mode only.
Note: Currently supported only for ADSP-BF535 processors.

-width # Specifies the loader output file’s width in bits. Valid values are 8 and
16, depending on the boot mode. The default is 8.
The switch has no effect on boot kernel code processing on
ADSP-BF535 processors. The loader processes the kernel in 8-bit
widths regardless of selection of the output data width.
• For Flash/PROM booting, the size of the output file depends on

the -width # switch.
• For SPI booting, the size of the output .LDR file is the same for

both -width 8 and -width 16. The only difference is the
header information.

Table 2-9. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description
2-46 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
Using Base Loader
The Load page of the Project Options dialog consists of multiple panes
and is the same and for all Blackfin processors. When you open the Load
page, the default loader settings (Loader options) for the selected proces-
sor are already set. As an example, Figure 2-14 shows the ADSP-BF532
processor’s default Load settings for PROM booting. Command-line
switches equivalent to the dialog box options are also identified. Refer to
“Command-Line Switches” on page 2-42 for more information on the
switches.

Figure 2-14. Base Load Page: Loader File Options Pane

-waits

-p #

-init

-b

-width

-v

-holdtime

-baudrate

-f

-o
VisualDSP++ Loader Manual 2-47
for 16-Bit Processors

Blackfin Processor Loader Guide
Using the page controls, you can select or modify the loader settings.
Table 2-10 describes each loader control and corresponding setting. When
you are satisfied with default settings, click OK to complete the loader
setup.

Table 2-10. Base Loader Page Settings

Setting Description

Category Selections in the drop-down box display panes of options. The options are:
• Loader options – default booting options (this section)

• Boot kernel options – specification for a second-stage loader (see
on page 2-49)

• ROM splitter options – specification for the no-boot mode (see
on page 2-51)

If you do not use the boot kernel for ADSP-BF535 processors, the second Load
pane appears with all kernel option fields grayed out. The loader does not search
for the boot kernel if you boot from the on-chip ROM by setting the
-no2kernel command-line switch as described on page 2-45.
For ADSP-BF531/BF532/BF533 and ADSP-BF561 processors, which do not
have software boot kernels by default, you need to select the boot kernel to use
one.

Boot mode Specifies PROM, Flash, or SPI as a boot source.

Boot format Specifies Intel hex, ASCII, or binary formats.

Output width Specifies 8 or 16 bits.
If BMODE = 01 or 001 and Flash/PROM is 16-bit wide, the 16-bit option must
be selected.

Start address Specifies a PROM/Flash output start address in hex format for the application
code.

Verbose Generates status information as the loader processes the files.

Wait state Specifies the number of the wait states for external access (0–15).
The selection is active for ADSP-BF535 processors. For ADSP-BF531,
ADSP-BF532, and ADSP-BF533 processors, the field is grayed out.

Hold time Specifies the number of the hold-time cycles for PROM/Flash boot (0–3).
The selection is active for ADSP-BF535 processors. For ADSP-BF531,
ADSP-BF532, and ADSP-BF533 processors, the field is grayed out.
2-48 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
Using Second-Stage Loader
If you to use a second-stage loader, select Boot kernel options in the Cat-
egory drop-down menu. The page shows how to configure the loader for
boot loading and to output file generation using the boot kernel.

Figure 2-15 shows an example boot kernel Load pane for a Blackfin
processor.

To create a loader file which includes a second-stage loader:

1. Use the Loader options pane to set up base booting options (see
“Using Base Loader” on page 2-47).

2. Select Boot kernel options from the Category drop-down box to
open the second Load pane with the second-stage loader settings,
shown in Figure 2-15.

Baud rate Specifies a baud rate for SPI booting (500 kHz, 1 MHz, and 2 MHz).
The selection is active for ADSP-BF535 processors. For ADSP-BF531,
ADSP-BF532, and ADSP-BF533 processors, the field is grayed out.

Initialization
file

Directs the loader to include the initialization file (Init code). The Initialization
file selection is active for ADSP-BF531/BF532/BF533, and ADSP-BF561 pro-
cessors. For ADSP-BF535 processors, the field is grayed out.

Kernel file Specifies the boot kernel file. Can be used to override the default boot kernel if
there is one by default, as on ADSP-BF535 processors.

Output file Names the loader’s output file.

Additional
options

Specifies additional loader switches. You can specify additional input files for a
multiinput system.
Note: The loader processes the input files in order the files appear on the com-
mand line, starting with the one from the project.

Table 2-10. Base Loader Page Settings (Cont’d)

Setting Description
VisualDSP++ Loader Manual 2-49
for 16-Bit Processors

Blackfin Processor Loader Guide
3. Select Use boot kernel. By default, this option is selected for
ADSP-BF535 and grayed out for ADSP-BF531/BF532/BF533 and
ADSP-BF561 processors.

4. If you want to produce two output files (boot kernel file and appli-
cation code file), select the Output kernel in separate file check
box. This option boots the second-stage loader from one source
and the application code from another source. If the Output kernel
in separate file box is selected, you can specify the kernel output
file options such as the Boot mode (source), Boot format, and
Output width.

Figure 2-15. ADSP-BF53x Processors: Boot Kernel Pane

-kwidth-kf

-kp #

-l filename

-o2

-kb
2-50 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
5. Enter the Kernel file (.DXE). You must either use the default kernel
(in case of a ADSP-BF535 processor) or enter a kernel filename if
Use boot kernel in step 3 is selected.

The following second-stage loaders are currently available for the
ADSP-BF535 processor.

! For ADSP-BF531, ADSP-BF532, ADSP-BF533, and
ADSP-BF561 processors, no second-stage loaders are required;
hence, no default kernel files are provided. Users can supply their
own second-stage loader file, if so desired.

6. Specify the Start address (FLash/PROM output address in hexa-
decimal format) for the kernel code. This option allows you to
place the kernel file at a specific location within the Flash/PROM
in the loader file.

7. For ADSP-BF535 processors only, modify the Wait states and
Hold time cycles for Flash/PROM booting or the Baud rate for
SPI booting.

8. Click OK to complete the loader setup.

Using ROM Splitter
Unlike the loader utility, the splitter does not format the application data
when transforming an .DXE file to an .LDR file. It emits raw data only.
Whether data and/or instruction segment are processed by the loader or

Boot Source Second Stage Loader File (or Boot Kernel File)

8-bit Flash/PROM 535_prom8.dxe,

16-bit Flash/PROM 535_prom16.dxe

SPI 535_spi.dxe
VisualDSP++ Loader Manual 2-51
for 16-Bit Processors

Blackfin Processor Loader Guide
splitter utility is controlled by the LDF’s TYPE() command. Segments
declared with TYPE(RAM) are consumed by the loader utility, and segments
declared by TYPE(ROM) are consumed by the splitter.

Figure 2-16 shows an example ROM splitter options pane of the Load
page. With the Enable ROM splitter box unchecked, only TYPE(RAM) seg-
ments are processed and all TYPE(ROM) segments are ignored by the
elfloader utility. If the box is checked, TYPE(RAM) segments are ignored
and TYPE(ROM) segments are processed by the splitter utility.

The Mask Address field masks all EPROM address bits above or equal to
the number specified. For example, Mask Address = 29 (default) masks all
the bits above and including A29 (ANDed by 0x1FFF FFFF). Thus,

Figure 2-16. ROM Splitter Pane

-o

-maskaddr #
-b

-romsplitter

-width
2-52 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
0x2000 0000 becomes 0x0000 0000. The valid numbers are integers 0
through 32 but, based on your specific input file, the value can be within a
subset of [0, 32].

No-boot Mode

The hardware settings of BMODE = 000 for ADSP-BF535 processors or
BMODE = 00 for ADSP-BF531, ADSP-BF532, and ADSP-BF533 proces-
sors select the no-boot option. In this mode of operation, the on-chip
boot kernel is bypassed after reset and the processor starts fetching and
executing instructions from address 0x2000 0000 in the Asynchronous
Memory Bank 0. The processor assumes 16-bit memory with valid
instructions at that location.

To create a proper .LDR file that can be burned into either a parallel Flash
or EPROM device, you must modify the standard LDF file in order the
reset vector is to be located accordingly. The following code fragments
illustrate the required modifications in case of an ADSP-BF533 processor.

Listing 2-3. Section Assignment (LDF File)

MEMORY

{

/* Off-chip Instruction ROM in Async Bank 0 */

MEM_PROGRAM_ROM { TYPE(ROM) START(0x20000000) END(0x2009FFFF)

WIDTH(8) }

/* Off-chip constant data in Async Bank 0 */

MEM_DATA_ROM { TYPE(ROM) START(0x200A0000) END(0x200FFFFF)

WIDTH(8) }

/* On-chip SRAM data, is not booted automatically */

MEM_DATA_RAM { TYPE(RAM) START(0xFF903000) END(0xFF907FFF)

WIDTH(8) }
VisualDSP++ Loader Manual 2-53
for 16-Bit Processors

Blackfin Processor Loader Guide
Listing 2-4. ROM Segment Definitions (LDF File)

PROCESSOR p0

{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS

{

program_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_code))

} >MEM_PROGRAM_ROM

data_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_data))

} >MEM_DATA_ROM

data_sram

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(ram_data))

} >MEM_DATA_RAM

With the LDF file modified this way, the source files can now take advan-
tage of the newly introduced sections, as in Listing 2-5.

Listing 2-5. Section Handling (Source Files)

.SECTION rom_code;

_reset_vector: l0 = 0;

1 = 0;

l2 = 0;

l3 = 0;

/* continue with setup and application code */
2-54 VisualDSP++ Loader Manual
for 16-Bit Processors

Blackfin Processor Loader/Splitter
/* . . . */

.SECTION rom_data;

.VAR myconst x = 0xdeadbeef;

/* . . . */

.SECTION ram_data;

.VAR myvar y; /* note that y cannot be initialized automatically */
VisualDSP++ Loader Manual 2-55
for 16-Bit Processors

Blackfin Processor Loader Guide
2-56 VisualDSP++ Loader Manual
for 16-Bit Processors

3 ADSP-219X DSP
LOADER/SPLITTER

This chapter explains how the loader/splitter program (elfloader.exe) is

used to convert executable files (.DXE) into boot-loadable, no-bootable, or
combined output files for ADSP-219x DSPs.

“ADSP-219x loader/splitter” refers to the loader/splitter program
designed for ADSP-2191, ADSP-2195, ADSP-2196, ADSP-21990,
ADSP-21991, and ADSP-21992 DSPs. The ADSP-2192-12 loader is
described in Chapter 4, “ADSP-2192-12 DSP Loader” on page 4-1.

Refer to “Introduction” on page 1-1 for the loader overview; the introduc-
tory material applies to all processor families. Loader operations specific to
the listed above processors are detailed in the following sections.

• “ADSP-219x DSP Booting” on page 3-2

Provides general information on boot sequences, kernels, and
streams.

• “ADSP-219x DSP Loader Guide” on page 3-19

Provides reference information on the command-line interface.
VisualDSP++ Loader Manual 3-1
for 16-Bit Processors

ADSP-219x DSP Booting
ADSP-219x DSP Booting
The ADSP-219x loader/splitter creates a boot stream, non-boot stream, or
combinational output. The program accepts one executable file (.DXE) as
input and generates one file (.LDR) as output.

Upon powerup, a ADSP-219x DSP can be booted from the EPROM,
UART, SPI, or Host port. Booting can also be initiated in software after
RESET. Refer to the Application Note EE-131 and your DSP’s data sheet or
Hardware Reference manual for more information on system configura-
tion, peripherals, registers, and operating modes.

You can run the loader/splitter program from a command-line or from
within the VisualDSP++ IDDE. When working within the VisualDSP++,
specify options via the Load page of the Project Options dialog box.

! Option setting on the Load page correspond to switches displayed
on the command line.

To ensure correct operation of the loader, familiarize yourself with:

• “ADSP-219x DSP Boot Modes” on page 3-3

• “ADSP-219x DSP Boot Kernel” on page 3-4

• “ADSP-219x DSP Boot Streams” on page 3-4

• “Parallel EPROM Boot Streams” on page 3-4

• “Host Booting” on page 3-10

• “UART Booting” on page 3-11

• “Serial EPROM Booting” on page 3-12

• “No-booting” on page 3-12
3-2 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
ADSP-219x DSP Boot Modes
At powerup, after the reset, the processor transitions into a boot mode
sequence configured by the BMODE2–0 pins. The BMODE pins are dedicated
mode-control pins; the pin states are captured and placed in the Reset
Configuration register as BMODE0, BMODE1, and OPMODE (see Table 3-1). The
register is also known as the System Configuration Register (SYSCR) with
I/O address 0x0 0204.

The OPMODE pin has a dual role; it acts as a boot-mode select during RESET
and determines whether the DSP’s third SPORT functions as a SPORT or
an SPI. It is possible for an application to require OPMODE to operate differ-
ently at runtime than at RESET (that is, boot from an SPI but use SPORT2
during runtime). In this case, the boot kernel is responsible for setting
OPMODE accordingly at the end of the booting process. Therefore, software
can change OPMODE anytime during runtime, as long as the corresponding
peripherals are disabled at that time.

Table 3-1. ADSP-219x DSP Operation Modes

BMODE1
Pin

BMODE0
Pin

OPMODE
Pin

Description

0 0 0 No-boot mode. Run from external 16-bit memory at
logical address 0x10000. Bypass ROM.

0 1 0 Boot from EPROM.

1 0 0 Boot from Host.

1 1 0 Reserved.

0 0 1 No-boot mode. Run from external 8-bit memory at
logical address 0x10000. Bypass ROM.

0 1 1 Boot from UART.

1 0 1 Boot from SPI (up to 4K bits).
VisualDSP++ Loader Manual 3-3
for 16-Bit Processors

ADSP-219x DSP Booting
ADSP-219x DSP Boot Kernel
A loader boot kernel refers to the resident program stored in a
24-bit-wide, 1K portion of ROM space responsible for booting the DSP.
The starting address of the boot ROM is 0xFF 0000 to 0xFF 03FF, the first
location of page 256, in 1-wait-stated memory. A boot interrupt vectors to
address 0xFF 0000. When a ADSP-219x DSP comes out of a hardware
reset, program control jumps to 0xFF 0000, and execution of the boot
ROM code begins.

On ADSP-219x DSPs, the highest 16 locations in page 0 program mem-
ory and the highest 272 locations in page 0 data memory are reserved for
use by the ROM boot routines (for setting up DMA data structures and
for initializing registers, among other tasks). Ensure that the boot
sequence entry code or boot-loaded program are not allowed into this
space.

ADSP-219x DSP Boot Streams
The ADSP-219x ROM-resident loader is designed to parse and load a spe-
cific boot-stream format. When booting from an external 8- or 16-bit
EPROM, the boot stream consists of header and block fields.

The first header in the boot stream is a common word that applies to all
booting modes, except UART. This header field specifies whether the
stream is guarded by a checksum. Individual bits within this word are set
or cleared, based on the booting method and specific command-line
switches specified by the user.

Parallel EPROM Boot Streams
When booting from an external 8- or 16-bit EPROM, the first 16-bit
header field contains information on the number of wait states and the
physical width (8- or 16-bit) of the EPROM. The first header is also
known as a global header or a control word.
3-4 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
This first header is followed by the regular boot stream, that is, a series of
headers and data blocks. Most headers are followed by corresponding
blocks of data, but some headers indicate regions of memory that need to
be “zero-filled” and are not followed by data blocks.

Block Headers

Each block header consists of four or six 16-bit words:

• The first word consists of a flag that indicates whether the follow-
ing block of data is a 24-bit or 16-bit payload or zero-initialized
data. The flag uniquely identifies the last block that needs to be
transferred.

• The second word contains the lower 16 bits of the 24-bit start
address for data loading (destination). The first octet is the 8 LSBs,
followed by the next most significant bits (15–8), and so on.

• The third word contains the upper-most 8 bits of the 24-bit desti-
nation address, padded (suffixed) with one byte of zeros.

• The fourth word contains the payload’s word count. Similar to the
address, the first octet is the 8 LSBs, and the second octet is the 8
MSBs.

An extra word appears when a checksum function is used to verify booting
accuracy. This fifth word (also a 16-bit field) is the CRC-16 checksum for
the header, and the data block immediately follows it. The CRC checksum
word is optional. Activate the checksum by running the loader utility with
the -checksum command-line switch (on page 3-21).

The header is buffered with a dummy word of zeros to ease the EMI
addressing issue.

EPROM booting can be performed in an 8-bit or 16-bit scenario. This
information is controlled by the “-width #” switch and is finally embed-
ded in the boot stream. Unlike non-boot mode, bus width is not
VisualDSP++ Loader Manual 3-5
for 16-Bit Processors

ADSP-219x DSP Booting
controlled by the mode pins. The width information configures the EMI
interface and remains valid during the entire boot process. If you want to
boot off-chip memories, be aware that the width of the memory you want
to boot must be identical to the width of the interface from which you are
booting.

Data Blocks

The header is followed by the data block (also called payload data). The
16-bit block is sent in a 16-bit field, and the 24-bit block is sent in a
32-bit field.

! 24-bit data block is represented differently in the boot stream from
24-bit addresses. 32-bit data block is transmitted the following
way—a byte of zeros (inserted by the loader), bits 0-7, followed by
bits 8-15, and finally bits 16-24.

When booting from an 8- or 16-bit EPROM, direct DSP core accesses
and Memory DMA (under the control of an EPROM boot routine located
in the ROM space) are used to load a boot-stream formatted program
located in the boot space. Appropriate packing modes are selected, based
on the requirements of the boot stream.

Each page of boot space is 64K words long, and 16-bits can address the
EPROM per page. The upper 8 address bits specify the boot page. Upon
hardware reset, booting is from address 0x0000 of logical page 0x80, which
mirrors physical address 0x000000 because the upper address lines are not
available off-chip.

The External Port Interface (EPI) uses its default configuration
(divide-by-128 clock and 7 wait states) to access the EPROM. While
booting via EPROM boot space, the highest 16 locations in page 0 pro-
gram memory block (0x7FF0 to 0x7FFF) and the top 272 locations of page
0 data memory block (0xFEF0 to 0xFFFF) are reserved for use by the ROM
boot routines.
3-6 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
ADSP-219x DSP Multiple .DXE Support

VisualDSP++ 3.5 introduces support for multiple .DXE booting in Parallel
EPROM booting mode. Boot streams of multiple projects or applications
can be stored in a single EPROM. The on-chip boot kernel always boots
in application number 0. Its boot stream starts at EPROM address
0x000000. User-defined second-stage loaders or boot management soft-
ware may boot any application depending on application-specific
circumstances. Alternatively, one application can be loaded and executed
after the other terminates. The loader/splitter utility can consume multi-
ple .DXE files and arrange their boot streams in several manners.

Use the following syntax to submit two or more executable files to the
loader:

elfloader File1.dxe [outputfile] -proc processor [-switch ...]
[-pd addr [switches_specific_to_dxe_file_that_follows]] File2.dxe
[-pd addr [switches_specific_to_dxe_file_that_follows]] File3.dxe ...

File1.dxe is the default application that is booted by the on-chip boot
kernel after reset. Unless the -p switch is specified, the boot stream of
File1.dxe starts at EPROM address 0x000000.

If there is a –pd addr switch specified for an executable file (File.dxe), the
switches between “–pd” and “File.dxe” are called a pd grouping. The
“addr” parameter is the address in the byte-based PROM address space.
The address should be a hex value. If –pd addr is absent from a command
line, no pd grouping is associated with the executable file, but the address
in the byte-based PROM address space remains associated with the .DXE.

Usually the –pd addr switch is applied if the individual boot streams need
to be located a given addresses. For example, when the individual boot
streams need to reside is certain pages of a Flash memory device. If the dif-
ferent boot streams are going to reside in different physical PROM
devices, this syntax enables the user to assign different settings, such as
wait-states or even output file name to the individual .DXEs.
VisualDSP++ Loader Manual 3-7
for 16-Bit Processors

ADSP-219x DSP Booting
If more than one .DXE file is listed at the command line without -pd
switch, the loader utility appends the boot stream of the second .DXE
immediately to the one of the first .DXE and so on. Executable files inherit
boot stream settings from previous one if not explicitly set by a -pd
grouping.

The pd. grouping enables various options for the loader stream of the
input .DXE file. In the multiinput .DXE scenario, the loader stream for each
executable is same as when there is only one input executable supplied to
elfloader, with an exception of:

1. An artificial loader block (with header and data block) is created
right after the first (global) 16-bit header and before the regular
boot stream. The destination address in the header is same as that
of the first loader block in the regular boot stream. This means that
any data booted by the artificial loader block is to be overwritten
by the real data from the regular boot stream.

The content of this block’s payload is the pd value for the next
.DXE. If no pd grouping is specified for the next .DXE, the pd value
for the next .DXE is calculated by adding the pd value of the current
.DXE and the size (in bytes) of the current .DXE loader stream. If
there are no other .DXEs in the stream, the default value is zero.
You can overwrite the default by the –pdAddrNext switch.

The artificial loader block can be removed by turning on the
-noDxeAddrHdr command-line option.

2. The loader stream version, which is 4 bits in the first 16-bit header.

Note that both of these modifications are backward compatible with the
ADSP-2191 boot kernel. The optional
[switches_specific_to_dxe_file_that_follows] may include:

Example
3-8 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
There are four executable files (streams):

• Application 1 (app1.dxe) starts at byte address 0x000000 (ROM)

• Application 2 (app2.dxe) appends to Application 1 (ROM)

• Application 3 (app3.dxe) starts at 0x020000 (flash page 1)

• Application 4 (app4.dxe) starts at 0x030000 (flash page 2)

The task is to create two loader files, one is 16-bit ROM from 0x000000 to
0x01FFFF and one is 8-bit Flash from 0x020000 to 0x03FFFF.

There are two different ways to accomplish the task:

1. Use VisualDSP++ Flash Programmer plug-in to burn the Flash. In
this scenario, the real byte address is expected:

elfloader -proc ADSP-2191 -b PROM -width 16 app1.dxe

app2.dxe -pd 0x20000 -p 0x20000 -width8 -o flash.ldr

app3.dxe -pd 0x30000 app4.dxe

! Since the -p value is reset to a zero whenever an -o is specified, the
addresses in the Intel hex record starts at zero for flash.ldr.

2. Equivalently, invoke the loader twice:

-o Output file (.LDR) for the current and following .DXEs (see “-o filename” on
page 3-22).

-opmode Opmode for the current and following .DXEs (see “-opmode #” on page 3-22).

-p The Intel hex offset for the current loader file (see “-p address” on page 3-22).

-width Width for the current and following .DXEs (see “-width #” on page 3-24).

-wait The number of wait states for this and following .DXEs (see “-waits #” on
page 3-24).

-clkdivide Clkdivide for this and following .DXEs (see “-clkdivide #” on page 3-21).

-maskaddr Address bits to be masked off for this and following .DXEs (see “-maskaddr #” on
page 3-22).
VisualDSP++ Loader Manual 3-9
for 16-Bit Processors

ADSP-219x DSP Booting
elfloader -proc ADSP-2191 -b PROM -width 16 app1.dxe

app2.dxe -pdAddrNext 0x20000

elfloader -proc ADSP-2191 -b PROM -width 8 -o flash.ldr -pd

0x20000 -p 0x20000 app3.dxe -pd 0x30000 app4.dxe

! In cases where the -pd and -p values are expected to be the same,
you may specify -pEqualPD:

elfloader -proc ADSP-2191 -b PROM -width 16 app1.dxe

app2.dxe -pd 0x20000 -pEqualPD -width8 -o flash.ldr

app3.dxe -pd 0x30000 app4.dxe

With the -NoDxeAddrHdr switch, this artificial block is not inserted. Then
the user loader can still parse the complete boot stream, block by block
until it detects a final-init block. Since the default -p value is reset to a
zero whenever an -o is specified, the addresses in the Intel hex record has
to be explicitly set to 0x20000 for flash.ldr.

It is very likely that second-stage loaders and similar type of programs exe-
cute directly from the EPROM. Thus, this multiple .DXE scenarios are
often combined with the features discussed in “Enriching Boot EPROMs
with No-boot Data” on page 3-16.

Host Booting
Host booting is performed in either an 8-bit or 16-bit scenario. By
default, little-endian format is used. If configured in Host boot mode, the
DSP does not support the boot process actively. It is the host’s responsi-
bility to initialize the DSP memories properly. The DSP passively waits
until the host writes a “1” to the Semaphore A register (IO address
0x1CFC). Then the DSP starts fetching and executing instructions at
address 0x00 0000.
3-10 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
It is recommended that the host parses the boot stream and downloads
segment by segment. The elfloader.exe may store the boot stream as an
Intel hex-32 file typically required by embedded host devices. PC-based
hosts may favor the ASCII format, which stores one byte or one 16-bit
word per line.

UART Booting
When booting via the UART port, a host downloads a boot stream for-
matted program to the DSP following an auto-baud handshake sequence.
The auto-baud feature simplifies system design because you do not need
to calculate boot clock rates as a function of crystal frequency, core clock
divider, peripheral clock mode, and so on.

The booting host can select a baud rate (including a non-standard rate)
anywhere within the UART clocking capabilities.

Following a hardware or software reset, the ADSP-219x DSP monitors the
UART transceiver channel and expects the predefined character (0xAA) to
determine the bit rate. The DSP replies an “OK” string to acknowledge the
bit rate.

Afterwards, the host may send the complete boot stream (8 data bits, no
parity, 1 stop bit) without further handshake. The boot stream is decoded
by the DSP and starts program execution automatically.

! Compared to other formats, the ADSP-2191/2195/2196 UART
boot stream suppresses the very first byte. To force the loader util-
ity to include the first byte, use the -forcefirstbyte switch
(on page 3-21).

This boot operation is controlled by a UART boot routine in the internal
ROM space. While booting via UART, the highest 16 locations in page 0
program memory block (0x7FF0 to 0x7FFF) and the top 272 locations of
page 0 data memory block (0xFEF0 to 0xFFFF) are reserved for use by the
ROM boot routine.
VisualDSP++ Loader Manual 3-11
for 16-Bit Processors

ADSP-219x DSP Booting
Serial EPROM Booting
The SPI0 port is used when booting from an SPI-compatible EPROM.
The SPI port selects a single serial EPROM device using the PF0 pin as a
chip select, submits a read command and address 0x00, and begins to
clock consecutive data into memory (internal memory or external mem-
ory) at a SCK clock frequency of HCLK/60. The DSP streams the
complete boot image in and processes it without further handshake with
the SPI EPROM.

Two types of SPI EEPROM devices are supported: devices of 4K bytes
and smaller (12-bit address range), and those larger than 4K bytes (16-bit
address range). The SPI boot stream may not exceed 64 kilobytes.

This boot operation is controlled by an SPI boot routine in internal ROM
space. While booting via serial EPROM, the highest 16 locations in
page 0 program memory block (0x7FF0 to 0x7FFF) and the top 272 loca-
tions of page 0 data memory block (0xFEF0 to 0xFFFF) are reserved for use
by the ROM boot routine. Refer to the Application Note EE-145 for SPI
booting examples.

No-booting
When BMODE2-0 is strapped to a 000 or 001, the ADSP-219x DSP comes
out of hardware reset and begins to execute code from page 1 memory
space (0x01 0000). The specified packing mode depends on the state of
the BMODE0 pin (0 = 8-bit ext/24-bit int, 1 = 16-bit ext/24-bit int). By
default, the External Port Interface (EPI) is configured to operate with the
divide-by-128 clock and a read wait-state count of 7.

! No-boot mode does not use boot-stream format.

After reset, the DSP starts program execution from external address
0x010000. When the no-boot option is selected, the DSP typically expects
an 8- or 16-bit EPROM or Flash device connected to the memory strobe
3-12 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
signal (/MS0). Splitter capabilities of the ADSP-219x loader utility support
the generation of the required EPROM image files. Refer to the loader’s
-romsplitter switch (see on page 3-23) for more information.

Non-bootable memory segments are declared by the TYPE(ROM) command
in the Linker Description File (.LDF). The WIDTH() command specifies the
physical EPROM width (which equals to the EMI port setting). Every
.LDF file that belongs to a no-boot project should define a proper memory
segment; as in the following example,

MEMORY {
. . .

seg_ext_code {
TYPE(PM ROM) START(0x010000) END(0x017FFF) WIDTH(16) }

. . .
}

The START(), END(), and LENGTH() commands expect logical addresses.
Since the example segment stores 24-bit-wide instructions, the TYPE(PM)
command defines the logical width of the segment to be 24-bits. The
example assumes no-boot mode (000) and runs from external memory
starting at address 0x010000. This is why the WIDTH(16) command sets the
physical width to 16 bits. Due to ADSP-219x EMI packing rules, the first
instruction is stored in the physical 16-bit EPROM location 0x020000.

The 16-bit EPROM address locations between 0x010000 and 0x01FFFF
can be used by an additional read-only data segment as shown below.

MEMORY {
. . .

seg_ext_code {
TYPE(PM ROM) START(0x010000) END(0x017FFF) WIDTH(16) }

seg_ext_data {
TYPE(DM ROM) START(0x010000) END(0x01FFFF) WIDTH(16) }

. . .
}

VisualDSP++ Loader Manual 3-13
for 16-Bit Processors

ADSP-219x DSP Booting
The data segment seg_ext_data is defined by the TYPE(DM) command,
which sets the logical width to 16 bits. Since the WIDTH(16) command also
sets the physical width to 16 bit, no data packing and no address multiply
is required. Logical addresses are equal to physical EPROM addresses in
this special case. The 16-bit EPROM image generated by the loader is
described in Table 3-2:

! The DSP cannot access off-chip addresses lower than 0x010000.
Typically this address space is accessed by taking advantage of
address aliasing. The memory strobe (/MS0) covers an address range
from 0x010000 to 0x400000. For example, if the EPROM size is less
than 4M words and the EPROM is the only device connected to
/MS0, the first 64K words can be accessed through addresses
0x200000 to 0x20FFFF.

If a project consists only of two segments (seg_ext_data and
seg_ext_code), a 128K x 16-bit EPROM device would be sufficient to
store all the required data and instructions. If the loader utility is invoked
with the -maskaddr 17 switch (on page 3-22), all physical address bits
greater than or equal to A17 are masked out. The loader ANDs all physical
addresses with 0x01FFFF. The resulting EPROM image maps segment
seg_ext_code into the unused space below 0x010000 (see Table 3-3).

This way, a 128K x 16-bit EPROM can be burned properly. At runtime,
seg_ext_code aliases back to the addresses above 0x020000 when address
lines A17 through A21 are not connected.

Table 3-2. EPROM Image Description

Address range Purpose

0x000000–0x00FFFF Not used

0x010000–0x01FFFF seg_ext_data

0x020000–0x02FFFF seg_ext_code
3-14 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
Typically, the loader utility generates an Intel hex-32 file, which is read-
able by most EPROMs. If the image must be post-processed, the loader
may also generate ASCII files.

DM Example:

ext_data { TYPE(DM ROM) START(0x010000) END(0x010003) WIDTH(8) }

The above DM segment results in the following code.

00010000 // 32-bit logical address field
00000004 // 32-bit logical length field
00020201 // 32-bit control word: 2x address multiply

// 02 bytes logical width, 01 byte physical width
00000000 // reserved
1234 // 1st data word, DM data is 16 bits
5678
9ABC
DEF0 // 4th (last) data word
CRC16 // optional, controlled by the -checksum switch

PM Example:

ext_code { TYPE(PM ROM) START(0x040000) END(0x040007) WIDTH(16)}

The above PM segment results in the following code.

00040000 // 32-bit logical address field
00000008 // 32-bit logical length field
00020302 // 32-bit control word: 2x address multiply

// 03 bytes logical width, 02 bytes physical width
00000000 // reserved
123456 // 1st data word, PM data is 16 bits

Table 3-3. EPROM Image—Two Segments Only

Address range Purpose

0x000000 - 0x00FFFF seg_ext_data

0x010000 - 0x01FFFF seg_ext_code
VisualDSP++ Loader Manual 3-15
for 16-Bit Processors

ADSP-219x DSP Booting
789ABC
DEF012
345678
9ABCDE
F01234
56789A
BCDEF0 // 8th (last) data word optional,

// controlled by the -checksum switch

Enriching Boot EPROMs with No-boot Data

The loader’s splitter functionality (refer to “No-booting” on page 3-12)
enables powerful memory utilization in combination with the parallel
EPROM boot mode. The same EPROM used for booting can also be used
at runtime for read-only data and overlay storage. Furthermore, the DSP
can execute non-speed-critical parts of the program directly from the
EPROM, whereas real-time algorithms have been booted into on-chip
memory.

When invoked with the -readall switch (on page 3-23), the loader pro-
cesses all kinds of LDF segments. TYPE(RAM) segments are passed to the
loader’s boot stream generator, and TYPE(ROM) segments are passed to its
splitter. Boot stream and splitter data can be combined within a single
EPROM image.

Assuming a cost-sensitive application comprising an ADSP-2196 DSP and
a 64-Kbyte EPROM, the boot stream probably does not exceed
40 kilobytes (8K x 3 bytes + 8K x 2 bytes) of length. The rest of the
EPROM can be used to store different sets of coefficients and the slow ini-
tialization and control code. A reasonable organization of the 8-bit
EPROM is described in Table 3-4.

Since the DSP cannot access off-chip memories with addresses lower than
0x010000, it needs to access segments seg_ext_data and seg_ext_code
through alias windows. If only address lines A0 through A15 are con-
nected, address 0x00 A000 aliases to any 0x00 A000 address. Segment
seg_ext_data stores 16-bit data. Thus, its physical addresses must be
3-16 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
divided by 2 to obtain the corresponding logical address. The first alias
window of seg_ext_data that can accessed properly is range 0x02 A000 to
0x02 AFFF; this results in the logical range 0x01 5000 to 0x01 57FF.

Similarly, the addresses of segment seg_ext_code can be calculated by
dividing the physical addresses by 4. For example, the alias window
between 0x04 B000 and 0x04 FFFF can be used, resulting in the logical
addresses 0x01 2C00 to 0x01 3FFF.

The corresponding .LDF file would include the following.

MEMORY {
. . .

seg_int_code {
TYPE(PM RAM) START(0x000000) END(0x000000) WIDTH(24) }

seg_int_data {
TYPE(DM RAM) START(0x008000) END(0x009FFF) WIDTH(16) }

seg_ext_code {
TYPE(PM ROM) START(0x012C00) END(0x013FFF) WIDTH(8) }

seg_ext_data {
TYPE(DM ROM) START(0x015000) END(0x0157FF) WIDTH(8) }

...
}

By default, the elfloader emits true EPROM addresses by multiplying
the logical addresses accordingly. The address aliasing, which this example
takes advantage of, can be corrected if the loader is invoked with the

Table 3-4. EPROM Image With No-boot Data

Address range Purpose

0x000000–0x009FFF Boot stream

0x00A000–0x00AFFF seg_ext_data (External read-only data)

0x00B000–0x00FFFF seg_ext_code (External program)
VisualDSP++ Loader Manual 3-17
for 16-Bit Processors

ADSP-219x DSP Booting
-maskaddr 16 switch (see on page 3-22). Then all EPROM addresses are
ANDed by 0xFFFF, and the resulting EPROM image fits into a 64-Kbyte
EPROM.

The EPROM boot process assumes the boot device is connected to the
DSP’s /BMS strobe. During runtime, typically the /MSx strobes are used.
To use one EPROM for both booting and run-time issues, set the proper
/BMS control bits in the E_STAT register. If several devices are connected to
the individual /MSx strobes, an off-chip AND gate is recommended to OR
the /BMS and the /MS0 strobes properly.

Please refer to the Application Note EE-164 for further details and code
example.
3-18 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
ADSP-219x DSP Loader Guide
This section provides reference information about the loader’s command
line interface. A list of the command-line switches appears in Table 3-6 on
page 3-21.

When using the loader within VisualDSP++, settings on the Load page of
the Project Options dialog box correspond to the loader’s command-line
switches. For more information, see the VisualDSP++ 3.5 User’s Guide for
16-Bit Processors or online Help.

ADSP-219x Loader Command-Line Reference
Use the following syntax for the loader’s command line.

elfloader sourcefile [outputfile] -proc processor [-switch …]

where:

• sourcefile—Identifies the executable file (.DXE) to be processed
into a single-processor boot-loadable file. A file name can include
the drive and directory. Enclose long file names within
straight-quotes, “long file name“.

• outputfile—Optional name of the loader’s output, a file with the
.LDR extension. Each run generates a single output file.

• -proc processor—Part number of the processor for which the
loader file is to be built. Provide a part number for every input .DXE
if designing multi-processor systems. Running the loader without
-proc results in an error.

• -switch …—One or more optional switches to process. Switches
select operations and modes for the loader. See Table 3-5 on
page 3-20 for a complete list of the loader command-line switches.
VisualDSP++ Loader Manual 3-19
for 16-Bit Processors

ADSP-219x DSP Loader Guide
Example:

elfloader p0.dxe -proc ADSP-2191

In the above example, the loader runs with:

• p0.dxe—the name of the executable file to be processed into a
boot-loadable file. The output file’s name is p0.ldr because a name
is not specified.

• -proc ADSP-2191—the target processor, ADSP-2191 DSP.

File Searches

Many loader switches take a file name as an optional parameter. Table 3-5
on page 3-20 lists the expected file types. File searches are important in
the loader operation. The loader supports relative and absolute directory
names, default directories. File searches occur as described on page 1-9.

File Extensions

Table 3-5 lists and describes file types input and output by the loader.

Table 3-5. File Extensions for ADSP-218x Loader Operation

File Extension Description

.DXE Executable files and boot-kernel files.

.OVL Overlay memory files. The loader recognizes overlay memory files but does not
expect these files on the command line. Place .OVL files in the same directory as
the .DXE file that refers to them; the loader can locate them when processing
the .BNM file.

.LDR Loader output file.
3-20 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
Loader Switches

A description of each loader command-line switch appears in Table 3-6.

Table 3-6. Loader Command-Line Switches

Switch Description

filename Specifies an executable file to be processed into a single-processor load-
able file. For multiprocessor system, use the -id#exe=file switch.

-b prom
-b host
-b uart
-b spi

Specifies the boot mode. Prepares a boot-loadable file for the PROM
(default), Host, UART, SPI, or no-boot booting. The specified mode
must correspond to the boot kernel selected with the -l switch and the
file format selected with the -f switch.

-blocksize # Specifies the size (decimal #) in words for each block of data in the boot
stream. Default is 6K words. Valid block sizes may vary up to 6K words.

-checksum Calculates and generates checksums for each block of code and data.

-clkdivide # Specifies the base clock divide factor. Valid values are 0 to 7, inclusive.
The default is 5.
Note: Applies to EPROM and Host boot modes only.

-f hex
-f ASCII
-f binary

Specifies the boot file’s format.
Valid selections are hex (Intel hex-32), ASCII, and binary. The hexa-
decimal format is the default. For PROM booting, Intel hex is the only
valid entry. When -f ASCII and -romsplitter are selected, regardless
of the -b file_type setting, an ASCII file is produced.

-forcefirstbyte Forces the writing of the first byte of the UART boot stream.
Use this option when the bit rate is high.

-h
 or
-help

Invokes the command-line help, outputs a list of command-line switches
to standard output, and exits. By default, the -h switch alone provides
help for the loader driver. To obtain a help screen for the ADSP-2191
processor, type -elfloader -proc ADSP-2191 -h.

-host3bytes Uses three bytes to represent 24-bit data. The default is four bytes with
one byte of zero padding.
Note: Used with Host boot only, when width is 8 bit.

-M Shows dependencies only.

-MM Generates make dependencies while producing the output files.
VisualDSP++ Loader Manual 3-21
for 16-Bit Processors

ADSP-219x DSP Loader Guide
-Mo filename Writes make dependencies to the named specified.
The -Mo option is for use with either the -M or -MM option. If -Mo is not
present, the default is <stdout> display.

-Mt targetname Specifies the make dependencies target name.
The -Mt option is for use with either the -M or -MM option. If -Mt is not
present, the default is the name of the input file with the .DOJ extension.

-maskaddr # Masks all EPROM address bits above or equal to #.
For example, -maskaddr 18 masks all the bits above and including A18
(ANDed by 0x3FFFF). The switch does not require -romsplitter and
affects ROM section address only.

-NoDxeAddrHdr Does not generate the address header in the loader stream for the input
.DXE file.

-o filename Specifies the name of the output file.
If no file name is specified, the output file takes the name of the input
file. The extension is .LDR.
For multi .DXE processing, when the -o filename.ldr is specified
inside the -pd grouping, the file-relative byte address (that is, the value
in the address portion of the Intel hex information) is set to zero. The
value of zero is the default value but also can be set by -PEqualZero.
The value can be set to the value provided to the -pd switch (specified
by the -PEqualPD switch). Further, it also can be set by specifying a -p
argument within the -pd grouping. See “ADSP-219x DSP Multiple
.DXE Support” on page 3-7 and “-pd [address] inputfile” for more
information on pd groupings.

-opmode # Specifies whether the boot kernel sets the DSP to 3-SPORT mode (0) or
2-SPORT/1-SPI mode (1) at the end of booting. Default is 0.

-p address Specifies a hexadecimal integer as the PROM starting address.
For multi .DXE processing, if -p is specified in the -pd group, a new
.LDR file must be created using -o in the same pd group. See “-o file-
name” and “-pd [address] inputfile” for details.

-pEqualPd Used inside the “-pd [address] inputfile” grouping. Sets the default value
for -p when -o specified in the -pd group is the value of the argument
to -pd.

-pEqualZero Used inside the “-pd [address] inputfile” grouping. Sets the default value
for -p when -o specified in the pd group is zero (default behavior).

Table 3-6. Loader Command-Line Switches (Cont’d)

Switch Description
3-22 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-219x DSP Loader/Splitter
-pd [address]
inputfile

Appends another application program (.DXE) at the specified address.
You can specify options applicable to the boot-stream general header
between address and inputfile. If no -pd [address] is specified,
application starts from the next free PROM location. There is no restric-
tion on the number of time the switch is used.

-pdAddrNext Specifies the value contained in the .DXE address header block. When
elfloader is invoked multiple times to create loader files, this option
specifies the next address to be placed in the new header record for the
last .DXE on the command line. The address is in the byte-based PROM
address space.

-proc processor
or
-dADSP-21xx

The mandatory switch specifies the processor for which the loader file is
created. For example, -proc ADSP-2191 or -proc ADSP-21990.
Note: -proc ADSP-21xx is the preferred form; -dADSP-21xx is for leg-
acy support only.

-readall Creates a non-bootable image and non-boot stream image in the same
output file, together with the boot-loadable image. Boot mode must be
set to PROM (-b PROM) and format must be set to hex (-f hex).

-romsplitter Creates a non-bootable image only.
This switch overwrites -b and any other switch bounded by boot types.
An ASCII file is produced when -f ASCII and -romsplitter are spec-
ified, regardless of the -b file_type setting.

-split # [#] The -split 8 8 switch generates two output files for the 16-bit-wide
EMI data bus; the .LDU file contains the upper eight data bits, and the
.LDL file contains the lower eight data bits.
The -split 16 switch produces one 16-bit-wide file.
Note: Valid only when width is 16 bit.

-v Outputs status information as the loader processes files.

Table 3-6. Loader Command-Line Switches (Cont’d)

Switch Description
VisualDSP++ Loader Manual 3-23
for 16-Bit Processors

ADSP-219x DSP Loader Guide
-waits # Determines the number of wait states for external accesses. Valid inputs
are 0 to 7 (inclusive). Default is 7.
Note: For EPROM and Host boot modes only.

-width # Specifies the bus width (in bits) for EPROM/Flash or Host booting.
Valid numbers are 8 (default) and 16. Width must correspond to the
EMICTL register’s E_BWS bit.
For multi .DXE processing, if the width changes from one -pd group to
the next, a new .LDR file must be created by specifying -o in the pd
group where -width has changed. See “-o filename” and “-pd [address]
inputfile” for details.

Table 3-6. Loader Command-Line Switches (Cont’d)

Switch Description
3-24 VisualDSP++ Loader Manual
for 16-Bit Processors

4 ADSP-2192-12 DSP LOADER

This chapter explains how the loader program (elfloader.exe) is used to

convert executable files (.DXE) into boot-loadable files (.H) for
ADSP-2192-12 DSPs.

! You cannot produce a non-bootable PROM image file (that is,
splitting is not supported) for an ADSP-2192-12 DSP.

Refer to “Introduction” on page 1-1 for the loader overview; the introduc-
tory material applies to all processor families. Loader operations specific to
ADSP-2192-12 DSPs (ADSP-2192, for short) are detailed in the follow-
ing sections.

• “ADSP-2192 DSP Booting” on page 4-2

Provides general information on the loader commands and
operations.

• “ADSP-2192 DSP Loader Guide” on page 4-10

Provides reference information on the loader’s command-line syn-
tax and switches.
VisualDSP++ Loader Manual 4-1
for 16-Bit Processors

ADSP-2192 DSP Booting
ADSP-2192 DSP Booting
An ADSP-2192-12 DSP can be boot-loaded through its PCI or USB
interface. For PCI loading, the loadable executable (.EXE) must reside in
the PC host’s memory space before it is loaded into the DSP.

The ADSP-2192-12 loader repackages .DXE files and associated .OVL and
.SM files, produced by the linker, into an .H file for use with a run-time
loader (RTBL). The RTBL is a drive implemented by the user; the RTBL
is responsible for transporting the loadable executable into the DSP. Visu-
alDSP++ includes a reference RTBL that can be used to boot-load an
ADSP-2192-12 EZ-KIT Lite evaluation system on Windows 98 and
Windows 2000 platforms.

You can run the loader from a command-line or directly from within the
VisualDSP++ IDDE. When working from the VisualDSP++, specify the
loader options via the Load page of the Project Options dialog box.

! Option setting on the Load page correspond to switches displayed
on the command line.

To ensure correct operation of the loader, familiarize yourself with:

• “ADSP-2192 DSP Reset Types” on page 4-2

• “ADSP-2192 DSP RTBL” on page 4-4

• “ADSP-2192 DSP RBTL and Overlays” on page 4-8

ADSP-2192 DSP Reset Types
The ADSP-2192 DSP supports booting via the PCI interface or the USB
interface. The internal ROM includes a small boot kernel program, which
determines how the DSP boots.
4-2 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-2192-12 DSP Loader
Upon recovering from RESET, the ADSP-2192 DSP jumps to the first
location of the boot ROM at address 0x14000, which is the start of the
boot kernel. The first task performed by the kernel is to determine the
type of RESET and the source of booting (PCI or USB). The kernel then
sets up and initializes appropriate DSP registers to facilitate the booting.

Three methods for resetting the ADSP-2192 DSP are: power-on reset,
forced reset via PCI/USB, and software reset. The reset type is specified by
bits 8 and 9 (CRST<1:0>) of the Chip Mode/Status Register (CMSR) as
follows in Table 4-1.

If the reset source is a power-on reset, the processors’s BUSMODE pins are
read to determine whether boot is via PCI/USB/Sub-ISA or CardBUS
interface (Table 4-2).

Table 4-1. ADSP-2192-12 DSP CMSR Settings

CMSR Setting RESET Type

CRST<1:0>=00 Power-on reset

CRST<1:0>=10 PCI/USB hard reset

CRST<1:0>=10 PCI/USB hard reset

CRST<1:0>=11 Soft reset from CMSR RST bit

Table 4-2. ADSP-2192-12 DSP Bus Modes

Bus Type BUS Mode
Pin 0

BUS Mode
Pin 1

SCFG:BUS(1:0)
Register Field

(Bits 1:10)

PCI or Mini-PCI GND GND 00

CardBUS PC-Card GND Open 01

Sub-ISA Open GND 10

USB Serial Bus Open Open 11
VisualDSP++ Loader Manual 4-3
for 16-Bit Processors

ADSP-2192 DSP Booting
Once the bus configurations have been determined (assuming that a serial
EEPROM exists), the boot kernel calls a function to commence reading
data from the serial EEPROM. Data format of serial EEPROM boot
stream is described in the “ADSP-2192 DSP RTBL” on page 4-4.

Once the kernel has finished reading data from the serial EEPROM, it
proceeds to set up and commit bus configurations for the rest of booting
via the PCI or USB interfaces. For PCI, the configuration registers are set
to be read-only, and the DSP is to respond to PCI requests from the sys-
tem host. For USB, the DSP is to enter an idle loop, allowing the system
host to detect and configure the part.

The final task performed by the kernel after configuring the bus and trans-
ferring control to PCI or USB is to enter an infinite loop, waiting for
instructions. A predefined memory address, DM 0x000000, is regularly
checked for commands. Once the PCI or USB device has completed boot-
ing the DSP, they can write an instruction to this predefined location and
have the DSP execute any of supported commands.

! Refer to the datasheet, ADSP-219x/2192 DSP Hardware Reference
and Application Note EE-124 for further details.

ADSP-2192 DSP RTBL
The VisualDSP++ linker produces files with .DXE, .OVL, and .SM exten-
sions. Typically, these file are not shipped with your applications. Instead,
the linker’s output is run through the loader that repackages the linker
output as an .H file, which is consumed by an RTBL, as illustrated in
Figure 4-1. The RTBL output file (.EXE) is used by a bootable device (PCI
or USB).

Given that booting from PCI or USB involves code running on the PC
host, you must create a program, which executes on the host, to initiate
and conduct the actual PCI or USB transfer. Because of this, the loader
4-4 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-2192-12 DSP Loader
output file (.H) is the C-language source code for inclusion and compila-
tion into a host program (.EXE) using a C compiler (such as Microsoft
Visual C++) to create the RTBL.

The source code emitted by the loader is essentially arrays and structures
representing the executable’s sections and their contents. Refer to the
comments contained within the generated .H file for specific information
about the data structures and their usage.

Building .DXE Files

You must build two .DXE files, which serve as input to the loader. Then
you build the .H file. Lastly, you create the .EXE file (see “Creating a .EXE
File” on page 4-6). The following procedure suggests one method to build
the .DXE file using the VisualDSP++ environment. You may choose to
combine steps or use the loader’s command-line, instead.

To build the .DXE files from VisualDSP++:

1. Open the Project page of the Project Options dialog box.

2. Under Processor, select ADSP-2192-12.

Figure 4-1. ADSP-2192-12 DSP Loader Sequence

Loader:

1.DXE 2.DXE

.H File

.EXE File

.C Files

.SM File
.OVL File

The loader consumes the linker’s
output files (.DXE) to produce a
C-language source file (.H)

that contains data
structures representing the
executable.

RTBL:
The run-time boot loader compiles
the.H file and any other source files
(typically, C/C++) using host deve-
lopment tools (e.g. Microsoft
Visual C++). The resulting .EXE file
can be executed on a host PC.
VisualDSP++ Loader Manual 4-5
for 16-Bit Processors

ADSP-2192 DSP Booting
3. Under Type, select DSP Loader file.

4. Under Name, type a name for the DSP’s core 0 .DXE file.

5. From the Link page, configure linker options for the core 0 file.

6. Run the project. This generates the .DXE, .OVL, and .SM files.

7. From the Project page, under Name, type a name for the DSP’s
core 1 .DXE file.

8. From the Link page, configure linker options for the core 1 file.

9. Run the project. This generates the .DXE, .OVL, and .SM files.

For more information about the VisualDSP++ IDDE, see the
VisualDSP++ 3.5 User’s Guide for 16-bit Processors or online Help.

If a DSP executable file changes, rerun the loader. The rerun creates a new
.H file from the .DXE, .OVL, and .SM input files. Then run the RTBL, as
described in “Creating a .EXE File” on page 4-6, to build an .EXE file
from the .H file. Automate these tasks from the VisualDSP++ environment
by specifying the target type as DSP Loader file on the Project page of the
Project Options dialog box and running the RTBL with a post-build
command (Post Build page of the Project Options dialog box); this
invokes a makefile that builds the RTBL.

Creating a .EXE File

The loader generates a single output file with an .H extension. As
described in “Building .DXE Files” on page 4-5, a host compiler inputs
the loader output (.H) and other user-written code (.C or .CPP) to create a
host executable (.EXE).
4-6 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-2192-12 DSP Loader
To create an .EXE file from VisualDSP++

1. From the Load page of the Project Options dialog box, specify the
input (.DXE) files under Core 0 and Core 1.

2. From the Post Build page, configure one or more command lines
to execute the RTBL.

3. Run the project. This generates the .H file and creates the .EXE file.

The .EXE file, which is executed on the end-user system, traverses the data
structures (.H) created by the loader and subsequently compiled by the
RTBL. The content of these data structures are downloaded to the
ADSP-2192-12 DSP through a user-provided Windows driver.

! A program running in virtual memory space (as do all Windows
applications) cannot access the PCI-mapped memory of the
ADSP-2192 DSP directly. A driver is mandatory.

Reference RTBL

Creating the RTBL and driver can be a complex task, especially the first
time. To facilitate the process, VisualDSP++ includes a reference RTBL in
the form of a Microsoft VisualC++ 6.0 project named
reference_rtbl.dsp. This project is located in the ldr subdirectory of
your VisualDSP++ installation directory. Refer to the files in the project
for information on the operation of the RTBL and the provided driver
interface.

The RTBL downloads the code via the PCI bus to the ADSP-2192-12
EZ-KIT Lite evaluation system through the EZ-KIT Lite’s PCI driver.
This reference can serve as an example for traversing and using the data
structures emitted by the loader. Then download those structures to the
target through a driver.

! The reference RTBL provided with the EZ-KIT Lite evaluation
system does not support USB booting.
VisualDSP++ Loader Manual 4-7
for 16-Bit Processors

ADSP-2192 DSP Booting
The EZ-KIT Lite evaluation system driver can be reused for targets other
than Analog Devices EZ-KIT Lite evaluation systems, but this simple
driver may be inadequate for anything other than prototyping. Further-
more, the EZ-KIT Lite driver can be reused only on so-called
“plug-and-play” Windows operating systems like Windows 98 and Win-
dows 2000.

ADSP-2192 DSP RBTL and Overlays
Using overlays in an executable can greatly complicate the use of the
RTBL and PCI driver for two main reasons:

• The overlay’s “live space” is on the PC host and not the DSP. As a
result, the linker is not aware of these addresses at build time. The
PCI driver must patch executables as they are downloaded to the
DSP to insert the correct addresses at runtime.

• The DSP cannot access the Windows virtual memory space. An
overlay must be copied from virtual memory space to PCI memory
space, which can only be allocated in limited quantities by the PCI
driver.

However, the loader output considers the need for run-time patches of the
executable. A portion of the data structure created by the loader is for the
express purpose of enabling user code in the RTBL to set up these
addresses at runtime. Refer to the reference RTBL for an example of how
this is done.

Due to the DSP’s inability to access Windows virtual memory space, the
RTBL and driver must be coordinated to make overlays available in PCI
memory space. Typically, the overlay’s image and size information is sent
to the driver. The driver malloc()’s a memory buffer equal in size to the
overlay and then copies the overlay to this space, thus making the overlay
available in the PCI memory space.
4-8 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-2192-12 DSP Loader
Using Overlay Symbols

The loader utility, when running, searches for the OvlPciAdrTbl and
OvlMgrTbl symbols. If the loader cannot resolve the two symbols, it sets
both values to zero. You must declare one or both symbols in the assembly
source file to make the run-time loader handle the overlay properly.

The OvlPciAdrTbl symbol holds the start address of the overlay live
address table. The loader gets this symbol’s value from the input .DXE file
and places it in the “offset” of the first relocation_type array. The value
of the “offset” of the second relocation_type array is then the value of
the first relocation_type “offset” plus 2.

Consequently, each subsequent “offset” gets a value equal to the previous
“offset” plus 2. The run-time loader determines the exact the overlay live
address of each overlay according to the provided “offset” value.

Instead of defining OvlPciAdrTbl, define OvlMgrTbl in the assembly
source code. This symbol should contain the start address of the overlay
table, and the overlay table can be declared and defined in your assembly
source code. The loader gets this symbol’s value and makes the #define
statement along with the other #define statement; for example:

#define CORE0_OVL_MGR_TBL 0

#define CORE0_OVL_COUNT 3

The first #define statement provides the start address of the overlay table.
This is zero when the loader fails to find the symbol in the input .DXE file.
Correct the value by manually changing the value or by defining it in the
assembly source code and re-building the loader file.

The second #define statement provides the number of overlay for core 0.
The run-time loader later uses the provided overlay table start address to
find the entry for the live start address each overlay and changes it before
loading the overlay table into DSP memory.
VisualDSP++ Loader Manual 4-9
for 16-Bit Processors

ADSP-2192 DSP Loader Guide
ADSP-2192 DSP Loader Guide
This section provides reference information on the ADSP-2192 loader’s
command-line interface.

When using the loader from within VisualDSP++, settings on the Load
page of the Project Options dialog box correspond to the loader’s com-
mand-line switches. For more information, see the VisualDSP++ 3.5
User’s Guide for 16-bit Processors or online Help.

A list of switches and a description of each appear in “Loader Com-
mand-Line Switches” on page 4-13.

Single-Processor Command Line
Use the following syntax for the loader’s command line when there is only
one input executable (.DXE).

elfloader -core0 sourcefile [-o outputfile] -proc ADSP-2192 [-switch…]

 or

elfloader -core1 sourcefile [-o outputfile] -proc ADSP-2192 [-switch…]

where:

• -core0, -core1—Specify that the sourcefile is for core0 or core1,
respectively. The loader makes up the array and structure names
according to the supplied core number.

• sourcefile—Identifies the input executable file (.DXE) to process.
A file name can include the drive and directory; enclose long file
name within straight-quotes, “long file name”. Before running the
loader, ensure that all .OVL and .SM files reside in the same working
directory as the executable. The loader automatically opens the
overlay and shared memory files to read in the data while process-
ing the executables.
4-10 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-2192-12 DSP Loader
• -o outputfile—Optional name of the loader’s output, a C-lan-
guage header file (.H).

• -proc ADSP-2192—The mandatory switch directs the loader to
produce an output file for the ADSP-2192 processor.

• -switch…—One or more optional switches to pass to the loader.
Command-line switches may be placed in any order.

Two-Processor Command Line
Use the following syntax for the loader’s command line when there are
two input executables (.DXE).

elfloader -core0 sourcefile0 -core1 sourcefile1 -proc ADSP-2192

[-switch…]

where:

• -core0 sourcefile0—Identifies the sourcefile0 as the input file
to process for core 0. The loader creates the array and structure
names according to the supplied core number. Before running the
loader, ensure that all .OVL and .SM files reside in the same working
directory as the executables. The loader automatically opens the
overlay and shared memory files to read in the data while process-
ing the executables.

• -core1 sourcefile1—Identifies the sourcefile1 as the input file
to process for core 1. The loader utility creates the array and struc-
ture names according to the supplied core number.

• -proc ADSP-2192—The mandatory switch produces an output file
for the ADSP-2192-12 processor. By default, the output file is a
C-language header file (.H).

• -switch…—One or more optional switches to pass to the loader.
Command-line switches may be placed in any order.
VisualDSP++ Loader Manual 4-11
for 16-Bit Processors

ADSP-2192 DSP Loader Guide
Example

elfloader -proc ADSP-2192 -core0 p0.dxe -core1 p1.dxe

This command line runs the loader utility with:

• -proc ADSP-2192—Directs the loader to produce an output file for
the ADSP-2192-12 processor.

• -core0 p0.dxe—Identifies the input file (p0.dxe) to be processed
for core 0.

• -core1 p1.dxe—Identifies the input file (p1.dxe) to be processed
for core 1.

• By default, since no output file is specified, the default output file
is named p0.h.

File Searches

Many loader switches take a file name as an optional parameter. Table 4-4
on page 4-13 lists types the loader expect on files. File searches are impor-
tant in the loader operation. The loader supports relative and absolute
directory names, default directories. File searches occur as follows.

• Specified path—If you include relative or absolute path informa-
tion in a file name, the loader searches only in that location for the
file.

• Default directory—If you do not include path information in the
file name, the loader searches for the file in the current working
directory.

When you provide an input or output file name as a command-line
parameter, use the following guidelines.

• Enclose long file names within straight-quotes, “long file name“.

• Append the appropriate file extension to each file.
4-12 VisualDSP++ Loader Manual
for 16-Bit Processors

ADSP-2192-12 DSP Loader
File Extensions

Table 4-3 lists and describes file types input and output by the loader.

Loader Command-Line Switches
Table 4-4 lists and describes the loader switches.

Table 4-3. ADSP-2192 DSP Loader File Extensions

File Extension Description

.DXE Executable files.

.OVL Overlay memory files. The loader recognizes overlay memory files but does not
expect these files on the command line. Place .OVL files in the same directory as
the .DXE file that refers to them; the loader can locate them when processing
the .DXE file.

.SM Shared memory files. The loader recognizes shared memory files but does not
expect these files on the command line. Place .SM files in the same directory as
the .DXE file that refers to them; the loader can locate them when processing
the .DXE file.

.H Loader output files, C-language header files.

Table 4-4. ADSP-2192 DSP Loader Command-Line Switches

Switch Description

-f format Specifies the boot file format.
Prepares an output file in the specified format. Currently, the loader
utility supports the C-style header file (.H) only. This is the default.

-h
 or
-help

Invokes the command-line help, outputs a list of command-line
switches to standard output, and exits. By default, the -h switch alone
provides help for the loader driver. To obtain a help screen for the
ADSP-2192 processor, type -loader proc ADSP-2192 -h.

-M Generates make dependencies only.

-MM Shows dependencies while processing the files.
VisualDSP++ Loader Manual 4-13
for 16-Bit Processors

ADSP-2192 DSP Loader Guide
-Mo filename Writes make dependencies to the named file.
The -Mo option is for use with either the -M or -MM option. If -Mo is
not present, the default is a <stdout> display.

-Mt targetname Specifies the make dependencies target name.
The -Mt option is for use with either the -M or -MM option. If -Mt is
not present, the default is the name of the input file with the .LDR
extension.

-o file Specifies the name of the output file.

-proc ADSP-2192
or
-dADSP2192

Produces an output file for the ADSP-2192-12 processor.
Note: -proc ADSP-2192 is the preferred form. The -dADSP2192
switch is for legacy support only.

-si-revision version Provides a silicon revision of the specified processor.
The version parameter represents a silicon revision of the processor
specified by the -proc switch. The revision version takes one of two
forms:
• One or more decimal digits, followed by a point, followed by one

or two decimal digits. Examples of revisions are: 0.0; 1.12;
23.1. Version 0.1 is distinct from and “lower” than version
0.10. The digits to the left of the point specify the chip tapeout
number; the digits to the right of the point identify the metal
mask revision number. The number to the right of the point can-
not exceed decimal 255.

• A none version value is also supported, indicating that the
VDSP++ tool should ignore silicon errata.

This switch either generates a warning about any potential anomalous
conditions or generates an error if any anomalous conditions occur.
Note: In the absence of the silicon revision switch, the loader selects
the greatest silicon revision it is aware of, if any.
Note: In the absence of the version parameter (a valid version
value)—-si-revision alone or with an invalid value—the loader
generates an error.

-v Outputs verbose loader messages and status information as the loader
processes files.

Table 4-4. ADSP-2192 DSP Loader Command-Line Switches (Cont’d)

Switch Description
4-14 VisualDSP++ Loader Manual
for 16-Bit Processors

5 ADSP-218X DSP
LOADER/SPLITTER

This chapter explains how the loader/splitter program (elfspl21.exe) is

used to convert executable files into boot-loadable or non-bootable files
for ADSP-218x DSPs.

Refer to “Introduction” on page 1-1 for the loader/splitter overview; the
introductory material applies to all processor families. Loader and splitter
operations specific to ADSP-218x DSPs are detailed in the following
sections.

• “ADSP-218x DSP Loader Guide” on page 5-1

Explains how a boot-loadable file is created, written to, and run
from an ADSP-218x DSP’s internal memory.

• “ADSP-218x DSP Splitter Guide” on page 5-15

Explains how a non-bootable PROM image file is created and exe-
cuted from an ADSP-218x DSP’s external memory.

ADSP-218x DSP Loader Guide
The loader/splitter (elfspl21.exe) processes an executable file (.DXE),
producing a boot-loadable (.LDR) or non-bootable file (.BNL, .BNM, or
.BNU). The preparation of a non-bootable image is also called splitting (or
PROM splitting). In most cases, developers working with ADSP-218x
DSPs use the loader instead of the splitter.
VisualDSP++ 3.5 Loader Manual 5-1
for 16-Bit Processors

ADSP-218x DSP Loader Guide
Loader operations depend on loader options, which control how the
loader processes executable files, letting you select features such as loader
kernel, boot type, and output file format. These options appear on the
loader’s command line or the Load page of the Project Options dialog box
in the VisualDSP++ environment.

! Option setting on the Load page correspond to switches displayed
on the command line.

To generate a boot-loadable file, you can specify the loader options from
within the VisualDSP++ environment. VisualDSP++ invokes the
elfspl21 and builds the output file. To generate a non-bootable PROM
file, you must run the elfspl21 utility from a command-line.

To ensure correct operation of the loader, familiarize yourself with:

• “Boot Modes” on page 5-2

• “Determining Boot Modes” on page 5-4

• “EPROM Booting (BDMA)” on page 5-6

• “Host Booting (IDMA)” on page 5-11

• “No Booting” on page 5-13

Boot Modes
A fully debugged program can be automatically downloaded to the proces-
sor after power-up or after a software reset. The way the loader creates a
boot-loadable file depends upon how your program is booted into the
DSP (booting mode).
5-2 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
ADSP-218x DSPs support the following boot modes.

• EPROM booting (BDMA)

• Host booting (IDMA)

• No boot

EPROM Booting – BDMA

In this mode, project data is stored in an 8-bit-wide PROM. After reset,
the DSP follows a special bootstrapping scenario. The DSP reads the
PROM’s contents through the BDMA interface and initializes on-chip
and off-chip memories. The elfspl21 loader utility generates a PROM
image that contains all project data and loader code.

Refer to “EPROM Booting (BDMA)” on page 5-6 for a detailed discus-
sion of this mode.

Host Booting – IDMA Mode

In this mode, the DSP does not start program execution immediately but
waits passively until a host DSP (such as a microcontroller or another
ADSP-218x part) writes project data into the DSP’s on-chip memory
through the IDMA interface. The elfspl21 loader processes the project
data, but the data may require post-processing because each type of host
processor requires its individual data format.

Refer to “Host Booting (IDMA)” on page 5-11 for a detailed discussion of
this mode.

No Boot

 In this mode, the DSP does not perform booting. After a reset, the DSP
starts program execution directly from the off-chip 24-bit PROM mem-
ory. The splitter capabilities of the elfspl21 generate a proper PROM hex
file. This option is not often used. You must run elfspl21.exe from a
command line.
VisualDSP++ 3.5 Loader Manual 5-3
for 16-Bit Processors

ADSP-218x DSP Loader Guide
Refer to “No Booting” on page 5-13 for a detailed discussion of this
mode.

Determining Boot Modes
To determine the boot mode, an ADSP-218x DSP samples its mode pins
(input flag pins) after reset. Table 5-1 and Table 5-2 explain how to con-
figure various DSPs by pulling the proper pins up or down.

Table 5-1. Boot Modes: ADSP-2181 and ADSP-2183 DSPs

MMAP
Pin

BMODE
Pin

Description

0 0 BDMA is used in default mode to load the first 32 program memory words
from byte memory space. Program execution is held off until all 32 words
have been loaded.

0 1 IDMA is used to load any internal memory as desired. Program execution is
held off until internal program memory location 0 is written to.

1 X Bootstrap is disabled. Program execution immediately starts from location 0.

Table 5-2. Boot Modes: ADSP-2184 to ADSP-2189 DSPs

Mode D Mode C Mode B Mode A Description

X 0 0 0 BDMA is used to load the first 32 program memory
words from byte memory space. Program execution is
held off until all 32 words have been loaded. The chip

is configured in Full Memory Mode.1

X 0 1 0 No automatic boot operations occur. Program execu-
tion starts at external memory location 0. The chip is
configured in Full Memory Mode. BDMA can still be
used, but the processor does not automatically use or
wait for these operations.
5-4 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
Table 5-3 lists DSPs that support Mode D operation (Mode D pin).

0 1 0 0 BDMA is used to load the first 32 program memory
words from the byte memory space. Program execu-
tion is held off until all 32 words have been loaded.
Chip is configured in Host mode. /IACK has active

pull-down.1 (Note: Requires additional hardware.)

0 1 0 1 IDMA is used to load any internal memory as desired.
Program execution is held off until the host writes to
internal program memory location 0. Chip is config-

ured in Host mode. /IACK has active pull-down.1

1 1 0 0 BDMA is used to load the first 32 program memory
words from byte memory space. Program execution is
held off until all 32 words have been loaded. Chip is
configured in Host mode; /IACK requires external pull
down. (Note: Requires additional hardware.)

1 1 0 1 IDMA is used to load any internal memory as desired.
Program execution is held off until the host writes to
internal program memory location 0. The chip is con-
figured in Host mode. /IACK requires external

pull-down.1

1 Considered as standard operating settings. Using these configurations allows easier design and
better memory management.

Table 5-3. ADSP-218x DSPs Supporting Mode D Operation

ADSP-2184N ADSP-2185M ADSP-2185N

ADSP-2186M ADSP-2186M ADSP-2187L

ADSP-2187N ADSP-2188M ADSP-2188N

ADSP-2189M ADSP-2189N

Table 5-2. Boot Modes: ADSP-2184 to ADSP-2189 DSPs (Cont’d)

Mode D Mode C Mode B Mode A Description
VisualDSP++ 3.5 Loader Manual 5-5
for 16-Bit Processors

ADSP-218x DSP Loader Guide
EPROM Booting (BDMA)
To generate a PROM image for EPROM booting, invoke the
elfspl21.exe loader from the command line or change the VisualDSP++
project type to Splitter file and specify options on the Project Options
dialog box’s Load page. The command-line syntax is discussed
on page 5-7. For information on how to set up the loader options from
within the VisualDSP++, see online Help.

After RESET, the ADSP-218x DSP loads the 96 bytes from PROM address
0x0000 into the first 32 locations of on-chip PM memory. Assuming these
96 bytes consist of 32 valid instructions, the DSP executes this piece of
program (preloader) afterwards. Usually 32 instructions are not sufficient
to load the complete project data; therefore, bootstrapping continues and
the preloader loads a set of so-called page loaders beginning at PM address
0x0020. After the preloader terminates, the DSP executes the page loaders,
which load the project data page by page.

The loader uses a default preloader. You can force the loader with the
-uload switch to use a customized preloader to reduce wait states or to
implement a boot management scenario (discussed in detail in the Appli-
cation Note EE-146).

Example

The following example lists the default preloader together with its opcode.
Note that the BWCOUNT value is generated dynamically.

/* standard preloader (32 instructions) address opcodes */
ax0 = 0x0060; dm(0x3fe2) = ax0; /* BEAD 0x0000:400600 93FE20 */
ax0 = 0x0020; dm(0x3fe1) = ax0; /* BIAD 0x0002:400200 93FE10 */
ax0 = 0x0000; dm(0x3fe3) = ax0; /* CTRL 0x0004:400000 93FE30 */
ax0 = 0x0087; dm(0x3fe4) = ax0; /* BWCOUNT0x0006: 400870 93FE40 */
ifc = 0x0008;nop; /* BDMA IRQ 0x0008: 3C008C 000000 */
imask = 0x0008; /* 0x000A: 3C0083 */
idle; /* 0x000B: 028000 */
jump 0x0020; nop; nop; nop; /* 0x000C: 18020F 000000 */
nop; nop; nop; nop; /* 0x0010: 000000 000000 */
5-6 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
nop; nop; nop; nop; /* 0x0014: 000000 000000 */
nop; nop; nop; nop; /* 0x0018: 000000 000000 */
rti; nop; nop; nop; /* 0x001C: 0A001F 000000 */

The page loaders are generated dynamically by the elfspl21, depending
on the number of overlay pages to be initialized. A page loader sets up
BDMA transfers. Since BDMA transfers cannot target off-chip DM and
PM memories (overlay pages 1 and 2) directly, the corresponding page
loaders first BDMA-load the data into on-chip memory and then copy the
data by core instructions.

The final BDMA sequence has the BCR bit set. It overwrites the preloader
and page loaders resident in internal PM memory and issues a context
reset once it has finished. The program counter resets to 0x0000 and pro-
gram execution begins.

Refer to the ADSP-218x DSP Hardware Reference for a detailed descrip-
tion of BDMA capabilities. You can debug the EPROM booting process
using the VisualDSP++ simulator by loading the .BNM file (Settings->Sim-
ulator) and then resetting (Debug->Reset) the DSP to start booting.

The loader outputs files in industry-standard file formats, Intel hex-32
and Motorola S, which are readable by most EPROM burners. For
advanced usage, other file formats are supported; refer to Appendix A,
“File Formats” for details. The default file extension is .BNM.

ADSP-218x BDMA Loader Command-Line Reference

This section details the ADSP-218x BDMA loader’s command-line
interface.

The syntax for the loader’s command line is:

elfspl21 sourcefile [outputfile] -218{x|1} [-switch …]
VisualDSP++ 3.5 Loader Manual 5-7
for 16-Bit Processors

ADSP-218x DSP Loader Guide
where:

• sourcefile—Identifies the executable file (.DXE) to process into a
single-processor boot-loadable file. A file name can include the
drive and directory. Enclose long file names within straight-quotes,
“long file name“.

• outputfile—Specifies the output file. The optional parameter can
include the drive, directory, file name, and file extension (.BNM).

• -switch…—Optional switches to process. The loader provides
many switches to select operations and modes (see Table 5-5 on
page 5-10).

• -218{x|1}—Specifies the target processor. Always specify either
-2181 or -218x when working with an ADSP-218x DSP (see
Table 5-5 on page 5-10).

! The sourcefile and outputfile names must be placed first on the
command line.Command-line switches may occur in any order,
except for the -2181 (or -218x) and -loader switches. When
required, the -2181 (or -218x) and -loader switches follow the
outputfile name; the -2181 (or -218x) switch always precedes the
-loader switch.

Example

elfspl21 p0.dxe output.bnm -218x -loader -i -uload test.doj

In the above example, the ADSP-218x BDMA loader runs with:

• p0.dxe—the name of the executable file to process into a
boot-loadable file.

• output.bnm—the name of the loader output file.

• -218x—the target processor, one of the ADSP-2184 through
ADSP-2189 DSPs.
5-8 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
• -loader—EPROM booting as the boot mode for the boot-loadable
file.

• -i—Intel hex-32 format for the boot-loadable file.

• -uload—test.doj as the boot kernel for the boot-loadable file.

File Searches

Many loader switches take a file name as an optional parameter. Table 5-4
on page 5-9 lists the expected file types. File searches are important in the
loader operation. The loader supports relative and absolute directory
names, default directories. File searches occur as described on page 1-9.

File Extensions

Table 5-4 lists and describes file types input and output by the loader.

Loader Switches

Table 5-5 lists and describes the loader switches used in BDMA mode.

Table 5-4. ADSP-218x Loader File Extensions

File Extension Description

.DXE Executable files and boot-kernel files.

.OVL Overlay memory files. The loader recognizes overlay memory files but does not
expect these files on the command line. Place .OVL files in the same directory as
the .DXE file that refers to them; the loader can locate them when processing
the .BNM file.

.BNM Loader output file for EPROMs.

.IDM Loader output file for IDMA.
VisualDSP++ 3.5 Loader Manual 5-9
for 16-Bit Processors

ADSP-218x DSP Loader Guide
Table 5-5. ADSP-218x DSP: BDMA Mode Command-Line Switches

Switch Description

sourcefile Specifies the executable file (.DXE) to be processed for a single-proces-
sor boot-loadable file.

outputfile Specifies the loader’s output file (.BNM).

-h Outputs the list of command-line switches to standard output and
exits.

-i Produces Intel hex format.

-s Produces Motorola S2 format.

-byte Produces byte-stream output format.

-218{x|1} Specifies the target processor:
• -2181—ADSP-2181 or ADSP-2183 DSP
• -218x—one of the ADSP-2184 through ADSP-2189 DSP.
When used with -loader, keeps the image.

-218{4|5|6|8|9} Use in place of -218x. Specifies the ADSP-2184, ADSP-2185,
ADSP-2186, ADSP-2187, ADSP-2188, or ADSP-2189 DSP as a target
processor. Supports PMOVLAY/DMOVLAY.

-loader Includes the ADSP-218x default loader.

-noloader Excludes the ADSP-218x loader.
When used with -2181 -loader (or -218x-loader), generates a byte
memory image without a loader. This suppresses the preloader and page
loaders.

-bdma inputfile

start_address

Use with -2181 -loader.
Specifies placement of an additional.DXE file (inputfile) in byte
memory, starting at the specified address. The loader returns an error if
the specified address is in use by the loader, or by another additional
-bdma specified file. Files specified this way may be BDMA loaded at
runtime, but the individual start addresses, length, and target informa-
tion must be predefined.

-bdmaload inputfile

start_address

Specifies an additional .DXE file (inputfile) to be placed in byte
memory, starting at the specified address. The address must be a multi-
ple of 0x4000. Unlike the -bdma switch, this option generates a pre-
loader and page loaders for the specified .DXE file. This way, two or
more applications can be stored in the same EPROM and may replace
the default application at runtime.
5-10 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
Host Booting (IDMA)
When booted through the IDMA interface, an ADSP-218x DSP behaves
like a slave. After reset, it does not start program execution until internal
PM location 0x0000 is overwritten by an IDMA write access. The host
processor initializes all on-chip memories of the DSP but finally writes to
PM address 0x0000. Then the DSP starts program execution.

The host is responsible for handling the IDMA traffic properly. Typically,
the host boots the DSP page-by-page (segment-by-segment). To boot a
segment, the host first performs an address latch cycle to program the
IDMA Control register and the IDMA Overlay register (on ADSP-2184
through ADSP-2189 DSPs only). Afterwards, the host writes 16- or 24-bit
words to the IDMA port. The DSP auto-increments its address counter.

Figure 5-1 on page 5-12 illustrates the algorithm the host processor must
compute to boot the DSP successfully.

-uload filename Reads the BDMA preloader from filename.doj.
The preloader must consist of exactly 32 instructions. Preloaders gener-
ated by the elfspl21 utility automatically determine the BWCOUNT
value, which mirrors the numbers of instructions required by the page
loaders. Customized preloaders do not have access to this length infor-
mation and should always set BWCOUNT by assuming the maximal possi-
ble page loader length.
In this software version, the maximal number of instructions required
for the page loader is 658. This may change in future releases.

-offsetaddr # Provides byte memory address offset (valid only with
-2181 -noloader or with -218x -noloader).

-offsetpage # Provides byte memory page offset (valid only with -2181 -noloader
or with -218x -noloader).

Table 5-5. ADSP-218x DSP: BDMA Mode Command-Line Switches

Switch Description
VisualDSP++ 3.5 Loader Manual 5-11
for 16-Bit Processors

ADSP-218x DSP Loader Guide
The loader generates an ASCII file (.IDM). Every segment data is headed
by the following information: word count, IDMA control value, and over-
lay page number. Since the IDMA interface is a 16-bit interface, the .IDM
file is organized in 16-bit portions.

Typically, embedded processors cannot directly process ASCII files in
.IDM format. It is up to the user to post-process this file in a customized
way.

! Due to hardware restrictions, IDMA booting of off-chip memories
is not possible. Refer to the description of IDMA capabilities in the
ADSP-218x DSP Hardware Reference.

Figure 5-1. Host Processor Algorithm

Read next word count N

Read IDMA Control value and
perform Address Latch Cycle

N = = 0xFFFF?
YES

NO

N = = 0x0000?
YES NO

Read IDMA Overlay value and
perform Address Latch Cycle

Read next 16-bit Data value
and write to IDMA

Decrement N

Bypass this step if elfspl21has not
been invoked by the -218x switch.

DONE
5-12 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
ADSP-218x IDMA Loader Command-Line Reference

To create an IDMA boot file, use the following syntax for the ADSP-218x
loader’s command line.

elfspl21 sourcefile [outputfile] -218{x|1} -idma

Table 5-6 lists and describes each switch used in IDMA mode.

No Booting
In very rare cases, applications require that the DSP not be booted after
reset, or that the DSP is booted with a ROM connected to the DSP’s
off-chip DM/PM address space.

Preparing a non-bootable PROM image is called splitting. In most cases,
developers working with ADSP-218x DSPs use the loader instead of the
splitter. For ADSP-218x DSPs, splitter and loader features are handled by

Table 5-6. ADSP-218x DSP: IDMA Command-Line Switches

Switch Description

sourcefile Specifies the executable file (.DXE) to be processed for a single-processor
boot-loadable file.

outputfile Specifies the output file (.IDM).

-218{x|1} Specifies the target processor:
• -2181—ADSP-2181 or ADSP-2183 DSP
• -218x—one of the ADSP-2184 through ADSP-2189 DSP.
When used with -loader, keeps the image.

-218{4|5|6|8|9} Use in place of -218x. Specifies the ADSP-2184, ADSP-2185,
ADSP-2186, ADSP-2187, ADSP-2188, or ADSP-2189 DSP as a target
processor. Supports PMOVLAY/DMOVLAY.

-idma Forces the loader to create an IDMA boot file. It overwrites most of the
BDMA boot-specific options.
VisualDSP++ 3.5 Loader Manual 5-13
for 16-Bit Processors

ADSP-218x DSP Loader Guide
the elfspl21.exe. The splitter must be invoked by a completely different
set of command-line switches. Refer to the following “ADSP-218x DSP
Splitter Guide” for more information.
5-14 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
ADSP-218x DSP Splitter Guide
Use the splitter (elfspl21.exe) to process an executable file to produce a
non-bootable, PROM-image file. In most cases, developers working with
ADSP-21xx DSPs use the loader instead of the splitter.

This section contains the following information on the splitter.

• “Using Splitter” on page 5-15

Describes how to use the splitter from a command line.

• “ADSP-218x Splitter Command-Line Reference” on page 5-16

Summarizes and describes the splitter command-line switches.

Using Splitter

! You must run the splitter (PROM splitter) from a command line.
You cannot generate a non-bootable PROM file from within the
VisualDSP++ environment. To automate the process, specify the
splitter command-line within VisualDSP++ from the Post Build
page of the Project Options dialog box.

The ADSP-218x splitter generates images for external PMOVLAY (1 and 2)
and DMOVLAY (1 and 2) memory pages. If you use the splitter to produce
ROM images (for example, the ADSP-2181DSP’s program memory pages
1 and 2), the generated code must target ROM. Define the appropriate
ROM segments in the .LDF file.

Splitter options control how the splitter processes executable files, letting
you select features such as memory type and file format.
VisualDSP++ 3.5 Loader Manual 5-15
for 16-Bit Processors

ADSP-218x DSP Splitter Guide
ADSP-218x Splitter Command-Line Reference
The splitter (elfspl21.exe) generates non-bootable, PROM-image files
for ADSP-218x DSPs by processing executable files (.DXE).

! The splitter command line is case sensitive.

Run the splitter from the command line using the following syntax.

elfspl21 sourcefile [outputfile] {-pm &| -dm} [-switch …]

where:

• sourcefile—Name of the executable file (.DXE) to be processed
for a non-bootable, PROM-image file. A file name can include the
drive and directory. Enclose long file names within straight-quotes,
“long file name”.

• outputfile—Optional name of the splitter’s output, a PROM file
with the .BNL, .BNU, or .BNM file extension.

• -switch …—One or more optional switches to process. Switches
select operations and modes for the splitter.

• -pm &| -dm—Indicates that either -pm or -dm or both can be used.

Example

The following two command lines run the splitter twice, first producing
PROM files for program memory and then producing PROM files for
data memory.

elfspl21 my_proj.dxe pm_stuff -pm

elfspl21 my_proj.dxe dm_stuff -dm
5-16 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
The switches on these command lines are as follows.

-pm, -dm

Select program memory or data memory as the source in the exe-
cutable for extraction and placement into the image. Because these
are the only switches used to identify the memory source, the
sources are any PM or DM ROM memory segments. Because no
other contents switches appear on these command lines, the format
for the output defaults to Motorola S3 format, and the output
PROM width defaults to 8 bits for all PROMs.

pm_stuff, dm_stuff

Specify names for the output files without file extension. Use dif-
ferent names so the output of the second run does not overwrite
the output of the first run. The output names are pm_stuff.s_#
and dm_stuff.s_#.

my_proj.dxe

Specify an executable file to process into a non-bootable
PROM-image file.

File Searches

Many splitter switches take a file name as an optional parameter.
Table 5-7 lists the type of files, names, and extensions that the splitter
expects on files. File searches are important in the splitter’s process. The
splitter supports relative and absolute directory names, default directories,
and user-selected directories for file search paths.

When you provide an input or output file name as a command-line
parameter, use the guidelines stated on page 1-9.

Splitter File Extensions

Table 5-7 lists and describes file types input and output by the splitter.
VisualDSP++ 3.5 Loader Manual 5-17
for 16-Bit Processors

ADSP-218x DSP Splitter Guide
Splitter Switches

Table 5-8 lists and describes the available splitter command-line switches.

Table 5-7. Splitter File Name Extensions

File Extension File Description

.DXE Executable files and boot-kernel files.

.BNU Splitter binary output file—upper.

.BNM Splitter binary output file—middle.

.BNL Splitter binary output file—lower.

Table 5-8. Splitter Command-Line Switches

Switch Description

sourcefile Specifies the source (.DXE) for the splitter operation.

outputfile Specifies the splitter’s output file.
If not specified, the name of the sourcefile (executable file) is used
for the output. The extension depends on the output format.

-byte Produces byte-stream output format.

-dm Extracts data memory.
Extracts segments from the executable declared as data memory. The
splitter generates two one-byte files:
.BNM—contains the upper bytes of the 16-bit data words
.BNL—contains the lower bytes.

-i Produces Intel hex output format.

-pm Extracts program memory.
Extracts segments from the executable declared as program memory.
The splitter generates three one-byte files:
.BNU—contains the upper bytes of the 24-bit words
.BNM—contains the middle bytes
.BNL—contains the lowest bytes.

-readall Includes RAM and ROM in PROM.
Extracts both RAM and ROM segments from the input file. By
default, only ROM segments are extracted.
5-18 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

ADSP-218x DSP Loader/Splitter
-s Produces Motorola S1 output format

-us
-us2
-ui

Produces a byte-stacked format file for 8-bit memory:
-us yields Motorola S1 output format
-us2 yields Motorola S2 output format
-ui yields Intel hex output format.

Table 5-8. Splitter Command-Line Switches (Cont’d)

Switch Description
VisualDSP++ 3.5 Loader Manual 5-19
for 16-Bit Processors

ADSP-218x DSP Splitter Guide
5-20 VisualDSP++ 3.5 Loader Manual
for 16-Bit Processors

A FILE FORMATS

VisualDSP++ development tools support many file formats, in some cases

several for each development tool. This appendix describes file formats
that are prepared as inputs and produced as outputs.

The appendix describes three types of files:

• “Source Files” on page A-2

• “Build Files” on page A-5

• “Debugger Files” on page A-9

Most of the development tools use industry-standard file formats. These
formats are described in “Format References” on page A-10.
VisualDSP++ Loader Manual A-1
for 16-Bit Processors

Source Files
Source Files
This section describes the following input file formats:

• “C/C++ Source Files” on page A-2

• “Assembly Source Files” on page A-3

• “Assembly Initialization Data Files” on page A-3

• “Header Files” on page A-4

• “Linker Description Files” on page A-4

• “Linker Command-Line Files” on page A-5

C/C++ Source Files
C/C++ source files are text files (.C, .CPP, .CXX, and so) containing C/C++
code, compiler directives, possibly a mixture of assembly code and direc-
tives, and, typically, preprocessor commands.

Several dialects of C code are supported: pure (portable) ANSI C, and at
least two subtypes1 of ANSI C with ADI extensions. These extensions
include memory type designations for certain data objects, and segment
directives used by the linker to structure and place executable files.

The C/C++ compiler, run-time library, as well as a definition of ADI
extensions to ANSI C are detailed in your target processor’s
VisualDSP++ 3.5 C/C++ Compiler and Library Manual.

1 With and without built-in function support; a minimal differentiator. There are others.
A-2 VisualDSP++ Loader Manual
for 16-Bit Processors

File Formats
Assembly Source Files
Assembly source files (.ASM) are text files containing assembly instructions,
assembler directives, and (optionally) preprocessor commands. For infor-
mation on assembly instructions, see your processor’s Programming
Reference.

The processor’s instruction set is supplemented with assembly directives.
Preprocessor commands control macro processing and conditional assem-
bly or compilation.

For information on the assembler and preprocessor, see the
VisualDSP++ 3.5 Assembler and Preprocessor Manual.

Assembly Initialization Data Files
Assembly initialization data files (.DAT) are text files that contain fixed- or
floating-point data. These files provide initialization data for an assembler
.VAR directive or serve in other tool operations.

When a .VAR directive uses a .DAT file for data initialization, the assembler
reads the data file and initializes the buffer in the output object file (.DOJ).
Data files have one data value per line and may have any number of lines.

The .DAT extension is explanatory or mnemonic. A directive to #include
<file> can take any file name and extension as an argument.

Fixed-point values (integers) in data files may be signed, and they may be
decimal-, hexadecimal-, octal-, or binary-base values. The assembler uses
the prefix conventions listed in Table A-1 to distinguish between numeric
formats.

For all numeric bases, the assembler uses 16-bit words for data storage;
24-bit data is for the program code only. The largest word in the buffer
determines the size for all words in the buffer. If you have some 8-bit data
VisualDSP++ Loader Manual A-3
for 16-Bit Processors

Source Files
in a 16-bit wide buffer, the assembler loads the equivalent 8-bit value into
the most significant 8 bits into the 8-bit memory location and zero-fills
the lower eight bits.

Header Files
Header files (.H) are ASCII text files that contain macros or other prepro-
cessor commands which the preprocessor substitutes into source files. For
information on macros and other preprocessor commands, see the Visu-
alDSP++ 3.5 Assembler and Preprocessor Manual for 16-Bit Processors.

Linker Description Files
Linker Description Files .LDF are ASCII text files that contain commands
for the linker in the linker’s scripting language. For information on this
scripting language, see the VisualDSP++ 3.5 Linker and Utilities Manual
for 16-Bit Processors.

Table A-1. Numeric Formats

Convention Description

0xnumber
H#number
h#number

Hexadecimal number

number
D#number
d#number

Decimal number

B#number
b#number

Binary number

O#number
o#number

Octal number
A-4 VisualDSP++ Loader Manual
for 16-Bit Processors

File Formats
Linker Command-Line Files
Linker command-line files (.TXT) are ASCII text files that contain
command-line input for the linker. For more information on the linker
command line, see the VisualDSP++ 3.5 Linker and Utilities Manual for
16-Bit Processors.

Build Files
Build files are produced by the VisualDSP++ development tools while
building a project. This section describes the following build file formats:

• “Assembler Object Files” on page A-5

• “Library Files” on page A-6

• “Linker Output Files” on page A-6

• “Memory Map Files” on page A-7

• “Loader Output Files in Intel Hex-32 Format” on page A-7

• “Splitter Output Files in ASCII Format” on page A-9

Assembler Object Files
 Assembler output object files (.DOJ) are binary, executable and linkable
files (ELF). Object files contain relocatable code and debugging informa-
tion for a DSP program’s memory segments. The linker processes object
files into an executable file (.DXE). For information on the object file’s
ELF format, see the “Format References” on page A-10.
VisualDSP++ Loader Manual A-5
for 16-Bit Processors

Build Files
Library Files
Library files (.DLB), the archiver’s output, are binary, executable and link-
able files (ELF). Library files (called archive files in previous software
releases) contain one or more object files (archive elements).

The linker searches through library files for library members used by the
code. For information on the ELF format used for executable files, refer to
“Format References” on page A-10.

! The archiver automatically converts legacy input objects from
COFF to ELF format.

Linker Output Files
The linker’s output files (.DXE, .SM, .OVL) are binary, executable and link-
able files (ELF). The executable files contain program code and debugging
information. The linker fully resolves addresses in executable files. For
information on the ELF format used for executable files, see the TIS Com-
mittee texts cited in “Format References” on page A-10.

The loaders/splitters are used to convert executable files into boot-load-
able or non-bootable files.

Executable files are converted into a boot-loadable file (.LDR) for the ADI
processors using a loader program. Once an application program is fully
debugged, it is ready to be converted into a boot-loadable file. A
boot-loadable file is transported into and run from a processor’s internal
memory. This file is then programmed (burned) into an external memory
device within your target system.

A splitter generates non-bootable, PROM-image files by processing exe-
cutable files and producing an output PROM file. A non-bootable PROM
image file executes from DSP external memory.
A-6 VisualDSP++ Loader Manual
for 16-Bit Processors

File Formats
Memory Map Files
The linker can output memory map files (.MAP), which are ASCII text files
that contain memory and symbol information for your executable file(s).
The map contains a summary of memory defined with MEMORY{} com-
mands in the .LDF file, and provides a list of the absolute addresses of all
symbols.

Loader Output Files in Intel Hex-32 Format
The loader can output Intel hex-32 format files (.LDR). The files support
8-bit-wide PROMs and are used with an industry-standard PROM pro-
grammer to program memory devices. One file contains data for the
whole series of memory chips to be programmed.

The following example shows how the Intel hex-32 format appears in the
loader’s output file. Each line in the Intel hex-32 file contains an extended
linear address record, a data record, or the end-of-file record.

:020000040000FA Extended linear address record

:0402100000FE03F0F9 Data record

:00000001FF End-of-file record

Extended linear address records are used because data records have a
4-character (16-bit) address field, but in many cases, the required PROM
size is greater than or equal to 0xFFFF bytes. Extended linear address
records specify bits 31–16 for the data records that follow.

Table A-2 shows an example of an extended linear address record.

Table A-3 shows the organization of an example data record.

Table A-4 shows an end-of-file record.
VisualDSP++ Loader Manual A-7
for 16-Bit Processors

Build Files
Table A-2. Extended Linear Address Record Example

Field Purpose

:020000040000FA Example record

: Start character

02 Byte count (always 02)

0000 Address (always 0000)

04 Record type

0000 Offset address

FA Checksum

Table A-3. Data Record Example

Field Purpose

:0402100000FE03F0F9 Example record

: Start character

04 Byte count of this record

0210 Address

00 Record type

00 First data byte

F0 Last data byte

F9 Checksum

Table A-4. End-of-File Record Example

Field Purpose

:00000001FF End-of-file record

: Start character

00 Byte count (zero for this record)

0000 Address of first byte
A-8 VisualDSP++ Loader Manual
for 16-Bit Processors

File Formats
Splitter Output Files in ASCII Format
When the loader is invoked as a splitter, its output can be an ASCII-for-
mat file with the .LDR extension. ASCII-format files are text
representations of ROM memory images that can be post-processed by
users. For more information, refer to the chapter in this manual that is
appropriate for your target processor.

Debugger Files
Debugger files provide input to the debugger to define support for simula-
tion or emulation of your program. The debugger supports all the
executable file types produced by the linker (.DXE, .SM, .OVL). To simulate
I/O, the debugger also supports the assembler’s data file format (.DAT) and
the loader’s loadable file formats (.LDR).

The standard hexadecimal format for a SPORT data file is one integer
value per line. Hexadecimal numbers do not require an 0x prefix. A value
can have any number of digits but is read into the SPORT register as
follows:

• The hexadecimal number is converted to binary.

• The number of binary bits read in matches the word size set for the
SPORT register, which starts reading from the LSB. The SPORT
register then fills with zero values shorter than the word size or
conversely truncates bits beyond the word size on the MSB end.

01 Record type

FF Checksum

Table A-4. End-of-File Record Example (Cont’d)

Field Purpose
VisualDSP++ Loader Manual A-9
for 16-Bit Processors

Format References
In the following example (Table A-5), a SPORT register is set for 20-bit
words and the data file contains hexadecimal numbers. The simulator con-
verts the hex numbers to binary and then fills/truncates to match the
SPORT word size. The A5A5 is filled and 123456 is truncated.

Format References
The following texts define industry-standard file formats supported by
VisualDSP++.

• Gircys, G.R. (1988) Understanding and Using COFF by O’Reilly &
Associates, Newton, MA

• (1993) Executable and Linkable Format (ELF) V1.1 from the
Portable Formats Specification V1.1, Tools Interface Standards
(TIS) Committee.

Go to: http://developer.intel.com/vtune/tis.htm.

• (1993) Debugging Information Format (DWARF) V1.1 from the
Portable Formats Specification V1.1, UNIX International, Inc.

Go to: http://developer.intel.com/vtune/tis.htm.

Table A-5. SPORT Data File Example

Hex Number Binary Number Truncated/Filled

A5A5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010

FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001

A5A5 1010 0101 1010 0101 0000 1010 0101 1010 0101

5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101

11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001

123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110
A-10 VisualDSP++ Loader Manual
for 16-Bit Processors

I INDEX

Symbols .TXT ASCII text files A-5

.ALIGN directive 2-14
.ASM assembly files A-3
.BNL splitter output files 5-1, 5-18
.BNM loader output files 5-7, 5-9
.BNM splitter output files 5-1, 5-18
.BNU loader output files 5-1
.BNU splitter output files 5-18
.DAT data initialization files A-3
.DLB library files A-6
.DXE executable files A-6
.DXE loader input files 2-42, 5-1, 5-9,

5-18
.H header files 4-6
.IDM loader output files 5-9, 5-12
.KNL (kernel only) loader output files

2-42
.LDF (Linker Description Format) files

A-4
.LDR files 2-8, 2-42, 5-1

ASCII-format A-9
hex-format A-7
splitter output A-9

.MAP memory map files A-7

.OVL overlay memory files 5-9, A-6

.SM shared memory files 4-10, 4-11,
A-6

Numerics
16-bit addressable SPI memory 2-27
-2184|5|6|8|9 loader switch 5-10, 5-13
-218x|1 loader switch 5-10, 5-13
24-bit addressable SPI memory 2-27
8-bit addressable SPI memory 2-27

A
ADSP-218x DSPs

EPROM (BDMA) booting 5-6
host (IDMA) booting 5-11
start addresses 5-10
using loader 5-1
using splitter 5-15

ADSP-218x loader switches
-2184|5|6|8|9 5-10, 5-13
-218x|1 5-10, 5-13
-bdma inputfile start address 5-10
-bdmaload start address 5-10
-byte 5-10
-help 5-10
-i (Intel hex format) 5-10
-idma 5-13
-loader 5-10
-noloader 5-10
VisualDSP++ Loader Manual I-1
for 16-Bit Processors

INDEX
-offsetaddr # 5-11
-offsetpage # 5-11
-s (S2 format) 5-10
-uload file 5-11

ADSP-218x loader/splitter 1-4
ADSP-218x processors

loader 5-1
ADSP-218x splitter 5-15

command-line switches 5-18
extracting segments from dm memory

5-18
extracting segments from pm memory

5-18
ADSP-218x splitter switches

-byte 5-18
-dm 5-18
-i (hex format) 5-18
-pm 5-18
-readall 5-18
-s (s1 format) 5-19
-ui 5-19
-us 5-19
-us2 5-19

ADSP-2191 loader switches
-help 3-21

ADSP-2191 processors
loader programs 3-19

ADSP-2192 Boot Loader switches
-dADSP2192 4-14

ADSP-2192 loader switches
-help 4-13

ADSP-2192-12 DSPs
boot loader utility 4-10
CMSR settings 4-3

loader 4-2, 4-4
ADSP-2192-12 loader switches

-f format 4-13
-M 4-13
-MM 4-13
-Mo filename 4-14
-Mt filename 4-14
-o filename 4-14
-proc ADSP-2192 4-14
-verbose 4-14

ADSP-219x DSPs
boot streams 3-4
elfloader.exe 3-2

ADSP-219x loader switches
-b type 3-21
-blocksize # 3-21
-checksum 3-21
-clkdivide # 3-21
-f format 3-21
-forcefirstbyte 3-21
-host3bytes 3-21
-M 3-21
-maskaddr # 3-22
-MM 3-21
-Mo filename 3-22
-Mt filename 3-22
-NoDxeAddrHdr 3-22
-o filename 3-22
-opmode # 3-22
-p address 3-22
-pd address 3-23
-pdAddrNext address 3-23
-pEqualPd address 3-22
-pEqualZero address 3-22
I-2 VisualDSP++ Loader Manual
for 16-Bit Processors

INDEX
-proc processor 3-23
-readall 3-23
-romsplitter 3-23
-split # 3-23
-verbose 3-23
-waits # 3-24
-width # 3-24

ADSP-219x loader/splitter 3-1
ADSP-BF531/BF532/BF533

processors
boot streams 2-19
memory ranges 2-25
SPl memory booting 2-26

ADSP-BF535 processors
boot streams 2-8
memory ranges 2-13

ADSP-BF561 processors
boot ROM 2-28
boot streams 2-29, 2-31
dual-core 2-28, 2-29
initialization blocks 2-35
memory ranges 2-34
multi .DXE booting 2-36
on-chip boot ROM 2-34

application code
start address 2-8, 2-45, 2-48

archive files A-6
see library files A-6

assembler
source files (.ASM) A-3

assembling 1-2
assembly initialization data files (.DAT)

A-3
asynchronous

memory bank 0 2-53

B
-b (boot mode) loader switch 2-42, 3-21
baud rate 2-49
-baudrate loader switch 2-42
BDMA

interface 5-3, 5-4
transfers 5-7

-bdma (input start address) loader
switch 5-10

-bdmaload loader switch 5-10
Blackfin loader

default settings 2-40, 2-47
output file settings 2-47

Blackfin loader switches 2-47
-b prom|flash|spi 2-42
-baudrate # 2-42
-enc dll_filename 2-42
-f (format) 2-42
-ghc # 2-43
-help 2-43
-HoldTime # 2-43
-init filename 2-43
-kb KernelBootMode 2-43
-kenc dll_filename 2-42
-kf KernelFormat 2-43
-kp # 2-44
-kWidth # 2-44
-l userkernel 2-44
-M 2-44
-maskaddr 2-44
-MaxBlockSize # 2-44
-MM 2-44
VisualDSP++ Loader Manual I-3
for 16-Bit Processors

INDEX
-Mo filename 2-44
-Mt filename 2-45
-no2kernel 2-45
-o filename 2-45
-o2 (two output files) 2-45
-p # 2-45
-proc processor 2-45
-romsplitter 2-45
-si-revision version 2-46, 4-14
-verbose 2-46, 4-14
-waits # 2-46
-width # 2-46
-width # (word width) 2-46

Blackfin loader/splitter 3-1
Blackfin processors 2-1

baud rate 2-49
boot formats 2-48
boot modes 2-48
boot ROM 2-17
boot sources 2-2
Flash, see Flash memory
full boot 2-5, 2-17
hold time 2-48
loader file formats 2-8
multi-file booting (ADSP-BF51/2/3)

2-37
no-booting (bypass) 2-2, 2-45
PROM, see PROM memory
see also second-stage loader
specifying boot modes 2-43
SPI memory booting 2-26
start addresses 2-16
SYSCR register 2-29

block

flags 2-13
headers 2-13, 2-18, 2-30, 2-35, 3-5
structure 2-19

-blocksize # loader switch 3-21
BMODE pin settings 2-2

ADSP-2181 DSPs 5-4
ADSP-2183 DSPs 5-4
ADSP-2184/5/6/7/8/9 DSPs 5-4
ADSP-219x DSPs 3-3
ADSP-BF531/32/33 processors 2-16
ADSP-BF535 processors 2-3

boot file format
specifying 2-42, 3-21

boot kernel 1-7
omitting in output 2-45
setting for Blackfin processors 2-49
specifying boot mode 2-43
specifying hex address 2-44
specifying kernel & app files 2-50
specifying user kernel 2-44

boot loader kernel
ADSP-2192 DSP 4-2

boot management, ADSP-218x DSPs
5-6

boot modes 1-3, 1-5
ADSP-218x DSPs 5-4
ADSP-219x DSPs 3-3
ADSP-BF531/32/33 processors 2-16
ADSP-BF535 processors 2-3
ADSP-BF561 processors 2-28
specifying in 219x processors 3-21
specifying, ADSP-218x DSPs 5-4
specifying, Blackfin processors 2-42
I-4 VisualDSP++ Loader Manual
for 16-Bit Processors

INDEX
boot ROM 1-7, 2-3, 2-6, 2-18, 2-29,
2-36

boot sequences 1-4, 1-7
ADSP-BF531/32/33 processors 2-16
ADSP-BF535 processors 2-4

boot streams 2-35
ADSP-219x 3-4
ADSP-219x DSPs 3-4
ADSP-BF531/32/33 processors 2-19
ADSP-BF535 processors 2-8, 2-9
ADSP-BF561 processors 2-29
block headers 2-19
blocks 2-19
flags 2-13
flags of block headers 2-20
global headers 2-12
headers 2-11

booting 1-5
ADSP-2192-12 DSPs 4-2, 4-4
ADSP-219x DSPs 3-2
ADSP-BF531/32/33 processors 2-16
ADSP-BF535 processors 2-3
Blackfin processors 2-2
difference between Blackfin

processors 2-18
differences between processors 2-28
EPROM (BDMA) 5-3, 5-6
host 3-10
host (IDMA) 5-3
no-boot mode 2-3, 2-16, 3-12, 5-3,

5-15
parallel EPROM 3-4
ROM bypass 2-4
see also SPI booting

serial EPROM 3-12
UART part 3-11
via UART on ADSP-219x 3-11
without boot kernel 2-45

boot-loadable files 1-4, 5-1
bootstraps 2-45, 5-4, 5-6
build

files, description of A-5
loader options 4-6

BUSMODE pin settings 4-3
bypassing boot 2-29
-byte

loader switch 5-10
splitter switch 5-18

byte-stacked format file 5-19

C
C runtime routines 2-36
C/C++

source files A-2
Cache/SRAM memory 2-34
-checksum loader switch 3-21
-clkdivide # loader switch 3-21
CMSR settings 4-3
code alignment 2-14
command line

ADSP-218x loader, BDMA mode 5-7
ADSP-218x loader, IDMA mode

5-13
ADSP-218x splitter 5-16, 5-18
ADSP-2192-12 loader 4-10
ADSP-219x loader 3-19, 3-21
Blackfin loader/splitter 2-40

compiling 1-2
VisualDSP++ Loader Manual I-5
for 16-Bit Processors

INDEX
core
A ranges 2-34
B ranges 2-34

count
blocks 2-30
headers 2-35, 2-37

creating run-time boot loader 4-7

D
data

banks 2-34
blocks 3-6

debugger
files A-9

development flow 1-1
dm (data) memory 5-7, 5-17
-dm splitter switch 5-18
DMODE pin settings 5-5
DMOVLAY memory page 5-15
DRAM memory 2-34
drivers

downloading for ADSP-2192-12
DSPs 4-7

run-time boot loader 4-7
dual-core application 2-36
DWARF format

references A-10

E
E_BWS bit 3-24
E_STAT register 3-18
EEPROM memory 2-28, 2-29
ELF file dumper

references A-10

EMICTL register 3-24
emulator 1-2
-enc dll_filename loader switch 2-42
EPROM 5-7

output 2-8, 2-42
with no-boot data 3-16

excluding ADSP-218x loader 5-10
Executable and Linkable Format (ELF)

1-2
executable files 1-4, A-6
External Bus Interface Unit (EBIU)

2-15
external memory 1-4, 2-5, 2-6, 2-15,

2-37
EZ-KIT Lite boards 1-3

F
-f (file format) loader switch 2-42, 3-21,

4-13
file extensions

ADSP-218x 5-17
ADSP-2192-12 loader 4-10, 4-13
ADSP-219x loader 3-20

file formats 1-3
ASCII file 5-12
Blackfin loader 2-8, 2-48
Intel hex-32 5-7
Motorola 5-7, 5-19
see also boot streams
selecting for output 2-43

file searches 1-9
files

.ASM (assembly) A-3

.H (header) 4-6
I-6 VisualDSP++ Loader Manual
for 16-Bit Processors

INDEX
.LDR (ASCII-format) A-9

.LDR (hex format) A-7
build A-5
C/C++ A-2
data files A-3
debugger A-9
executable A-6
format references A-10
formats A-1
input A-2
library A-6
library files A-6
memory map A-7
overlay memory (OVL) A-6
shared memory (SM) A-6
text files A-5

final blocks 2-30
see last blocks

flags 2-30, 2-35
bits of 2-20
structure of 2-21

Flash memory 2-29
booting 2-3, 2-6, 2-9, 2-14, 2-16
hold-time cycle selection 2-43

Flash Programmer plug-in 1-3
-forcefirstbyte loader switch 3-21
full memory mode, ADSP-218x DSPs

5-4

G
-ghc # loader switch 2-43
global headers 2-11, 2-12, 2-30, 3-4

H
headers 2-37

block headers 2-13
-help loader switch 2-43, 3-21, 4-13,

5-10
hex-format files

.LDR A-7
-HoldTime # loader switch 2-43
host booting

ADSP-218x DSPs 5-5, 5-11
host booting mode, overview 1-6
host processors 1-4, 5-3, 5-11
-host3bytes loader switch 3-21

I
-i (hex) splitter switch 5-18
IDMA 5-11

control register 5-11
creating boot file 5-13
interface 5-3, 5-4, 5-5, 5-11
overlay register 5-11

-idma loader switch 5-13
ignore blocks 2-21
-init filename loader switch 2-38, 2-43
initialization

block code example 2-23
blocks 2-21, 2-35, 2-38
code 2-21, 2-43, 2-49
sections 2-21

input files 2-41, 5-8, 5-10, 5-16
input flag pins 5-4
Intel hex format 5-10, 5-19
interrupt vectors 2-28
VisualDSP++ Loader Manual I-7
for 16-Bit Processors

INDEX
K
-k (kernel width) loader switch 2-44
-kb (boot mode) loader switch 2-43
-kenc dll_filename loader switch 2-42
kernel file option 2-49
kernels 1-6

see also boot kernel
-kf (kernel format) loader switch 2-43
-kp (kernel hex address) loader switch

2-44

L
-l userkernel loader switch 2-37, 2-44
L1 memory 2-6, 2-13, 2-14, 2-17, 2-25,

2-29, 2-34
L2 memory 2-4, 2-5, 2-6, 2-13

 2-14
last blocks 2-21
library files A-6
linker

command-line files (.TXT) A-5
description file (LDF) see .LDF files
executable files A-6
memory map files (.MAP) A-7
settings 1-2

linking 1-2
little-endian 3-10
loadable files 1-2
loader

ADSP-218x DSPs 1-4, 3-1, 5-1, 5-2
ADSP-2191 processors 3-19
ADSP-2192-12 DSP 4-1
ADSP-219x DSPs 3-2
boot kernel 1-7, 3-4

build options 4-6
for ADSP-218x processors 5-1
hex-format files A-7
settings selection 3-21, 4-13, 5-9

-loader loader switch 5-10

M
-M loader switch 2-44, 3-21, 4-13
-maskaddr # loader switch 2-44, 3-22
masking EPROM address bits 2-44
-MaxBlockSize loader switch 2-44
memory ranges 2-34
-MM loader switch 2-44, 3-21, 4-13
MMAP pin 5-4
-Mo loader switch 2-44, 3-22, 4-14
Mode D pin settings

ADSP-218x DSPs 5-5
modes

see boot modes
Motorola

S2 format 5-10
S3 format 5-17

-Mt loader switch 2-45, 3-22, 4-14
multi .DXE booting 2-37
multiprocessor systems 1-4

N
-no2kernel loader switch 2-45
no-boot data

in EPROM image 3-16
no-boot mode 2-45

ADSP-218x DSPs 5-3, 5-13, 5-15
ADSP-219x DSPs 3-5, 3-12
ADSP-BF531/32/33 2-16
I-8 VisualDSP++ Loader Manual
for 16-Bit Processors

INDEX
ADSP-BF535 processors 2-3
Blackfin processors 2-53
overview 1-5
selecting 2-48, 2-53

-NoDxeAddrHdr loader switch 3-22
-noloader loader switch 5-10
non-bootable files 1-4, 2-45, 5-1

O
-o loader switch 2-45, 3-22, 4-14
-o2 (two output files) loader switch 2-45
-offsetaddr # loader switch 5-11
-offsetpage # loader switch 5-11
on-chip boot ROM 2-25, 2-26, 2-34

ADSP-BF531/32/33 processors 2-16
ADSP-BF535 processors 2-4

-opmode # loader switch 3-22
OPMODE pin

ADSP-219x DSPs 3-3
output files 2-46, 5-8, 5-10, 5-16
overlays

live address table 4-9
pages, ADSP-218x DSPs 5-7
start address 4-9

OvlMgrTbl symbol 4-9
OvlPciAdrTbl symbol 4-9

P
-p loader switch 2-45, 3-22
page loaders 5-6, 5-10
PCI drivers

run-time boot loader 4-8
-pd loader switch 3-23
-pdAddrNext loader switch 3-23

-pEqualPd loader switch 3-22
-pEqualZero loader switch 3-22
pm memory 5-7, 5-11
-pm splitter switch 5-18
PMOVLAY memory page 5-15
power-ups 1-5
preloader 5-10
preloaders, ADSP-218x DSPs 5-6
-proc loader switch 2-45, 3-23, 4-14
processor blocks 2-21
processor-loadable files 1-5
program development flow 1-1
program memory (pm) 5-17
Project Options dialog box 2-47, 5-2,

5-6, 5-15
PROM

booting 2-6, 2-9, 2-14, 2-47
booting mode 1-6
image 5-2, 5-6, 5-16, 5-18
memory 1-3, 1-7, 2-29, 5-3
splitter 5-1, 5-15

PROM/Flash
booting 2-12
memory 2-28

R
R0 register 2-35
R3 register 2-35
RAM memory 5-18
READ command 2-26
-readall

loader switch 3-23
splitter switch 5-18

references
VisualDSP++ Loader Manual I-9
for 16-Bit Processors

INDEX
file formats A-10
reset 2-2, 2-3, 2-16, 5-2, 5-6, 5-11

ADSP-2192 DSPs 4-3
RESET interrupt 2-17, 2-28
ROM

images 5-15
memory 5-18

ROM splitter
setting options 2-52

-romsplitter loader switch 2-45, 3-23
RTBL

see run-time boot loader 4-6
run-time boot loader 4-2

creating 4-7
handling overlays 4-9
overlays over PCI 4-8
reference 4-7
running 4-6

S
-s loader switch 5-10
-s splitter switch 5-19
scratch memory 2-35
SDRAM memory 2-6, 2-13, 2-25, 2-35

configuring 2-14
init code example 2-23
initializing 2-14, 2-21, 2-25

second-stage loader 2-6, 2-35, 2-36,
2-49, 2-51

default settings 2-49
restrictions 2-14
selecting 2-48
setting options 2-49

shared memory 2-36

silicon revision setting 2-46, 4-14
simulating booting process 5-7
simulator 1-2, 1-3
-si-revision loader switch 4-14
-si-revision loader switch 2-46
slave processors 1-4, 5-11
software resets 1-5
source files 1-2

assembly instructions A-3
C/C++ A-2
fixed-point data A-3

specifying format
byte-stream 5-10
Intel hex 5-10
Motorola 5-10

specifying kernel & app files 2-50
specifying Motorola formats 5-19
SPI booting 2-3, 2-9, 2-12, 2-14, 2-16,

2-26
baudrate 2-42

SPI memory 2-26, 2-28
8-, 16-, 24-bit addressable 2-27

-split # loader switch 3-23
splitter

ADSP-218x DSPs 5-1, 5-15
ADSP-219x DSPs 3-13
ASCII-format files (.LDR) A-9

splitting 1-4
SPORT data files A-9
SRAM memory 2-25, 2-28, 2-34

 2-13
start addresses 2-16, 5-10
status information 2-46, 2-48
streams
I-10 VisualDSP++ Loader Manual
for 16-Bit Processors

INDEX
see boot streams
supervisor mode 2-28
SYSCR register 2-5, 2-29

ADSP-BF531/32/33 processors 2-17
ADSP-BF535 processors 2-2, 2-4

U
-uload file loader switch 5-11
-us splitter switch 5-19
user interrupts 2-28
utilities

elfloader.exe (ADSP-219x) 3-1

V
-v (verbose) loader switch 2-46, 3-23,

4-14

VisualDSP++
Load page 5-2, 5-6
Load page, Boot kernel options 2-49
Load page, ROM splitter options 2-52

W
wait states 2-46, 2-48, 5-6
-waits loader switch 2-46, 3-24
-width # loader switch 2-46, 3-5, 3-24
Windows drivers

ADSP-2192-12 loader 4-7

Z
zero-fill blocks 2-21
VisualDSP++ Loader Manual I-11
for 16-Bit Processors

INDEX
I-12 VisualDSP++ Loader Manual
for 16-Bit Processors

	VisualDSP++ 3.5 Loader Manual for 16-Bit Processors
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Embedded Processor and DSP Product Information
	Related Documents
	Online Technical Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Datasheets

	Contacting DSP Publications

	Notation Conventions

	1 Introduction
	Program Development Flow
	Compiling and Assembling
	Linking
	Loading and Splitting
	Boot-loadable Files Versus Non-bootable Files

	Booting Modes
	No-boot Mode
	PROM Booting Mode
	Host Booting Mode

	Boot Kernels
	Loader Tasks
	Loader Files
	Figure 1-1. .DXE Files versus .LDR Files
	File Searches

	2 Blackfin Processor Loader/Splitter
	Blackfin Processor Booting
	Figure 2-1. Blackfin Processors: Booting Sequence
	ADSP-BF535 Processor Booting
	Table 2-1. ADSP-BF535 Processor Boot Mode Selections�
	ADSP-BF535 Processor On-Chip Boot ROM
	Figure 2-2. ADSP-BF535 Processors: On-Chip Boot ROM
	Figure 2-3. ADSP-BF535 Processors: System Reset Configuration Register

	ADSP-BF535 Processor Second-Stage Loader
	Figure 2-4. ADSP-BF535 Processors: Booting With Second-Stage Loader
	Figure 2-5. ADSP-BF535 Processors: Copying Second-Stage Loader
	Figure 2-6. ADSP-BF535 Processors: Booting Application Code
	Figure 2-7. ADSP-BF535 Processors: Starting Application Code

	ADSP-BF535 Processor Boot Streams
	Output Loader Files
	Global Headers and Blocks
	Global Headers
	Block Headers

	Flags

	ADSP-BF535 Processor Memory Ranges
	Second-Stage Loader Restrictions

	ADSP-BF531/BF532/BF533 Processor Booting
	Table 2-2. ADSP-BF531/BF532/BF533 Processor Boot Mode Selections�
	ADSP-BF531/BF532/BF533 Processor On-Chip Boot ROM
	Figure 2-8. ADSP-BF533 Processors: System Reset Configuration Register
	Figure 2-9. ADSP-BF531/BF532/BF533 Processors: Booting Sequence

	ADSP-BF531/BF532/BF533 Processor Boot Streams
	Blocks and Block Headers
	Table 2-3. ADSP-BF531/BF532/BF533 Block Header Structure�
	Figure 2-10. ADSP-BF531/BF532/BF533 Processor Boot Stream Structure

	Flags of Block Header
	Table 2-4. Flag Structure�

	Initialization Blocks
	Figure 2-11. ADSP-BF531/BF532/BF533: Initialization Block Execution
	Figure 2-12. ADSP-BF531/BF532/BF533: Booting Application Code
	Listing 2-1. Initialization Block Code Example

	ADSP-BF531/BF532/BF533 Processor Memory Ranges
	ADSP-BF531/BF532/BF533 Processor SPl Memory Boot Sequence

	ADSP-BF561 Processor Booting
	Table 2-5. ADSP-BF561 Processor Boot Mode Selections�
	ADSP-BF561 Processor Boot Streams
	Table 2-6. ADSP-BF561 Global Header Structure�
	Table 2-7. ADSP-BF561 Processor Boot Stream Structure�

	ADSP-BF561 Processor Memory Ranges
	ADSP-BF561 Processor Initialization Blocks
	ADSP-BF561 Multiple .DXE Booting

	ADSP-BF531/BF532/BF533 and ADSP-BF561 Multiple .DXE Booting
	Figure 2-13. ADSP-BF531/BF32/BF33/BF561: Multi-Application Booting
	Listing 2-2. Initialization Block Code Example for Multiple .DXE Boot

	Blackfin Processor Loader Guide
	Using Loader Command Line
	File Searches
	File Extensions
	Table 2-8. File Extensions�

	Command-Line Switches
	Table 2-9. Blackfin Loader Command-Line Switches�

	Using Base Loader
	Figure 2-14. Base Load Page: Loader File Options Pane
	Table 2-10. Base Loader Page Settings�

	Using Second-Stage Loader
	Figure 2-15. ADSP-BF53x Processors: Boot Kernel Pane

	Using ROM Splitter
	Figure 2-16. ROM Splitter Pane
	No-boot Mode
	Listing 2-3. Section Assignment (LDF File)
	Listing 2-4. ROM Segment Definitions (LDF File)
	Listing 2-5. Section Handling (Source Files)

	3 ADSP-219x DSP Loader/Splitter
	ADSP-219x DSP Booting
	ADSP-219x DSP Boot Modes
	Table 3-1. ADSP-219x DSP Operation Modes�

	ADSP-219x DSP Boot Kernel
	ADSP-219x DSP Boot Streams
	Parallel EPROM Boot Streams
	Block Headers
	Data Blocks
	ADSP-219x DSP Multiple .DXE Support

	Host Booting
	UART Booting
	Serial EPROM Booting
	No-booting
	Table 3-2. EPROM Image Description�
	Table 3-3. EPROM Image—Two Segments Only�
	Enriching Boot EPROMs with No-boot Data
	Table 3-4. EPROM Image With No-boot Data�

	ADSP-219x DSP Loader Guide
	ADSP-219x Loader Command-Line Reference
	File Searches
	File Extensions
	Table 3-5. File Extensions for ADSP-218x Loader Operation

	Loader Switches
	Table 3-6. Loader Command-Line Switches�

	4 ADSP-2192-12 DSP Loader
	ADSP-2192 DSP Booting
	ADSP-2192 DSP Reset Types
	Table 4-1. ADSP-2192-12 DSP CMSR Settings�
	Table 4-2. ADSP-2192-12 DSP Bus Modes�

	ADSP-2192 DSP RTBL
	Figure 4-1. ADSP-2192-12 DSP Loader Sequence
	Building .DXE Files
	Creating a .EXE File
	Reference RTBL

	ADSP-2192 DSP RBTL and Overlays
	Using Overlay Symbols

	ADSP-2192 DSP Loader Guide
	Single-Processor Command Line
	Two-Processor Command Line
	File Searches
	File Extensions
	Table 4-3. ADSP-2192 DSP Loader File Extensions�

	Loader Command-Line Switches
	Table 4-4. ADSP-2192 DSP Loader Command-Line Switches�

	5 ADSP-218x DSP Loader/Splitter
	ADSP-218x DSP Loader Guide
	Boot Modes
	Determining Boot Modes
	Table 5-1. Boot Modes: ADSP-2181 and ADSP-2183 DSPs�
	Table 5-2. Boot Modes: ADSP-2184 to ADSP-2189 DSPs�
	Table 5-3. ADSP-218x DSPs Supporting Mode D Operation�

	EPROM Booting (BDMA)
	ADSP-218x BDMA Loader Command-Line Reference
	File Searches
	File Extensions
	Table 5-4. ADSP-218x Loader File Extensions�

	Loader Switches
	Table 5-5. ADSP-218x DSP: BDMA Mode Command-Line Switches�

	Host Booting (IDMA)
	Figure 5-1. Host Processor Algorithm
	ADSP-218x IDMA Loader Command-Line Reference
	Table 5-6. ADSP-218x DSP: IDMA Command-Line Switches

	No Booting

	ADSP-218x DSP Splitter Guide
	Using Splitter
	ADSP-218x Splitter Command-Line Reference
	Table 5-7. Splitter File Name Extensions
	Table 5-8. Splitter Command-Line Switches�

	A File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files
	Assembly Initialization Data Files
	Table A-1. Numeric Formats�

	Header Files
	Linker Description Files
	Linker Command-Line Files

	Build Files
	Assembler Object Files
	Library Files
	Linker Output Files
	Memory Map Files
	Loader Output Files in Intel Hex-32 Format
	Table A-2. Extended Linear Address Record Example�
	Table A-3. Data Record Example�
	Table A-4. End-of-File Record Example�

	Splitter Output Files in ASCII Format

	Debugger Files
	Table A-5. SPORT Data File Example�

	Format References

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	U
	V
	W
	Z

