
aaaa Engineer To Engineer Note EE-142
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices
regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Autobuffering, C and FFTs on the ADSP-218x
Submitted 8/2001 by DTL

This application note presents a technique for using autobuffering when bit-reversal is enabled within
the C FFT libraries. These techniques are demonstrated in a C-based data acquisition and spectral
analysis system which also presents a number of programming techniques such as : setting up hardware
and ports in C, setting up FFT buffers on the correct memory boundaries and double-buffering with
autobuffering. There is a corresponding VisualDSP project that accompanies this application note -
make sure you have downloaded this as well.

The ADSP-218x family of DSPs support serial port DMA functionality with a feature called
autobuffering. Autobuffering moves received data from the RX register into memory via a pre-assigned
set of DAG registers. Conversely, it moves data from memory to the TX register via another set of DAG
registers. The C compiler allows us reserve register sets I2 and I3 for autobuffering. To reserve these
registers, use the –reserve switch (for example, -reserve=-I2,I3) in the project options->compile-
>Additional Options.

The FFT functions in the C-runtime library use an addressing mode available in the DAG1 registers
called bit-reversal. This addressing mode is used to scramble/unscramble FFT data which greatly
increases the efficiency of the FFT itself. When this mode (bit-reversal) is enabled, all accesses to the
DAG1 registers result in a bit-reversed memory access. This means that the addresses stored in the
corresponding Ix register are flipped (i.e. low bits are now high bits and visa versa).

If the FFT function has enabled bit-reversal, and a new sample arrives in the RX register while
autobuffering is enabled, the autobuffering DAG access will be reversed too! This means that the
received word will not end up in the memory buffer that was set aside for autobuffering but rather
somewhere else in DM as the destination address was bit-reversed.

Since most applications use autobuffering and bit-reversal, this can present a dilemma. This application
note details a technique to avoid this problem without sacrificing performance on the DSP.

This implementation is designed to work in a C environment but can be easily adapted to work in a pure
assembly environment.

Before we get into the nuts and bolts, let's discuss what it is we're going to do here. Essentially, we will
be turning off autobuffering before the FFT begins and handling the function autobuffering normally
handles, manually. Once the FFT function has completed, we will re-enable autobuffering. This
approach is done in assembly language so the overhead of manually handling the interrupts during the
FFT will be minimal (i.e. 10 instructions/received sample).

EE-142 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Step 1: Modifying the C Interrupt Vector Table
In the C environment, there is a file called 218x_int_tab.asm which contains the interrupt vector table for
C interrupts. This file can be found in the VisualDSP\218x\lib\src\libc_src directory. We're going to
need to modify this file so copy it to your project directory and include it in your VisualDSP project.
Whenever you include a library source file in your project, this code will take precedence over the
version stored in the C library file. This way, you can tailor certain components of the C library without
having to build an entirely new library file!

Once you have included this file in your VisualDSP project, open it up. You'll see each interrupt vector
which is placed in its own section using the .section command. If your LDF file does not these sections,
copy them from one of the stock 218x LDF files. The first step is to ensure all of the interrupt vectors
have 4 instructions. Because they are explicitly placed in memory using the C library LDF file, they
weren't required to be 4 instructions long. But, the stock LDF files group all these sections to together
and they will be linked contiguously so if they are not all 4 instructions long, the interrupt table will be
misaligned! The short of it is this : if a vector only has 3 instructions, add an RTI; at the end as filler.

.section/code IVirqe;
.global ___irqe;
___irqe:
 DM(I4+=M7)=AX1;
 AX1=SIGIRQE;
 JUMP __lib_int_determiner;
 RTI;

The next step is to determine which of the 4 types of serial transmissions in which you'll be using
autobuffering (i.e. SPORT0 Receive, SPORT0 Transmit, SPORT1 Receive, SPORT1 Transmit). Once
this has been determined, locate the appropriate interrupt vectors and replace them with the following
(for example):

.section/code IVsport0recv;
.global ___sport0recv;
___sport0recv:
 JUMP SPORT0_RX_Interrupt;
 RTI;
 RTI;
 RTI;

The function call name is arbitrary but you'll want a unique function call for each of the SPORT vectors
you replace. In the example above, we replaced the SPORT0 Receive interrupt. Essentially what we are
doing here is setting up the C environment to bypass the C interrupt dispatcher and call our own
assembly interrupt.

EE-142 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Step 2 : The Interrupt Service Routine

Once the above has been done for all of the interrupts that you wish to use with autobuffering (which
should only be 2 since you can only reserve 2 sets of DAG registers in the C environment - more on this
one later), its time to set up the interrupt functions. Create a new text file - this will hold our interrupt
service routines which we jump to from the interrupt vectors we wrote in step 1.

Before we get into the code, let's discuss what it is we will be doing here. When autobuffering is
enabled, an interrupt is generated after the designated buffer is full and the DAG pointer wraps back to
the beginning. The length of the buffer is set using the corresponding L register in the DAG. When
autobuffering is not enabled, an interrupt is generated for every sample received. We have one routine
for both scenarios so we need to address both in the single ISR.

The code below is fairly simple and well-commented - it should explain itself. You'll need to create a
function for each of your interrupts. In our example, we're only using one interrupt so we only modified
one interrupt vector in Step 1 and are now only writing a single service routine. You'll need a unique
service routine for each interrupt vector.

/* Include Assembly Support and 218x header files */
#include <asm_sprt.h>
#include <def2181.h>

/* Declare the variables we declared in C as .extern's */
.extern _Buffer1;
.extern _Buffer0;
.extern _db_tgl;

.extern _Bit_Reversal_On;
.extern _DoFFT;

/* Declare section and function name - this must match the
 function you called in your ISR! */
.section /pm program;
.global SPORT0_RX_Interrupt;
SPORT0_RX_Interrupt:

/* First, enable secondary register set so we don't corrupt anything
 back in C-world */
 ena SEC_REG;

/* Second, did we enter this interrupt because we completed an
 autobuffer wrap, or did we enter it because we disabled
 autobuffering and a new sample came in? This information is
 stored in the C variable, _Bit_Reversal_On. */

EE-142 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

ax0 = dm(_Bit_Reversal_On);
ar = pass ax0;

if EQ jump Autobuffering_Interrupt;

Non_Autobuffering_Interrupt:
/* At this point, we know that we are not in a standard
 autobuffering interrupt - autobuffering has been
 disabled and we will handle the work of autobuffering
 manually! */

/* First things first - disable the helpful yet menacing bit
 reversal so we can store the data correctly */
 dis BIT_REV;

/* Perform the function that autobuffering normally handles */
 ax0 = rx0;
 ay1 = i2; /* ay1 = i2 before the access */
 dm(i2,m1) = ax0;
 ax1 = i2; /* ax1 = i2 after the access */

/* Check to see if the circular buffer pointer wrapped around, if
 so, this would have generated an autobuffering interrupt so
 service it as such */

 ar = ax1 - ay1; /* if ax1 < ay1, the pointer wrapped */
 if LT jump Autobuffering_Interrupt;

/* When an interrupt comes in, the status registers are pushed onto
 the status stack. When we return from an interrupt, these values
 are automatically restored so although we enabeld secondary
 registers and disabled bit-reversal, we don't have to set them
 back as this will automatically happen during an RTI
 instruction. */
 rti;

/* This is the autobuffering interrupt. In this example, we are
 handling the normal autobuffering interrupt in assembly. If
 you need to call a C function instead, you just need to set
 up the C call correctly - see page 2-71 of the C Compiler
 & Library Manual for ADSP-218x Family DSPs - this section
 is entitle Calling C Functions From Assembly Language
 Programs */

/* In our autobuffering ISR, we are implementing a simple double-
 buffering scheme to ping-pong between two receive buffers, i.e.

EE-142 Page 5
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

 receive data into Buffer0 and operate on Buffer1. Then,
 receive on Buffer1 and operate on Buffer0. */
Autobuffering_Interrupt:
 ax0 = 1;
 dm(_DoFFT) = ax0;

 ax0 = dm(_db_tgl);
 ar = pass ax0;
 IF NE jump Buffer0_Use;

Buffer1_Use:
 i2 = _Buffer1;
 ar = NOT ar;
 dm(_db_tgl) = ar;
 rti;

Buffer0_Use:
 i2 = _Buffer0;
 ar = NOT ar;
 dm(_db_tgl) = ar;
 rti;

Step 3 : Setting it all up in C

Its now time to setup the serial ports, setup autobuffering and get the interrupt ready in C.

The first step is to setup the serial ports. Setting up the serial ports from C is quite easy using the macros
found in sport.h. The serial ports are set up as memory-mapped C structures.

#include <sport.h>
#include <circ.h>

...

// setup 10 Mhz internal SCLK with 80Mhz clock in
sport0.sclkdiv = COMPUTE_SCLKDIV(80000000, 10000000);

// set RFS to be generated ever 20 SCLK periods
sport0.rfsdiv = 20;

// setup sport0 control register
sport0.control.single.isclk = 1; // internal sclk
sport0.control.single.irfs = 1; // Internal RFS
sport0.control.single.rfsr = 1; // RFS required

EE-142 Page 6
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

sport0.control.single.slen = 15; // 16 bit words

The second step is to setup autobuffering. These macros are also located in sport.h.

// setup autobuffering regisers
sport0.autobuffer.receive_enable = 1;
 // enable receive autobuffering on sport0
sport0.autobuffer.rmreg = 1;
 // M3 (=1 by default)
sport0.autobuffer.rireg = 2;
 // I0 (we need to reserve this)

// Set up DAG register i2 to be used for autobuffering
// and to point to _Buffer0 initially with a length of
// 512
// this macro is found in circ.h
circ_setup(2, Buffer0, 512);

Finally, we enable the serial port and setup the interrupt. The function call inclded in the interrupt
function is actually just a dummy call. Since we've replaced the interrupt vector for this interrupt, the
interrupt dispatcher will never get called. We are using the interrupt function here only to unmask our
interrupt.

// start sport 0
sport_start(0);

// this interrupt will be generated every time the DAG pointer used
for
// autobuffering wraps
interrupt(SIGSPORT0RECV, SPORT0_Receive_Int);

At this point, we're ready to go. Take a look at the corresponding VisualDSP project. You can simulate
this by setting up a stream on SPORT0 and using the included in.dat file. In the streams dialog box, set
this up (source) as a circular, hexadecimal input file. The destination will be SPORT0.

Conclusion
There are many potential modifications that can be made on the approach. To shorten the amount of
time that autobuffering is handled manually, you can set and clear the Bit_Reversal_On variable within
the FFT library itself. Bit reversal is not enabled during the entire FFT, just during the scrambling phase.
To do this, include the FFT sources in your project and modify them.

