
W3.5
Kernel (VDK) User’s Guide

for 16-Bit Processors

 Revision 1.0, October 2003

Part Number
82-000035-03

Analog Devices, Inc.
Digital Signal Processor Division
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, the VisualDSP logo,
CROSS-CORE, the CROSSCORE logo, and EZ-KIT Lite are registered
trademarks of Analog Devices, Inc.

VisualDSP++ and the VisualDSP++ logo are trademarks of Analog
Devices, Inc.

Trademarks and registered trademarks are the property of their respective
owners.

CONTENTS
PREFACE

Purpose of this Manual ... xvii

Intended Audience ... xviii

Manual Contents ... xviii

What’s New in this Manual .. xix

Technical or Customer Support ... xx

Supported Processors ... xx

Product Information .. xxi

MyAnalog.com ... xxi

DSP Product Information ... xxi

Related Documents ... xxii

Online Documentation ... xxiii

From VisualDSP++ ... xxiii

From Windows .. xxiv

From the Web .. xxiv

Printed Manuals ... xxiv

VisualDSP++ Documentation Set .. xxv

Hardware Manuals .. xxv

Data Sheets ... xxv
VisualDSP++ 3.5 Kernel (VDK) User’s Guide iii
for 16-bit Processors

CONTENTS
Contacting DSP Publications ... xxvi

Notation Conventions ... xxvi

INTRODUCTION TO VDK

Motivation ... 1-1

Rapid Application Development .. 1-2

Debugged Control Structures .. 1-2

Code Reuse ... 1-3

Hardware Abstraction ... 1-3

Partitioning an Application ... 1-4

Scheduling ... 1-5

Priorities ... 1-5

Preemption ... 1-7

Protected Regions ... 1-7

Disabling Scheduling .. 1-7

Disabling Interrupts .. 1-8

Thread and Hardware Interaction ... 1-8

Thread Domain with Software Scheduling 1-9

Interrupt Domain with Hardware Scheduling 1-10

Device Drivers .. 1-10

CONFIGURATION AND DEBUGGING OF VDK
PROJECTS

Configuring VDK Projects .. 2-1

Linker Description File ... 2-2
iv VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

CONTENTS
Thread Safe Libraries ... 2-2

Header Files for the VDK API ... 2-2

Debugging VDK Projects .. 2-3

Instrumented Build Information .. 2-3

VDK State History Window .. 2-3

Target Load Graph Window .. 2-4

VDK Status Window ... 2-4

General Tips ... 2-5

Kernel Panic .. 2-5

USING VDK

Threads .. 3-1

Thread Types .. 3-2

Thread Parameters .. 3-2

Stack Size .. 3-2

Priority ... 3-3

Required Thread Functionality .. 3-3

Run Function ... 3-3

Error Function .. 3-4

Create Function .. 3-4

Init Function/Constructor ... 3-5

Destructor .. 3-5

Writing Threads in Different Languages 3-6

C++ Threads ... 3-6

C and Assembly Threads ... 3-7
VisualDSP++ 3.5 Kernel (VDK) User’s Guide v
for 16-bit Processors

CONTENTS
Global Variables ... 3-8

Error Handling Facilities ... 3-8

Scheduling ... 3-9

Ready Queue .. 3-9

Scheduling Methodologies ... 3-10

Cooperative Scheduling .. 3-10

Round-robin Scheduling ... 3-11

Preemptive Scheduling .. 3-11

Disabling Scheduling .. 3-12

Entering the Scheduler From API Calls 3-13

Entering the Scheduler From Interrupts 3-13

Idle Thread ... 3-14

Signals .. 3-15

Semaphores ... 3-16

Behavior of Semaphores .. 3-16

Thread’s Interaction With Semaphores 3-17

Pending on a Semaphore ... 3-17

Posting a Semaphore ... 3-18

Periodic Semaphores ... 3-21

Messages ... 3-21

Behavior of Messages .. 3-22

Thread’s Interaction With Messages 3-23

Pending on a Message ... 3-23

Posting a Message ... 3-24
vi VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

CONTENTS
Multiprocessor Messaging .. 3-26

Routing Threads (RThreads) ... 3-27

Data Transfer (Payload Marshalling) 3-33

Device Drivers for Messaging .. 3-36

Routing Topology ... 3-37

Events and Event Bits .. 3-38

Behavior of Events .. 3-38

Global State of Event Bits .. 3-39

Event Calculation .. 3-39

Effect of Unscheduled Regions on Event Calculation 3-41

Thread’s Interaction With Events 3-41

Pending on an Event ... 3-42

Setting or Clearing of Event Bits 3-42

Loading New Event Data into an Event 3-44

Device Flags .. 3-45

Behavior of Device Flags ... 3-45

Thread’s Interaction With Device Flags 3-45

Interrupt Service Routines ... 3-46

Enabling and Disabling Interrupts ... 3-46

Interrupt Architecture .. 3-47

Vector Table .. 3-47

Global Data .. 3-48

Communication with the Thread Domain 3-49

Timer ISR ... 3-50
VisualDSP++ 3.5 Kernel (VDK) User’s Guide vii
for 16-bit Processors

CONTENTS
Reschedule ISR ... 3-50

I/O Interface .. 3-51

I/O Templates ... 3-51

Device Drivers .. 3-51

Execution ... 3-52

Parallel Scheduling Domains ... 3-53

Using Device Drivers .. 3-55

Dispatch Function .. 3-56

Device Flags ... 3-64

Pending on a Device Flag .. 3-65

Posting a Device Flag .. 3-66

General Notes .. 3-67

Variables ... 3-67

Critical/Unscheduled Regions 3-67

Memory Pools .. 3-68

Memory Pool Functionality ... 3-68

Multiple Heaps ... 3-69

Thread Local Storage .. 3-70

VDK DATA TYPES

Data Type Summary ... 4-1

Bitfield ... 4-4

DeviceDescriptor .. 4-5

DeviceFlagID ... 4-6

DeviceInfoBlock ... 4-7
viii VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

CONTENTS
DispatchID ... 4-8

DispatchUnion ... 4-9

DSP_Family ... 4-11

DSP_Product .. 4-12

EventBitID ... 4-14

EventID .. 4-15

EventData ... 4-16

HeapID .. 4-17

HistoryEnum .. 4-18

IMASKStruct .. 4-20

IOID .. 4-21

IOTemplateID .. 4-22

MarshallingCode ... 4-23

MarshallingEntry .. 4-25

MessageDetails .. 4-26

MessageID .. 4-27

MsgChannel ... 4-28

MsgWireFormat .. 4-30

PanicCode .. 4-32

PayloadDetails .. 4-33

PFMarshaller .. 4-34

PoolID ... 4-36

Priority ... 4-37

RoutingDirection .. 4-38
VisualDSP++ 3.5 Kernel (VDK) User’s Guide ix
for 16-bit Processors

CONTENTS
SemaphoreID ... 4-39

SystemError ... 4-40

ThreadCreationBlock ... 4-44

ThreadID ... 4-46

ThreadStatus .. 4-47

ThreadType .. 4-49

Ticks .. 4-50

VersionStruct .. 4-51

VDK API REFERENCE

Calling Library Functions ... 5-2

Linking Library Functions .. 5-2

Working With VDK Library Header ... 5-3

Passing Function Parameters ... 5-3

Library Naming Conventions .. 5-3

API Summary ... 5-5

API Functions .. 5-10

AllocateThreadSlot() ... 5-11

AllocateThreadSlotEx() ... 5-13

ClearEventBit() ... 5-15

ClearInterruptMaskBits() .. 5-17

ClearThreadError() ... 5-18

CloseDevice() ... 5-19

CreateDeviceFlag() .. 5-21

CreateMessage() .. 5-22
x VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

CONTENTS
CreatePool() .. 5-24

CreatePoolEx() .. 5-26

CreateSemaphore() .. 5-28

CreateThread() .. 5-30

CreateThreadEx() .. 5-32

DestroyDeviceFlag() .. 5-34

DestroyMessage() .. 5-35

DestroyMessageAndFreePayload() .. 5-37

DestroyPool() .. 5-39

DestroySemaphore() .. 5-41

DestroyThread() .. 5-43

DeviceIOCtl() ... 5-45

DispatchThreadError() .. 5-47

ForwardMessage() .. 5-49

FreeBlock() .. 5-52

FreeDestroyedThreads() ... 5-54

FreeMessagePayload () ... 5-55

FreeThreadSlot() ... 5-57

GetClockFrequency() .. 5-59

GetEventBitValue() ... 5-60

GetEventData() ... 5-61

GetEventValue() .. 5-62

GetHeapIndex() .. 5-63

GetInterruptMask() ... 5-65
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xi
for 16-bit Processors

CONTENTS
GetLastThreadError() ... 5-66

GetLastThreadErrorValue() ... 5-67

GetMessageDetails () .. 5-68

GetMessagePayload() .. 5-70

GetMessageReceiveInfo() .. 5-72

GetNumAllocatedBlocks() ... 5-74

GetNumFreeBlocks() .. 5-75

GetPriority() ... 5-76

GetSemaphoreValue() ... 5-77

GetThreadHandle() .. 5-78

GetThreadID() ... 5-79

GetThreadSlotValue() ... 5-80

GetThreadStackUsage() ... 5-81

GetThreadStatus() .. 5-83

GetThreadType() .. 5-84

GetTickPeriod() .. 5-85

GetUptime() ... 5-86

GetVersion() ... 5-87

InstallMessageControlSemaphore () 5-88

InstrumentStack() ... 5-90

LoadEvent() .. 5-92

LocateAndFreeBlock() ... 5-94

LogHistoryEvent() .. 5-95

MakePeriodic() ... 5-96
xii VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

CONTENTS
MallocBlock() ... 5-98

MessageAvailable() ... 5-100

OpenDevice() .. 5-102

PendDeviceFlag() .. 5-104

PendEvent() .. 5-106

PendMessage() ... 5-108

PendSemaphore() .. 5-111

PopCriticalRegion() ... 5-113

PopNestedCriticalRegions() ... 5-115

PopNestedUnscheduledRegions() ... 5-117

PopUnscheduledRegion() ... 5-118

PostDeviceFlag() .. 5-120

PostMessage() .. 5-121

PostSemaphore() .. 5-124

PushCriticalRegion() ... 5-126

PushUnscheduledRegion() ... 5-127

RemovePeriodic() .. 5-128

ResetPriority() ... 5-130

SetClockFrequency() ... 5-132

SetEventBit() ... 5-133

SetInterruptMaskBits() .. 5-135

SetMessagePayload() .. 5-136

SetPriority() .. 5-138

SetThreadError() ... 5-140
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xiii
for 16-bit Processors

CONTENTS
SetThreadSlotValue() .. 5-141

SetTickPeriod() ... 5-142

Sleep() .. 5-143

SyncRead() ... 5-145

SyncWrite() .. 5-147

Yield() .. 5-149

Assembly Macros .. 5-151

VDK_ISR_ACTIVATE_DEVICE_() 5-152

VDK_ISR_CLEAR_EVENTBIT_() 5-153

VDK_ISR_LOG_HISTORY_EVENT_() 5-154

VDK_ISR_POST_SEMAPHORE_() 5-155

VDK_ISR_SET_EVENTBIT_() ... 5-156

PROCESSOR-SPECIFIC NOTES

VDK for Blackfin Processors
(AD6532, ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF535,
and ADSP-BF561) ... A-1

User and Supervisor Modes ... A-1

Thread, Kernel, and Interrupt Execution Levels A-2

Critical and Unscheduled Regions ... A-3

Exceptions .. A-3

ISR APIs ... A-3

Interrupts ... A-4

Timer ... A-5

ADSP-BF531, ADSP-BF532 and ADSP-BF533 Processor Memory A-5
xiv VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

CONTENTS
ADSP-BF535 and AD6532 Processor Memory A-6

ADSP-BF561 Processor Memory .. A-6

Interrupt Nesting ... A-7

Thread Stack Usage by Interrupts ... A-7

Interrupt Latency ... A-8

Multiprocessor Messaging ... A-8

VDK for ADSP-219x DSPs
(ADSP-2191, ADSP-2192-12, ADSP-2195, and ADSP-2196) ... A-9

Thread, Kernel, and Interrupt Execution Levels A-9

Critical and Unscheduled Regions ... A-10

Interrupts on ADSP-2192 DSPs ... A-10

Interrupts on ADSP-2191 DSPs ... A-11

Timer ... A-11

Memory ... A-12

Interrupt Nesting ... A-12

Interrupt Latency ... A-13

Multiprocessor Messaging ... A-13

MIGRATING DEVICE DRIVERS

Step 1: Saving Existing Sources ... B-1

Step 2: Revising Properties ... B-2

Step 3: Revising Sources ... B-3

Step 4: Creating Boot Objects .. B-4

INDEX
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xv
for 16-bit Processors

CONTENTS
xvi VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

 PREFACE

Thank you for purchasing Analog Devices (ADI) development software

for digital signal processor (DSP) applications.

Purpose of this Manual
The VisualDSP++ Kernel (VDK) User's Guide contains information about
VisualDSP++™ Kernel, a Real Time Operating System kernel integrated
with the rest of the VisualDSP++ 3.5 development tools. The VDK incor-
porates state-of-art scheduling and resource allocation techniques tailored
specially for the memory and timing constraints of DSP programming.
The kernel facilitates development of fast performance structured applica-
tions using frameworks of template files.

The kernel is specially designed for effective operations on Analog Devices
DSP architectures: ADSP-219x, ADSP-BF53x Blackfin®, ADSP-21xxx
SHARC®, and ADSP-TSxxx TigerSHARC® processors.

The majority of the information in this manual is generic. Information
applicable to only a particular target processor, or to a particular processor
family, is provided in Appendix A, “Processor-Specific Notes”.

This manual is designed so that you can quickly learn about the kernel
internal structure and operation.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xvii
for 16-bit Processors

Intended Audience
Intended Audience
The primary audience for this manual is programmers who are familiar
with Analog Devices DSPs. This manual assumes the audience has a work-
ing knowledge of the appropriate processor architecture and instruction
set. Programmers who are unfamiliar with Analog Devices DSPs can use
this manual but should supplement it with other texts, such as Hardware
Reference and Instruction Set Reference manuals, that describe your target
architecture.

Manual Contents
The manual consists of:

• Chapter 1, “Introduction to VDK”

Concentrates on concepts, motivation, and general architec-
tural principles of the VDK software.

• Chapter 2, “Configuration and Debugging of VDK Projects”

Describes the Integrated Development and Debugging
Environment (IDDE) support for configuring and debug-
ging a VDK enabled project. For specific procedures on
how to create, modify, and manage the kernel’s compo-
nents, refer to the VisualDSP++ online Help.

• Chapter 3, “Using VDK”

Describes the kernel’s internal structure and components.

• Chapter 4, “VDK Data Types”

Describes built-in data types supported in the current
release of the VDK.
xviii VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Preface
• Chapter 5, “VDK API Reference”

Describes library functions and macros included in the cur-
rent release of the VDK.

• Appendix A, “Processor-Specific Notes”

Provides processor-specific information for Blackfin and
ADSP-219x processor architectures.

• Appendix B, “Migrating Device Drivers”

Describes how to convert the device driver components cre-
ated with VisualDSP++ 2.0 for use in projects built with
VisualDSP++ 3.5.

What’s New in this Manual
This first revision of the VisualDSP++ 3.5 Kernel (VDK) User’s Guide doc-
uments VDK support for the new Blackfin processor ADSP-BF561 in
addition to the existing processors in the Blackfin and ADSP-219x fami-
lies that were supported in previous releases. This manual documents
VDK functionality that is new for VisualDSP++ 3.5, including the follow-
ing: multiprocessor messaging, kernel panic, the option not to throw
errors on timeout, runtime access/setting of timing parameters, and
increased configurability (choice of timer interrupt and use of multiple
heaps to specify allocations for VDK components).

The Blackfin processors are embedded processors that sport a Media
Instruction Set Computing (MISC) architecture. This architecture is the
natural merging of RISC, media functions, and digital signal processing
characteristics towards delivering signal processing performance in a
microprocessor-like environment.

The manual documents VisualDSP++ Kernel version 3.5.00.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xix
for 16-bit Processors

Technical or Customer Support
Technical or Customer Support
You can reach DSP Tools Support in the following ways.

• Visit the DSP Development Tools website at

www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to

dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to

Analog Devices, Inc.

DSP Division

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
VisualDSP++ 3.5 Kernel currently supports the following Analog Devices
DSPs.

• AD6532, ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF535, and ADSP-BF561

• ADSP-2191, ADSP-2192-12, ADSP-2195, and ADSP-2196
xx VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Preface
Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/dsp, which provides access to technical publications, data
sheets, application notes, product overviews, and product announcements.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xxi
for 16-bit Processors

Product Information
You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to 1-781-461-3010
(North America) or +49 (0) 89 76903-157 (Europe)

• Access the Digital Signal Processing Division’s FTP website at
ftp.analog.com or ftp 137.71.23.21 or ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications for the appropriate processor family.

For hardware information, refer to your DSP Hardware Reference,
Programming Reference, and data sheet.

All documentation is available online. Most documentation is available in
printed form.

VisualDSP++ 3.5 Getting Started Guide

VisualDSP++ 3.5 User’s Guide

VisualDSP++ 3.5 C/C++ Compiler and Library Manual

VisualDSP++ 3.5 Assembler and Preprocessor Manual

VisualDSP++ 3.5 Linker and Utilities Manual

VisualDSP++ 3.5 Kernel (VDK) User’s Guide

Quick Installation Reference Card
xxii VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Preface
Online Documentation
Online documentation comprises Microsoft HTML Help (.CHM), Adobe
Portable Documentation Format (.PDF), and HTML (.HTM and .HTML)
files. A description of each file type is as follows.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

From VisualDSP++

VisualDSP++ provides access to online Help. It does not provide access to
.PDF files or the supplemental reference documentation (Dinkum
Abridged C++ library and FlexLM network licence). Access Help by:

• Choosing Contents, Search, or Index from the VisualDSP++ Help
menu

• Invoking context-sensitive Help on a user interface item
(toolbar button, menu command, or window)

File Description

.CHM VisualDSP++ online Help system files and VisualDSP++ manuals are provided in
Microsoft HTML Help format. Installing VisualDSP++ automatically copies these
files to the VisualDSP\Help folder. Online Help is ideal for searching the entire
tools manual set. Invoke Help from the VisualDSP++ Help menu or via the
Windows Start button.

.PDF Manuals and data sheets in Portable Documentation Format are located in the
installation CD’s Docs folder. Viewing and printing a .PDF file requires a PDF
reader, such as Adobe Acrobat Reader (4.0 or higher). Running setup.exe on the
installation CD provides easy access to these documents. You can also copy .PDF
files from the installation CD onto another disk.

.HTM
 or
.HTML

Dinkum Abridged C++ library and FlexLM network license manager software
documentation is located on the installation CD in the Docs\Reference folder.
Viewing or printing these files requires a browser, such as Internet Explorer 4.0 (or
higher). You can copy these files from the installation CD onto another disk.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xxiii
for 16-bit Processors

Product Information
From Windows

In addition to shortcuts you may construct, Windows provides many ways
to open VisualDSP++ online Help or the supplementary documentation.

Help system files (.CHM) are located in the VisualDSP 3.5 16-Bit\Help
folder. Manuals and data sheets in PDF format are located in the Docs
folder of the installation CD. The installation CD also contains the Din-
kum Abridged C++ library and FlexLM network license manager software
documentation in the \Reference folder.

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click vdsp-help.chm, the master Help system, to access all
the other .CHM files.

From the Web

To download the tools manuals, point your browser at
www.analog.com/technology/dsp/developmentTools/gen_purpose.html.

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.
xxiv VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Preface
VisualDSP++ Documentation Set

Printed copies of VisualDSP++ manuals may be purchased through Ana-
log Devices Customer Service at 1-781-329-4700; ask for a Customer
Service representative. The manuals can be purchased only as a kit. For
additional information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto www.analog.com/salesdir/continent.asp.

Hardware Manuals

Printed copies of hardware reference and instruction set reference manuals
can be ordered through the Literature Center or downloaded from the
Analog Devices website. The phone number is 1-800-ANALOGD
(1-800-262-5643). The manuals can be ordered by a title or by product
number located on the back cover of each manual.

Data Sheets

All data sheets can be downloaded from the Analog Devices website. As a
general rule, printed copies of data sheets with a letter suffix (L, M, N, S)
can be obtained from the Literature Center at 1-800-ANALOGD
(1-800-262-5643) or downloaded from the website. Data sheets without
the suffix can be downloaded from the website only—no hard copies are
available. You can ask for the data sheet by part name or by product
number.

If you want to have a data sheet faxed to you, the phone number for that
service is 1-800-446-6212. Follow the prompts and a list of data sheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested data sheets are available.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xxv
for 16-bit Processors

Notation Conventions
Contacting DSP Publications
Please send your comments and recommendations on how to improve our
manuals and online Help. You can contact us by:

• Emailing dsp.techpubs@analog.com

• Filling in and returning the attached Reader’s Comments Card
found in our manuals

Notation Conventions
The following table identifies and describes text conventions used in this
manual.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu) or OK

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system and user interface items.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets separated by vertical bars; read the example as this or that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, code examples, and feature names
are in text with letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.
xxvi VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Preface
A note providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution providing information about critical design or programming
issues that influence operation of a product. In the online version of
this book, the word Caution appears instead of this symbol.

Example Description
VisualDSP++ 3.5 Kernel (VDK) User’s Guide xxvii
for 16-bit Processors

Notation Conventions
xxviii VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

1 INTRODUCTION TO VDK

This chapter concentrates on concepts, motivation, and general architec-

tural principles of the operating system kernel. It also provides
information on how to partition a VDK application into independent,
reusable functional units that are easy to maintain and debug.

The following sections provide information about the operating system
kernel concepts.

• “Motivation” on page 1-1

• “Partitioning an Application” on page 1-4

• “Scheduling” on page 1-5

• “Protected Regions” on page 1-7

• “Thread and Hardware Interaction” on page 1-8

Motivation
All applications require control code as support for the algorithms that are
often thought of as the “real” program. The algorithms require data to be
moved to and/or from peripherals, and many algorithms consist of more
than one functional block. For some systems, this control code may be as
simple as a “superloop” blindly processing data that arrives at a constant
rate. However, as processors become more powerful, considerably more
sophisticated control may be needed to realize the processor’s potential, to
allow the DSP to absorb the required functionality of previously sup-
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 1-1
for 16-bit Processors

Motivation
ported chips, and to allow a single DSP to do the work of many. The
following sections provide an overview of some of the benefits of using a
kernel on a DSP.

Rapid Application Development
The tight integration between the VisualDSP++ environment and the
VDK allows rapid development of applications compared to creating all of
the control code required by hand. The use of automatic code generation
and file templates, as well as a standard programming interface to device
drivers, allows you to concentrate on the algorithms and the desired con-
trol flow rather than on the implementation details. VDK supports the use
of C, C++, and assembly language. You are encouraged to develop code
that is highly readable and maintainable, yet to retain the option of hand
optimizing if necessary.

Debugged Control Structures
Debugging a traditional DSP application can be laborious because devel-
opment tools (compiler, assembler, and linker among others) are not
aware of the architecture of the target application and the flow of control
that results. Debugging complex applications is much easier when instan-
taneous snapshots of the system state and statistical run-time data are
clearly presented by the tools. To help offset the difficulties in debugging
software, VisualDSP++ includes three versions of the VDK libraries con-
taining full instrumentation (including error checking), only error
checking, and neither instrumentation nor error checking.

In the instrumented mode, the kernel maintains statistical information
and logging of all significant events into a history buffer. When the execu-
tion is paused, the debugger can traverse this buffer and present a
graphical trace of the program’s execution including context switches,
pending and posting of signals, changes in a thread’s status, and more.
Statistics are presented for each thread in a tabular view and show the total
1-2 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Introduction to VDK
amount of time the thread has executed, the number of times it has been
run, the signal it is currently blocked on, and other data. For more infor-
mation, see “Debugging VDK Projects” on page 2-3 and the online Help.

Code Reuse
Many programmers begin a new project by writing the infrastructure por-
tions that transfers data to, from, and between algorithms. This necessary
control logic usually is created from scratch by each design team and infre-
quently reused on subsequent projects. The VDK provides much of this
functionality in a standard, portable and reusable library. Furthermore,
the kernel and its tight integration with the VisualDSP++ environment are
designed to promote good coding practice and organization by partition-
ing large applications into maintainable and comprehensible blocks. By
isolating the functionality of subsystems, the kernel helps to prevent the
morass all too commonly found in systems programming.

The kernel is designed specifically to take advantage of commonality in
user applications and to encourage code reuse. Each thread of execution is
created from a user defined template, either at boot time or dynamically
by another thread. Multiple threads can be created from the same tem-
plate, but the state associated with each created instance of the thread
remains unique. Each thread template represents a complete encapsulation
of an algorithm that is unaware of other threads in the system unless it has
a direct dependency.

Hardware Abstraction
In addition to a structured model for algorithms, the VDK provides a
hardware abstraction layer. Presented programming interfaces allow you
to write most of the application in a platform independent, high level lan-
guage (C or C++). The VDK API is identical for all Analog Devices
processors, allowing code to be easily ported to a different DSP core.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 1-3
for 16-bit Processors

Partitioning an Application
When porting an application to a new platform, programmers must
address the two areas necessarily specific to a particular processor: inter-
rupt service routines and device drivers. The VDK architecture identifies a
crisp boundary around these subsystems and supports the traditionally dif-
ficult development with a clear programming framework and code
generation. Both interrupts and device drivers are declared with a graphi-
cal user interface in the IDDE, which generates well commented code that
can be compiled without further effort.

Partitioning an Application
A VDK thread is an encapsulation of an algorithm and its associated data.
When beginning a new project, use this notion of a thread to leverage the
kernel architecture and to reduce the complexity of your system. Since
many algorithms may be thought of as being composed of “subalgorithm”
building blocks, an application can be partitioned into smaller functional
units that can be individually coded and tested. These building blocks
then become reusable components in more robust and scalable systems.

You define the behavior of VDK threads by creating thread types. Types
are templates that define the behavior and data associated with all threads
of that type. Like data types in C or C++, thread types are not used
directly until an instance of the type is created. Many threads of the same
thread type can be created, but for each thread type, only one copy of the
code is linked into the executable code. Each thread has its own private set
of variables defined for the thread type, its own stack, and its own C
run-time context.

When partitioning an application into threads, identify portions of your
design in which a similar algorithm is applied to multiple sets of data.
These are, in general, good candidates for thread types. When data is
present in the system in sequential blocks, only one instance of the thread
type is required. If the same operation is performed on separate sets of
1-4 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Introduction to VDK
data simultaneously, multiple threads of the same type can coexist and be
scheduled for prioritized execution (based on when the results are
needed).

Scheduling
The VDK is a preemptive multitasking kernel. Each thread begins execu-
tion at its entry point. Then, it either runs to completion or performs its
primary function repeatedly in an infinite loop. It is the role of the sched-
uler to preempt execution of a thread and to resume its execution when
appropriate. Each thread is given a priority to assist the scheduler in deter-
mining precedence of threads (see Figure 1-1 on page 1-6).

The scheduler gives processor time to the thread with the highest priority
that is in the ready state (see Figure 3-2 on page 3-14). A thread is in the
ready state when it is not waiting for any system resources it has requested.
A reference to each ready thread is stored in a structure that is internal to
the kernel and known as the ready queue. For more information, see
“Scheduling” on page 3-9.

Priorities
Each thread is assigned a dynamically modifiable priority based on the
default for its thread type declared in VisualDSP++ environment’s Project
window. An application is limited to either fourteen or thirty priority lev-
els, depending on the processor’s architecture. However, the number of
threads at each priority is limited, in practice, only by system memory.
Priority level one is the highest priority, and priority fourteen (or thirty) is
the lowest. The system maintains an idle thread that is set to a priority
lower than that of the lowest user thread.

Assigning priorities is one of the most difficult tasks of designing a real
time preemptive system. Although there has been research in the area of
rigorous algorithms for assigning priorities based on deadlines (e.g., rate
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 1-5
for 16-bit Processors

Scheduling
monotonic scheduling), most systems are designed by considering the
interrupts and signals that are triggering the execution, while balancing
the deadlines imposed by the system’s input and output streams. For more
information, see “Thread Parameters” on page 3-2.

Figure 1-1. VDK State Diagram

Executing

Resources Reallocation
& Priorities Assessment

Push/pop
nested
interrupts

All ISRs serviced &
no scheduling state
has changed

Interrupt

Request or
free
resources

Done

ISR

Highest priority
thread is

thread last
executed

Highest priority
thread has
changed

All ISRs serviced &
scheduling state
has changed

Context Switch
1-6 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Introduction to VDK
Preemption
A running thread continues execution unless it requests a system resource
using a kernel API. When a thread requests a signal (semaphore, event,
device flag, or message) and the signal is available, the thread resumes exe-
cution. If the signal is not available, the thread is removed from the ready
queue—the thread is blocked (see Figure 3-2 on page 3-14). The kernel
does not perform a context switch as long as the running thread maintains
the highest priority in the ready queue, even if the thread frees a resource
and enables other threads to move to the ready queue at the same or lower
priority. A thread can also be interrupted. When an interrupt occurs, the
kernel yields to the hardware interrupt controller. When the ISR com-
pletes, the highest priority thread resumes execution. For more
information, see “Preemptive Scheduling” on page 3-11.

Protected Regions
Frequently, system resources must be accessed atomically. The kernel pro-
vides two levels of protection for code that needs to execute sequentially—
unscheduled regions and critical regions.

Critical and unscheduled regions can be intertwined. You can enter criti-
cal regions from within unscheduled regions, or enter unscheduled regions
from within critical regions. For example, if you are in an unscheduled
region and call a function that pushes and pops a critical region, the sys-
tem is still in an unscheduled region when the function returns.

Disabling Scheduling
The VDK scheduler can be disabled by entering an unscheduled region.
The ability to disable scheduling is necessary when you need to free multi-
ple system resources without being switched out, or access global variables
that are modified by other threads without preventing interrupts from
being serviced. While in an unscheduled region, interrupts are still
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 1-7
for 16-bit Processors

Thread and Hardware Interaction
enabled and ISRs execute. However, the kernel does not perform a thread
context switch even if a higher priority thread becomes ready. Unsched-
uled regions are implemented using a stack style interface. This enables
you to begin and end an unscheduled region within a function without
concern for whether or not the calling code is already in an unscheduled
region.

Disabling Interrupts
On occasions, disabling the scheduler does not provide enough protection
to keep a block of thread code reentrant. A critical region disables both
scheduling and interrupts. Critical regions are necessary when a thread is
modifying global variables that may also be modified by an Interrupt Ser-
vice Routine. Similar to unscheduled regions, critical regions are
implemented as a stack. Developers can enter and exit critical regions in a
function without being concerned about the critical region state of the
calling code. Care should be taken to keep critical regions as short as pos-
sible as they may increase interrupt latency.

Thread and Hardware Interaction
Threads should have minimal knowledge of hardware; rather, they should
use device drivers for hardware control. A thread can control and interact
with a device in a portable and hardware abstracted manner through a
standard set of APIs.

The VDK Interrupt Service Routine framework encourages you to remove
specific knowledge of hardware from the algorithms encapsulated in
threads (see Figure 1-2). Interrupts relay information to threads through
signals to device drivers or directly to threads. Using signals to connect
hardware to the algorithms allows the kernel to schedule threads based on
asynchronous events.
1-8 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Introduction to VDK
The VDK run-time environment can be thought of as a bridge between
two domains, the thread domain and the interrupt domain. The interrupt
domain services the hardware with minimal knowledge of the algorithms,
and the thread domain is abstracted from the details of the hardware.
Device drivers and signals bridge the two domains. For more information,
see “Threads” on page 3-1.

Thread Domain with Software Scheduling
The thread domain runs under a C/C++ run-time model. The prioritized
execution is maintained by a software scheduler with full context switch-
ing. Threads should have little or no direct knowledge of the hardware;

Figure 1-2. Device Drivers Entry Points

Communication Manager

Application Algorithm (Thread)
• OpenDevice()
• CloseDevice()
• SyncRead()
• SyncWrite()
• DeviceIOCtl()

APIs:

Interrupt Service Routine
VDK_ISR_ACTIVATE_DEVICE_()•

Macro

• kIO_Init
• kIO_Activate
• kIO_Open
• kIO_Close
• kIO_SyncRead
• kIO_SyncWrite
• kIO_IOCtl

Device Driver

Dispatch ID:

Kernel
• init()

Function at Boot Time

MyDevice::DispatchFunction()
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 1-9
for 16-bit Processors

Thread and Hardware Interaction
rather, threads should request resources and then wait for them to become
available. Threads are granted processor time based on their priority and
requested resources. Threads should minimize time spent in critical and
unscheduled regions to avoid short-circuiting the scheduler and interrupt
controller.

Interrupt Domain with Hardware Scheduling
The interrupt domain runs outside the C/C++ run-time model. The prior-
itized execution is maintained by the hardware interrupt controller. ISRs
should be as small as possible. They should only do as much work as is
necessary to acknowledge asynchronous external events and to allow
peripherals to continue operations in parallel with the processor. ISRs
should only signal that more processing can occur and leave the processing
to threads. For more information, see “Interrupt Service Routines” on
page 3-46.

Device Drivers
Interrupt Service Routines can communicate with threads directly using
signals. Alternatively, an interVisualDSP++ 3.5 Kernel (VDK) User’s
Guidecomplex device-specific functionality that is abstracted from the
algorithm. A device driver is a single function with multiple entry condi-
tions and domains of execution. For more information, see “Device
Drivers” on page 3-51.
1-10 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

2 CONFIGURATION AND
DEBUGGING OF VDK
PROJECTS

This chapter contains information about the VisualDSP++ Integrated

Development and Debugging Environment (IDDE) support for VDK
enabled projects. You can access VDK components and services through
the set of menus, commands, and windows in the IDDE.

If you are new to VisualDSP++ application development software, we rec-
ommend that you start with the VisualDSP++ 3.5 Getting Started Guide
for your target processor family.

The IDDE support for the VDK can be broken into two areas:

• “Configuring VDK Projects” on page 2-1

• “Debugging VDK Projects” on page 2-3

Configuring VDK Projects
VisualDSP++ is extended to manage all of the VDK components. You
start developing a VDK based application by creating a set of source files.
The IDDE automatically generates a source code framework for each user
requested kernel object. Use the interface to supply the required informa-
tion for these objects.

For specific procedures on how to set up VDK system parameters or how
to create, modify, or delete a VDK component, refer to the VisualDSP++
online Help. Following the online procedures ensures your VDK projects
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 2-1
for 16-bit Processors

Configuring VDK Projects
build consistently and accurately with minimal project management. The
process reduces development time and allows you to concentrate on algo-
rithm development.

Linker Description File
When a new project makes use of the kernel, a reference to a VDK-specific
default Linker Description File (.LDF) is added to the project. This file
will be copied to your project directory to allow you to modify it to suit
your individual hardware configurations.

Thread Safe Libraries
Just as user threads must be reentrant, special “thread safe” versions of the
standard C and C++ libraries are included for use with the VDK. The
default .LDF included in VDK projects links with these libraries. If you
modify your Linker Description File, ensure that the file links with the
thread safe libraries. Your project’s LDF resides in the Linker Files folder
and is accessible via the Project tab of the Project window in
VisualDSP++.

Header Files for the VDK API
When a VDK project is created in the development environment, one of
the automatically generated files in the project directory is vdk.h. This
header file contains enumerations for every user defined object in the
development environment and all VDK API declarations. Your source
files must include vdk.h to access any kernel services.
2-2 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Configuration and Debugging of VDK Projects
Debugging VDK Projects
Debugging embedded software is a difficult task. To help offset the initial
difficulties present in debugging VDK enabled projects, the kernel offers
special instrumented builds.

Instrumented Build Information
When building a VDK project, you have an option to include instrumen-
tation in your executable by choosing Full Instrumentation as the
instrumentation level in the Kernel tab of the Project window. An instru-
mented build differs from a release or non-instrumented build because the
build includes extra code for thread statistic logging. In addition, an
instrumented build creates a circular buffer of important system events.
The extra logging introduces slight overhead in thread switches and cer-
tain API calls but helps you to trace system activities.

VDK State History Window
The VDK logs user defined events and certain system state changes in a
circular buffer. An event is logged in the history buffer with a call to
LogHistoryEvent(). The call to LogHistoryEvent() logs four data values:
the ThreadID of the calling thread, the tick when the call happened, the
enumeration, and a value that is specific to the enumeration. Enumera-
tions less than zero are reserved for use by the VDK. For more
information about the history enumeration type, see HistoryEnum
on page 4-18.

Using the history log, the IDDE displays a graph of running threads and
system state changes in the State History window. Note that the data dis-
played in this window is only updated at halt. The State History window,
the Thread Status and Thread Event legends are described in detail in the
online Help.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 2-3
for 16-bit Processors

Debugging VDK Projects
Target Load Graph Window
Instrumented VDK builds allow you to analyze the average load of the
processor over a period of time. The calculated load is displayed in the
Target Load graph window. Although the calculation is not exact, the
graph helps you to estimate the utilization level of the processor. Note
that the information is updated at halt.

The Target Load graph shows the percent of time the target spent in the
idle thread. A load of 0% means the VDK spent all of its time in the idle
thread. A load of 100% means the target did not spend any time in the
idle thread. Load data is processed using a moving window average. The
load percentage is calculated for every clock tick, and all the ticks are aver-
aged. The following formula is used to calculate the percentage of
utilization for every clock tick.

Load = 1 – (# of times idle thread ran this tick) / (# of threads

run this tick)

For more information about the Target Load graph, refer to the online
Help.

VDK Status Window
Besides history and processor load information, an instrumented build
collects statistics for relevant VDK components, such as when a thread
was created, last run, the number of times run, etc. This data is displayed
in the Status window and is updated at halt.

For more information about the VDK Status window, refer to the online
Help.
2-4 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Configuration and Debugging of VDK Projects
General Tips
Even with the data collection features built into the VDK, debugging
thread code is a difficult task. Due to the fact that multiple threads in a
system are interacting asynchronously with device drivers, interrupts, and
the idle thread, it can become difficult to track down the source of an
error.

Unfortunately, one of the oldest and easiest debugging methods—insert-
ing breakpoints—can have uncommon side effects in VDK projects. Since
multiple threads (either multiple instantiations of the same thread type or
different threads of different thread types) can execute the same function
with completely different contexts, the utilization of non-thread-aware
breakpoints is diminished. One possible workaround involves inserting
some ‘thread-specific’ breakpoints:

if (VDK_GetThreadID() == <thread_with_bug>)

{

<some statement>; /* Insert breakpoint */

}

Kernel Panic
When VDK detects an error that cannot be handled by dispatching a
thread error, it calls an internal function called KernelPanic(). By default,
this function loops forever so that users can determine that a problem has
occurred and to provide information to facilitate debugging. Kernel-
Panic() disables interrupts on entry to ensure that execution loops in the
intended location. KernelPanic() can be overridden by users in order to
handle these types of errors differently, for example resetting the
hardware.

To allow users to determine the cause of the panic VDK sets up the fol-
lowing variables.

VDK::PanicCode VDK::g_KernelPanicCode
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 2-5
for 16-bit Processors

Debugging VDK Projects
VDK::SystemError VDK::g_KernelPanicError

int VDK::g_KernelPanicValue

int VDK::g_KernelPanicPC

• g_KernelPanicCode indicates the reason why VDK needed to raise
a Kernel Panic. For more information on the possible values of this
variable see “PanicCode” on page 4-32.

• g_KernelPanicError indicates in more detail the cause of the error.
For example, if g_KernelPanicCode indicates a boot error,
g_KernelPanicError specifies if the boot problem is in a sema-
phore, device flag, and so on. For more information, see
“SystemError” on page 4-40.

• g_KernelPanicValue is a value whose meaning is determined by the
error enumeration. For example, if the problem is creating the boot
thread with ID 4, g_KernelPanicValue is 4.

• g_KernelPanicPC provides the address that produced the Kernel
Panic.
2-6 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

3 USING VDK

This chapter describes how the VDK implements the general concepts

described in Chapter 2, “Introduction to VDK”. For information about
the kernel library, see Chapter 5, “VDK API Reference”.

The following sections provide information about the operating system
kernel components and operations.

• “Threads” on page 3-1

• “Scheduling” on page 3-9

• “Signals” on page 3-15

• “Interrupt Service Routines” on page 3-46

• “I/O Interface” on page 3-51

• “Memory Pools” on page 3-68

• “Multiple Heaps” on page 3-69

• “Thread Local Storage” on page 3-70

Threads
When designing an application, you partition it into threads, where each
thread is responsible for a piece of the work. Each thread operates inde-
pendently of the others. A thread performs its duty as if it has its own
processor but can communicate with other threads.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-1
for 16-bit Processors

Threads
Thread Types
You do not directly define threads; instead, you define thread types. A
thread is an instance of a thread type and is similar to any other user
defined type.

You can create multiple instantiations of the same thread type. Each
instantiation of the thread type has its own stack, state, priority, and other
local variables. In order to distinguish between different instances of the
same thread type an 'initializer' value can be passed to a boot thread (see
online Help for further information). Each thread is individually identi-
fied by its ThreadID, a handle that can be used to reference that thread in
kernel API calls. A thread can gain access to its ThreadID by calling
GetThreadID(). A ThreadID is valid for the life of the thread—once a
thread is destroyed, the ThreadID becomes invalid.

Old ThreadIDs are eventually reused, but there is significant time
between a thread’s destruction and the ThreadID reuse: other threads
have to recognize that the original thread is destroyed.

Thread Parameters

When a thread is created, the system allocates space in the heap to store a
data structure that holds the thread-specific parameters. The data struc-
ture contains internal information required by the kernel and the thread
type specifications provided by the user.

Stack Size

Each thread has its own stack. The full C/C++ run-time model, as speci-
fied in the appropriate VisualDSP++ 3.5 C/C++ Compiler and Library
Manual, is maintained on a per thread basis. It is your responsibility to
assure that each thread has enough room on its stack for all function calls’
return addresses and passed parameters appropriate to the particular
3-2 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
run-time model, user code structure, use of libraries, etc. Stack overflows
do not generate an exception, so an undersized stack has the potential to
cause difficulties when reproducing bugs in your system.

Priority

Each thread type specifies a default priority. Threads may change their
own (or another thread’s) priority dynamically using the SetPriority() or
ResetPriority() functions. Priorities are predefined by the kernel as an enu-
meration of type Priority with a value of kPriority1 being the highest
priority (or the first to be scheduled) in the system. The priority enumera-
tion is set up such that kPriority1 > kPriority2 > …. The number of
priorities is limited to the processor’s word size minus two.

Required Thread Functionality

Each thread type requires five particular functions to be declared and
implemented. Default null implementations of all five functions are pro-
vided in the templates generated by the VisualDSP++ development
environment. The thread’s run function is the entry point for the thread.
For many thread types, the thread’s run and error functions are the only
ones in the template you need to modify. The other functions allocate and
free up system resources at appropriate times during the creation and
destruction of a thread.

Run Function

The run function—called Run() in C++ and RunFunction() in C/assembly
implemented threads—is the entry point for a fully constructed thread;
Run() is roughly equivalent to main() in a C program. When a thread’s
run function returns, the thread is moved to the queue of threads waiting
to free their resources. If the run function never returns, the thread
remains running until destroyed.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-3
for 16-bit Processors

Threads
Error Function

The thread’s error function is called by the kernel when an error occurs in
an API call made by the thread. The error function passes a description of
the error in the form of an enumeration (see SystemError on page 4-40 for
more details). It also can pass an additional piece of information whose
exact definition depends on the error enumeration. A thread’s default
error-handling behavior makes VDK go into Kernel Panic. See “Error
Handling Facilities” on page 3-8 for more information about error han-
dling in the VDK.

Create Function

The create function is similar to the C++ constructor. The function pro-
vides an abstraction used by the kernel APIs CreateThread() and
CreateThreadEx() to enable dynamic thread creation. The create function
is the first function called in the process of constructing a thread; it is also
responsible for calling the thread’s init function/constructor. Similar to
the constructor, the create function executes in the context of the thread
that is spawning a new thread by calling CreateThread() or CreateTh-
readEx(). The thread being constructed does not have a run-time context
fully established until after these functions complete.

A create function calls the constructor for the thread and ensures that all
of the allocations that the thread type required have taken place correctly.
If any of the allocations failed, the create function deletes the partially cre-
ated thread instantiation and returns a null pointer. If the thread has been
constructed successfully, the create function returns the pointer to the
thread. A create function should not call DispatchThreadError() because
CreateThread() and CreateThreadEx() handle error reporting to the call-
ing thread when the create function returns a null pointer.
3-4 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
The create function is exposed completely in C++ source templates. For C
or assembly threads, the create function appears only in the thread’s
header file. If the thread allocates data in InitFunction(), you need to
modify the create function in the thread’s header to verify that the alloca-
tions are successful and delete the thread if not.

A thread of a certain thread type can be created at boot time by specifying
a boot thread of the given thread type in the development environment.
Additionally, if the number of threads in the system is known at build
time, all the threads can be boot threads.

Init Function/Constructor

The InitFunction() (in C/assembly) and the constructor (in C++) pro-
vide a place for a thread to allocate system resources during the dynamic
thread creation. A thread uses malloc (or new) when allocating the thread’s
local variables. A thread’s init function/constructor cannot call any VDK
APIs since the function is called from within a different thread’s context.

Destructor

The destructor is called by the system when the thread is destroyed. A
thread can do this explicitly with a call to DestroyThread(). The thread
can also be destroyed if it runs to completion by reaching the end of its
run function and falling out of scope. In all cases, you are responsible for
freeing the memory and other system resources that the thread has
claimed. Any memory allocated with malloc or new in the constructor
should be released with a corresponding call to free or delete in the
destructor.

A thread is not necessarily destroyed immediately when DestroyThread()
is called. DestroyThread() takes a parameter that provides a choice of pri-
ority as to when the thread’s destructor is called. If the second parameter,
inDestroyNow, is FALSE, the thread is placed in a queue of threads to be
cleaned up by the idle thread, and the destructor is called at a priority
lower than that of any user threads. While this scheme has many advan-
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-5
for 16-bit Processors

Threads
tages, it works as, in essence, the background garbage collection. This is
not deterministic and presents no guarantees of when the freed resources
are available to other threads.

If the inDestroyNow argument is passed to DestroyThread() with a value
of TRUE, the destructor is called immediately. This assures the resources are
freed when the function returns, but the destructor is effectively called at
the priority of the currently running thread even if a lower priority thread
is being destroyed. It should be noted that DestroyThread() runs on the
stack of the calling thread. Therefore, if a thread calls DestroyThread() in
order to destroy itself, even if inDestroyNow is set to TRUE, the freeing of
the thread’s resources needs to be performed by the Idle Thread.

Writing Threads in Different Languages

The code to implement different thread types may be written in C, C++,
or assembly. The choice of language is transparent to the kernel. The
development environment generates well commented skeleton code for all
three choices.

One of the key properties of threads is that they are separate instances of
the thread type templates—each with a unique local state. The mechanism
for allocating, managing, and freeing thread local variables varies from
language to language.

C++ Threads

C++ threads have the simplest template code of the three supported lan-
guages. User threads are derived classes of the abstract base class
VDK::Thread. C++ threads have slightly different function names and
include a Create() function as well a constructor.
3-6 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Since user thread types are derived classes of the abstract base class
VDK::Thread, member variables may be added to user thread classes in the
header as with any other C++ class. The normal C++ rules for object scope
apply so that threads may make use of public, private, and static mem-
bers. All member variables are thread-specific (or instantiation-specific).

Additionally, calls to VDK APIs in C++ are different from C and assembly
calls. All VDK APIs are in the VDK namespace. For example, a call to Cre-
ateThread() in C++ is VDK::CreateThread(). We do not recommend
exposing the entire VDK namespace in your C++ threads with the using
keyword.

C and Assembly Threads

Threads written in C rely on a C++ wrapper in their generated header file
but are otherwise ordinary C functions. C thread function implementa-
tions are compiled without the C++ compiler extensions.

In C and assembly programming, the state local to the thread is accessed
through a handle (a pointer to a pointer) that is passed as an argument to
each of the four user thread functions. When more than a single word of
state is needed, a block of memory is allocated with malloc() in the thread
type’s InitFunction(), and the handle is set to point to the new structure.

Each instance of the thread type allocates a unique block of memory, and
when a thread of that type is executing, the handle references the correct
memory reference. Note that, in addition to being available as an argu-
ment to all functions of the thread type, the handle can be obtained at any
time for the currently running thread using the API GetThreadHandle().
The InitFunction() and DestroyFunction() implementations for a
thread should not call GetThreadHandle() but should instead use the
parameter passed to these functions, as they do not execute in the context
of the thread being initialized or destroyed.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-7
for 16-bit Processors

Threads
Global Variables

VDK applications can use global variables as normal variables. In C or
C++, a variable defined in exactly one source file is declared as extern in
other files in which that variable is used. In assembly, the .GLOBAL declara-
tion exposes a variable outside a source file, and the .EXTERN declaration
resolves a reference to a symbol at link time.

You need to plan carefully how global variables are to be used in a multi-
threaded system. Limit access to a single thread (a single instantiation of a
thread type) whenever possible to avoid reentrancy problems. Critical
and/or unscheduled regions should be used to protect operations on global
entities that can potentially leave the system in an undefined state if not
completed atomically.

Error Handling Facilities

The VDK includes an error-handling mechanism that allows you to define
behavior independently for each thread type. Each function call in Chap-
ter 5, “VDK API Reference”, lists the error codes that may result. For
information on the specific error code, refer to SystemError on page 4-40.

The assumption underlying the error-handling mechanism in VDK is that
all function calls normally succeed and, therefore, do not require an
explicit error code to be returned and verified by the calling code. The
VDK’s method differs from common C programming convention in
which the return value of every function call must be checked to assure
that the call has succeeded without an error. While that model is widely
used in conventional systems programming, real time embedded system
function calls rarely, if ever, fail. When an error does occur, the system
calls the user implemented ErrorFunction(). You can call GetLastThread-
Error() to obtain an enumeration that describes the error condition. You
can also call GetLastThreadErrorValue() to obtain an additional descrip-
tive value whose definition depends on the enumeration. The thread’s
ErrorFunction() should check if the value returned by GetLastThreadEr-
ror() is one that can be handled intelligently and can perform the
3-8 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
appropriate operations. Any enumerated errors that the thread cannot
handle must be passed to the default thread error function, which then
raises Kernel Panic. For instructions on how to pass an error to the error
function, see comments included in the generated thread code.

Scheduling
The scheduler’s role is to ensure that the highest priority ready thread is
allowed to run at the earliest possible time. The scheduler is never invoked
directly by a thread but is executed whenever a kernel API—called from
either a thread or an ISR—changes the highest priority thread. The sched-
uler is not invoked during critical or unscheduled regions, but can be
invoked immediately at the close of either type of protected region.

Ready Queue
The scheduler relies on an internal data structure known as the ready
queue. The queue holds references to all threads that are not blocked or
sleeping. All threads in the ready queue have all resources needed to run;
they are only waiting for processor time. The exception is the currently
running thread, which remains in the ready queue during execution.

The ready queue is called a queue because it is arranged as a prioritized
FIFO buffer. That is, when a thread is moved to the ready queue, it is
added as the last entry at its priority. For example, there are four threads
in the ready queue at the priorities kPriority3, kPriority5, and
kPriority7, and an additional thread is made ready with a priority of
kPriority5 (see Figure 3-1).

The additional thread is inserted after the old thread with the priority of
kPriority5 but before the thread with the priority of kPriority7.
Threads are added to and removed from the ready queue in a fixed num-
ber of cycles regardless of the size of the queue.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-9
for 16-bit Processors

Scheduling
Scheduling Methodologies
The VDK always operates as a preemptive kernel. However, you can take
advantage of a number of modes to expand the options for simpler or
more complex scheduling in your applications.

Cooperative Scheduling

Multiple threads may be created at the same priority level. In the simplest
scheduling scheme, all threads in the system are given the same priority,
and each thread has access to the processor until it manually yields con-
trol. This arrangement is called cooperative multithreading. When a thread
is ready to defer to the next thread at the same priority level, the thread
can do so by calling the Yield() function, placing the currently running
thread at the end of the list. In addition, any system call that causes the

Figure 3-1. Ready Queue

Priority List
(List of Pointers)

kPriority0

kPriority2

kPriority1

kPriority3

kPriority6

kPriority7

kPriority5

kPriorityN

kPriority4

.

.

.

Running Thread

Thread 1

Thread 2

Thread 3

IDLE

Thread 4

Thread 5
(priority kPriority5)

Thread 1

Thread 4

Thread 2

Thread 3

IDLE

kPriority3

kPriority3

kPriority5

kPriority7

kPriorityN

lowest, where
n is data word

size-2

highest

reserved

Ready Queue
(ordered by priority, then FIFO)

new thread
of ready status
3-10 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
currently running thread to block would have a similar result. For exam-
ple, if a thread pends on a signal that is not currently available, the next
thread in the queue at that priority starts running.

Round-robin Scheduling

Round-robin scheduling, also called time slicing, allows multiple threads
with the same priority to be given processor time automatically in fixed
duration allotments. In the VDK, priority levels may be designated as
round-robin mode at build time and their period specified in system ticks.
Threads at that priority are run for that duration, as measured by the
number of VDK Ticks. If the thread is preempted by a higher priority
thread for a significant amount of time, the time is not subtracted from
the time slice. When a thread’s round-robin period completes, it is moved
to the end of the list of threads at its priority in the ready queue. Note that
the round-robin period is subject to jitter when threads at that priority are
preempted.

Preemptive Scheduling

Full preemptive scheduling, in which a thread gets processor time as soon as
it is placed in the ready queue if it has a higher priority than the running
thread, provides more power and flexibility than pure cooperative or
round-robin scheduling.

The VDK allows the use of all three paradigms without any modal config-
uration. For example, multiple non-time-critical threads can be set to a
low priority in the round-robin mode, ensuring that each thread gets pro-
cessor time without interfering with time critical threads. Furthermore, a
thread can yield the processor at any time, allowing another thread to run.
A thread does not need to wait for a timer event to swap the thread out
when it has completed the assigned task.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-11
for 16-bit Processors

Scheduling
Disabling Scheduling
Sometimes it is necessary to disable the scheduler when manipulating glo-
bal entities. For example, when a thread tries to change the state of more
than one signal at a time, the thread can enter an unscheduled region to
ensure that all updates occur atomically. Unscheduled regions are sections
of code that execute without being preempted by a higher priority thread.
Note that interrupts are serviced in an unscheduled region, but the same
thread runs on return to the thread domain. Unscheduled regions are
entered through a call to PushUnscheduledRegion(). To exit an unsched-
uled region, a thread calls PopUnscheduledRegion().

Unscheduled regions (in the same way as critical regions, covered in
“Enabling and Disabling Interrupts” on page 3-46) are implemented with
a stack. Using nested critical and unscheduled regions allows you to write
code that activates a region without being concerned about the region
context when a function is called. For example:

void My_UnscheduledFunction()

{

VDK_PushUnscheduledRegion();

/* In at least one unscheduled region, but

this function can be used from any number

of unscheduled or critical regions */

/* ... */

VDK_PopUnscheduledRegion();

}

void MyOtherFunction()

{

VDK_PushUnscheduledRegion();

/* ... */

/* This call adds and removes one unscheduled region */

My_UnscheduledFunction();

/* The unscheduled regions are restored here */

/* ... */
3-12 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
VDK_PopUnscheduledRegion();

}

An additional function for controlling unscheduled regions is PopNeste-
dUnscheduledRegions(). This function completely pops the stack of all
unscheduled regions. Although the VDK includes PopNestedUnschedule-
dRegions(), applications should use the function infrequently and balance
regions correctly.

Entering the Scheduler From API Calls
Since the highest priority ready thread is the running thread, the scheduler
needs to be called only when a higher priority thread becomes ready.
Because a thread interacts with the system through a series of API calls,
the points at which the highest priority ready thread may change are well
defined. Therefore, a thread invokes the scheduler only at these times, or
whenever it leaves an unscheduled region.

Entering the Scheduler From Interrupts
ISRs communicate with the thread domain through a set of APIs that do
not assume any context. Depending on the system state, an ISR API call
may require the scheduler to be executed. The VDK reserves the lowest
priority software interrupt to handle the reschedule process.

If an ISR API call affects the system state, the API raises the lowest prior-
ity software interrupt. When the lowest priority software interrupt is
scheduled to run by the hardware interrupt dispatcher, the interrupt
reduces to subroutine and enters the scheduler. If the interrupted thread is
not in an unscheduled region and a higher priority thread has become
ready, the scheduler swaps out the interrupted thread and swaps in the
new highest priority ready thread. The lowest priority software interrupt
respects any unscheduled regions the running thread is in. However, inter-
rupts can still service device drivers, post semaphores, etc. On leaving the
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-13
for 16-bit Processors

Scheduling
unscheduled region, the scheduler is run again, and the highest priority
ready thread will become the running thread (see Figure 3-2 on
page 3-14).

Idle Thread
The idle thread is a predefined, automatically created thread that has a pri-
ority lower than that of any user threads. Thus, when there are no user
threads in the ready queue, the idle thread runs. The only substantial work
performed by the idle thread is the freeing of resources of threads that

Figure 3-2. Thread State Diagram

BLOCKED

Thread is Instantiated

Thread is Destroyed

CreateThread()

DestroyThread()

Return from Interrupt
(remains Highest Priority Ready Thread)

Highest Priority
Ready Thread

Nested Interrupts

- PostSemaphore()
- PostDeviceFlag()
- PostMessage()
- Sleep() ends

- Thread pends on the
event that becomes

TRUE
- Round-robin period

starts

- PendSemaphore()
- PendDeviceFlag()
- PendEvent()
- PendMessage()
- Sleep()
- Round-robin period ends

Interrupt

Return from Interrupt
(no longer Highest
Priority Ready Thread)

READY

INTERRUPTED
RUNNING
3-14 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
have been destroyed. In other words, the idle thread handles destruction
of threads that were passed to DestroyThread() with a value of FALSE for
inDestroyNow. Depending on the platform, it may be possible to custom-
ize certain properties of the Idle thread, such as its stack size and the heap
from which all its memory requirements (including the Idle thread stack)
are allocated (see online Help for further details). On Blackfin it is neces-
sary to ensure that the Idle thread's stack is a sufficient size to allow for the
requirements of any Interrupt Service Routines (see “Thread Stack Usage
by Interrupts” on page A-7 for further information).

The time spent in threads other than the idle thread is shown plotted as a
percentage over time on the Target Load tab of the State History window
in VisualDSP++. See “VDK State History Window” on page 2-3 and
online Help for more information about the State History window.

Signals
Threads have four different methods for communication and
synchronization:

• “Semaphores” on page 3-16

• “Messages” on page 3-21

• “Events and Event Bits” on page 3-38

• “Device Flags” on page 3-45

Each communication method has a different behavior and use. A thread
pends on any of the four types of signals, and if a signal is unavailable, the
thread blocks until the signal becomes available or (optionally) a timeout
is reached.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-15
for 16-bit Processors

Signals
Semaphores
Semaphores are protocol mechanisms offered by most operating systems.
Semaphores are used to:

• Control access to a shared resource

• Signal a certain system occurrence

• Allow threads to synchronize

• Schedule periodic execution of threads

The maximum number of active semaphores and initial state of the sema-
phores enabled at boot time are set up when your project is built.

Behavior of Semaphores

A semaphore is a token that a thread acquires so that the thread can con-
tinue execution. If the thread pends on the semaphore and it is available
(the count value associated with the semaphore is greater than zero), the
semaphore is acquired, its count value is decremented by one and the
thread continues normal execution. If the semaphore is not available (its
count is zero), the thread trying to acquire (pend on) the semaphore
blocks until the semaphore is available, or the specified timeout occurs. If
the semaphore does not become available in the time specified, the thread
continues execution in its error function.

Semaphores are global resources accessible to all threads in the system.
Threads of different types and priorities can pend on a semaphore. When
the semaphore is posted, the thread with the highest priority that has been
waiting the longest is moved to the ready queue. If there are no threads
pending on the semaphore, its count value is incremented by one. The
count value is limited by the maximum value specified at the time of the
semaphore creation. Additionally, unlike many operating systems, VDK
semaphores are not owned. In other words, any thread is allowed to post a
3-16 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
semaphore (make it available). If a thread has requested (pended on) and
acquired a semaphore, and the thread is subsequently destroyed, the sema-
phore is not automatically posted by the kernel.

Besides operating as a flag between threads, a semaphore can be set up to
be periodic. A periodic semaphore is posted by the kernel every n ticks,
where n is the period of the semaphore. Periodic semaphores can be used
to ensure that a thread is run at regular intervals.

Thread’s Interaction With Semaphores

Threads interact with semaphores through the set of semaphore APIs.
These functions allow a thread to create a semaphore, destroy a sema-
phore, pend on a semaphore, post a semaphore, get a semaphore’s value,
and add or remove a semaphore from the periodic queue.

Pending on a Semaphore

Figure 3-3 illustrates the process of pending on a semaphore.

Figure 3-3. Pending on a Semaphore

Decrease
semaphore's

count

Thread 1's
ErrorFunction()

is called

PendSemaphore()
Yes

Thread 1 continues execution

Is
Semaphore
available?
(count >0)

Semaphore's List of
Pending Threads

Order by priority, then
FIFO

No

Thread 1 adds itself to

Thread 1

Is
there a

timeout before
semaphore

became avail-
able?

Yes

No

Is
kNoTimeoutError

set?

Yes

No
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-17
for 16-bit Processors

Signals
Threads can pend on a semaphore with a call to PendSemaphore(). When
a thread calls PendSemaphore(), it performs one of the following:

• Acquires the semaphore, decrements its count by one, and contin-
ues execution.

• Blocks until the semaphore is available or the specified timeout
occurs.

If the semaphore becomes available before the timeout occurs or a timeout
occurs and the kNoTimeoutError bit has been specified in the timeout
parameter, the thread continues execution; otherwise, the thread’s error
function is called and the thread continues execution. You should not call
PendSemaphore() within an unscheduled or critical region because if the
semaphore is not available, then the thread will block, but with the sched-
uler disabled, execution cannot be switched to another thread. Pending
with a timeout of zero on a semaphore pends without timeout.

Posting a Semaphore

Semaphores can be posted from two different scheduling domains: the
thread domain and the interrupt domain. If there are threads pending on
the semaphore, posting it moves the highest priority thread from the
semaphore’s list of pending threads to the ready queue. All other threads
are left blocked on the semaphore until their timeout occurs, or the sema-
phore becomes available for them. If there are no threads pending on the
semaphore, posting it increments the count value by one. If the maximum
count, which is specified when the semaphore is created, is reached, post-
ing the semaphore has no effect.

Posting from the Thread Domain. Figure 3-4 and Figure 3-5 illustrate
the process of posting semaphores from the thread domain.

A thread can post a semaphore with a call to the PostSemaphore() API. If
a thread calls PostSemaphore() from within a scheduled region (see
Figure 3-4), and a higher priority thread is moved to the ready queue, the
thread calling PostSemaphore() is context switched out.
3-18 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
If a thread calls PostSemaphore() from within an unscheduled region,
where the scheduler is disabled, the highest priority thread pending on the
semaphore is moved to the ready queue, but no context switch occurs (see
Figure 3-5).

Posting from the Interrupt Domain. Interrupt subroutines can also post
semaphores. Figure 3-6 on page 3-20 illustrates the process of posting a
semaphore from the interrupt domain.

An ISR posts a semaphore by calling the
VDK_ISR_POST_SEMAPHORE_() macro. The macro moves the high-
est priority thread to the ready queue and latches the low priority software
interrupt if a call to the scheduler is required. When the ISR completes
execution, and the low priority software interrupt is run, the scheduler is

Figure 3-4. Thread Domain/Scheduled Region: Posting a Semaphore

1). Invoke Scheduler

2). Switch out the
current thread

3). Switch in the highest
priority pending thread

No

Is
Thread 1 of the

highest
priority?

Yes

Thread 1

PostSemaphore()
Ready QueueSemaphore's List

of Pending
Threads

Thread 1 runs

Is
Semaphore
available?
(count>0)

Is
Semaphore's

count <
its maximum

count?

Yes

No

Increase Semaphore's
count

No

Yes

Next Thread

Order threads
by priority,
then FIFO

Order threads
by priority,
then FIFO
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-19
for 16-bit Processors

Signals
Figure 3-5. Thread Domain/Unscheduled Region: Posting a Semaphore

Figure 3-6. Interrupt Domain: Posting a Semaphore

Thread 1

PostSemaphore()
Ready QueueSemaphore's List

of Pending Threads

Thread 1 runs

Is
Semaphore
available?
(count>0)

Is
Semaphore's

count <
its maximum

count?

Yes

No

Increase Semaphore's
count

No

Yes

Next Thread

Order threads
by priority,
then FIFO

Order threads
by priority,
then FIFO

2). RTI

3). The low priority
ISR runs

4). Kernel runs

No

Is the
interrupted

thread of the
highest
priority?

Ready QueueSemaphore's List
of Pending Threads

Next Thread

VDK_ISR_POST_SEMAPHORE_()

The interrupted tread runs

Are
there threads

pending?

Is
Semaphore's

count <
its maximum

count?

No

Yes

Increase Semaphore's
Count

No

Yes

ISR 1

ISR 2

ISR 3

1). Set the low priority ISR

Increase Semaphore's
count

5). Decrease
Semaphore‘s count

2). Switch into the highest
priority pending thread

1). Switch out the
interrupted thread

Yes

Order threads
by priority,
then FIFO

Order threads
by priority,
then FIFO
3-20 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
run. If the interrupted thread is in a scheduled region, and a higher prior-
ity thread becomes ready, the interrupted thread is switched out and the
new thread is switched in.

Periodic Semaphores

Semaphores can also be used to schedule periodic threads. The semaphore
is posted every n ticks (where n is the semaphore’s period). A thread can
then pend on the semaphore and be scheduled to run every time the sema-
phore is posted. A periodic semaphore does not guarantee that the thread
pending on the semaphore is the highest priority scheduled to run, or that
scheduling is enabled. All that is guaranteed is that the semaphore is
posted, and the highest priority thread pending on that semaphore moves
to the ready queue.

Periodic semaphores are posted by the kernel during the timer interrupt at
system tick boundaries. Periodic semaphores can also be posted at any
time with a call to PostSemaphore() or
VDK_ISR_POST_SEMAPHORE_(). Calls to these functions do not
affect the periodic posting of the semaphore.

Messages
Messages are an inter-thread communication mechanism offered by many
operating systems. Messages can be used to:

• Communicate information between two threads

• Control access to a shared resource

• Signal a certain occurrence and communicate information about
the occurrence

• Allow two threads to synchronize
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-21
for 16-bit Processors

Signals
The maximum number of messages supported in the system is set up when
the project is built.When the maximum number of messages is non-zero, a
system-owned memory pool is created to support messaging. The proper-
ties of this memory pool should not be altered. Further information on
memory pools is given in “Memory Pools” on page 3-68.

Behavior of Messages

Messages allow two threads to communicate over logically separate chan-
nels. A message is sent on one of 15 possible channels, kMsgChannel1 to
kMsgChannel15. Messages are retrieved from these channels in priority
order: kMsgChannel1, kMsgChannel2, ... kMsgChannel15. Each message can
pass a reference to a data buffer, in the form of a message payload, from
the sending thread to the receiving thread.

A thread creates a message (optionally associating a payload) and then
posts (sends) the message to another thread. The posting thread continues
normal execution unless the posting of the message activates a higher pri-
ority thread which is pending on (waiting to receive) the message.

A thread can pend on the receipt of a message on one or more of its chan-
nels. If a message is already queued for the thread, it receives the message
and continues normal execution. If no suitable message is already queued,
the thread blocks until a suitable message is posted to the thread, or until
the specified timeout occurs. If a suitable message is not posted to the
thread in the time specified, the thread continues execution in its error
function.

Unlike semaphores, each message always has a defined owner at any given
time, and only the owning thread can perform operations on the message.
When a thread creates a message, it owns the message until it posts the
message to another thread. The message ownership changes to the receiv-
ing thread following the post, when it is queued on one of the receiving
message’s channels. The receiving thread is now the owner of the message.
3-22 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
The only operation that can be performed on the message at this time is
pending on the message, making the message and its contents available to
the receiving thread.

A message can only be destroyed by its owner; therefore, a thread that
receives a message is responsible for either destroying or reusing a message.
Ownership of the associated payload also belongs to the thread that owns
the message. The owner of the message is responsible for the control of
any memory allocation associated with the payload.

Each thread is responsible for destroying any messages it owns before it
destroys itself. If there are any messages left queued on a thread’s receiving
channels when it is destroyed, then the system destroys the queued mes-
sages. As the system has no knowledge of the contents of the payload, the
system does not free any resources used by the payload.

Thread’s Interaction With Messages

Threads interact with messages through the set of message APIs. The
functions allow a thread to create a message, pend on a message, post a
message, get and set information associated with a message, and destroy a
message.

Pending on a Message

Figure 3-7 illustrates the process of pending on a message.

Threads can pend on a message with a call to PendMessage(), specifying
one or more channels that a message is to be received on. When a thread
calls PendMessage(), it does one of the following:

• Receives a message and continues execution

• Blocks until a message is available on the specified channel(s) or
the specified timeout occurs
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-23
for 16-bit Processors

Signals
If messages are queued on the specified channels before the timeout occurs
or a timeout occurs and the kNoTimeoutError bit has been specified in the
timeout parameter, the thread continues normal execution; otherwise, the
thread continues execution in its error function.

Once a message has been received, you can obtain the identity of the send-
ing thread and the channel the message was received on by calling
GetMessageReceiveInfo(). You can also obtain information about the pay-
load by calling GetMessagePayload(), which returns the type and length of
the payload in addition to its location. You should not call PendMessage()
within an unscheduled or critical region because if a message is not avail-
able, then the thread will block, but with the scheduler disabled, execution
cannot be switched to another thread. Pending with a timeout of zero on a
message pends without timeout.

Posting a Message

Posting a message sends the specified message and the reference to its pay-
load to the specified thread and transfers ownership of the message to the
receiving thread. The details of the message payload can be specified by a
call on the SetMessagePayload() function, which allows the thread to spec-
ify the payload type, length, and location before posting the message. A

Figure 3-7. Pending on a Message

Thread 1‘s Error
Function() is called

Thread is removed
from Ready Queue

Is
there a

timeout before
Message became

available?

Yes

PendMessage()

Yes

Thread 1 continues execution

Is
Message
available?

No

Thread 1
No

Is
kNoTimeoutError

set?

Yes No
3-24 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
thread can send a message it currently owns with a call to PostMessage(),
specifying the destination thread and the channel the message is to be sent
on.

Figure 3-8 illustrates the process of posting a message from a scheduled
region.

If a thread calls PostMessage() from within a scheduled region, and a
higher priority thread is moved to the ready queue on receiving the mes-
sage, then the thread calling PostMessage() is context switched out.

Figure 3-9 illustrates the process of posting a message from an unsched-
uled region.

If a thread calls PostMessage() from within an unscheduled region, even if
a higher priority thread is moved to the ready queue to receive the mes-
sage, the thread that calls PostMessage() continues to execute.

Figure 3-8. Posting a Message From a Scheduled Region

Invoke
Scheduler

PostMessage() Yes

Thread 1 continues execution

Is the
destination

thread
unblocked by

this Message?

No

Thread 1
Is

Thread 1
of the highest

priority?

Yes

No

Destination thread
moved to

Ready Queue
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-25
for 16-bit Processors

Signals
Multiprocessor Messaging
The VDK messaging functionality has been extended in VisualDSP++ 3.5
to allow messages to be passed between the processors in a multiprocessor
configuration. The APIs and corresponding behaviors are, as much as pos-
sible, the same as for intra-processor messaging, but with extensions.

Each DSP in a multiprocessor configuration is referred to as a Node and
must have its own VisualDSP++ project. This means that each node runs
its own instance of the VDK kernel and all VDK entities (such as sema-
phores, event bits, events, and so on, but excepting threads) are private to
that node. Each node has a unique numeric node ID, which is set in the
project's kernel tab.

Threads are uniquely identified across the multiprocessor system by
embedding the node ID as a 5-bit field within the ThreadID. The size of
this field limits the maximum number of nodes in the system to 32.
Threads are permanently located on the node where they are created —
there is no “migration” of threads between nodes.

In order for threads to be referenced on other nodes, each project in a
multiprocessor system uses the kernel tab's Import list to import the
project files for all the other nodes in the system. This makes the boot
ThreadIDs for all the projects visible and usable across the system.

Figure 3-9. Posting a Message From an Unscheduled Region

PostMessage()
Yes

Thread 1 continues execution

Thread 1

No

Is the
destination thread
unblocked by this

Message?

Destination thread
moved to

Ready Queue
3-26 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Threads located on other nodes may then be used as destinations for the
VDK::PostMessage() and VDK::ForwardMessage() functions, though not
for any other thread-related API function.

Boot threads serve as “anchor points” for node-to-node communications,
as their identities are known at build time. In order to communicate with
dynamically-created threads on other nodes it is necessary to pass the
ThreadIDs as data between the nodes (that is, in a message payload). A
reply to an incoming message can always be sent, regardless of the identity
of the sending thread, as the sender's ID is carried in the message itself.
Boot threads can therefore be used to provide information about dynami-
cally-created threads, but such arrangements are application-specific and
must form part of the system design.

Routing Threads (RThreads)

When a message is posted by a thread, the destination node ID (embedded
in the destination ThreadID) is examined. If it matches the node ID of
the node on which the thread is running, then the message is placed
directly into the message queue of the destination thread, exactly as in sin-
gle-processor messaging. If the node IDs do not match, then the message
is passed to one of a set of Routing Threads (RThreads), which is responsi-
ble for the next stage in the process of moving the message to its
destination.

Each RThread takes one of two roles - Incoming or Outgoing - which is
fixed at the time of its creation.

Each RThread employs a device driver, which manages the physical details
of moving messages between nodes. An Outgoing RThread has its device
open for writing, while an Incoming RThread has its device open for
reading.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-27
for 16-bit Processors

Signals
Outgoing RThreads are referenced via a Routing Table, which is con-
structed by VisualDSP++ at build time. When a message must be sent to a
different node, the destination node ID is used as an index into this table
to select which outgoing RThread will handle transmission of the message.

Each node must contain at least one incoming and one outgoing Rthread,
together with their corresponding device drivers. More RThreads may be
included, depending on the number of physical connections to other
nodes. However, the number of outgoing RThreads may be less than the
number of nodes in the system, so that more than one entry in the routing
table may map to the same RThread. This means that the topology of the
multiprocessor system may require that a message make more than one
“hop” to reach its final destination.

An outgoing RThread, when idle, waits for messages to be placed on any
channel of its message queue, and then transmits that message (as a Mes-
sage Packet) by making one or more SyncWrite() calls to its associated
device driver. These SyncWrite() calls may block waiting I/O completion.

An incoming RThread, when idle, blocks in a SyncRead() call to its device
driver awaiting reception of a message packet. Once the packet has been
received, and expanded into a message object, the RThread forwards it to
its destination. This may involve passing the message to an outgoing
rthread if the current node is not the message's final destination.
3-28 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
The actual message objects, as referenced by particular MessageIDs, are
each local to a particular node. When a message is transmitted between
two nodes it is only the message contents that are passed over (as a Mes-
sage Packet), the message object itself is destroyed on the sending side and
recreated on the receiving side. This has a number of consequences:

• The message will usually have a different ID on the receiving side
than it did on the sending.

• Message objects that are passed to an outgoing RThread are
destroyed after transmission, and hence returned to the pool of free
messages.

• When a message packet is received by an incoming RThread, a mes-
sage object must be created (from the pool of free messages).
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-29
for 16-bit Processors

Signals
Figure 3-10 shows the path taken by a message being sent between two
threads on different nodes (A and B), where a direct connection exists
between the two nodes.

Figure 3-10. Sending Messages Between Adjacent Nodes

Sending
Thread

Outgoing
Rthread

Incoming
RThread

Receving
Thread

Transfer

PostMessage()

SyncWrite() SyncRead()

PostMessage()

CreateMessage()

DestroyMessage()

Physical Connection
(Link Port, Cluster Bus,
Internal Memory DMA)

DEVICE
DRIVER

DEVICE
DRIVER

NODE A NODE B
3-30 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Figure 3-11 shows a scenario where node Y was an intermediate "hop" on
the way to a third node, Z. The message is posted by Y's incoming
RThread, directly into the message queue of the routing thread for the out-
going connection.

Figure 3-11. Sending Messages between Non-adjacent Nodes via an Inter-
mediate Node

Incoming
RThread

Outgoing
RThread

SyncWrite()

SyncRead()

PostMessage()

CreateMessage()

Node X

Physical Connection
(Link Port, Cluster Bus)

DEVICE
DRIVER

DEVICE
DRIVER

DestroyMessage()

Node Y

Physical Connection
(Link Port, Cluster Bus)

Node Z
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-31
for 16-bit Processors

Signals
If the message allocation by the incoming RThread fails then a system error
is raised and execution stops on that node. This is necessary because the
alternative of “dropping” the message is unacceptable (message delivery is
defined as being reliable in VDK). There are a number of ways of avoiding
this problem:

1. Careful design of the message flow in the application, and careful
choice of priorities for the RThreads. The use of loopback (that is,
returning messages to sender rather than destroying them) may
assist with this.

2. Preallocate all messages during initialization and use loopback so
that they never need to be explicitly destroyed. The maximum mes-
sages setting (in the kernel tab) for each node must be set equal to
the total number of messages in the overall system. This ensures
that there will be no failure even in the worst case of all messages
being sent to the same node at once.

3. A counting semaphore may be installed to regulate the flow of mes-
sages into the node, using the
VDK::InstallMessageControlSemaphore() API function. The ini-
tial count of this semaphore should be set to less than or equal to
the number of free messages which are reserved for use by the
rthreads. This semaphore will be pended on prior to each message
allocation by an incoming rthread, and posted after each dealloca-
tion by an outgoing rthread. Provided that the semaphore's count
is never less than the number of free messages on the node then the
allocations will never fail. However, message flow into the node
may stall if the semaphore count falls to zero.

Option 1 requires a thorough understanding of application behavior.
Option 2 carries a memory space overhead, as more space may be reserved
for messages than is actually needed at runtime, but is the simplest solu-
tion if this is not problem. Option 3 carries a performance overhead due
3-32 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
to the semaphore pend and post operations. Additionally, if message flow
stalls, which may occur with Option 3, it may have other consequences for
the system.

Data Transfer (Payload Marshalling)

Very simple messages can be sent between nodes without interpretation,
that is, if the message information is entirely conveyed by the three words
of message data (internal payload). However, if the message actually has
an in-memory (external) payload, then the address of this payload may not
be meaningful once the message arrives on another node. In these cases
the payload must be transferred along with the message. This is done via
Payload Marshalling.

Any message type that has the MSB (sign bit) set (that is, a negative value)
is considered to be a Marshalled Type, meaning that the system expects to
allocate, deallocate and transfer the payload automatically from node to
node.

Since the organization of the payload for a particular message type is
entirely the choice of the application designer (it might be a linked-list or
a tree, rather than a plain memory block), the allocation, deallocation and
transfer of the payload is the responsibility of a Marshalling Function.
Pointers to these functions are held in a static Marshalling Table, which is
indexed using the low-order bits of the message type.

The marshalling function implements (at least) the following operations:

• Allocate and receive

• Transmit and release

Note that it is not compulsory for the marshalling function to transfer the
payload via the device driver. It may, for example, only be necessary for it
to translate the payload address from a local value to a cluster bus address,
so as to permit in-place access to the payload from another DSP. When
the payloads for a particular message type are always stored in a memory
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-33
for 16-bit Processors

Signals
(for example, SDRAM), which is visible to all nodes and mapped to the
same address range on each, then no marshalling is needed. The message
type can be given a non-marshalled value (that is, the sign bit is zero).

Since the most common form of marshalled payload is likely to be a plain
memory block allocated either from a heap or from a VDK memory pool,
VDK provides built-in Standard Marshalling functions to handle these
cases. The more complex cases (linked data structures, shared memory,
and so on) require user-written Custom Marshalling functions.

Marshalling functions are called from the routing threads, and are passed
these arguments:

• Marshalling code — indicates which operation is to be performed

• A pointer to the formatted message packet, which includes payload
type, size and address — for input and output

• Device descriptor — identifies the VDK device driver for the
connection

• Heap index or PoolID — used by standard marshalling

• I/O timeout duration (usually set to zero, for indefinite wait)

For transmission, the marshalling function is also responsible for first
transmitting the message packet. This is to give the opportunity for the
marshalling function to modify the payload attributes prior to transmis-
sion. For example, if the payload is to be accessed in-place across the
cluster bus (on TigerSHARC) then node-specific addresses must be trans-
lated to the global address space and back.

The marshalling functions execute in the context of the routing threads.
SyncRead() or SyncWrite() calls made by the marshalling functions will
(or may) cause the threads to block awaiting I/O completion, however the
original sending thread(s) will not be blocked. In this way the routing
threads act as a buffer between user threads and the interprocessor message
transfer mechanism.
3-34 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Note that it is not strictly necessary for the marshalling function to actu-
ally transfer the data, in certain circumstances it may be sufficient for it
merely to perform the allocations and deallocations. An example of where
this may be useful is when using message loopback. The message may be
returned to the sender after changing its payload type to one whose mar-
shalling function simply frees the payload when the message is transmitted
and allocates a payload when the message is received. This avoids the over-
head of transferring data which is no longer of interest but allows the
payload to still be automatically managed by the system. The only added
complexity is the need for two marshalled types instead of one, and for the
user threads to change the payload type between the two according to
whether the message is “full” or “empty”.

When defining a marshalled payload type in the kernel tab, the user can
select either standard or custom marshalling. For standard marshalling the
choice must also be made between heap or pool marshalling, according to
whether the payloads will be allocated from a C/C++ heap (using the
VisualDSP++ multiple heap API extensions) or a VDK memory pool. The
heap or PoolID must also be specified. For custom marshalling the name
of the marshalling function must be supplied, and a source module con-
taining a skeleton of the marshalling function is automatically created. It
is then the user's task to add the code that allocates and deallocates, and
reads and writes, the actual payload
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-35
for 16-bit Processors

Signals
Device Drivers for Messaging

Device drivers employed in message transfer must provide certain proper-
ties which are assumed in the design of the routing threads:

• Synchronous operation - once a write call returns, the caller knows
that the data has been sent.

• Flow control - no data will be lost if a write (by the sender) is initi-
ated before the corresponding read (by the receiver).

• Reliable delivery - all data sent (written) will be received (read) at
the other side.

As mentioned above, the contents of messages are written to and read
from the device driver as Message Packets. These packets are 16 bytes (128
bits) in size and are always read and written by a single operation of that
size. Device drivers can therefore be optimized for these transfers, as they
will be the most frequent case, although other sizes must still be
supported.

As well as the message packets the device driver must also transfer the mes-
sage payloads which are written and read by the marshalling functions. It
is the responsibility of the application designer to ensure that the marshal-
ling functions and the device drivers operate together correctly, that is that
any transfer size or alignment restrictions imposed by the drivers are met
by the payloads. This is also true of marshalled payload types using stan-
dard marshalling, the sizes and alignments of the heap or memory pool
blocks must be acceptable to the messaging device drivers.

Where a bidirectional hardware device (such as a link port on SHARC or
TigerSHARC) is managed by a single device driver instance on each of the
two nodes that it connects, then it is necessary for the device driver to per-
mit itself to be opened by both an incoming and an outgoing routing
thread. A generalized multiple-open capability is not required, the ability
to be simultaneously open once for reading and once for writing (some-
3-36 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
times known as a “split open”) is sufficient. Alternatively, for some devices
it may be preferable to create two device driver instances on each node, so
that the hardware appears as two unidirectional connections.

Routing Topology

Application designers must choose the routing structure for a particular
application. This choice is closely linked to the organization of the target
hardware.

At one extreme, the ideal situation is to have a direct connection between
each node. In such a configuration no through-routing is be required, that
is each message post requires only one “hop”. This can be achieved for a
small numbers of nodes (between two and five), however, the number of
connections quickly becomes prohibitive as the number of nodes
increases.

At the other extreme, the minimum number of connections required is
one incoming and one outgoing per node. This is sufficient to allow the
nodes to be connected in a simple “ring” configuration. However, a mes-
sage post may require many “hops” if the sender and receiver are widely
separated on the ring. If the connections are bidirectional (for example,
link ports) and each node has two, then a bidirectional ring – with mes-
sages circulating in both directions – is possible.

Between these two extremes many configurations are possible, including
grids, cubes and hypercubes (if sufficient links are available per node).
Where a host system forms part of the design, and is participating in mes-
saging, then it must also be included in the routing topology.

The design of the routing network is best begun “on paper”, as a Directed
Graph of bubbles (nodes) and arrowed lines (connections). Designers
should consider how to assign threads to nodes so that as much message
communication as possible is over direct connections. Once the topology
has been established, within the constraints of the available hardware, then
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-37
for 16-bit Processors

Signals
a system can be described in terms of node IDs, device drivers and routing
threads. This information can then be entered into the kernel tab of the
per-node projects for the application.

Example projects are supplied with VisualDSP++ for certain EZ-Kit
boards which have more than one DSP core, such as ADSP-BF561. These
examples have appropriate device drivers and routing threads already in
place (for fully-connected topologies, since the numbers of nodes will be
small) and may be used as a starting point for new applications.

Events and Event Bits
Events and event bits are signals used to regulate thread execution based
on the state of the system. An event bit is used to signal that a certain sys-
tem element is in a specified state. An event is a Boolean operation
performed on the state of all event bits. When the Boolean combination of
event bits is such that the event evaluates to TRUE, all threads that are
pending on the event are moved to the ready queue and the event remains
TRUE. Any thread that pends on an event that evaluates as true does not
block, but when event bits have changed causing the event to evaluate as
FALSE, any thread that pends on that event blocks.

The number of events and event bits is limited to a processor’s word size
minus one. For example, on a 16-bit architecture, there can only be 15
events and event bits; and on a 32-bit architecture, there can be 31of each.

Behavior of Events

Each event maintains the VDK_EventData data structure that encapsulates
all the information used to calculate an event’s value:

typedef struct

{

bool matchAll;

VDK_Bitfield values;
3-38 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
VDK_Bitfield mask;

} VDK_EventData;

When setting up an event, you configure a flag describing how to treat a
mask and target value:

• matchAll: TRUE when an event must have an exact match on all of
the masked bits. FALSE if a match on any of the masked bits results
in the event recalculating to TRUE.

• values: The target values for the event bits masked with the mask
field of the VDK_EventData structure.

• mask: The event bits that the event calculation is based on.

Unlike semaphores, events are TRUE whenever their conditions are TRUE,
and all threads pending on the event are moved to the ready queue. If a
thread pends on an event that is already TRUE, the thread continues to run,
and the scheduler is not called. Like a semaphore, a thread pending on an
event that is not TRUE blocks until the event becomes true, or the thread’s
timeout is reached. Pending with a timeout of zero on an event pends
without timeout.

Global State of Event Bits

The state of all the event bits is stored in a global variable. When a user
sets or clears an event bit, the corresponding bit number in the global
word is changed. If toggling the event bit affects any events, that event is
recalculated. This happens either during the call to SetEventBit() or
ClearEventBit() (if called within a scheduled region), or the next time the
scheduler is enabled (with a call to PopUnscheduledRegion()).

Event Calculation

To understand how events use event bits, see the following examples.

Example 1: Calculation for an All Event
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-39
for 16-bit Processors

Signals
Event is FALSE because the global event bit 2 is not the target value.

Example 2: Calculation for an All Event

Event is TRUE.

Example 3: Calculation for an Any Event

Event is TRUE since bits 0 and 3 of the target and global match.

Example 4: Calculation for an Any Event

Event is FALSE since bits 0, 2, and 3 do not match.

4 3 2 1 0 event bit number

0 1 0 1 0 <— bit value

0 1 1 0 1 <— mask

0 1 1 0 0 <— target value

4 3 2 1 0 event bit number

0 1 1 1 0 <— bit value

0 1 1 0 1 <— mask

0 1 1 0 0 <— target value

4 3 2 1 0 event bit number

0 1 0 1 0 <— bit value

0 1 1 0 1 <— mask

0 1 1 0 0 <— target value

4 3 2 1 0 event bit number

0 1 0 1 1 <— bit value

0 1 1 0 1 <— mask

0 0 1 0 0 <— target value
3-40 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Effect of Unscheduled Regions on Event Calculation

Each time an event bit is set or cleared, the scheduler is entered to recalcu-
late all dependent event values. By entering an unscheduled region, you
can toggle multiple event bits without triggering spurious event calcula-
tions that could result in erroneous system conditions. Consider the
following code.

/* Code that accidentally triggers Event1 trying to set up

Event2. Assume the prior event bit state = 0x00. */

VDK_EventData data1 = { true, 0x1, 0x3 };

VDK_EventData data2 = { true, 0x3, 0x3 };

VDK_LoadEvent(kEvent1, data1);

VDK_LoadEvent(kEvent2, data2);

VDK_SetEventBit(kEventBit1); /* will trigger Event1 by accident */

VDK_SetEventBit(kEventBit2); /* Event1 is FALSE, Event2 is TRUE */

Whenever you toggle multiple event bits, you should enter an unsched-
uled region to avoid the above loopholes. For example, to fix the above
accidental triggering of Event1 in the above code, use the following code:

VDK_PushUnscheduledRegion();

VDK_SetEventBit(kEventBit1); /* Event1 has not been triggered */

VDK_SetEventBit(kEventBit2); /* Event1 is FALSE, Event2 is TRUE

*/

VDK_PopUnscheduledRegion();

Thread’s Interaction With Events

Threads interact with events by pending on events, setting or clearing
event bits, and by loading a new VDK_EventData into a given event.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-41
for 16-bit Processors

Signals
Pending on an Event

Like semaphores, threads can pend on an event’s condition becoming TRUE
with a timeout. Figure 3-12 illustrates the process of pending on an event.

A thread calls PendEvent() and specifies the timeout. If the event becomes
TRUE before the timeout is reached, the thread (and all other threads pend-
ing on the event) is moved to the ready queue. Calling PendEvent() with a
timeout of zero means that the thread is willing to wait indefinitely.

Setting or Clearing of Event Bits

Changing the status of the event bits can be accomplished in both the
interrupt domain and the thread domain. Each domain results in slightly
different results.

From the Thread Domain. Figure 3-13 illustrates the process of setting or
clearing of an event bit from the thread domain.

Figure 3-12. Pending on an Event

Thread 1 blocks until
Event is TRUE

Yes

Is
Thread 1

of the
highest
priority?

No

PendEvent()
Yes

Thread 1 continues execution

No

Does
Event evaluate

as TRUE?

Ready Queue
Order threads

by priority, then
FIFO

All pending threads

1). Invoke Scheduler

2). Switch out Thread 1

1). Invoke Scheduler

2). Switch out Thread 1

Is there
a timeout before the

Event became
available?

No

Thread 1

Yes

Is
kNoTimeoutError

set?

Yes
No

Thread 1's error
function is called
3-42 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
A thread can set an event bit by calling SetEventBit() and clear it by call-
ing ClearEventBit(). Calling either from within a scheduled region
recalculates all events that depend on the event bit and can result in a
higher priority thread being context switched in.

From the Interrupt Domain. Figure 3-14 on page 3-44 illustrates the pro-
cess of setting or clearing of an event bit from the interrupt domain.

An Interrupt Service Routine can call VDK_ISR_SET_EVENTBIT_()
and VDK_ISR_CLEAR_EVENTBIT_() to change an event bit values
and, possibly, free a new thread to run. Calling these macros does not
result in a recalculation of the events, but the low priority software inter-
rupt is set and the scheduler entered. If the interrupted thread is in a
scheduled region, an event recalculation takes place, and can cause a
higher priority thread to be context switched in. If an ISR sets or clears

Figure 3-13. Thread Domain: Setting or Clearing an Event Bit

Thread 1

Switch out Thread 1

SetEventBit()
ClearEventBit()

Thread 1 continues execution

1). Invoke Scheduler

2). Recalculate dependent bits

Yes

No

Thread Domain/Scheduled Region

Is
Thread 1 of
the highest

priority?
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-43
for 16-bit Processors

Signals
multiple event bits, the calls do not need to be protected with an unsched-
uled region (since there is no thread scheduling in the interrupt domain);
for example:

/* The following two ISR calls do not need to be protected: */

VDK_ISR_SET_EVENTBIT_(kEventBit1);

VDK_ISR_SET_EVENTBIT_(kEventBit2);

Loading New Event Data into an Event

From the thread scheduling domain, a thread can get the VDK_EventData
associated with an event with the GetEventData() API. Additionally, a
thread can change the VDK_EventData with the LoadEvent() API. A call to
LoadEvent() causes a recalculation of the event’s value. If a higher priority
thread becomes ready because of the call, it starts running if the scheduler
is enabled.

Figure 3-14. Interrupt Domain: Setting or Clearing an Event Bit

ISR 1

ISR 2

ISR 3

Yes

No

VDK_ISR_SET_EVENTBIT_()
VDK_ISR_CLEAR_EVENTBIT_()

RTI returns to the interrupted thread

2). Invoke Scheduler

Interrupt Domain/Scheduled Region

Thread Domain

1). Set Reschedule ISR

Switch out the
interrupted thread

Recalculate dependent bits

Is the
interrupted

thread
of the highest

priority?
3-44 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Device Flags
Because of the special nature of device drivers, most require synchroniza-
tion methods that are similar to those provided by events and semaphores,
but with different operation. Device flags are created to satisfy the specific
circumstances device drivers might require. Much of their behavior cannot
be fully explained without an introduction to device drivers, which are
covered extensively in“Device Drivers” on page 3-51.

Behavior of Device Flags

Like events and semaphores, a thread can pend on a device flag, but unlike
semaphores and events, a device flag is always FALSE. A thread pending on
a device flag immediately blocks. When a device flag is posted, all threads
pending on it are moved to the ready queue.

Device flags are used to communicate to any number of threads that a
device has entered a particular state. For example, assume that multiple
threads are waiting for a new data buffer to become available from an A/D
converter device. While neither a semaphore nor an event can correctly
represent this state, a device flag’s behavior can encapsulate this system
state.

Thread’s Interaction With Device Flags

A thread accesses a device flag through two APIs: PendDeviceFlag() and
PostDeviceFlag(). Unlike most APIs that can cause a thread to block,
PendDeviceFlag() must be called from within a critical region.

PendDeviceFlag() is set up this way because of the nature of device driv-
ers. See section “Device Drivers” on page 3-51 for a more information
about device flags and device drivers.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-45
for 16-bit Processors

Interrupt Service Routines
Interrupt Service Routines
Unlike the Analog Devices standard C implementation of interrupts
(using signal.h), all VDK interrupts are written in assembly. The VDK
encourages users to write interrupts in assembly by giving hand optimized
macros to communicate between the interrupt domain and the thread
domain. All calculations should take place in the thread domain, and
interrupts should be short routines that post semaphores, change event bit
values, activate device drivers, and drop tags in the history buffer.

Enabling and Disabling Interrupts
Each processor architecture has a slightly different mechanism for masking
and unmasking interrupts. Some architectures require that the state of the
interrupt mask be saved to memory before servicing an interrupt or an
exception, and the mask be manually restored before returning. Since the
kernel installs interrupts (and exception handlers on some architectures),
directly writing to the interrupt mask register may produce unintended
results. Therefore, VDK provides a simple and platform independent API
to simplify access to the interrupt mask.

A call to GetInterruptMask() returns the actual value of the interrupt
mask, even if it has been saved temporarily by the kernel in private stor-
age. Likewise, SetInterruptMaskBits() and ClearInterruptMaskBits() set
and clear bits in the interrupt mask in a robust and safe manner. Interrupt
levels with their corresponding bits set in the interrupt mask are enabled
when interrupts are globally enabled. See the Hardware Reference manual
for your target processor for more information about the interrupt mask.

VDK also presents a standard way of turning interrupts on and off glo-
bally. Like unscheduled regions (in which the scheduler is disabled) the
VDK supports critical regions where interrupts are disabled. A call to
PushCriticalRegion() disables interrupts, and a call to PopCriticalRe-
gion() reenables interrupts. These API calls implement a stack style
3-46 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
interface, as described in “Protected Regions” on page 1-7. Users are dis-
couraged from turning interrupts off for long sections of code since this
increases interrupt latency.

Interrupt Architecture
Interrupt handling can be set up in two ways: support C functions and
install them as handlers, or support small assembly ISRs that set flags that
are handled in threads or device drivers (which are written in a high level
language). Analog Devices standard C model for interrupts uses signal.h
to install and remove signal (interrupt) handlers that can be written in C.
The problem with this method is that the interrupt space requires a C
run-time context, and any time an interrupt occurs, the system must per-
form a complete context save/restore.

VDK’s interrupt architecture does not support the signal.h strategy for
handling interrupts. VDK interrupts should be written in assembly, and
their body should set some signal (semaphore, event bit or device flag)
that communicates back to the thread or device driver domain. This archi-
tecture reduces the number of context saves/restores required, decreases
interrupt latency, and still keeps as much code as possible in a high-level
language.

The lightweight nature of ISRs also encourages the use of interrupt nest-
ing to further reduce latency. VDK enables interrupt nesting by default on
processors that support it.

Vector Table

VDK installs a common header in every entry in the interrupt table. The
header disables interrupts and jumps to the interrupt handler. Interrupts
are disabled in the header so that you can depend on having access to glo-
bal data structures at the beginning of their handler. You must remember
to reenable interrupts before executing an RTI.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-47
for 16-bit Processors

Interrupt Service Routines
The VDK reserves (at least) two interrupts: the timer interrupt and the
lowest priority software interrupt. For a discussion about the timer inter-
rupt, see “Timer ISR” on page 3-50. For information about the lowest
priority software interrupt, see “Reschedule ISR” on page 3-50. For infor-
mation on any additional interrupts reserved by the VDK for particular
processors, see “Processor-Specific Notes” on page A-1.

Global Data

Often ISRs need to communicate data back and forth to the thread
domain besides semaphores, event bits, and device driver activations. ISRs
can use global variables to get data to the thread domain, but you must
remember to wrap any access to or from that global data in a critical
region and to declare the variable as volatile (in C/C++). For example,
consider the following:

/* MY_ISR.asm */

.EXTERN _my_global_integer;

<REG> = data;

DM(_my_global_integer) = <REG>;

/* finish up the ISR, enable interrupts, and RTI. */

And in the thread domain:

/* My_C_Thread.c */

volatile int my_global_integer;

/* Access the global ISR data */

VDK_PushCriticalRegion();

if (my_global_integer == 2)

my_global_integer = 3;

VDK_PopCriticalRegion();
3-48 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Communication with the Thread Domain

The VDK supplies a set of macros that can be used to communicate sys-
tem state to the thread domain. Since these macros are called from the
interrupt domain, they make no assumptions about processor state, avail-
able registers, or parameters. In other words, the ISR macros can be called
without consideration of saving state or having processor state trampled
during a call.

Take for example, the following three equivalent
VDK_ISR_POST_SEMAPHORE_() calls:

.VAR/DATA semaphore_id;

/* Pass the value directly */

VDK_ISR_POST_SEMAPHORE_(kSemaphore1);

/* Pass the value in a register */

<REG> = kSemaphore1;

VDK_ISR_POST_SEMAPHORE_(<REG>);

/* <REG> was not trampled */

/* Post the semaphore one last time using a DM */
DM(semaphore_id) = <REG>;

VDK_ISR_POST_SEMAPHORE_(DM(semaphore_id));

Additionally, no condition codes are affected by the ISR macros, no
assumptions are made about having space on any hardware stacks (e.g. PC
or status), and all VDK internal data structures are maintained.

Most ISR macros raise the low priority software interrupt if thread
domain scheduling is required after all other interrupts are serviced. For a
discussion of the low priority software interrupt, see section “Reschedule
ISR” on page 3-50. Refer to “Processor-Specific Notes” on page A-1 for
additional information about ISR APIs.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-49
for 16-bit Processors

Interrupt Service Routines
Within the interrupt domain, every effort should be made to enable inter-
rupt nesting. Nesting is always disabled when an ISR begins. However,
leaving it disabled is analogous to staying in an unscheduled region in the
thread domain; other ISRs are prevented from executing, even if they have
higher priority. Allowing nested interrupts potentially lowers interrupt
latency for high priority interrupts.

Timer ISR
The VDK reserves a timer interrupt. The timer is used to calculate
round-robin times, sleeping threads’ time to keep sleeping, and periodic
semaphores. One VDK tick is defined as the time between timer inter-
rupts and is the finest resolution measure of time in the kernel. The timer
interrupt can cause a low priority software interrupt (see “Reschedule ISR”
on page 3-50). In VisualDSP++ 3.5 it is possible to change the interrupt
used for the VDK timer interrupt from the default (see online Help for
further information).

Reschedule ISR
The VDK designates the lowest priority interrupt that is not tied to a
hardware device as the reschedule ISR. This ISR handles housekeeping
when an interrupt causes a system state change that can result in a new
high priority thread becoming ready. If a new thread is ready and the sys-
tem is in a scheduled region, the software ISR saves off the context of the
current thread and switches to the new thread. If an interrupt has acti-
vated a device driver, the low priority software interrupt calls the dispatch
function for the device driver. For more information, see “Dispatch Func-
tion” on page 3-56.

On systems where the lowest priority non-hardware-tied interrupt is not
the lowest priority interrupt, all lower priority interrupts must run with
interrupts turned off for their entire duration. Failure to do so may result
in undefined behavior.
3-50 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
I/O Interface
The I/O interface provides the mechanism for creating an interface
between the external environment and VDK applications.
In VisualDSP++ 3.5, only device driver objects can be used to construct
the I/O interface.

I/O Templates
I/O templates are analogous to thread types. I/O templates are used to
instantiate I/O objects. In VisualDSP++ 3.5, the only types of I/O tem-
plates available, and therefore the only classes of I/O objects, are for device
drivers. In order to create an instance of a device driver, a boot I/O object
must be added to the VDK project using the device driver template. In
order to distinguish between different instances of the same I/O template
an 'initializer' value can be passed to an I/O object (see online Help for
further information).

Device Drivers
The role of a device driver is to abstract the details of the hardware imple-
mentation from the software designer. For example, a software engineer
designing a finite impulse response (FIR) filter does not need to under-
stand the intricacies of the converters, and is able to concentrate on the
FIR algorithm. The software can then be reused on different platforms,
where the hardware interface differs.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-51
for 16-bit Processors

I/O Interface
The Communication Manager controls device drivers in the VDK. Using
the Communication Manager APIs, you can maintain the abstraction lay-
ers between device drivers, interrupt service routines, and executing
threads. This section details how the Communication Manager is
organized.

In VisualDSP++ 3.5, device drivers are a part of the I/O interface.
Device drivers are added to a VDK project as I/O objects. Visu-
alDSP++ 2.0 device drivers are not compatible with VisualDSP++
3.5 device drivers. See “Migrating Device Drivers” on page B-1 for
a description of how to convert existing VisualDSP++ 2.0 device
drivers for use in VisualDSP++ 3.5 projects.

Execution

Device drivers and interrupt service routines are tied very closely together.
Typically, DSP developers prefer to keep as much time critical code in
assembly as possible. The Communication Manager is designed such that
you can keep interrupt routines in assembly (the time critical pieces), and
interface and resource management for the device in a high level language
without sacrificing speed. The Communication Manager attempts to keep
the number of context switches to a minimum, to execute management
code at reasonable times, and to preserve the order of priorities of running
threads when a thread uses a device. However, you need to thoroughly
understand the architecture of the Communication Manager to write your
device driver.

There is only one interface to a device driver—through a dispatch func-
tion. The dispatch function is called when the device is initialized, when a
thread uses a device (open/close, read/write, control), or when an inter-
rupt service routine transfers data to or from the device. The dispatch
function handles the request and returns. Device drivers should not block
(pend) when servicing an initialize request or a request for more data by
an interrupt service routine. However, a device driver can block when ser-
vicing a thread request and the relevant resource is not ready or available.
3-52 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Device driver initialization and ISR requests are handled within critical
regions enforced by the kernel, so their execution does not have to be
reentrant, but a thread level request must protect global variables within
critical or unscheduled regions.

Parallel Scheduling Domains

This section focuses on a unique role of device drivers in the VDK archi-
tecture. Understanding device drivers requires some understanding of the
time and method by which device driver code is invoked. VDK applica-
tions may be factored into two domains, referred to as the thread domain
and the ISR domain (see Figure 3-15). This distinction is not an arbitrary
or unnecessary abstraction. The hardware architecture of the processor as
well as the software architecture of the kernel reinforces this notion. You
should consider this distinction when you are designing your application
and apportioning your code.

Threads are scheduled based on their priority and the order in which they
are placed in the ready queue. The scheduling portion of the kernel is
responsible for selecting the thread to run. However, the scheduler does
not have complete control over the processor. It may be preempted by a
parallel and higher priority scheduler: the interrupt and exception hard-
ware. While interrupts or exceptions are being serviced, thread priorities
are temporarily moot. The position of threads in the ready queue becomes
significant again only when the hardware relinquishes control back to the
software based scheduler.

Each of the domains has strengths and weaknesses that dictate the type of
code suitable to be executed in that environment. The scheduler in the
thread domain is invoked when threads are moved to or from the ready
queue. Threads each have their own stack and may be written in a high
level language. Threads always execute in “supervisor” or “kernel mode”
(if the processor makes this distinction). Threads implement algorithms
and are allotted processor time based on the completion of higher priority
activity.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-53
for 16-bit Processors

I/O Interface
In contrast, scheduling in the interrupt domain has the highest system
wide priority. Any “ready” ISR takes precedence over any ready thread
(outside critical regions), and this form of scheduling is implemented in
hardware. ISRs are always written in assembly and must manually restore
any registers they use. ISRs execute in “supervisor” or “kernel mode” (if
the processor makes this distinction). ISRs respond to asynchronous
peripherals at the lowest level only. The routine should perform only
activities that are so time critical that data would be lost if the code were
not executed as soon as possible. All other activity should occur under the
control of the kernel's scheduler based on priority.

Transferring from the thread domain to the interrupt domain is simple
and automatic, but returning to the thread domain can be much more
laborious. If the ready queue is not changed while in the interrupt
domain, then the scheduler need not run when it regains control of the

Figure 3-15. Parallel Scheduling Domains

Interrupt

All ISRs complete
and DD activatedAll ISRs

complete and
state changed

All ISRs
complete and
no change
of state

Thread
selected

Device Flags

software/kernel
scheduling is

based on
thread priority

Thread Domain ISR Domain

hardware
scheduling is

based on
interrupt priority

Device
Drivers

Scheduler
3-54 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
system. The interrupted thread resumes execution immediately. If the
ready queue has changed, the scheduler must further determine whether
the highest priority thread has changed. If it has changed, the scheduler
must initiate a context switch.

Device drivers fill the gap between the two scheduling domains. They are
neither thread code nor ISR code, and they are not directly scheduled by
either the kernel or the interrupt controller. Device drivers are imple-
mented as C++ objects and run on the stack of the currently running
thread. However, they are not “owned” by any thread, and may be used by
many threads concurrently.

Using Device Drivers

From the point of view of a thread, there are five functional interfaces to
device drivers: OpenDevice(), CloseDevice(), SyncRead(), SyncWrite(),
and DeviceIOCtl(). The names of the APIs are self explanatory since
threads mostly treat device drivers as black boxes. Figure 3-16 illustrates
the device drivers’ interface. A thread uses a device by opening it, reading
and/or writing to it, and closing it. The DeviceIOCtl() function is used
for sending device-specific control information messages. Each API is a
standard C/C++ function call that runs on the stack of the calling thread
and returns when the function completes. However, when the device
driver does not have a needed resource, one of these functions may cause
the thread to be removed from the ready queue and block on a signal, sim-
ilar to a semaphore or an event, called a device flag.

Interrupt service routines have only one API call relating to device drivers:
VDK_ISR_ACTIVATE_DEVICE_(). This macro is not a function call,
and program flow does not transfer from the ISR to the device driver and
back. Rather, the macro sets a flag indicating that the device driver's “acti-
vate” routine should execute after all interrupts have been serviced.

The remaining two API functions, PendDeviceFlag() and PostDevice-
Flag(), can be called only from within the device driver itself. For example,
a call from a thread to SyncRead() might cause the device driver to call
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-55
for 16-bit Processors

I/O Interface
PendDeviceFlag() if there is no data currently available. This would cause
the thread to block until the device flag is posted by another code frag-
ment within the device driver that is providing the data.

As another example, when an interrupt occurs because an incoming data
buffer is full, the ISR might move a pointer so that the device begins fill-
ing an empty buffer before calling VDK_ISR_ACTIVATE_DEVICE_().
The device driver's activate routine may respond by posting a device flag
and moving a thread to the ready queue so that it can be scheduled to pro-
cess the new data.

Dispatch Function

The dispatch function is the core of any device driver. It takes two param-
eters and returns a void* (the return value depends on the input values). A
dispatch function declaration for a device driver is as follows:

Figure 3-16. Device Driver APIs

VDK_ISR_ACTIVATE_DEVICE_

OpenDevice()
CloseDevice()
SyncRead()
SyncWrite()
DeviceIOCtl()

PendDeviceFlag()
PostDeviceFlag()

(return)

(interrupt)

MyThread::Run()

ISR

Device Driver

Device Flag
3-56 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
C Driver Code:

void* MyDevice_DispatchFunction(VDK_DispatchID inCode,

VDK_DispatchUnion inData);

C++ Driver Code:

void* MyDevice::DispatchFunction(VDK::DispatchID inCode,

VDK::DispatchUnion &inData);

The first parameter is an enumeration that specifies why the dispatch
function has been called:

enum VDK_DispatchID

{

VDK_kIO_Init,

VDK_kIO_Activate,

VDK_kIO_Open,

VDK_kIO_Close,

VDK_kIO_SyncRead,

VDK_kIO_SyncWrite,

VDK_kIO_IOCtl

};

The second parameter is a union whose value depends on the enumeration
value:

union VDK_DispatchUnion

{

struct OpenClose_t

{

void **dataH;

char *flags; /* used for kIO_Open only */

};

struct ReadWrite_t

{

void **dataH;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-57
for 16-bit Processors

I/O Interface
VDK_Ticks timeout;

unsigned int dataSize;

int *data;

};

struct IOCtl_t

{

void **dataH;

VDK_Ticks timeout;

int command;

char *parameters;

};

};

The values in the union are only valid when the enumeration specifies that
the dispatch function has been called from the thread domain (kIO_Open,
kIO_Close, kIO_SyncRead, kIO_SyncWrite, kIO_IOCtl).

A device driver’s dispatch function can be structured as follows:

In C:

void* MyDevice_DispatchFunction(VDK_DispatchID inCode,

VDK_DispatchUnion inData)

{

switch(inCode)

{

case VDK_kIO_Init:

/* Init the device */

case VDK_kIO_Activate:

/* Get more data ready for the ISR */

case VDK_kIO_Open:

/* A thread wants to open the device... */

/* Allocate memory and prepare everything else */

case VDK_kIO_Close:

/* A thread is closing a connection to the device...*/

/* Free all the memory, and do anything else */
3-58 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
case VDK_kIO_SyncRead:

/* A thread is reading from the device */

/* Return an unsigned int of the num. of bytes read */

case VDK_kIO_SyncWrite:

/* A thread is writing to the device */

/* Return an unsigned int of the number of bytes */

/* written */

case VDK_kIO_IOCtl:

/* A thread is performing device-specific actions: */
default:

/* Invalid DispatchID code */

return 0;

}

}

In C++:

void* MyDevice::DispatchFunction(VDK::DispatchID inCode,

VDK::DispatchUnion &inData)

{

switch(inCode)

{

case VDK::kIO_Init:

/* Init the device */

case VDK::kIO_Activate:

/* Get more data ready for the ISR */

case VDK::kIO_Open:

/* A thread wants to open the device... */

/* Allocate memory and prepare everything else */

case VDK::kIO_Close:

/* A thread is closing a connection to the device...*/

/* Free all the memory, and do anything else */

case VDK::kIO_SyncRead:

/* A thread is reading from the device */

/* Return an unsigned int of the num. of bytes read */
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-59
for 16-bit Processors

I/O Interface
case VDK::kIO_SyncWrite:

/* A thread is writing to the device */

/* Return an unsigned int of the number of bytes */

/* written */

case VDK::kIO_IOCtl:

/* A thread is performing device-specific actions: */

default:

/* Invalid DispatchID code */

return 0;

}

}

Each of the different cases in the dispatch function are discussed below.

Init

The device dispatch function is called with the VDK_kIO_Init parameter
for C style device and VDK::kIO_Init for C++ style drivers at system boot
time. All device-specific data structures and system resources should be set
up at this time. The device driver should not call any APIs that throw an
error or might block. Additionally, the init function is called within a crit-
ical region, and the device driver should not push/pop critical regions, or
wait on interrupts.

Open or Close

When a thread opens or closes a device with OpenDevice() or CloseDe-
vice(), the device dispatch function is called with VDK_kIO_Open or
VDK_kIO_Close. The dispatch function is called from the thread domain,
so any stack-based variables are local to that thread. Access to shared data
(data that may be accessed by threads and/or interrupts and/or device
driver activate functions) should be appropriately protected by the use of
unscheduled regions, critical regions, or other means.
3-60 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
When a thread calls the dispatch function attempting to open or close a
device, the API passes a union to the device dispatch function whose value
is defined with the OpenClose_t of the VDK_DispatchUnion. The
OpenClose_t is defined as follows.

struct OpenClose_t

{

void **dataH;

char *flags; /* used for kIO_Open only */

};

OpenClose_t.dataH: A pointer to a thread-specific location that a device
driver can use to hold any thread-specific resources. For example, a thread
can malloc space for a structure that describes the state of a thread associ-
ated with a device. The pointer to the structure can be stored in *dataH,
which is then accessible to every other dispatch call involving this thread.
A device driver can free the space when the thread calls CloseDevice().

OpenClose_t.flags: The second parameter passed to an OpenDevice()
call is supplied to the dispatch function as the value of
OpenClose_t.flags. This is used to pass any device-specific flags relevant
to the opening of a device. Note that this part of the union is not used on
a call to CloseDevice().

Read or Write

A thread that needs to read or write to a device it has opened calls Syn-
cRead() or SyncWrite(). The dispatch function is called in the thread
domain and on the thread’s stack. These functions call the device dispatch
function with the parameters passed to the API in the VDK_DispatchUnion,
and the flags VDK_kIO_SyncRead or VDK_kIO_SyncWrite. The ReadWrite_t
is defined as follows:

struct ReadWrite_t

{

void **dataH;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-61
for 16-bit Processors

I/O Interface
VDK::Ticks timeout;

unsigned int dataSize;

int *data;

};

ReadWrite_t.dataH: A thread-specific location, which is passed to the dis-
patch function on the opening of a device by an OpenDevice() call. This
variable can be used to store a pointer to a thread-specific data structure
detailing what state the thread is in while dealing with the device.

ReadWrite_t.timeout: The amount of time in Ticks that a thread is will-
ing to wait for the completion of a SyncRead() or SyncWrite() call. If this
timeout behavior is required, it must be implemented by using the value
of ReadWrite_t.timeout as an argument to an appropriate PendDevice-
Flag() call in the dispatch function.

ReadWrite_t.dataSize: The amount of data that the thread reads from or
writes to the device.

ReadWrite_t.data: A pointer to the location that the thread writes the
data to (on a read), or reads from (on a write).

Like calls to the device dispatch function for opening and closing, the calls
to read and write are not protected with a critical or unscheduled region.
If a device driver accesses global data structures during a read or write, the
access should be protected with critical or unscheduled regions. See the
discussion in “Device Drivers” on page 3-51 for more information about
regions and pending.

IOCtl

The VDK supplies an interface for threads to control a device’s parameters
with the DeviceIOCtl() API. When a thread calls DeviceIOCtl(), the
function sets up some parameters and calls the specified device’s dispatch
function with the value VDK_kIO_IOCtl and the VDK_DispatchUnion set up
as a IOCtl_t.
3-62 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
The IOCtl_t is defined as follows:

struct IOCtl_t

{

void **dataH;

VDK_Ticks timeout;

int command;

char *parameters;

};

IOCtl_t.dataH: A thread-specific location, which is passed to the dispatch
function on the opening of a device by an OpenDevice() call. This vari-
able can be used to store a pointer to a thread-specific data structure
detailing what state the thread is in while dealing with the device.

IOCtl_t.timeout: The amount of time in ticks that a thread is willing to
wait for the completion of a DeviceIOCtl() call. If this timeout behavior is
required, it must be implemented by using the value of IOCtl_t.timeout
as an argument to an appropriate PendDeviceFlag() call in the dispatch
function.

IOCtl_t.command: A device-specific integer (second parameter from the
DeviceIOCtl() function).

IOCtl_t.parameters: A device-specific pointer (third parameter from the
DeviceIOCtl() function).

Like read/write and open/close, a device dispatch function call for IOCtl is
not protected by a critical or unscheduled region. If a device accesses glo-
bal data structures, the device driver should protect them with a critical or
an unscheduled region.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-63
for 16-bit Processors

I/O Interface
Activate

Often a device driver needs to respond to state changes caused by ISRs.
The device dispatch function is called with a value VDK_kIO_Activate at
some point after an ISR has called the macro
VDK_ISR_ACTIVATE_DEVICE_().

When the ISR calls VDK_ISR_ACTIVATE_DEVICE_(), a flag is set
indicating that a device has been activated, and the low priority software
interrupt is triggered to run (see “Reschedule ISR” on page 3-50). When
the scheduler is entered through the low priority software interrupt, the
device’s dispatch function is called with the VDK_kIO_Activate value.

The activate part of a device dispatch function should handle posting sig-
nals, so that threads waiting on certain device states can continue running.
For example, assume that a D/A ISR runs out of data in its buffer. The
ISR would call VDK_ISR_ACTIVATE_DEVICE_() with the IOID of the
device driver. When the device dispatch function is called with the
VDK_kIO_Activate, the device posts a device flag or semaphore that
reschedules any threads that are pending.

 The PostDeviceFlag(), PostSemaphore(), PushCriticalRegion(),
and PopCriticalRegion() APIs are the only VDK APIs that it is safe
to call from the activate function.

Device Flags

Device flags are synchronization primitives, similar to semaphores, events,
and messages, but device flags have a special association with device driv-
ers. Like semaphores and events, a thread can pend on a device flag. This
means that the thread waits until the flag is posted by a device driver. The
post typically occurs from the activate function of a device driver’s dis-
patch function.
3-64 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
Pending on a Device Flag

When a thread pends on a device flag, unlike with semaphores, events,
and messages, the thread always blocks. The thread waits until the flag is
posted by another call to the device’s dispatch function. When the flag is
posted, all threads that are pending on the device flag are moved to the
ready queue. Since posting a device flag with the PostDeviceFlag() API
moves an indeterminate number of threads to the ready queue, the call is
not deterministic. For more information about posting device flags, see
“Posting a Device Flag” on page 3-66.

The rules for pending on device flags are strict compared to other types of
signals. The “stack” of critical regions must be exactly one level deep when
a thread pends on a device flag. In other words, with interrupts enabled,
call PushCriticalRegion() exactly once prior to calling PendDeviceFlag()
from a thread. The reason for this condition becomes clear if you consider
the reason for pending. A thread pends on a device flag when it is waiting
for a condition to be set from an ISR. However, you must enter a critical
region before examining any condition that may be modified from an ISR
to ensure that the value you read is valid. Furthermore, PendDeviceFlag()
pops the critical region stack once, effectively balancing the earlier call to
PushCriticalRegion(). For example, a typical device driver uses device flags
in the following manner.

VDK_PushCriticalRegion();

while(should_loop != 0)

{

/* ... */

/* access global data structures */

/* and figure out if we should keep looping */

/* ... */

/* Wait for some device state */

VDK_PendDeviceFlag();
/* Must reenter the critical region */

VDK_PushCriticalRegion();
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-65
for 16-bit Processors

I/O Interface
}

VDK_PopCriticalRegion();

Figure 3-17 illustrates the process of pending on a device flag.

Posting a Device Flag

Like semaphores and messages, a device flag can be posted. A device dis-
patch function posts a device flag with a call to PostDeviceFlag(). Unlike
semaphores and messages, the call moves all threads pending on the device
flag to the ready queue and continues execution. Once PostDeviceFlag()
returns, subsequent calls to PendDeviceFlag() cause the thread to block (as
before).

Note that the PostDeviceFlag() API does not throw any errors. The reason
for this is that the API function is called typically from the dispatch func-
tion when the dispatch function has been called with VDK_kIO_Activate.
This is because the device dispatch function operates on the kernel’s stack
when it is called with VDK_kIO_Activate rather than on the stack of a
thread.

Figure 3-18 illustrates the process of posting a device flag.

Figure 3-17. Pending on a Device Flag

Device Flag is
unavailable

Device Driver posts
Device Flag Order threads by

priority, then FIFO
...
...
...

Thread 1

Thread 1 continues execution

Call Thread 1's
ErrorFunction()

Yes

1). Invoke Scheduler

No

Is timeout
reached?

Yes

Is Thread 1
of the

highest priority?

No

Device Driver's
MyDispatch()

function

Is
kNoTimeoutError

set?

Yes

No

All pending threadsOpen()
Close()
SyncRead()
SyncWrite()
IOCtl()

2). Switch out
Thread 1

PendDeviceFlag()

Ready Queue
3-66 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
General Notes

Keep the following tips in mind while writing device drivers. Although
many of these topics also apply to threads, they deserve special mention
with respect to device drivers.

Variables

Device drivers and ISRs are closely linked. Since ISRs and the dispatch
function access the same variables, the easiest way is to declare the vari-
ables in the C/C++ device driver routine, and to access them as extern
from within the assembly ISR. When declaring these variables in the
C/C++ source file, you must declare them as volatile to ensure that the
compiler optimizer is aware that their values may be changed externally to
the C/C++ code at any time. Additionally, care must be taken in the ISR
to refer to variables defined in C/C++ code correctly, by their deco-
rated/mangled names.

Critical/Unscheduled Regions

Since many of the data structures and variables associated with a device
driver are shared between multiple threads and ISRs, access to them must
be protected within critical regions and unscheduled regions. Critical

Figure 3-18. Posting a Device Flag

Thread1 continues execution

Device Flag
is available

Device Flag is
unavailable

All pending threads
Device Flag
is available

Ready Queue

Thread 1

Device Driver's
MyDispatch()

functionOpen()
Close()
SyncRead()
SyncWrite()
IOCtl()

PostDeviceFlag()

Order threads by
priority, then FIFO
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-67
for 16-bit Processors

Memory Pools
regions keep ISRs from modifying data structures unexpectedly, and
unscheduled regions prevent other threads from modifying data
structures.

Care must taken when pending on device flags to remain in the right
regions. Device flags must be pended on from within a non-nested critical
region, as discussed in “Pending on a Device Flag” on page 3-65.

Memory Pools
Common problems experienced with memory allocation using malloc are
fragmentation of the heap as well as non-deterministic search times for
finding a free area of the heap with the requested size. The memory pool
manager uses the defined pools to provide an efficient, deterministic
memory allocation scheme as an alternative to malloc. The use of memory
pools for memory allocation can be advantageous when an application
requires significant allocation and deallocation of objects of the same size.

A memory pool is an area of memory subdivided into equally sized mem-
ory blocks. Each memory pool contains memory blocks of a single size,
but multiple pools can be defined, each with a different block size. Fur-
thermore, on architectures that support the definition of multiple heaps,
the heap that a pool is to use can be specified. The maximum number of
active memory pools in the system is set up when the project is built.

Memory Pool Functionality
Memory pools can be created either at boot time, or dynamically at run
time using the CreatePool() or CreatePoolEx() APIs. When creating a
memory pool, the block size and number of blocks in the pool are speci-
fied. The memory pool manager allocates the memory required for the
pool and splits it into blocks at creation time if required. VDK allows the
specification that blocks should be created on demand at run time (during
a call to MallocBlock()), rather than during the creation of a pool. On
3-68 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Using VDK
demand creation of blocks reduces the overhead at the time the pool is
created but increases the runtime overhead when obtaining a new block
from the pool. Additionally, allocation and deallocation (by a call to Free-
Block() or LocateAndFreeBlock()) of a block from a pool is deterministic
if the blocks are created when the pool is created.

In order to conform to memory alignment constraints, the block size spec-
ified for a pool is rounded up internally, so that its size is a multiple of the
size of a pointer on the architecture in question—all block addresses
returned by MallocBlock() are a multiple of sizeof(void *).

The GetNumAllocatedBlocks() and GetNumFreeBlocks() APIs can be
used to determine the number of used or available blocks respectively in a
particular pool.

Multiple Heaps
By default all VDK elements are allocated in the system_heap. In previous
versions of VDK, multiple heaps could be used in the definition of mem-
ory pools on processors for which multiple heap support is provided. This
mechanism has been extended and VDK can now use multiple heaps
defined at link time (dynamically created heaps are not allowed) to specify
which area of memory is used to allocate the various VDK elements
(semaphores, messages, thread stacks, and so on). The developer is respon-
sible for setting up the heaps. For more information regarding how to
specify multiple heaps, refer to the C/C++ Compiler and Library Manual.

To specify a VDK heap, users create a new heap in VisualDSP++, which
has a VDK HeapID. An ID is then associated with this name. This ID
must be the same one used in setting up the heap under the C/C++
run-time (which is an integer or a string depending on the processor). For
more information on how to set up VDK heaps, see the online
documentation.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 3-69
for 16-bit Processors

Thread Local Storage
Thread Local Storage
Thread local storage allows the association of data with threads on a per
thread basis. A typical usage of this functionality involves allocating the
data required by individual threads for a thread-safe library function, for
example, to store the thread-specific value of errno for each thread for the
C runtime libraries. There are eight thread local storage slots available for
this purpose. Before a value is stored in the relevant slot in the thread's
slot table, an entry must be allocated in the global slot table by using
either AllocateThreadSlot() or AllocateThreadSlotEx(). If a slot is avail-
able in the global table, then the corresponding slot is also reserved in each
thread slot table. These APIs return FALSE if there are no free slots avail-
able. An allocated entry in the global slot table can subsequently be freed
by a call to FreeThreadSlot(). This mechanism for allocating slots provides
one time initialization of slots for thread-specific data for library functions
— slots are allocated in every thread's slot table on the first calling of the
library function by any thread.

Once a slot has been allocated in the global slot table, the corresponding
value in the slot table of a particular thread can be set by a call to Set-
ThreadSlotValue() from the thread in question. The value is of type
void * and so can be used to store an integer value or a pointer to allo-
cated memory. The use of AllocateThreadSlotEx() to allocate a slot allows
the specification of a cleanup function to be called on thread destruction
to deal with any dynamically allocated memory that has been associated
with a thread slot. Finally, GetThreadSlotValue() can be used to obtain
the value stored in the slot table of a particular thread.
3-70 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

4 VDK DATA TYPES

VDK software comes with the predefined set of data types. This chapter

describes the current release of the kernel. Future releases may include
more types.

Data Type Summary
VDK data types are summarized in Table 4-1. A description of each type
begins on page 4-4.

Table 4-1. VDK Data Types

Data Type Reference Page

Bitfield on page 4-4

DeviceDescriptor on page 4-5

DeviceFlagID on page 4-6

DeviceInfoBlock on page 4-7

DispatchID on page 4-8

DispatchUnion on page 4-9

DSP_Family on page 4-11

DSP_Product on page 4-12

EventBitID on page 4-14

EventID on page 4-15

EventData on page 4-16
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-1
for 16-bit Processors

Data Type Summary
HeapID on page 4-17

HistoryEnum on page 4-18

IMASKStruct on page 4-20

IOID on page 4-21

IOTemplateID on page 4-22

MarshallingCode on page 4-23

MarshallingEntry on page 4-25

MessageDetails on page 4-26

MessageID on page 4-27

MsgChannel on page 4-28

MsgWireFormat on page 4-30

PanicCode on page 4-32

PayloadDetails on page 4-33

PFMarshaller on page 4-34

PoolID on page 4-36

Priority on page 4-37

RoutingDirection on page 4-38

SemaphoreID on page 4-39

SystemError on page 4-40

ThreadCreationBlock on page 4-44

ThreadID on page 4-46

ThreadStatus on page 4-47

ThreadType on page 4-49

Table 4-1. VDK Data Types (Cont’d)

Data Type Reference Page
4-2 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
Ticks on page 4-50

VersionStruct on page 4-51

Table 4-1. VDK Data Types (Cont’d)

Data Type Reference Page
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-3
for 16-bit Processors

Bitfield
Bitfield
The Bitfield type is used to store a bit pattern. The size of a Bitfield item is
the size of a data word:

• 16 bits on ADSP-219x DSPs

• 32 bits on ADSP-21xxx, ADSP-TSxxx, and Blackfin processors

In C:

typedef unsigned int VDK_Bitfield;

In C++:

typedef unsigned int VDK::Bitfield;
4-4 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
DeviceDescriptor
The DeviceDescriptor type is used to store the unique identifier of an
opened device. The value is obtained dynamically as the return value from
OpenDevice().

In C:

typedef unsigned int VDK_DeviceDescriptor;

In C++:

typedef unsigned int VDK::DeviceDescriptor;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-5
for 16-bit Processors

DeviceFlagID
DeviceFlagID
The DeviceFlagID type is used to store the unique identifier of a device
flag.

enum DeviceFlagID

{

/* Defined by IDDE in the vdk.h file. */

};

The enumeration in Vdk.h will only contain the IDs of the device flags
enabled at boot time. Any dynamically created device flags will have an ID
of the same type to allow the compiler to do type checking and prevent
errors.

In C:

typedef enum DeviceFlagID VDK_DeviceFlagID;

In C/C++:

typedef enum DeviceFlagID VDK::DeviceFlagID;
4-6 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
DeviceInfoBlock
The DeviceInfoBlock structure holds information on the device driver
that is in use by a routing thread, and is passed as an argument to marshal-
ling functions. All fields except the DeviceDescriptor are private to VDK
and should not be used by user code.

In C:

typedef struct

{

VDK_DeviceDescriptor dd;

VDK_PFDispatchFunction pfDispatchFunction;

struct VDK_IOAbstractBase *pDevObj;

struct VDK_DeviceControlBlock *pDcb;

} VDK_DeviceInfoBlock;

In C++:

typedef struct

{

VDK::DeviceDescriptor dd;

VDK::PFDispatchFunction pfDispatchFunction;

struct VDK::IOAbstractBase *pDevObj;

struct VDK::DeviceControlBlock *pDcb;

} VDK::DeviceInfoBlock;

dd is the descriptor for the device. Marshalling functions may use it as an
argument for their SyncRead() and SyncWrite() calls.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-7
for 16-bit Processors

DispatchID
DispatchID
The DispatchID type enumerates a device driver’s dispatch commands.

In C:

enum VDK_DispatchID

{

VDK_kIO_Init,

VDK_kIO_Activate,

VDK_kIO_Open,

VDK_kIO_Close,

VDK_kIO_SyncRead,

VDK_kIO_SyncWrite,

VDK_kIO_IOCtl

};

In C++:

enum VDK::DispatchID

{

VDK::kIO_Init,

VDK::kIO_Activate,

VDK::kIO_Open,

VDK::kIO_Close,

VDK::kIO_SyncRead,

VDK::kIO_SyncWrite,

VDK::kIO_IOCtl

};
4-8 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
DispatchUnion
A variable of the DispatchUnion type is passed as a parameter to a device
driver dispatch function. Calls to OpenDevice(), SyncRead(), Syn-
cWrite(), and DeviceIOCtl() sets up the relevant members of this union
before calling the device driver’s dispatch function.

In C:

union VDK_DispatchUnion

{

struct

{

void **dataH;

char *flags; /* used for kIO_Open only */

} OpenClose_t;

struct

{

void **dataH;

VDK_Ticks timeout;

unsigned int dataSize;

char *data;

} ReadWrite_t;

struct

{

void **dataH;

void *command;

char *parameters;

} IOCtl_t;

};

In C++:

union VDK::DispatchUnion

{

struct
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-9
for 16-bit Processors

DispatchUnion
{

void **dataH;

char *flags; /* used for kIO_Open only */

} OpenClose_t;

struct

{

void **dataH;

VDK::Ticks timeout;

unsigned int dataSize;

char *data;

} ReadWrite_t;

struct

{

void **dataH;

void *command;

char *parameters;

} IOCtl_t;

};
4-10 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
DSP_Family
The DSP_Family type enumerates the processor families supported by
VDK. See also VersionStruct on page 4-51.

In C:

enum VDK_DSP_Family

{

VDK_kUnknownFamily,

VDK_kSHARC,

VDK_k219X,

VDK_kTSXXX,

VDK_kBLACKFIN

};

In C++:

enum VDK::DSP_Family

{

VDK::kUnknownFamily,

VDK::kSHARC,

VDK::k219X,

VDK::kTSXXX,

VDK::kBLACKFIN

};
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-11
for 16-bit Processors

DSP_Product
DSP_Product
The DSP_Product type enumerates the devices supported by VDK. See
also VersionStruct on page 4-51.

In C:

enum VDK_DSP_Product

{

VDK_kUnknownProduct,

VDK_k21060,

VDK_k21061,

VDK_k21062,

VDK_k21065,

VDK_k21160,

VDK_k21161,

VDK_k21262,

VDK_k21266,

VDK_k2191,

VDK_k2192,

VDK_k2195,

VDK_k2196,

VDK_kBF535,

VDK_kBF532,

VDK_kBF531,

VDK_kBF533,

VDK_kAD6532,

VDK_kBF561,

VDK_kTS101,

VDK_kTS201,

VDK_kTS202,

VDK_kTS203

};
4-12 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
In C++:

enum VDK::DSP_Product

{

VDK::kUnknownProduct,

VDK::k21060,

VDK::k21061,

VDK::k21062,

VDK::k21065,

VDK::k21160,

VDK::k21161,

VDK::k21262,

VDK::k21266,

VDK::k2191,

VDK::k2192,

VDK::k2195,

VDK::k2196,

VDK::kBF535,

VDK::kBF532,

VDK::kBF531,

VDK::kBF533,

VDK::kAD6532,

VDK::kBF561,

VDK::kTS101,

VDK::kTS201,

VDK::kTS202,

VDK::kTS203

};
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-13
for 16-bit Processors

EventBitID
EventBitID
The EventBitID type is used to store the unique identifier of an event bit.
The total number of event bits in a system is the size of a data word minus
one:

• 15 bits on ADSP-219x DSPs

• 31 bits on ADSP-21xxx, ADSP-TSxxx, and Blackfin processors

enum EventBitID

{

/* Defined by IDDE in the vdk.h file. */

};

In C:

typedef enum EventBitID VDK_EventBitID;

In C/C++:

typedef enum EventBitID VDK::EventBitID;
4-14 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
EventID
The EventID type is used to store the unique identifier of an event. The
total number of events in a system is the size of a data word minus one:

• 15 bits on ADSP-219x DSPs

• 31 bits on ADSP-21xxx, ADSP-TSxxx, and Blackfin processors

enum EventID

{

/* Defined by IDDE in the vdk.h file. */

};

In C:

typedef enum EventID VDK_EventID;

In C/C++:

typedef enum EventID VDK::EventID;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-15
for 16-bit Processors

EventData
EventData
The EventData type is used to store the data associated with an event. See
also “Behavior of Events” on page 3-38.

In C:

typedef struct

{

bool matchAll;

VDK_Bitfield values;

VDK_Bitfield mask;

} VDK_EventData;

In C++:

typedef struct

{

bool matchAll;

VDK::Bitfield values;

VDK::Bitfield mask;

} VDK::EventData;
4-16 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
HeapID
The HeapID type is used to store the unique identifier of a VDK Heap.
This data type is only available on processors for which multiple heap sup-
port is provided.

enum HeapID

{

/* Defined by IDDE in the vdk.h file */

};

In C:

typedef enum HeapID VDK_HeapID;

In C/C++:

typedef enum HeapID VDK::HeapID;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-17
for 16-bit Processors

HistoryEnum
HistoryEnum
The HistoryEnum type enumerates the events that can be logged with a
call to the LogHistoryEvent() API or
VDK_ISR_LOG_HISTORY_EVENT_() macro.

In C:

enum VDK_HistoryEnum {
VDK_kThreadCreated = INT_MIN,

VDK_kThreadDestroyed

VDK_kSemaphorePosted,

VDK_kSemaphorePended,

VDK_kEventBitSet,

VDK_kEventBitCleared,

VDK_kEventPended,

VDK_kDeviceFlagPended,

VDK_kDeviceFlagPosted,

VDK_kDeviceActivated,

VDK_kThreadTimedOut,

VDK_kThreadStatusChange,

VDK_kThreadSwitched,

VDK_kMaxStackUsed,

VDK_kPoolCreated,

VDK_kPoolDestroyed,

VDK_kDeviceFlagCreated,

VDK_kDeviceFlagDestroyed,

VDK_kMessagePosted,

VDK_kMessagePended,

VDK_kSemaphoreCreated,

VDK_kSemaphoreDestroyed,

VDK_kMessageCreated,

VDK_kMessageDestroyed,

VDK_kMessageTakenFromQueue,
4-18 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
VDK_kUserEvent = 1
};

In C++:

enum VDK::HistoryEnum

{

VDK::kThreadCreated = INT_MIN,

VDK::kThreadDestroyed,

VDK::kSemaphorePosted,

VDK::kSemaphorePended,

VDK::kEventBitSet,

VDK::kEventBitCleared,

VDK::kEventPended,

VDK::kDeviceFlagPended,

VDK::kDeviceFlagPosted,

VDK::kDeviceActivated,

VDK::kThreadTimedOut,

VDK::kThreadStatusChange,

VDK::kThreadSwitched,

VDK::kMaxStackUsed,

VDK::kPoolCreated,

VDK::kPoolDestroyed,

VDK::kDeviceFlagCreated,

VDK::kDeviceFlagDestroyed,

VDK::kMessagePosted,

VDK::kMessagePended,

VDK::kSemaphoreCreated,

VDK::kSemaphoreDestroyed,

VDK::kMessageCreated,

VDK::kMessageDestroyed,

VDK::kMessageTakenFromQueue,

VDK::kUserEvent = 1

};
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-19
for 16-bit Processors

IMASKStruct
IMASKStruct
The IMASKStruct type is a platform-dependent type used by the ClearIn-
terruptMaskBits(), GetInterruptMask(), and SetInterruptMaskBits() APIs
to modify the interrupt mask.

For the TigerSHARC DSP family, this type is defined as:

In C:

typedef unsigned long long VDK_IMASKStruct;

In C++:

typedef unsigned long long VDK::IMASKStruct;

On the ADSP-219x, Blackfin, and SHARC processor families, the type is
defined as:

In C:

typedef unsigned int VDK_IMASKStruct;

In C++:

typedef unsigned int VDK::IMASKStruct;
4-20 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
IOID
The IOID type is used to store the unique identifier of an I/O object.

enum IOID

{

/* Defined by IDDE in the vdk.h file. */

};

In C:

typedef enum IOID VDK_IOID;

In C/C++:

typedef enum IOID VDK::IOID;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-21
for 16-bit Processors

IOTemplateID
IOTemplateID
The IOTemplateID type is used to store the unique identifier of an I/O
object class.

enum IOTemplateID

{

/* Defined by IDDE in the vdk.h file. */

};

In C:

typedef enum IOTemplateID VDK_IOTemplateID;

In C/C++:

typedef enum IOTemplateID VDK::IOTemplateID;
4-22 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
MarshallingCode
The MarshallingCode type enumerates the possible reasons for calling a
payload marshalling function.

In C:

enum VDK_MarshallingCode

{

TRANSMIT_AND_RELEASE,

ALLOCATE_AND_RECEIVE,

ALLOCATE,

RELEASE

};

In C++:

enum VDK::MarshallingCode

{

TRANSMIT_AND_RELEASE,

ALLOCATE_AND_RECEIVE,

ALLOCATE,

RELEASE

};

TRANSMIT_AND_RELEASE indicates that the marshalling function must per-
form the following steps in sequence:

1. Modify the message packet,if necessary (optional)

2. Transmit the message packet

3. Transmit the payload contents (optional in certain cases)

4. Deallocate the payload memory
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-23
for 16-bit Processors

MarshallingCode
ALLOCATE_AND_RECEIVE indicates that the marshalling function must per-
form the following steps in sequence:

1. Allocate memory for a payload of the type (and size) specified by
the message packet

2. Receive the payload contents into the payload memory

ALLOCATE indicates that the marshalling function must allocate memory
for a payload of the type (and size) specified by the message packet.

RELEASE indicates that the marshalling function must deallocate the pay-
load memory.
4-24 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
MarshallingEntry
The MarshallingEntry structures form the elements of the marshalling
table array g_vMarshallingTable (defined by the IDDE in Vdk.cpp).

In C:

typedef struct

{

VDK_PFMarshaller pfMarshaller;

unsigned int area;

} VDK_MarshallingEntry;

In C++:

typedef struct

{

VDK::PFMarshaller pfMarshaller;

unsigned int area;

} VDK::MarshallingEntry;

pfMarshaller is a pointer to a system- or user-defined marshalling
function.

area is used by standard marshalling to hold the Heap index (for heap
marshalling) or PoolID (for pool marshalling) in order to parameterize the
operation of the standard functions. It may also be used to parameterize
the operation of custom marshalling functions.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-25
for 16-bit Processors

MessageDetails
MessageDetails
The MessageDetails structure combines the three attributes that describe
the most recent posting of a message.

In C:

typedef struct

{

VDK_MsgChannel channel;

VDK_ThreadID sender;

VDK_ThreadID target;

} VDK_MessageDetails;

In C++:

typedef struct

{

VDK::MsgChannel channel;

VDK::ThreadID sender;

VDK::ThreadID target;

} VDK::MessageDetails;
4-26 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
MessageID
The MessageID type is used to store the unique identifier of a message.

enum MessageID

{

/* Defined by IDDE in the vdk.h file. */

};

The enumeration in Vdk.h will be empty. All the messages are dynamically
allocated and have an ID of that type to allow the compiler to do type
checking and prevent errors.

In C:

typedef enum MessageID VDK_MessageID;

In C/C++:

typedef enum MessageID VDK::MessageID;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-27
for 16-bit Processors

MsgChannel
MsgChannel
The MsgChannel type enumerates the channels a message can be posted
or pended on.

In C:

enum VDK_MsgChannel

{

VDK_kMsgWaitForAll = 1 << 15,

VDK_kMsgChannel1 = 1 << 14,

VDK_kMsgChannel2 = 1 << 13,

VDK_kMsgChannel3 = 1 << 12,

VDK_kMsgChannel4 = 1 << 11,

VDK_kMsgChannel5 = 1 << 10,

VDK_kMsgChannel6 = 1 << 9,

VDK_kMsgChannel7 = 1 << 8,

VDK_kMsgChannel8 = 1 << 7,

VDK_kMsgChannel9 = 1 << 6,

VDK_kMsgChannel10 = 1 << 5,

VDK_kMsgChannel11 = 1 << 4,

VDK_kMsgChannel12 = 1 << 3,

VDK_kMsgChannel13 = 1 << 2,

VDK_kMsgChannel14 = 1 << 1,

VDK_kMsgChannel15 = 1 << 0

};

In C/C++:

enum VDK::MsgChannel

{

VDK::kMsgWaitForAll = 1 << 15,

VDK::kMsgChannel1 = 1 << 14,

VDK::kMsgChannel2 = 1 << 13,

VDK::kMsgChannel3 = 1 << 12,

VDK::kMsgChannel4 = 1 << 11,
4-28 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
VDK::kMsgChannel5 = 1 << 10,

VDK::kMsgChannel6 = 1 << 9,

VDK::kMsgChannel7 = 1 << 8,

VDK::kMsgChannel8 = 1 << 7,

VDK::kMsgChannel9 = 1 << 6,

VDK::kMsgChannel10 = 1 << 5,

VDK::kMsgChannel11 = 1 << 4,

VDK::kMsgChannel12 = 1 << 3,

VDK::kMsgChannel13 = 1 << 2,

VDK::kMsgChannel14 = 1 << 1,

VDK::kMsgChannel15 = 1 << 0

};
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-29
for 16-bit Processors

MsgWireFormat
MsgWireFormat
The MsgWireFormat structure is used to transfer a message across a com-
munication link. It is the structure written to and read from the device
drivers that manage the links.

In C:

typedef struct

{

unsigned int header;

VDK_PayloadDetails payload;

} VDK_MsgWireFormat;

In C++:

typedef struct

{

unsigned int header;

VDK::PayloadDetails payload;

} VDK::MsgWireFormat;

MsgWireFormat is 4 words (16 bytes or 128 bits) in size, of which 3 words
are made up of the payload description. The remaining (first) word is the
message header, which contains the other information about the message,
packed using the following format:

Bit Position 31 to 28 27 to 23 22 to 14 13 to 9 8 to 0

Word 0 Channel Destination
Node

Destination
Thread

Source Node Source Thread

Word 1 Payload Type

Word 2 Payload Address

Word 3 Payload Length
4-30 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
The header bit allocation allows for up to 32 nodes in the system and up
to 512 threads per node.

Because there are only 15 message channel numbers (1 to 15) used by
VDK, message packets having header bits 28 to 31 set to all zeros (that is,
the non-existent channel 0) are special cases which may be used internally
by VDK (or by the device drivers) as private control messages.

The message ID is not transferred in the packet, as the message will
have a different ID on the destination processor.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-31
for 16-bit Processors

PanicCode
PanicCode
The PanicCode type enumerates the possible causes of VDK raising a Ker-
nel Panic. When VDK enters Kernel Panic, the cause is stored in the
variable VDK::g_KernelPanicCode in C++ (C++ syntax must be used).

In C:

enum VDK_PanicCode

{

VDK_kNoPanic=0,

VDK_kThreadError,

VDK_kBootError

};

In C/C++:

enum VDK::PanicCode

{

VDK::kNoPanic=0,

VDK::kThreadError,

VDK::kBootError

};

g_KernelPanicCode has a value of kNoPanic when KernelPanic has not
been called.

g_KernelPanicCode has a value of kThreadError when a thread's error
function does not handle the error (default behavior) or we have tried to
dispatch an error when the running thread was the idle thread.

g_KernelPanicCode has a value of kBootError when there has been a prob-
lem creating any of the VDK boot components (threads, semaphores,
memory pools, and so on).
4-32 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
PayloadDetails
The PayloadDetails structure combines the three attributes that describe a
message payload.

In C:

typedef struct

{

int type;

unsigned int size;

void *addr;

} VDK_PayloadDetails;

In C/C++:

typedef struct

{

int type;

unsigned int size;

void *addr;

} VDK::PayloadDetails;

type is an application-defined value that specifies the interpretation given
to the contents of the payload. Negative values of payload type indicate a
user-defined marshalled type, which can be managed automatically by
VDK for the purposes of inter-processor messaging.

size is typically the size of the payload in the smallest addressable units of
the processor (sizeof(char)).

addr is typically a pointer to the beginning of the payload buffer.

However, depending on the application-defined interpretation of the pay-
load's type, the payload addr and size attributes may contain any
user-defined data that can be stored in two 32-bit fields.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-33
for 16-bit Processors

PFMarshaller
PFMarshaller
The PFMarshaller type is a pointer-to-function type, used to hold the
address of a system- or user-defined marshalling function.

In C:

typedef int (*VDK_PFMarshaller)(VDK_MarshallingCode code,

VDK_MsgWireFormat *inOutMsgPacket,

VDK_DeviceInfoBlock *pDev,

unsigned int area,

VDK_Ticks timeout);

In C/C++:

typedef int (*VDK::PFMarshaller)(VDK::MarshallingCode code,

VDK::MsgWireFormat *inOutMsgPacket,

VDK::DeviceInfoBlock *pDev,

unsigned int area,

VDK::Ticks timeout);

Parameters

code tells the marshalling function which operation(s) to perform (see
MarshallingCode).

inOutMsgPacket is a pointer to the formatted message packet.

pDev is a pointer to a DeviceInfoBlock structure describing the VDK
device driver for the connection.

area is the Heap index or PoolID used by standard marshalling.

timeout is the I/O timeout duration (usually set to 0, for indefinite wait).
4-34 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
The marshalling function may invoke the scheduler, depending on the
implementation. The return value from a marshalling function will usu-
ally be the result of a SyncRead() or SyncWrite() call that has been
performed internally, but this value is not presently used. Errors may be
thrown by the marshalling function, or by functions called by it.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-35
for 16-bit Processors

PoolID
PoolID
The PoolID type is used to store the unique identifier of a memory pool.

enum PoolID

{

/* Defined by IDDE in the vdk.h file. */

};

The enumeration in Vdk.h will only contain the IDs for the memory pools
enabled at boot time. Any dynamically created memory pools will have an
ID of the same type to allow the compiler to do type checking and prevent
errors.

In C:

typedef enum PoolID VDK_PoolID;

In C/C++:

typedef enum PoolID VDK::PoolID;
4-36 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
Priority
The Priority type is used to denote the scheduling priority level of a
thread:

• The highest priority is one (zero is reserved)

• The lowest priority is the size of a data word minus two.
For ADSP-219x DSPs—14 bits; for ADSP-21xxx, ADSP-TSxxx,
or Blackfin processors—30 bits.

In C:

enum VDK_Priority

{

VDK_kPriority1,

VDK_kPriority2,

VDK_kPriority3,

…

VDK_kPriority14/30

};

In C++:

enum VDK::Priority

{

VDK::kPriority1,

VDK::kPriority2,

VDK::kPriority3,

…

VDK::kPriority14/30

};
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-37
for 16-bit Processors

RoutingDirection
RoutingDirection
The RoutingDirection type enumerates the two distinct operating modes
of a routing thread. It is used to specify the operating mode of a routing
thread at the time of its creation.

In C:

enum VDK_RoutingDirection

{

kINCOMING,

kOUTGOING

} ;

In C++:

enum VDK::RoutingDirection

{

kINCOMING,

kOUTGOING

 } ;
4-38 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
SemaphoreID
The SemaphoreID type is used to store the unique identifier of a
semaphore.

enum SemaphoreID

{

/* Defined by IDDE in the vdk.h file. */

};

The enumeration in Vdk.h will only contain the IDs for the semaphores
enabled at boot time. Any dynamically created semaphores will have an
ID of the same type to allow the compiler to do type checking and prevent
errors.

In C:

typedef enum SemaphoreID VDK_SemaphoreID;

In C/C++:

typedef enum SemaphoreID VDK::SemaphoreID;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-39
for 16-bit Processors

SystemError
SystemError
The SystemError type enumerates system defined errors thrown to the
error handler.

In C:

enum VDK_SystemError

{

VDK_kUnknownThreadType = INT_MIN,

VDK_kUnknownThread,

VDK_kInvalidThread,

VDK_kThreadCreationFailure,

VDK_kUnknownSemaphore,

VDK_kUnknownEventBit,

VDK_kUnknownEvent,

VDK_kInvalidPriority,

VDK_kInvalidDelay,

VDK_kSemaphoreTimeout,

VDK_kEventTimeout,

VDK_kBlockInInvalidRegion,

VDK_kDbgPossibleBlockInRegion,

VDK_kInvalidPeriod,

VDK_kAlreadyPeriodic,

VDK_kNonperiodicSemaphore,

VDK_kDbgPopUnderflow,

VDK_kBadIOID,

VDK_kBadDeviceDescriptor,

VDK_kOpenFailure,

VDK_kCloseFailure,

VDK_kReadFailure,

VDK_kWriteFailure,

VDK_kIOCtlFailure,

VDK_kInvalidDeviceFlag,

VDK_kDeviceTimeout,
4-40 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
VDK_kDeviceFlagCreationFailure,

VDK_kMaxCountExceeded,

VDK_kSemaphoreCreationFailure,

VDK_kSemaphoreDestructionFailure,

VDK_kPoolCreationFailure,

VDK_kInvalidBlockPointer,

VDK_kInvalidPoolParms,

VDK_kInvalidPoolID,

VDK_kErrorPoolNotEmpty,

VDK_kErrorMallocBlock,

VDK_kMessageCreationFailure,

VDK_kInvalidMessageID,

VDK_kInvalidMessageOwner,

VDK_kInvalidMessageChannel,

VDK_kInvalidMessageRecipient,

VDK_kMessageTimeout,

VDK_kMessageInQueue,

VDK_kInvalidTimeout,

VDK_kInvalidTargetDSP,

VDK_kIOCreateFailure,

VDK_kHeapInitialisationFailure,

VDK_kInvalidHeapID,

VDK_kNoError = 0,

VDK_kFirstUserError,

VDK_kLastUserError = INT_MAX

};

In C++:

enum VDK::SystemError

{

VDK::kUnknownThreadType = INT_MIN,

VDK::kUnknownThread,

VDK::kInvalidThread,

VDK::kThreadCreationFailure,
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-41
for 16-bit Processors

SystemError
VDK::kUnknownSemaphore,

VDK::kUnknownEventBit,

VDK::kUnknownEvent,

VDK::kInvalidPriority,

VDK::kInvalidDelay,

VDK::kSemaphoreTimeout,

VDK::kEventTimeout,

VDK::kBlockInInvalidRegion,

VDK::kDbgPossibleBlockInRegion,

VDK::kInvalidPeriod,

VDK::kAlreadyPeriodic,

VDK::kNonperiodicSemaphore,

VDK::kDbgPopUnderflow,

VDK::kBadIOID,

VDK::kBadDeviceDescriptor,

VDK::kOpenFailure,

VDK::kCloseFailure,

VDK::kReadFailure,

VDK::kWriteFailure,

VDK::kIOCtlFailure,

VDK::kInvalidDeviceFlag,

VDK::kDeviceTimeout,

VDK::kDeviceFlagCreationFailure,

VDK::kMaxCountExceeded,

VDK::kSemaphoreCreationFailure,

VDK::kSemaphoreDestructionFailure,

VDK::kPoolCreationFailure,

VDK::kInvalidBlockPointer,

VDK::kInvalidPoolParms,

VDK::kInvalidPoolID,

VDK::kErrorPoolNotEmpty,

VDK::kErrorMallocBlock,

VDK::kMessageCreationFailure,

VDK::kInvalidMessageID,
4-42 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
VDK::kInvalidMessageOwner,

VDK::kInvalidMessageChannel,

VDK::kInvalidMessageRecipient,

VDK::kMessageTimeout,

VDK::kMessageInQueue,

VDK::kInvalidTimeout,

VDK::kInvalidTargetDSP,

VDK::kIOCreateFailure,

VDK::kHeapInitialisationFailure,

VDK::kInvalidHeapID,

VDK::kNoError = 0,

VDK::kFirstUserError,

VDK::kLastUserError = INT_MAX

};
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-43
for 16-bit Processors

ThreadCreationBlock
ThreadCreationBlock
A variable of the type ThreadCreationBlock is passed to the CreateTh-
readEx() function.

In C:

typedef struct VDK_ThreadCreationBlock

{

VDK_ThreadType template_id;

VDK_ThreadID thread_id;

unsigned int thread_stack_size;

VDK_Priority thread_priority;

void *user_data_ptr;

struct VDK_ThreadTemplate

*pTemplate;

} VDK_ThreadCreationBlock;

In C++:

typedef struct VDK::ThreadCreationBlock

{

VDK::ThreadType template_id;

VDK::ThreadID thread_id;

unsigned int thread_stack_size;

VDK::Priority thread_priority;

void *user_data_ptr;

struct VDK::ThreadTemplate

*pTemplate;

} VDK::ThreadCreationBlock;
4-44 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
• template_id corresponds to a ThreadType defined in the vdk.h
and vdk.cpp files. These files contain the default values for the
stack size and initial priority, which may optionally be overridden
by the following fields.

• thread_id is an output only field. On a successful return, it con-
tains the same value as the function return.

• thread_stack_size overrides the default stack size implied by the
ThreadType when it is non-zero.

• thread_priority overrides the default thread priority implied by
the ThreadType when it is non-zero.

• user_data_ptr allows a generic argument to be passed (without
interpretation) to the thread creation function and, hence, to the
thread constructor. This allows individual thread instances to be
parameterized at creation time, without the need to resort to global
variables for argument passing.

• pTemplate is a member used by VDK internally and does not need
to be intilialised.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-45
for 16-bit Processors

ThreadID
ThreadID
The ThreadID type is used to store the unique identifier of a thread.

enum ThreadID

{

/* Defined by IDDE in the vdk.h file. */

};

The enumeration in Vdk.h will only contain the IDs for the threads
enabled at boot time. Any dynamically created threads will have an ID of
the same type to allow the compiler to do type checking and prevent
errors.

In C:

typedef enum ThreadID VDK_ThreadID;

In C/C++:

typedef enum ThreadID VDK::ThreadID;
4-46 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
ThreadStatus
The ThreadStatus type is used to enumerate the state of a thread.

In C:

enum VDK_ThreadStatus

{

VDK_kReady,

VDK_kSemaphoreBlocked,

VDK_kEventBlocked,

VDK_kSemaphoreBlockedWithTimeout,

VDK_kEventBlockedWithTimeout,

VDK_kDeviceFlagBlocked,
VDK_kDeviceFlagBlockedWithTimeout,

VDK_kSleeping,

VDK_MessageBlocked,

VDK_kMessageBlockedWithTimeout,

VDK_kUnknown

};

In C++:

enum VDK::ThreadStatus

{

VDK::kReady,

VDK::kSemaphoreBlocked,

VDK::kEventBlocked,

VDK::kSemaphoreBlockedWithTimeout,

VDK::kEventBlockedWithTimeout,

VDK::kDeviceFlagBlocked,

VDK::kDeviceFlagBlockedWithTimeout,

VDK::kSleeping,

VDK::MessageBlocked,

VDK::kMessageBlockedWithTimeout,
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-47
for 16-bit Processors

ThreadStatus
VDK::kUnknown

};
4-48 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
ThreadType
The ThreadType is used to store the unique identifier of a Thread class.

enum ThreadType

{

/* Defined by IDDE in the vdk.h file. */

};

In C:

typedef enum ThreadType VDK_ThreadType;

In C/C++:

typedef enum ThreadType VDK::ThreadType;
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-49
for 16-bit Processors

Ticks
Ticks
Time is measured in system Ticks. A tick is the amount of time between
hardware interrupts generated by a hardware timer.

In C:

typedef unsigned int VDK_Ticks;

In C++:

typedef unsigned int VDK::Ticks;
4-50 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK Data Types
VersionStruct
The constant VersionStruct is used to store four integers that describe the
system parameters:

• VDK API version number

• DSP family supported

• base DSP product supported

• build number

In C:

typedef struct

{

int mAPIVersion;

VDK_DSP_Family mFamily;

VDK_DSP_Product mProduct;

long mBuildNumber;

} VDK_VersionStruct;

In C++:

typedef struct

{

int mAPIVersion;

VDK::DSP_Family mFamily;

VDK::DSP_Product mProduct;

long mBuildNumber;

} VDK::VersionStruct;

The DSP_Family and DSP_Product types are described on page 4-11 and
on page 4-12, respectively.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 4-51
for 16-bit Processors

VersionStruct
4-52 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

5 VDK API REFERENCE

The VisualDSP++ Kernel Application Programming Interface is a library

of functions and macros that may be called from your application pro-
grams. Application programs depend on API functions to perform services
that are basic to the VDK. These services include interrupt handling,
scheduler management, thread management, semaphore management,
memory pool management, events and event bits, device drivers, and mes-
sage passing.

All of the VDK functions are written in the C++ programming language.
You can use the object files of the API library in DSP systems based on
ADSP-219x, ADSP-21xxx, ADSP-TSxxx, and ADSP-BF53x processor
architectures.

This chapter describes the current release of the API library. Future
releases may include additional functions.

This chapter provides information on the following topics:

• “Calling Library Functions” on page 5-2

• “Linking Library Functions” on page 5-2

• “Working With VDK Library Header” on page 5-3

• “Passing Function Parameters” on page 5-3

• “Library Naming Conventions” on page 5-3

• “API Summary” on page 5-5
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-1
for 16-bit Processors

Calling Library Functions
Calling Library Functions
To use an API function or a macro, call it by name and provide the appro-
priate arguments. The name and arguments for each library entity appear
on its reference page. Note that the function names are C and C++ func-
tion names. If you call a C run-time library function from an assembly
language program, prefix the function name with an underscore.

Similar to other functions, library functions should be declared. Declara-
tions are supplied in the vdk.h header file. For more information about
the kernel header file, see “Working With VDK Library Header” on
page 5-3.

The reference pages appear in the “API Summary” on page 5-5.

Linking Library Functions
When your code calls an API function, the call creates a reference resolved
by the linker when linking your program. One way to direct the linker to
the library’s location is to use the default VDK Linker Description File
(VDK-<your_target>.LDF). The default VDK Linker Description File
automatically directs the linker to the *.DLB file in the lib subdirectory of
your VisualDSP++ installation.

If you do not use the default VDK LDF file, add the library file to your
project’s LDF. Alternatively, use the compiler’s -l (library directory)
switch to specify the library to be added to the link line. Library functions
are not linked into the .DXE unless they are referenced.
5-2 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Working With VDK Library Header
If one of your program source files needs to call a VDK API library func-
tion, you include the vdk.h header file with the #include preprocessor
command. The header file provides prototypes for all VDK public func-
tions. The compiler uses prototypes to ensure each function is called with
the correct arguments. The vdk.h file also provides declarations for user
accessible global variables, macros, type definitions, and enumerations.

Passing Function Parameters
All parameters passed through the VDK library functions listed in “API
Summary” on page 5-5 are either passed by value or as constant objects.
This means the VDK does not modify any of the variables passed. Where
arguments need to be modified, they are passed by address (pointer).

Library Naming Conventions
Table 5-1 and Table 5-2 show coding style conventions that apply to the
entities in the library reference section. By following the library and func-
tion naming conventions, you can review VDK sources or documentation
and recognize whether the identifier is a function, macro, variable param-
eter, or a constant.

Table 5-1. Library Naming Conventions

Notation Description

VDK_Ticks VDK defined types are written with the first letter uppercase.

kPriority1 Constants are prefixed with a “k”.

inType Input parameters are prefixed with an “in”.

mDevice Data members are prefixed with an “m”.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-3
for 16-bit Processors

Library Naming Conventions
Table 5-2. Function and Macro Naming Conventions

Notation Description

VDK_ C callable function names are prefixed by “VDK_” to
distinguish VDK library functions from user func-
tions.

VDK:: C++ callable functions are located in the VDK
namespace, thus function names are preceded by
“VDK::”.

VDK_Yield(void) The remaining portion of the function name is
written with the first letter of each sub-word in
uppercase.

VDK_ISR_SET_EVENTBIT_() Assembly macros are written in uppercase with
words separated by underscores and a trailing
underscore.
5-4 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
API Summary
Table 5-3 through Table 5-18 list the VDK library entities included in the
current software release. These tables list the library entities grouped by
the service each grouping provides. The reference pages beginning
on page 5-15 appear in the alphabetic order.

Table 5-3. Interrupt Handling Functions

Function Name Reference Page

PopCriticalRegion() on page 5-113

PopNestedCriticalRegions() on page 5-115

PushCriticalRegion() on page 5-126

Table 5-4. Interrupt Mask Handling Functions

ClearInterruptMaskBits() on page 5-17

GetInterruptMask() on page 5-65

SetInterruptMaskBits() on page 5-135

Table 5-5. Scheduler Management Functions

PopNestedUnscheduledRegions() on page 5-117

PopUnscheduledRegion() on page 5-118

PushUnscheduledRegion() on page 5-127

Table 5-6. Block Memory Management Functions

CreatePool() on page 5-24

CreatePoolEx() on page 5-26

DestroyPool() on page 5-39
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-5
for 16-bit Processors

API Summary
FreeBlock() on page 5-52

GetNumAllocatedBlocks() on page 5-74

GetNumFreeBlocks() on page 5-75

LocateAndFreeBlock() on page 5-94

MallocBlock() on page 5-98

Table 5-7. Thread and System Information Functions

GetClockFrequency() on page 5-59

GetHeapIndex() on page 5-63

GetThreadHandle() on page 5-78

GetThreadID() on page 5-79

GetThreadStackUsage() on page 5-81

GetThreadStatus() on page 5-83

GetThreadType() on page 5-84

GetTickPeriod() on page 5-85

GetUptime() on page 5-86

GetVersion() on page 5-87

InstrumentStack() on page 5-90

LogHistoryEvent() on page 5-95

SetClockFrequency() on page 5-132

SetTickPeriod() on page 5-142

Table 5-8. Thread Creation and Destruction Functions

CreateThread() on page 5-30

CreateThreadEx() on page 5-32

Table 5-6. Block Memory Management Functions (Cont’d)
5-6 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
DestroyThread() on page 5-43

FreeDestroyedThreads() on page 5-54

Table 5-9. Thread Local Storage Functions

AllocateThreadSlot() on page 5-11

AllocateThreadSlotEx() on page 5-13

FreeThreadSlot() on page 5-57

GetThreadSlotValue() on page 5-80

SetThreadSlotValue() on page 5-141

Table 5-10. Thread Error Management Functions

DispatchThreadError() on page 5-47

ClearThreadError() on page 5-18

GetLastThreadErrorValue() on page 5-67

GetLastThreadError() on page 5-66

SetThreadError() on page 5-140

Table 5-11. Thread Priority Management Functions

GetPriority() on page 5-76

ResetPriority() on page 5-130

SetPriority() on page 5-138

Table 5-12. Thread Scheduling Control Functions

Sleep() on page 5-143

Yield() on page 5-149

Table 5-8. Thread Creation and Destruction Functions (Cont’d)
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-7
for 16-bit Processors

API Summary
Table 5-13. Semaphore Management Functions

CreateSemaphore() on page 5-28

DestroySemaphore() on page 5-41

GetSemaphoreValue() on page 5-77

MakePeriodic() on page 5-96

PendSemaphore() on page 5-111

PostSemaphore() on page 5-124

RemovePeriodic() on page 5-128

Table 5-14. Event and EventBit Functions

ClearEventBit() on page 5-15

GetEventBitValue() on page 5-60

GetEventData() on page 5-61

GetEventValue() on page 5-62

LoadEvent() on page 5-92

PendEvent() on page 5-106

SetEventBit() on page 5-133

Table 5-15. Device Flags Functions

CreateDeviceFlag() on page 5-21

DestroyDeviceFlag() on page 5-34

PendDeviceFlag() on page 5-104

PostDeviceFlag() on page 5-120

Table 5-16. Device Driver Functions

CloseDevice() on page 5-19

DeviceIOCtl() on page 5-45
5-8 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
OpenDevice() on page 5-102

SyncRead() on page 5-145

SyncWrite() on page 5-147

Table 5-17. Message Functions

CreateMessage() on page 5-22

DestroyMessage() on page 5-35

DestroyMessageAndFreePayload() on page 5-37

ForwardMessage() on page 5-49

FreeMessagePayload () on page 5-55

GetMessageDetails () on page 5-68

GetMessagePayload() on page 5-70

GetMessageReceiveInfo() on page 5-72

InstallMessageControlSemaphore () on page 5-88

MessageAvailable() on page 5-100

PendMessage() on page 5-108

PostMessage() on page 5-121

SetMessagePayload() on page 5-136

Table 5-18. Assembly Macros

Macro Name Reference Page

VDK_ISR_ACTIVATE_DEVICE_() on page 5-152

VDK_ISR_CLEAR_EVENTBIT_() on page 5-153

VDK_ISR_LOG_HISTORY_EVENT_() on page 5-154

VDK_ISR_POST_SEMAPHORE_() on page 5-155

VDK_ISR_SET_EVENTBIT_() on page 5-156

Table 5-16. Device Driver Functions (Cont’d)
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-9
for 16-bit Processors

API Functions
API Functions
The following format applies to all of the entries in the library reference
section.

C Prototype

Provides the C prototype (as it is found in vdk.h) describing the
interface to the function

C++ Prototype

Provides the C++ prototype (as it is found in vdk.h) describing the
interface to the function

Description

Describes the function’s operation

Parameters

Describes the function’s parameters

Scheduling

Specifies whether the function invokes the scheduler

Determinism

Specifies whether the function is deterministic

Return Value

Describes the function’s return value

Errors Thrown

Specifies errors detected by the VDK that can be dealt with by the
thread’s error-handling routines
5-10 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
AllocateThreadSlot()

C Prototype

bool VDK_AllocateThreadSlot(int *ioSlotNum);

C++ Prototype

bool VDK::AllocateThreadSlot(int *ioSlotNum);

Description

Assigns a new slot number if *ioSlotNum = VDK::kTLSUnallocated and
enters the allocated *ioSlotNum into the global slot identifier table.

• Returns FALSE immediately if the value of *ioSlotNum is not equal
to VDK::kTLSUnallocated (INT_MIN) to guard against multiple
attempts to allocate the same key variable.

• Returns FALSE if there are no free slots, in which case *ioSlotNum is
still VDK::kTLSUnallocated.

• Otherwise allocates the first available slot, places the slot number
in *ioSlotNum, and returns TRUE.

• Does not access (change) any thread state.

• Guaranteed to return TRUE once only for a given key variable, so
the return value may be used to control other one time library
initialization.

• May be safely called during system initialization, i.e. before any
threads are running.

• Equivalent to calling AllocateThreadSlotEx() with a NULL cleanup
function.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-11
for 16-bit Processors

API Functions
Parameters

ioSlotNum is a pointer to a slot identifier.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

TRUE upon success and FALSE upon failure

Errors Thrown

None
5-12 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
AllocateThreadSlotEx()

C Prototype

bool VDK_AllocateThreadSlotEx(int *ioSlotNum,

void(*cleanupFn)(void*));

C++ Prototype

bool VDK::AllocateThreadSlotEx(int *ioSlotNum,

void(*cleanupFn)(void*));

Description

Assigns a new slot number if *ioSlotNum = VDK::kTLSUnallocated and
enters the allocated *ioSlotNum into the global slot identifier table.

• Returns FALSE immediately if the value of *ioSlotNum is not equal
to VDK::kTLSUnallocated (INT_MIN) to guard against multiple
attempts to allocate the same key variable.

• Returns FALSE if there are no free slots, in which case *ioSlotNum is
still VDK::kTLSUnallocated.

• Otherwise allocates the first available slot, places the slot number
in *ioSlotNum, stores the cleanupFn pointer internally, and returns
TRUE.

• Does not access (change) any thread state.

• Guaranteed to return TRUE once only for a given key variable, so
the return value may be used to control other one time library
initialization.

• May be safely called during system initialization, i.e. before any
threads are running.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-13
for 16-bit Processors

API Functions
Parameters

ioSlotNum is a pointer to a slot identifier.

cleanupFn is a pointer to a function to handle cleanup of thread-specific
data in the event of thread destruction and:

• may be NULL, in which case it does nothing

• is called from within DestroyThread()

• executes in the context of the calling thread, not the thread that is
being destroyed

• is only called when the slot value is not NULL

• free() may be used as the cleanup function where the slot is used
to hold ‘malloced’ data

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

TRUE upon success and FALSE upon failure

Errors Thrown

None
5-14 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
ClearEventBit()

C Prototype

void VDK_ClearEventBit(VDK_EventBitID inEventBitID);

C++ Prototype

void VDK::ClearEventBit(VDK::EventBitID inEventBitID);

Description

Clears the value of the event bit – sets it to FALSE, NULL, or 0. Once the
event bit is cleared, the value of each dependent event is recalculated.
If several event bits are to be cleared (or set) as a single operation then the
SetEventBit() and/or ClearEventBit() calls should be made from within an
unscheduled region. Event recalculation will not occur until the unsched-
uled region is popped.

Parameters

inEventBitID is the system event bit to clear.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-15
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:
kUnknownEventBit indicates that inEventBitID is not a valid identifier.

Non error checking libraries: None
5-16 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
ClearInterruptMaskBits()

C Prototype

void VDK_ClearInterruptMaskBits(VDK_IMASKStruct inMask);

C++ Prototype

void VDK::ClearInterruptMaskBits(VDK::IMASKStruct inMask);

Description

Clears bits in the interrupt mask. Any bits set in the parameter are cleared
in the interrupt mask. In other words, the new mask is computed as the
bitwise AND of the old mask and the one’s complement of the inMask
parameter.

Parameters

inMask specifies which bits should be cleared in the interrupt mask.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-17
for 16-bit Processors

API Functions
ClearThreadError()

C Prototype

void VDK_ClearThreadError(void);

C++ Prototype

void VDK::ClearThreadError(void);

Description

Sets the running thread’s error status to kNoError and the error value to
zero.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Thrown

None
5-18 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
CloseDevice()

C Prototype

void VDK_CloseDevice(VDK_DeviceDescriptor inDD);

C++ Prototype

void VDK::CloseDevice(VDK::DeviceDescriptor inDD);

Description

Closes the specified device. The function calls the dispatch function of the
device opened with inDD.

Parameters

inDD is the DeviceDescriptor returned from the OpenDevice() function.

Scheduling

Does not invoke the scheduler, but the user written device driver can call
the scheduler

Determinism

Constant time. Note that this function calls user written device driver
code which may not be deterministic.

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-19
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:
kBadDeviceDescriptor indicates that inDD is not a valid DeviceDescriptor.

Non error checking libraries: None

Note that other errors may be thrown by user-written device driver code
executed by this API.
5-20 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
CreateDeviceFlag()

C Prototype

VDK_DeviceFlagID VDK_CreateDeviceFlag(void);

C++ Prototype

VDK::DeviceFlagID VDK::CreateDeviceFlag(void);

Description

Creates a new device flag and returns its identifier.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

New device flag identifier upon success and UINT_MAX upon failure.

Errors Thrown

Full instrumentation and error checking libraries:

kDeviceFlagCreationFailure indicates that the kernel is not able to
allocate and/or initialize memory for the device flag.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-21
for 16-bit Processors

API Functions
CreateMessage()

C Prototype

VDK_MessageID VDK_CreateMessage(int inPayloadType,

unsigned int inPayloadSize,

void *inPayloadAddr);

C++ Prototype

VDK::MessageID VDK::CreateMessage(int inPayloadType,

unsigned int inPayloadSize,

void *inPayloadAddr);

Description

Creates and initializes a new message object. The return value is the iden-
tifier of the new message. The values passed to CreateMessage() may be
read by calling GetMessagePayload() and may be reset by calling SetMes-
sagePayload(). The calling thread becomes the owner of the new message.

Parameters

inPayloadType is a user defined value that may be used to convey addi-
tional information about the message and/or the payload to the receiving
thread. This value is not used or modified by the kernel, except that nega-
tive values of payload type are reserved for use by VDK. Positive payload
types are reserved for use by the application code. It is recommended that
the payload address and size are always interpreted in the same way for
each distinct message type.

inPayloadSize is the length of the payload buffer in the smallest address-
able unit on the processor architecture (sizeof(char)). When
inPayloadSize has a value of zero, the kernel assumes inPayloadAddr is
not a pointer and may contain any user value of the same size.
5-22 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
inPayloadAddr is a pointer to the start of the data being passed in the
message.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

New message identifier upon success and UINT_MAX upon failure.

Errors Thrown

Full instrumentation and error checking libraries:

• kMaxCountExceeded indicates that the number of simultaneous
messages in the system exceeds the value specified in the GUI.

• kErrorMallocBlock indicates that there are no free blocks in the
system memory pool used to allocate messages.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-23
for 16-bit Processors

API Functions
CreatePool()

C Prototype

VDK_PoolID VDK_CreatePool(unsigned int inBlockSz,

unsigned int inBlockCount,

bool inCreateNow);

C++ Prototype

VDK::PoolID VDK::CreatePool(unsigned int inBlockSz,

unsigned int inBlockCount,

bool inCreateNow);

Description

Creates a new memory pool in the system heap and returns the pool
identifier.

Parameters

inBlockSz specifies the block size in the lowest addressable unit.

inBlockCount specifies the total number of blocks in the pool.

inCreateNow indicates whether the block construction is done at runtime
on an on demand basis (FALSE) or as a part of the creation process (TRUE).

Scheduling

Does not invoke the scheduler

Determinism

Constant time if inCreateNow is FALSE. Not deterministic if inCreateNow
value is TRUE.
5-24 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Return Value

New pool identifier upon success and UINT_MAX upon failure.

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidPoolParms indicates that either inBlockSz or inBlock-
Count is zero.

• kPoolCreationFailure indicates that the kernel is not able to allo-
cate and/or initialize memory for the pool.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-25
for 16-bit Processors

API Functions
CreatePoolEx()

C Prototype

VDK_PoolID VDK_CreatePoolEx(unsigned int inBlockSz,

unsigned int inBlockCount,

bool inCreateNow,

int inWhichHeap);

C++ Prototype

VDK::PoolID VDK::CreatePoolEx(unsigned int inBlockSz,

unsigned int inBlockCount,

bool inCreateNow,

int inWhichHeap);

Description

Creates a new memory pool in the specified heap and returns the pool
identifier. When architectures do not support multiple heaps,
inWhichHeap must be initialized to zero. Refer to “Processor-Specific
Notes” on page A-1 for architecture-specific information.

Parameters

inBlockSz specifies the block size in the lowest addressable units.

inBlockCount specifies the total number of blocks in the pool.

inCreateNow indicates whether block construction is done at runtime on
an done on demand basis (FALSE) or as a part of the creation process
(TRUE).

inWhichHeap specifies the heap in which the pool is to be created. This
parameter is ignored on single heap architectures. Setting the value of
inWhichHeap to zero specifies the default heap is to be used.
5-26 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Scheduling

Does not invoke the scheduler

Determinism

Constant time if inCreateNow is FALSE. Not deterministic if inCreateNow
value is TRUE.

Return Value

New pool identifier upon success and UINT_MAX upon failure

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidPoolParms indicates that either inBlockSz or inBlock-
Count is zero.

• kPoolCreationFailure indicates that the kernel is not able to allo-
cate and/or initialize memory for the pool.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-27
for 16-bit Processors

API Functions
CreateSemaphore()

C Prototype

VDK_SemaphoreID VDK_CreateSemaphore(

unsigned int inInitialValue,

unsigned int inMaxCount,

VDK_Ticks inInitialDelay,

VDK_Ticks inPeriod);

C++ Prototype

VDK::SemaphoreID VDK::CreateSemaphore(

unsigned int inInitialValue,

unsigned int inMaxCount,

VDK::Ticks inInitialDelay,

VDK::Ticks inPeriod);

Description

Creates and initializes a dynamic semaphore. If the value of inPeriod is
non-zero, a periodic semaphore is created.

Parameters

inInitialValue is the value the semaphore will have once it is created. A
value of zero indicates that the semaphore is unavailable. This value
should be between zero and inMaxCount.

inMaxCount is the maximum number the semaphore’s count can reach
when posting it. An inMaxCount of one creates a binary semaphore, which
is equivalent to the semaphores in the VisualDSP++ 2.0 release of VDK.

inInitialDelay is the number of ticks before the first posting of a peri-
odic semaphore. InInitialDelay must be equal to or greater than one.
5-28 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
inPeriod specifies the period property of the semaphore and the number
of ticks to sleep at each cycle after the semaphore is first posted. If inPe-
riod is zero, the created semaphore is not periodic.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

New semaphore identifier upon success and UINT_MAX upon failure.

Errors Thrown

Full instrumentation and error checking libraries:

• kMaxCountExceeded indicates that inInitialValue is greater than
inMaxCount.

• kSemaphoreCreationFailure indicates that the kernel is not able to
allocate and/or initialize memory for the semaphore.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-29
for 16-bit Processors

API Functions
CreateThread()

C Prototype

VDK_ThreadID VDK_CreateThread(VDK_ThreadType inType);

C++ Prototype

VDK::ThreadID VDK::CreateThread(VDK::ThreadType inType);

Description

Creates a thread of the specified type and returns the new thread.

Parameters

inType corresponds to a thread type defined in the vdk.h and vdk.cpp
files. These files contain the default values for the stack size, initial prior-
ity, and other properties.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

New thread identifier upon success and UINT_MAX upon failure.
5-30 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:

• kUnknownThreadType indicates that inType is not an element of the
ThreadType type, as defined in vdk.h.

• kThreadCreationFailure indicates that the kernel is not able to
allocate and/or initialize memory for the thread.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-31
for 16-bit Processors

API Functions
CreateThreadEx()

C Prototype

VDK_ThreadID VDK_CreateThreadEx(VDK_ThreadCreationBlock *inOutTCB);

C++ Prototype

VDK::ThreadID VDK::CreateThreadEx(VDK::ThreadCreationBlock *inOutTCB);

Description

Creates a thread with the specified characteristics and returns the new
thread.

Parameters

inOutTCB is a pointer to a structure of the ThreadCreationBlock data type.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

New thread identifier upon success and UINT_MAX upon failure.
5-32 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:

• kUnknownThreadType indicates that inType is not an element of the
ThreadType type, as defined in vdk.h.

• kThreadCreationFailure indicates that the kernel is not able to
allocate and/or initialize memory for the thread.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-33
for 16-bit Processors

API Functions
DestroyDeviceFlag()

C Prototype

void VDK_DestroyDeviceFlag(VDK_DeviceFlagID inDeviceFlagID);

C++ Prototype

void VDK::DestroyDeviceFlag(VDK::DeviceFlagID inDeviceFlagID);

Description

Deletes the device flag from the system and releases the associated
memory.

Parameters

inDeviceFlagID specifies the device flag to be destroyed.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:
kInvalidDeviceFlag indicates that inDeviceFlagID is not a valid
identifier.

Non error checking libraries: None
5-34 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
DestroyMessage()

C Prototype

void VDK_DestroyMessage(VDK_MessageID inMessageID);

C++ Prototype

void VDK::DestroyMessage(VDK::MessageID inMessageID);

Description

Destroys a message object. Only the thread that is the owner of a message
can destroy it. The message payload memory is assumed to be already
freed by the user thread. DestroyMessage() does not free the payload and
results in a memory leak if the memory is not freed.

Parameters

inMessageID is the identifier of the message to be destroyed.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-35
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageID indicates that the inMessageID is not a valid
message identifier.

• kInvalidMessageOwner indicates that the thread attempting to
destroy the message is not the current owner.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None
5-36 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
DestroyMessageAndFreePayload()

C Prototype

void VDK_DestroyMessageAndFreePayload(

VDK_MessageID inMessageID);

C++ Prototype

void VDK::DestroyMessageAndFreePayload(

VDK::MessageID inMessageID);

Description

Destroys a message object. Only the thread that is the owner of a message
can destroy it. If the payload is of a marshalled type (that is, the sign bit of
the payload type code is set) then the payload will be freed by calling the
type marshalling function with the RELEASE code.

Parameters

inMessageID is the identifier of the message to be destroyed.

Scheduling

Does not invoke the scheduler.

Determinism

Not deterministic

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-37
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageID indicates that the inMessageID is not a valid
message identifier.

• kInvalidMessageOwner indicates that the thread attempting to
destroy the message is not the current owner.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None

Note that other errors may be thrown by the user-supplied marshalling
function, or by functions called by it.
5-38 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
DestroyPool()

C Prototype

void VDK_DestroyPool(VDK_PoolID inPoolID);

C++ Prototype

void VDK::DestroyPool(VDK::PoolID inPoolID);

Description

Deletes the pool and cleans up the memory associated with it. If there are
any allocated blocks, which are not yet freed, an error is thrown in the
fully instrumented and error checking builds, and the pool will not be
destroyed. In the non-error checking build, the pool will be destroyed.

Parameters

inPoolID specifies the pool to delete.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-39
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidPoolID indicates that inPoolID is not valid.

• kErrorPoolNotEmpty indicates that the pool is not empty (there are
some blocks that are not freed) and cannot be destroyed.

Non error checking libraries: None
5-40 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
DestroySemaphore()

C Prototype

void VDK_DestroySemaphore(VDK_SemaphoreID inSemaphoreID);

C++ Prototype

void VDK::DestroySemaphore(VDK::SemaphoreID inSemaphoreID);

Description

Destroys the semaphore associated with inSemaphoreID. The destruction
does not take place if there is any thread pending on the semaphore,
resulting in an error thrown in full instrumentation and error checking
builds.

Parameters

inSemaphoreID is the semaphore to destroy.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-41
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:

• kSemaphoreDestructionFailure indicates that the semaphore can-
not be destroyed because there are threads pending on it.

• kUnknownSemaphore indicates that inSemaphoreID is not a valid
identifier.

Non error checking libraries: None
5-42 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
DestroyThread()

C Prototype

void VDK_DestroyThread(VDK_ThreadID inThreadID,

bool inDestroyNow);

C++ Prototype

void VDK::DestroyThread(VDK::ThreadID inThreadID,

bool inDestroyNow);

Description

Initiates the process of removing the specified thread from the system.
Although the scheduler never runs the thread again once this function
completes, the kernel may optionally defer deallocation of the memory
resources associated with the thread to the Idle Thread. Any references to
the destroyed thread are invalid and may throw an error. For more infor-
mation about the low priority thread, see “Idle Thread” on page 3-14.

Parameters

inThreadID specifies the thread to remove from the system.

inDestroyNow indicates whether the thread’s memory is to be recovered
now (TRUE) or in the low priority IDLE thread (FALSE).

Scheduling

Invokes the scheduler and results in a context switch only if a thread
passes itself to DestroyThread().

Determinism

Constant time if inDestroyNow is FALSE; otherwise, not deterministic.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-43
for 16-bit Processors

API Functions
Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kUnknownThread indicates that inThreadID is not a valid identifier.

• kInvalidThread indicates that we are trying to destroy the Idle
Thread.

Non error checking libraries: None
5-44 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
DeviceIOCtl()

C Prototype

int VDK_DeviceIOCtl(VDK_DeviceDescriptor inDD,

void *inCommand,

char *inParameters);

C++ Prototype

int VDK::DeviceIOCtl(VDK::DeviceDescriptor inDD,

void *inCommand,

char *inParameters);

Description

Controls the specified device. The inCommand and inParameters are passed
unchanged to the device driver.

Parameters

inDD is the DeviceDescriptor returned from OpenDevice().

inCommand are the device driver’s specific commands.

inParameters are the device driver’s specific parameters for the above
commands.

Scheduling

Does not invoke the scheduler, but the user written device driver can call
the scheduler

Determinism

Constant time. Note that this function calls user written device driver
code that may not be deterministic.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-45
for 16-bit Processors

API Functions
Return Value

Return value of the dispatch function if the device exists and UINT_MAX if it
does not.

Errors Thrown

Full instrumentation and error checking libraries:
 kBadDeviceDescriptor indicates that inDD is not a valid identifier.

Non error checking libraries: None

Note that other errors may be thrown by user-written device driver code
executed by this API.
5-46 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
DispatchThreadError()

C Prototype

int VDK_DispatchThreadError(VDK_SystemError inErr,

const int inVal);

C++ Prototype

int VDK::DispatchThreadError(VDK::SystemError inErr,

const int inVal);

Description

Sets the error and error’s value in the currently running thread and calls
the thread’s error function.

Parameters

inErr is the error enumeration. See “SystemError” on page 4-40 for more
information about errors.

inVal is the value whose meaning determined by the error enumeration.

Scheduling

Does not invoke the scheduler, but the thread exception handler may do
so.

Determinism

Not deterministic

Return Value

The current thread’s error handler.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-47
for 16-bit Processors

API Functions
Errors Thrown

None
5-48 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
ForwardMessage()

C Prototype

void VDK_ForwardMessage(VDK_ThreadID inRecipient,

VDK_MessageID inMessageID,

VDK_MsgChannel inChannel,

VDK_ThreadID inPsuedoSender);

C++ Prototype

void VDK::ForwardMessage(VDK::ThreadID inRecipient,

VDK::MessageID inMessageID,

VDK::MsgChannel inChannel,

VDK::ThreadID inPsuedoSender);

Description

Identical to PostMessage(), except that the Sender attribute of the message
is set to the value of the inPsuedoSender argument, instead of the ID of
the current thread.

This function is useful where message loopback is being employed between
two threads (that is, the received message is returned to sender rather than
being destroyed) and a third thread needs to be inserted transparently into
the loop.

By querying the message's sender attribute (using GetMessageRe-
ceiveInfo()), and then passing it as the inPsuedoSender argument to
ForwardMessage(), this third thread can ensure that the message is
returned to the original sender, rather than to itself.

Parameters

inRecipient is the ThreadID of the thread to receive the message.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-49
for 16-bit Processors

API Functions
inMessageID is the MessageID of the message being sent. A message must
be created before it is posted. This parameter is a return value of the call to
CreateMessage().

inChannel is the FIFO within the recipient's message queue on which the
message is appended. Its value is kMsgChannel1 through
kMessageChannel15.

inPsuedoSender is the ThreadID, which will be stored in the Sender
attribute of the message.

Scheduling

Non-blocking, but invokes the scheduler and may result in a context
switch.

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageChannel indicates that the inChannel is not a
valid channel value.

• kUnknownThread indicates that inRecipient is not a valid thread
identifier.

• kInvalidMessageID indicates that inMessageID is not a valid mes-
sage identifier.
5-50 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
• kInvalidMessageRecipient indicates that inRecipient does not
have a message queue as it has not been enabled for messaging.

• kInvalidMessageOwner indicates that the thread attempting to post
the message is not the current owner. The error value is the
ThreadID of the owner.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-51
for 16-bit Processors

API Functions
FreeBlock()

C Prototype

void VDK_FreeBlock(VDK_PoolID inPoolID, void *inBlockPtr);

C Prototype

void VDK::FreeBlock(VDK::PoolID inPoolID, void *inBlockPtr);

Description

Frees the specified block and returns it to the free block list.

Parameters

inPoolID specifies the pool from which the block is to be freed.

inBlockPtr specifies the block to free.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value
5-52 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidBlockPointer indicates that inBlockPtr is not a valid
pointer from inPoolID.

• kInvalidPoolID indicates that inPoolID is not a valid identifier.

 Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-53
for 16-bit Processors

API Functions
FreeDestroyedThreads()

C Prototype

void VDK_FreeDestroyedThreads(void);

C++ Prototype

void VDK::FreeDestroyedThreads(void);

Description

Frees the memory held by the destroyed threads whose resources have not
been released by the IDLE thread. For more information, see “Idle Thread”
on page 3-14.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

None
5-54 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
FreeMessagePayload ()

C Prototype

void VDK_FreeMessagePayload(VDK_MessageID inMessageID);

C++ Prototype

void VDK::FreeMessagePayload(VDK::MessageID inMessageID);

Description

If the payload of the specified message object is of a marshalled type (that
is, the sign bit of the payload type code is set), then the payload is freed
without destroying the message object itself. Only the thread that is the
owner of a message can free its payload. The payload is freed by calling the
type marshalling function with the RELEASE code.

The payload Type, Size and Addr attributes of the message object are all
set to zero.

Parameters

inMessageID is the identifier of the message to be destroyed.

Scheduling

Does not invoke the scheduler.

Determinism

Not deterministic

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-55
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageID indicates that inMessageID is not a valid mes-
sage identifier.

• kInvalidMessageOwner indicates that the thread attempting to
destroy the message is not the current owner.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None

Note that other errors may be thrown by the user-supplied marshalling
function, or by functions called by it.
5-56 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
FreeThreadSlot()

C Prototype

bool VDK_FreeThreadSlot(int inSlotNum);

C++ Prototype

bool VDK::FreeThreadSlot(int inSlotNum);

Description

Releases and clears the slot table entry in the currently running thread’s
slot table associated with inSlotNum and:

• Returns FALSE if (and only if) the key does not identify a currently
allocated slot.

• Releases the slot identified by inSlotNum, which is previously cre-
ated with the AllocateThreadSlot() function.

• The application must ensure that no thread local data is associated
with the key at the time it is freed, any specified cleanup functions
(see AllocateThreadSlotEx()) are only called on thread destruction.

Parameters

inSlotNum is the static library’s preallocated slot number

Scheduling

Does not invoke the scheduler

Determinism

Constant Time
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-57
for 16-bit Processors

API Functions
Return Value

TRUE upon success and FALSE upon failure

Errors Thrown

None
5-58 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetClockFrequency()

C Prototype

unsigned int VDK_GetClockFrequency (void);

C++ Prototype

unsigned int VDK::GetClockFrequency (void);

Description

Returns the value of the clock frequency for the application. The value of
clock frequency is specified as part of the configuration of a VDK project
and can be changed at run time by SetClockFrequency(). It is the respon-
sibility of the application designer to ensure that the clock frequency
matches that of the hardware used.

Parameters

None

Scheduling

Does not invoke the scheduler.

Determinism

Constant time

Return Value

Value of the clock frequency.

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-59
for 16-bit Processors

API Functions
GetEventBitValue()

C Prototype

bool VDK_GetEventBitValue(VDK_EventBitID inEventBitID);

C++ Prototype

bool VDK::GetEventBitValue(VDK::EventBitID inEventBitID);

Description

Returns the value of the event bit.

Parameters

inEventBitID specifies the system event bit to query.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

The value of either the specified event bit (if such a bit exists) or the cur-
rent thread’s error handler (if the specified event bit does not exist).

Errors Thrown

Full instrumentation and error checking libraries:
kUnknownEventBit indicates that inEventBitID is not a valid identifier.

Non error checking libraries: None
5-60 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetEventData()

C Prototype

VDK_EventData VDK_GetEventData(VDK_EventID inEventID);

C++ Prototype

VDK::EventData VDK::GetEventData(VDK::EventID inEventID);

Description

Returns the EventData associated with the queried event. Threads can use
this function to get an event’s current values. For more information, see
“EventData” on page 4-16.

Parameters

inEventID is the event to query.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Data associated with the specified event bit if it exists, and a structure
filled with zeros if it does not.

Errors Thrown

Full instrumentation and error checking libraries
kUnknownEvent indicates that inEventID is not a valid event identifier.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-61
for 16-bit Processors

API Functions
GetEventValue()

C Prototype

bool VDK_GetEventValue(VDK_EventID inEventID);

C++ Prototype

bool VDK::GetEventValue(VDK::EventID inEventID);

Description

Returns the value of the specified event.

Parameters

inEventID specifies the event to query.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Value of the specified event if it exists, and the return value of the current
thread’s error handler if it does not.

Errors Thrown

Full instrumentation and error checking libraries:

kUnknownEvent indicates that inEventID is not a valid identifier.

Non error checking libraries: None
5-62 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetHeapIndex()

C Prototype

unsigned int VDK_GetHeapIndex(VDK_HeapID inHeapID);

C++ Prototype

unsigned int VDK::GetHeapIndex(VDK::HeapID inHeapID);

Description

Translates a HeapID (as configured in the Kernel pane of the IDDE
Project window) to a heap index, which can be passed to heap_malloc(),
heap_calloc(), heap_realloc(), and heap_free().

Parameters

inHeapID is the HeapID for which the corresponding heap index is to be
returned.

Scheduling

Does not invoke the scheduler.

Determinism

Constant time

Return Value

Heap index

Errors Thrown

Full instrumentation and error checking libraries:

kInvalidHeapID indicates that inHeapID is not a valid HeapID.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-63
for 16-bit Processors

API Functions
Non error checking libraries: None
5-64 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetInterruptMask()

C Prototype

VDK_IMASKStruct VDK_GetInterruptMask(void);

C++ Prototype

VDK::IMASKStruct VDK::GetInterruptMask(void);

Description

Returns the current value of the interrupt mask. The function is normally
called before setting or clearing bits in the interrupt mask; should be
called in an unscheduled region.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Current value of the interrupt mask.

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-65
for 16-bit Processors

API Functions
GetLastThreadError()

C Prototype

VDK_SystemError VDK_GetLastThreadError(void);

C++ Prototype

VDK::SystemError VDK::GetLastThreadError(void);

Description

Returns the running thread’s most recent error. See “SystemError” on
page 4-40 for more information about errors.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

The running thread’s most recent error.

Errors Thrown

None
5-66 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetLastThreadErrorValue()

C Prototype

int VDK_GetLastThreadErrorValue(void);

C++ Prototype

int VDK::GetLastThreadErrorValue(void);

Description

Returns the value parameter of the call that had the most recent error.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Value parameter of the call with the most recent error.

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-67
for 16-bit Processors

API Functions
GetMessageDetails ()

C Prototype

void VDK_GetMessageDetails(VDK_MessageID inMessageID,

VDK_MessageDetails *pOutMessageDetails,

VDK_PayloadDetails *pOutPayloadDetails);

C++ Prototype

void VDK::GetMessageDetails(VDK::MessageID inMessageID,

VDK::MessageDetails *pOutMessageDetails,

VDK::PayloadDetails *pOutPayloadDetails);

Description

Returns the full set of attributes associated with a message object. The
results are divided into details about the message itself: channel, sender
and target, and about the payload: type, size and address.

The meaning of the message attributes corresponds to the arguments to
the most recent posting of the message. The meaning of the payload values
is application-specific and corresponds to the arguments passed to
CreateMessage().

Only the thread that is the owner of a message may examine the attributes
of its payload. If other threads call this API, an error is thrown, and the
contents of *pOutMessageDetails and *pOutPayloadDetails remain
unchanged.

Parameters

inMessageID specifies the message to query.
5-68 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
pOutMessageDetails is a pointer to a structure of type MessageDetails,
which contains channel, sender and target fields. Channel is of type
MsgChannel, and sender and target are of type ThreadID. pOutMessage-
Details may be NULL, in which case no message details are returned.

pOutPayloadDetails is a pointer of type PayloadDetails, which contains
type, size and addr fields to describe the message payload. This informa-
tion is the same as that which is retrieved by GetMessagePayload().
pOutPayloadDetails may be NULL, in which case no payload details are
returned.

Scheduling

Does not invoke the scheduler.

Determinism

Constant time

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageID indicates that inMessageID is not a valid mes-
sage identifier.

• kInvalidMessageOwner indicates the thread attempting to destroy
the message is not the current owner.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-69
for 16-bit Processors

API Functions
GetMessagePayload()

C Prototype

void VDK_GetMessagePayload(VDK_MessageID inMessageID,

int *outPayloadType,

unsigned int *outPayloadSize,

void **outPayloadAddr);

C++ Prototype

void VDK::GetMessagePayload(VDK::MessageID inMessageID,

int *outPayloadType,

unsigned int *outPayloadSize,

void **outPayloadAddr);

Description

Returns the attributes associated with a message payload: type, size and
address.

The meaning of these values is application-specific and corresponds to the
arguments passed to CreateMessage(). Only the thread that is the owner of
a message may examine the attributes of its payload. If other threads call
this API, an error will be thrown, and the contents of outPayloadType,
outPayloadSize, and outPayloadAddress will remain unchanged.

Parameters

inMessageID specifies the message to query.

*outPayloadType is an application-specific value that may be used to
describe the contents of the payload. Negative values of payload type are
reserved for use by VDK.

*outPayloadSize is typically the size of the payload in the smallest addres-
sable units of the processor (sizeof(char)).
5-70 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
*outPayloadAddr is typically a pointer to the beginning of the payload
buffer. However, if the payload size has a value of zero, then the payload
address may contain any user defined data.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageOwner indicates that the argument inMessageID is
not the current owner of the message.

• kInvalidMessageID indicates that the argument inMessageID is not
a valid message identifier.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-71
for 16-bit Processors

API Functions
GetMessageReceiveInfo()

C Prototype

void VDK_GetMessageReceiveInfo(VDK_MessageID inMessageID,

VDK_MsgChannel *outChannel,

VDK_ThreadID *outSender);

C++ Prototype

void VDK::GetMessageReceiveInfo(VDK::MessageID inMessageID,

VDK::MsgChannel *outChannel,

VDK::ThreadID *outSender);

Description

Returns the parameters associated with how a message was received.

Only the thread that is the owner of a message should call this API. If a
different thread calls the API, there will be an error thrown and the
outChannel and outSender variables will not contain the right
information.

Parameters

inMessageID specifies message to be queried.

*outChannel identifies the channel of the recipient thread’s message queue
on which the message was posted.

*outSender identifies the ThreadID of the thread that posted the message.

Scheduling

Does not invoke the scheduler
5-72 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Determinism

Constant time

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageOwner indicates that the argument inMessageID is
not the current owner of the message.

• kInvalidMessageID indicates that the argument inMessageID is not
a valid message identifier.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-73
for 16-bit Processors

API Functions
GetNumAllocatedBlocks()

C Prototype

unsigned int VDK_GetNumAllocatedBlocks(VDK_PoolID inPoolID);

C++ Prototype

unsigned int VDK::GetNumAllocatedBlocks(VDK::PoolID inPoolID);

Description

Gets the number of allocated blocks in the pool.

Parameters

inPoolID specifies the pool.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Number of allocated blocks for the specified pool upon success and
UINT_MAX otherwise.

Errors Thrown

Full instrumentation and error checking libraries:
kInvalidPoolID indicates that inPoolID is not a valid identifier.

Non error checking libraries: None
5-74 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetNumFreeBlocks()

C Prototype

unsigned int VDK_GetNumFreeBlocks(VDK_PoolID inPoolID);

C ++ Prototype

unsigned int VDK::GetNumFreeBlocks(VDK::PoolID inPoolID);

Description

Gets the number of free blocks in the pool.

Parameters

inPoolID specifies the pool to query.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Number of free blocks for the specified pool upon success and UINT_MAX
otherwise.

Errors Thrown

Full instrumentation and error checking libraries:
kInvalidPoolID indicates that inPoolID is not a valid identifier.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-75
for 16-bit Processors

API Functions
GetPriority()

C Prototype

VDK_Priority VDK_GetPriority(VDK_ThreadID inThreadID);

C++ Prototype

VDK::Priority VDK::GetPriority(VDK::ThreadID inThreadID);

Description

Returns the priority of the specified thread.

Parameters

inThreadID is the thread whose priority is being queried.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Priority of the specified thread if it exists and UINT_MAX if it does not. See
“Priority” on page 4-37 for more information.

Errors Thrown

Full instrumentation and error checking libraries:
kUnknownThread indicates that inThreadID is not a valid identifier.

Non error checking libraries: None
5-76 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetSemaphoreValue()

C Prototype

unsigned int VDK_GetSemaphoreValue(VDK_SemaphoreID inSemaphoreID);

C++ Prototype

unsigned int VDK::GetSemaphoreValue(VDK::SemaphoreID inSemaphoreID);

Description

Returns the value of the specified semaphore.

Parameters

inSemaphoreID is the semaphore to query.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Value of the specified semaphore if it exists and UINT_MAX if it does not.

Errors Thrown

Full instrumentation and error checking libraries:

kUnknownSemaphore indicates that inSemaphoreID is not a valid identifier.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-77
for 16-bit Processors

API Functions
GetThreadHandle()

C Prototype

void** VDK_GetThreadHandle(void);

C++ Prototype

void** VDK::GetThreadHandle(void);

Description

Returns a pointer to a thread’s user defined, allocated data pointer.
This pointer can be used in C and assembly threads for holding thread
local state (for example, member variables).

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Pointer to a thread’s user defined, allocated data pointer.

Errors Thrown

None
5-78 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetThreadID()

C Prototype

VDK_ThreadID VDK_GetThreadID(void);

C++ Prototype

VDK::ThreadID VDK::GetThreadID(void);

Description

Returns the identifier of the currently running thread.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Identifier of the currently running thread.

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-79
for 16-bit Processors

API Functions
GetThreadSlotValue()

C Prototype

void* VDK_GetThreadSlotValue(int inSlotNum);

C++ Prototype

void* VDK::GetThreadSlotValue(int inSlotNum);

Description

Returns the value in the currently running thread’s slot table associated
with inSlotNum. Returns NULL if the key does not identify a currently allo-
cated slot, otherwise returns the current value held in the slot, which may
also be NULL.

Parameters

inSlotNum is the static library’s preallocated slot number.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Slot value for the slot number specified.

Errors Thrown

None
5-80 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetThreadStackUsage()

C Prototype

unsigned int VDK_GetThreadStackUsage(VDK_ThreadID inThreadID);

C++ Prototype

unsigned int VDK::GetThreadStackUsage(VDK::ThreadID inThreadID);

Description

Gets the maximum used stack for the specified thread at the time of the
call. For applications built with "Full Instrumentation" the maximum
stack usage returned will either be the amount used since the thread was
created, or from the point when the InstrumentStack() API was last called.
For applications not built with "Full Instrumentation" the thread stacks
are not instrumented by default. Therefore, this function will not return a
meaningful value in these cases unless the InstrumentStack() API has pre-
viously been called to instrument the stack.

Parameters

inThreadID specifies the thread whose stack usage we want to query.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-81
for 16-bit Processors

API Functions
Return Value

Maximum stack used since the thread was created (if the application was
built with "Full Instrumentation") or since the last call to
InstrumentStack().

Errors Thrown

Full instrumentation and error checking libraries:

kUnknownThread indicates that inThreadID is not a valid identifier.

Non error checking libraries: None
5-82 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetThreadStatus()

C Prototype

VDK_ThreadStatus VDK_GetThreadStatus(const VDK_ThreadID inThreadID);

C++ Prototype

VDK::ThreadStatus VDK::GetThreadStatus(const VDK::ThreadID inThreadID);

Description

Reports the enumerated status of the specified thread.

Parameters

inThreadID is the thread whose status is being queried.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Status of the specified thread if it exists and VDK::kUnknown if it does not.
For more information see “ThreadStatus” on page 4-47.

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-83
for 16-bit Processors

API Functions
GetThreadType()

C Prototype

VDK_ThreadType VDK_GetThreadType(const VDK_ThreadID inThreadID);

C++ Prototype

VDK::ThreadType VDK::GetThreadType(const VDK::ThreadID inThreadID);

Description

Returns the thread type used to create the thread. The thread type is
defined in the vdk.h and vdk.cpp files. For more information, see
“Threads” on page 3-1.

Parameters

inThreadID specifies the thread to query.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Type of the specified thread if it exists and UINT_MAX if it does not. For
more information, see “ThreadType” on page 4-49.

Errors Thrown

Full instrumentation and error checking libraries:
kUnknowThread indicates that inThreadID is not a valid identifier.

Non error checking libraries: None
5-84 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetTickPeriod()

C Prototype

double VDK_GetTickPeriod (void);

C++ Prototype

double VDK::GetTickPeriod (void);

Description

Returns the value of the tick period for the application.

Parameters

None

Scheduling

Does not invoke the scheduler.

Determinism

Constant time

Return Value

Value of the tick period.

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-85
for 16-bit Processors

API Functions
GetUptime()

C Prototype

VDK_Ticks VDK_GetUptime(void);

C++ Prototype

VDK::Ticks VDK::GetUptime(void);

Description

Returns the time in ticks since the last system reset.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Time in ticks since the last system reset.

Errors Thrown

None
5-86 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
GetVersion()

C Prototype

VDK_VersionStruct VDK_GetVersion(void);

C++ Prototype

VDK::VersionStruct VDK::GetVersion(void);

Description

Returns the current version of VDK, VersionStruct, described
on page 4-51.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

Current version of VDK.

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-87
for 16-bit Processors

API Functions
InstallMessageControlSemaphore ()

C Prototype

void VDK_InstallMessageControlSemaphore(

VDK_SemaphoreID inSemaphore);

C++ Prototype

void VDK::InstallMessageControlSemaphore(

VDK::SemaphoreID inSemaphore);

Description

This function sets up a counting semaphore to regulate the allocation and
deallocation of message objects by the routing threads. The initial value of
the semaphore should be set to the number of free messages which are to
be reserved for use by the incoming routing threads. The semaphore is
pended (by the incoming routing threads) prior to each message alloca-
tion, and posted (by the outgoing routing threads) after each message
deallocation. Provided that the value of the semaphore is always less than
or equal to the number of free messages, the allocation by the routing
threads will never fail (although the routing threads may block, pended on
the semaphore) waiting for a free message to become available.

Parameters

inSemaphore is the identifier of the semaphore to be installed.

Scheduling

Does not invoke the scheduler.

Determinism

Constant time
5-88 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Return Value

No return value

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-89
for 16-bit Processors

API Functions
InstrumentStack()

C Prototype

void VDK_InstrumentStack(void);

C++ Prototype

void VDK::InstrumentStack(void);

Description

Instruments the stack of the calling thread to allow the determination of
maximum thread stack usage. The GetThreadStackUsage() API is used to
obtain the maximum stack usage for instrumented thread stacks.

If the fully instrumented libraries are used the thread's stack is instru-
mented on creation. In this case, the InstrumentStack() API is used to
reset the instrumentation of the stack to cover the currently unused sec-
tion of the stack (for example, to determine the maximum stack used
whilst executing a section of code). If the libraries without full instrumen-
tation are used, the thread's stack is not instrumented by default and so
InstrumentStack() has to be used to obtain meaningful results from
GetThreadStackUsage().

Parameters

None

Scheduling

Does not invoke the scheduler.

Determinism

Not deterministic
5-90 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Return Value

No return value

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-91
for 16-bit Processors

API Functions
LoadEvent()

C Prototype

void VDK_LoadEvent(VDK_EventID inEventID,

const VDK_EventData inEventData);

C++ Prototype

void VDK::LoadEvent(VDK::EventID inEventID,

const VDK::EventData inEventData);

Description

Loads the EventData associated with the event. For more information, see
“EventData” on page 4-16.

Parameters

inEventID is the event to be reinitialized.

inEventData contains the new values for the event.

Scheduling

Causes the value of the event to be recalculated, invokes the scheduler,
and may result in a context switch

Determinism

Not deterministic

Return Value

No return value
5-92 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:
kUnknownEvent indicates that inEventID is not a valid identifier.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-93
for 16-bit Processors

API Functions
LocateAndFreeBlock()

C Prototype

void VDK_LocateAndFreeBlock(void *inBlkPtr);

C++ Prototype

void VDK::LocateAndFreeBlock(void *inBlkPtr);

Description

Determines in which pool the block to be freed resides, frees the block,
and returns it to the free block list.

Parameters

inBlockPtr specifies the block to be freed.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:
kInvalidBlockPointer indicates that inBlkPtr does not belong to any of
the active memory pools and cannot be freed.

Non error checking libraries: None
5-94 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
LogHistoryEvent()

C Prototype

void VDK_LogHistoryEvent(VDK_HistoryEnum inEnum, int inValue);

C++ Prototype

void VDK::LogHistoryEvent(VDK::HistoryEnum inEnum, int inValue);

Description

Adds a record to the history buffer. The function does not perform any
action if the project is not linked with the fully instrumented libraries.

Parameters

inEnum is the enumeration value for this type of event. For more informa-
tion see “HistoryEnum” on page 4-18.

inValue is the value defined by enumeration.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-95
for 16-bit Processors

API Functions
MakePeriodic()

C Prototype

void VDK_MakePeriodic(VDK_SemaphoreID inSemaphoreID,

VDK_Ticks inDelay,

VDK_Ticks inPeriod);

C++ Prototype

void VDK::MakePeriodic(VDK::SemaphoreID inSemaphoreID,

VDK::Ticks inDelay,

VDK::Ticks inPeriod);

Description

Directs the scheduler to post the specified semaphore after inDelay num-
ber of ticks. Thereafter, every inPeriod ticks, the semaphore is posted and
the scheduler is invoked. This allows the running thread to acquire the
signal and, if the thread is at the highest priority level, to continue
execution.

To be periodic, the running thread must repeat in sequence: perform task
and then pend on the semaphore. Note that this differs from sleeping at
the completion of activity.

Parameters

inSemaphoreID is the semaphore to make periodic.

inDelay is the number of ticks before the first posting of the semaphore.
inDelay must be equal to or greater than one and less than INT_MAX.

inPeriod is the number of ticks to sleep at each cycle after the first cycle.
inPeriod must be equal to or greater than one and less than INT_MAX.
5-96 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kUnknownSemaphore indicates that inSemaphoreID is not a valid
identifier.

• kInvalidPeriod indicates that inPeriod is zero or greater than
INT_MAX.

• kInvalidDelay indicates that inDelay is zero or greater than
INT_MAX. Zero is not an accepted delay because the first posting will
not occur until the next tick.

• kAlreadyPeriodic indicates that the semaphore is already periodic
and can not be made periodic again. If the intention is to change
the period, the semaphore has to be made non-periodic first.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-97
for 16-bit Processors

API Functions
MallocBlock()

C Prototype

void* VDK_MallocBlock(VDK_PoolID inPoolID);

C++ Prototype

void* VDK::MallocBlock(VDK::PoolID inPoolID);

Description

Returns pointer to the next available block from the specified pool.

Parameters:

inPoolID specifies the pool from which block is to be allocated.

Scheduling:

Does not invoke the scheduler

Determinism

Constant time if inCreateNow was specified to be true when the specified
pool was created.

Not deterministic if inCreateNow was specified to be FALSE.

Return Value

Void pointer to a free memory block upon success. NULL if the call fails to
allocate a block.
5-98 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidPoolID indicates that inPoolID is not a valid identifier.

• kErrorMallocBlock indicates that there are no free blocks in the
pool, so a new block cannot be allocated.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-99
for 16-bit Processors

API Functions
MessageAvailable()

C Prototype

bool VDK_MessageAvailable(unsigned int inMessageChannelMask);

C++ Prototype

bool VDK::MessageAvailable(unsigned int inMessageChannelMask);

Description

Enables a thread to use a polling model (rather than a blocking model) to
wait for messages in its message queue. This function returns TRUE if a
subsequent call to PendMessage() with the same channel mask will not
block.

Parameters

inMessageChannelMask specifies the receive channels. A set bit corre-
sponds to a receive channel, and a clear bit corresponds to a channel
ignored.

If the VDK::kMsgWaitForAll flag is set in the channel mask then the query
operates with AND logic, rather than the default OR logic. By default,
only one message—on any of the receive channels designated in the chan-
nel mask—is required for a true result. The VDK::kMsgWaitForAll flag
requires at least one message to be queued on each of the specified receive
channels channel in order for the function to return true.

Scheduling

Does not invoke the scheduler

Determinism

Constant time
5-100 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Return Value

TRUE is there is a message available and FALSE if there is not.

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageChannel indicates that inMessageChannelMask is
not a valid mask.

• kInvalidThread indicates that the current thread does not have a
message queue as it has not been enabled for messaging.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-101
for 16-bit Processors

API Functions
OpenDevice()

C Prototype

VDK_DeviceDescriptor VDK_OpenDevice(VDK_IOID inIDNum,

char *inFlags);

C++ Prototype

VDK::DeviceDescriptor VDK::OpenDevice(VDK::IOID inIDNum,

char *inFlags);

Description

Opens the specified device.

Parameters

inIDNum is the boot IO identifier.

inFlags is uninterpreted data passed through to the device being opened.

Scheduling

Does not call the scheduler, but the user written device driver can call the
scheduler.

Determinism

Constant time. Note that this function calls user written device driver
code that may not be deterministic.

Return Value

Return value of the dispatch function if the device exists and UINT_MAX if it
does not.
5-102 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:

• kBadIOID indicates that inIDNum is not a valid IOID.

• kOpenFailure indicates that no more devices can be open
simultaneously.

Non error checking libraries: None

Note that other errors may be thrown by user-written device driver code
executed by this API.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-103
for 16-bit Processors

API Functions
PendDeviceFlag()

C Prototype

void VDK_PendDeviceFlag(VDK_DeviceFlagID inFlagID,

VDK_Ticks inTimeout);

C++ Prototype

void VDK::PendDeviceFlag(VDK::DeviceFlagID inFlagID,

VDK::Ticks inTimeout);

Description

Allows a thread to block on the specified device flag. The thread is blocked
and swapped out. Once the device flag is made available via PostDevice-
Flag(), all threads waiting for this flag are made ready-to-run. If the thread
does not resume execution within inTimeout ticks, the thread’s reentry
point is changed to its error function, and the thread is made available for
scheduling. This behavior can be changed by ORing the timeout with the
constant VDK_kNoTimeoutError in C or VDK::kNoTimeoutError in C++. In
this case, no errors will be dispatched on timeout and the API will simply
return after making the thread available for scheduling. If the value of
inTimeout is passed as zero, then the thread may pend indefinitely.

Note that PendDeviceFlag() must be called from within a non-nested crit-
ical region (a critical region with a stack depth of one), but from outside
of any unscheduled regions (as explained in “Pending on a Device Flag”
on page 3-65. PendDeviceFlag() pops one level of the critical region stack.

Parameters

inFlagID is the device flag on which the thread pends.

inTimeout is a value less than INT_MAX that specifies the maximum dura-
tion in ticks for which the thread pends on the device flag.
5-104 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Scheduling

Invokes the scheduler.

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kBlockInInvalidRegion indicates that PendDeviceFlag() is called
in an unscheduled region or nested critical region (must be called
in an non-nested critical region).

• kInvalidDeviceFlag indicates that inFlagID is not a valid
identifier.

• kDeviceTimeout indicates that the timeout value has expired before
the device flag was posted. This error will not be dispatched if the
timeout was ORed with the constant kNoTimeoutError.

• kInvalidTimeout indicates that inTimeout is either INT_MAX or
UINT_MAX.

Non error checking libraries:

kDeviceTimeout as above.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-105
for 16-bit Processors

API Functions
PendEvent()

C Prototype

void VDK_PendEvent(VDK_EventID inEventID, VDK_Ticks inTimeout);

C++ Prototype

void VDK::PendEvent(VDK::EventID inEventID, VDK::Ticks inTimeout);

Description

Provides the mechanism by which threads pend on events. If the named
event calculates as being available, execution returns to the running
thread. If the event is not available, the thread pauses execution until the
event is available. When the event becomes available, all threads pending
on the event are moved to the ready queue.

If the thread does not resume execution within inTimeout ticks, the
thread’s reentry point is changed to its error function, and the thread is
made available for scheduling. This behavior can be changed by ORing
the timeout with the constant VDK_kNoTimeoutError in C or VDK::kNoTim-
eoutError in C++. In this case, no errors will be dispatched on timeout
and the API will simply return after making the thread available for sched-
uling. If the value of inTimeout is passed as zero, then the thread may
pend indefinitely.

Parameters

inEventID is the event on which the thread pends.

inTimeout is a value less than INT_MAX that specifies the maximum dura-
tion in ticks for which the thread pends on the event.

Scheduling

Invokes the scheduler and may result in a context switch.
5-106 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Determinism

Constant time if event is available

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kEventTimeout indicates that the timeout value has expired before
the event was available. This error will not be dispatched if the tim-
eout was ORed with the constant kNoTimeoutError.

• kUnknownEvent indicates that inEventID is not a valid identifier.

• kBlockInInvalidRegion indicates that PendEvent() is trying to
block in an unscheduled region, causing a scheduling conflict.

• kDbgPossibleBlockInRegion indicates that PendEvent() is being
called in an unscheduled region, causing a potential scheduling
conflict.

• kInvalidTimeout indicates that inTimeout is either INT_MAX or
UINT_MAX.

Non error checking libraries:

kEventTimeout as above.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-107
for 16-bit Processors

API Functions
PendMessage()

C Prototype

VDK_MessageID VDK_PendMessage(unsigned int inMessageChannelMask,

VDK_Ticks inTimeout);

C++ Prototype

VDK::MessageID VDK::PendMessage(unsigned int inMessageChannelMask,

VDK::Ticks inTimeout);

Description

Retrieves a message from a thread’s message queue. PendMessage is a
blocking call: when the specified conditions for a valid message in the
queue are not met, the thread suspends execution. The channel mask
allows you to specify which channels (kMsgChannel1 through
kMsgChannel15) to examine for incoming messages.

In addition, the flag VDK::kMsgWaitForAll may be included in (OR-ed
into) the channel mask to specify that at least one message must be present
on each of the channels specified in the mask. Messages are retrieved from
the lowest numbered channels first (kMsgChannel1, then kMsgChannel2,
...). Once a MessageID is returned by PendMessage, the message is no
longer in the queue and is owned by the calling thread. If the thread does
not resume execution within inTimeout ticks, the thread’s reentry point is
changed to its error function, and the thread is made available for schedul-
ing. This behavior can be changed by ORing the timeout with the
constant VDK_kNoTimeoutError in C or VDK::kNoTimeoutError in C++. In
this case, no errors will be dispatched on timeout and the API will simply
return after making the thread available for scheduling. If the value for
inTimeout is passed as zero, then the thread may pend indefinitely.
5-108 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Parameters

inMessageChannelMask specifies the receive channels. A set bit corre-
sponds to a receive channel. A clear bit corresponds to a channel that is
ignored. The parameter may not be zero.

If the VDK::kMsgWaitForAll flag is set in the channel mask then the pend
operates with AND logic, rather than the default OR logic. By default,
only one message —on any of the receive channels designated in the chan-
nel mask—is required to unblock the pending thread. The
VDK::kMsgWaitForAll flag requires at least one message to be queued on
each of the specified receive channels channel in order to unblock.

inTimeout is a value less than INT_MAX that specifies the maximum dura-
tion in ticks for which the thread pends on the receipt of the required
message(s).

Scheduling

Invokes the scheduler and may result in a context switch.

Determinism

Constant time if there is no need to block.

Return Value

Identifier of the message the thread pended on upon success; UINT_MAX
otherwise.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-109
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:

• kDbgPossibleBlockInRegion indicates that PendMessage() is being
called in an unscheduled region, causing a potential scheduling
conflict.

• kInvalidMessageChannel indicates that inMessageChannelMask
does not specify a correct group of channels to mask.

• kMessageTimeout indicates that the timeout value has expired
before the thread removed the message from its message queue.
This error will not be dispatched if the timeout was ORed with the
constant kNoTimeoutError.

• kBlockInInvalidRegion indicates that PendMessage() is trying to
block in an unscheduled region, causing a scheduling conflict.

• kInvalidTimeout indicates that inTimeout is either INT_MAX or
UINT_MAX.

• kInvalidThread indicates that the current thread does not have a
message queue as it has not been enabled for messaging.

Non error checking libraries:

kMessageTimeout as above.
5-110 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
PendSemaphore()

C Prototype

void VDK_PendSemaphore(VDK_SemaphoreID inSemaphoreID,

VDK_Ticks inTimeout););

C++ Prototype

void VDK::PendSemaphore(VDK::SemaphoreID inSemaphoreID,

VDK::Ticks inTimeout);

Description

Provides the mechanism that allows threads to pend on semaphores. If the
named semaphore is available (its count is greater than zero), the sema-
phore’s count is decremented by one, and processor control returns to the
running thread. If the semaphore is not available (its count is zero), the
thread pauses execution until the semaphore is posted. If the thread does
not resume execution within inTimeout ticks, the thread’s reentry point is
changed to its error function, and the thread is made available for schedul-
ing. This behavior can be changed by ORing the timeout with the
constant VDK_kNoTimeoutError in C or VDK::kNoTimeoutError in C++. In
this case, no errors will be dispatched on timeout and the API will simply
return after making the thread available for scheduling. If the value of
inTimeout is passed as zero, then the thread may pend indefinitely.

Parameters

inSemaphoreID is the semaphore on which the thread pends.

inTimeout is a value less than INT_MAX that specifies the maximum dura-
tion in ticks for which the thread pends on the semaphore.

Scheduling

Invokes the scheduler and may result in a context switch.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-111
for 16-bit Processors

API Functions
Determinism

Constant time if semaphore is available

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kSemaphoreTimeout indicates that the timeout value has expired
before the semaphore became available. This error will not be dis-
patched if the timeout was ORed with the constant
kNoTimeoutError.

• kUnknownSemaphore indicates that inSemaphoreID is not a valid
identifier.

• kBlockInInvalidRegion indicates that PendSemaphore() is called
in an unscheduled region, causing a scheduling conflict.

• kDbgPossibleBlockInRegion indicates that PendSemaphore() may
be called in an unscheduled region, causing a potential scheduling
conflict.

• kInvalidTimeout indicates that inTimeout is either INT_MAX or
UINT_MAX.

Non error checking libraries:

kSemaphoreTimeout as above.
5-112 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
PopCriticalRegion()

C Prototype

void VDK_PopCriticalRegion(void);

C++ Prototype

void VDK::PopCriticalRegion(void);

Description

Decrements the count of nested critical regions. Use it as a close bracket
call to PushCriticalRegion(). A count is maintained to ensure that each
entered critical region calls PopCriticalRegion() before interrupts are reen-
abled. The kernel ignores additional calls to PopCriticalRegion() while
interrupts are enabled.

Each critical region is also (implicitly) an unscheduled region.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch if interrupts are
reenabled by this call.

Determinism

 Not deterministic

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-113
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:
kDbgPopUnderflow indicates that there were no critical regions to pop.

Non error checking libraries: None
5-114 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
PopNestedCriticalRegions()

C Prototype

void VDK_PopNestedCriticalRegions(void);

C++ Prototype

void VDK::PopNestedCriticalRegions(void);

Description

Resets the count of nested critical regions to zero, thereby, re-enabling
interrupts. The kernel ignores additional calls to PopNestedCriticalRe-
gions() while interrupts are enabled.

This function does not change the interrupt mask.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch (unless interrupts
are already enabled).

Determinism

Not deterministic

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-115
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:
kDbgPopUnderflow indicates that there are no critical regions to pop.

Non error checking libraries: None
5-116 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
PopNestedUnscheduledRegions()

C Prototype

void VDK_PopNestedUnscheduledRegions(void);

C++ Prototype

void VDK::PopNestedUnscheduledRegions(void);

Description

Resets the count of nested unscheduled regions to zero, thereby,
re-enabling scheduling. The kernel ignores additional calls to
PopNestedUnscheduledRegions() while scheduling is enabled.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch (unless schedul-
ing is already enabled).

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:
kDbgPopUnderflow indicates that there were no critical regions to pop.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-117
for 16-bit Processors

API Functions
PopUnscheduledRegion()

C Prototype

void VDK_PopUnscheduledRegion(void);

C++ Prototype

void VDK::PopUnscheduledRegion(void);

Description

Decrements the count of nested unscheduled regions. Use it as a close
bracket call to PushUnscheduledRegion(). A nesting count is maintained
to ensure that each entered unscheduled region calls PopUnscheduledRe-
gion() before scheduling is resumed.

The kernel ignores additional calls to PopUnscheduledRegion() while
scheduling is enabled.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch if scheduling is
reenabled by this call.

Determinism

Not deterministic

Return Value

No return value
5-118 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:
kDbgPopUnderflow indicates that there are no critical regions to pop.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-119
for 16-bit Processors

API Functions
PostDeviceFlag()

C Prototype

void VDK_PostDeviceFlag(VDK_DeviceFlagID inFlagID);

C++ Prototype

void VDK::PostDeviceFlag(VDK::DeviceFlagID inFlagID);

Description

Posts the specified device flag. Once the device flag is made available, all
threads waiting for the flag are in the ready-to-run state.

Parameters

inFlagID is the DeviceDescriptor returned from OpenDevice().

Scheduling

Invokes the scheduler.

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

kInvalidDeviceFlag indicates that inFlagID is not a valid identifier.
5-120 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
PostMessage()

C Prototype

void VDK_PostMessage(VDK_ThreadID inRecipient,

VDK_MessageID inMessageID,

VDK_MsgChannel inChannel);

C++ Prototype

void VDK::PostMessage(VDK::ThreadID inRecipient,

VDK::MessageID inMessageID,

VDK::MsgChannel inChannel);

Description

Appends the message inMessageID to the message queue of the thread
with identifier inRecipient on the channel inChannel. PostMessage() is a
non-blocking function: returns execution to the calling thread without
waiting for the recipient to run or to acknowledge the new message in its
queue. The message is considered delivered when PostMessage() returns.
Only the thread that is the owner of a message may post it.

At delivery time, ownership of the message and the associated payload is
transferred from the sending thread to the recipient thread. Once deliv-
ered, all memory references to the payload, which may be held by the
sending thread, are invalid. Memory read and write privileges and the
responsibility for freeing the payload memory are passed to the recipient
thread along with ownership.

Parameters

inRecipient is the ThreadID of the thread to receive the message.

inMessageID is the MessageID of the message being sent. A message must
be created before it is posted. This parameter is a return value of the call to
CreateMessage().
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-121
for 16-bit Processors

API Functions
inChannel is the FIFO within the recipient’s message queue on which the
message is appended. Its value is kMsgChannel1 through
kMessageChannel15.

Scheduling

Invokes the scheduler and may result in a context switch.

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageChannel indicates that the inChannel is not a
channel value.

• kUnknownThread indicates that inRecipient is not a valid thread
identifier.

• kInvalidMessageID indicates that inMessageID is not a valid mes-
sage identifier.

• kInvalidMessageRecipient indicates that inRecipient does not
have a message queue as it has not been enabled for messaging.
5-122 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
• kInvalidMessageOwner indicates that the thread attempting to post
the message is not the current owner. The error value is the
ThreadID of the owner.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-123
for 16-bit Processors

API Functions
PostSemaphore()

C Prototype

void VDK_PostSemaphore(VDK_SemaphoreID inSemaphoreID);

C++ Prototype

void VDK::PostSemaphore(VDK::SemaphoreID inSemaphoreID);

Description

Provides the mechanism by which threads post semaphores. Every time a
semaphore is posted, its count increases by one until it reaches the maxi-
mum value, as specified on creation. Any further posts have no effect.
Note that Interrupt Service Routines must use a different interface, as
described in “VDK_ISR_POST_SEMAPHORE_()” on page 5-155.

Parameters

inSemaphoreID is the semaphore to post.

Scheduling

May invoke the scheduler and may result in a context switch.

Determinism

• No thread pending: Constant time

• Low priority thread pending: Constant time

• High priority thread pending: Constant time plus a context switch

Return Value

No return value
5-124 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:
kUnknownSemaphore indicates that inSemaphoreID is not a valid identifier.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-125
for 16-bit Processors

API Functions
PushCriticalRegion()

C Prototype

void VDK_PushCriticalRegion(void);

C++ Prototype

void VDK::PushCriticalRegion(void);

Description

Disables interrupts to enable atomic execution of a critical region of code.
Note that critical regions may be nested. A count is maintained to ensure a
coequal number of calls to PopCriticalRegion() are made before restoring
interrupts. Each critical region is also (implicitly) an unscheduled region.

Parameters

None

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Thrown

None
5-126 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
PushUnscheduledRegion()

C Prototype

void VDK_PushUnscheduledRegion(void);

C++ Prototype

void VDK::PushUnscheduledRegion(void);

Description

Disables the scheduler. While in an unscheduled region, the current
thread will not be de-scheduled, even if a higher-priority thread becomes
ready to run. Note that unscheduled regions may be nested. A count is
maintained to ensure a coequal number of calls to PopUnscheduledRe-
gion() are made before scheduling is reenabled.

Scheduling

Suspends scheduling until a matching PopUnscheduledRegion() call.

Parameters

None

Determinism

Constant time

Return Value

No return value

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-127
for 16-bit Processors

API Functions
RemovePeriodic()

C Prototype

void VDK_RemovePeriodic(VDK_SemaphoreID inSemaphoreID);

C++ Prototype

void VDK::RemovePeriodic(VDK::SemaphoreID inSemaphoreID);

Description

Stops periodic posting of the specified semaphore. Trying to stop a
non-periodic semaphore has no effect and raises a run-time error.

Parameters

inSemaphoreID is the semaphore for which periodic posting is to be halted.

Scheduling

Does not invoke the scheduler

Determinism

Not deterministic

Return Value

No return value
5-128 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:

• kUnknownSemaphore indicates that inSemaphoreID is not a valid
identifier.

• kNonperiodicSemaphore indicates that the semaphore is not
periodic.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-129
for 16-bit Processors

API Functions
ResetPriority()

C Prototype

void VDK_ResetPriority(const VDK_ThreadID inThreadID);

C++ Prototype

void VDK::ResetPriority(const VDK::ThreadID inThreadID);

Description

Restores the priority of the named thread to the default value specified in
the thread’s template.

Parameters

inThreadID is the thread whose priority to be reset.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value
5-130 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:

• kUnknownThread indicates that inThreadID is not a valid identifier.

• kInvalidThread indicates that inThreadID specified the
IdleThread.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-131
for 16-bit Processors

API Functions
SetClockFrequency()

C Prototype

void VDK_SetClockFrequency (unsigned int inFrequency);

C++ Prototype

void VDK::SetClockFrequency (unsigned int inFrequency);

Description

Sets the clock frequency to inFrequency. The clock is stopped, the clock
parameters are recalculated using the new value for clock frequency, and
then the clock is restarted. It is the responsibility of the application
designer to ensure that the clock frequency matches that of the hardware
used.

Parameters

inFrequency is the new value for the clock frequency.

Scheduling

Does not invoke the scheduler.

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

None
5-132 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
SetEventBit()

C Prototype

void VDK_SetEventBit(VDK_EventBitID inEventBitID);

C++ Prototype

void VDK::SetEventBit(VDK::EventBitID inEventBitID);

Description

Sets the value of the event bit. Once the event bit is set (meaning its value
equals to TRUE, 1, occurred, etc.), the value of all dependent events is
recalculated.

If several event bits are to be set (or cleared) as a single operation, then the
SetEventBit() and/or ClearEventBit() calls should be made from within an
unscheduled region. Event recalculation will not occur until the unsched-
uled region is popped.

Parameters

inEventBitID is the system event bit to set.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-133
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:
kUnknownEventBit indicates that inEventBitID is not a valid identifier.

Non error checking libraries: None
5-134 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
SetInterruptMaskBits()

C Prototype

void VDK_SetInterruptMaskBits(VDK_IMASKStruct inMask);

C++ Prototype

void VDK::SetInterruptMaskBits(VDK::IMASKStruct inMask);

Description

Sets bits in the interrupt mask. Any bits set in the parameter is set in the
interrupt mask. In other words, the new mask is computed as the bitwise
OR of the old mask and the parameter inMask.

Parameters

inMask specifies which bits should be set in the interrupt mask.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-135
for 16-bit Processors

API Functions
SetMessagePayload()

C Prototype

void VDK_SetMessagePayload(VDK_MessageID inMessageID,

int inPayloadType,

unsigned int inPayloadSize,

void *inPayloadAddr);

C++ Prototype

void VDK::SetMessagePayload(VDK::MessageID inMessageID,

int inPayloadType,

unsigned int inPayloadSize,

void *inPayloadAddr);

Description

Sets the values in a message header that describe the payload. The mean-
ing of these values is application-specific and corresponds to the
arguments passed to CreateMessage(). This function overwrites the exist-
ing values in the message. Only the thread that is the owner of a message
may set the attributes of its payload.

Parameters

inMessageID specifies the message to be modified.

inPayloadType is an application-specific value that may be used to
describe the contents of the payload. Negative values of payload type are
reserved for use by VDK.

inPayloadSize indicates the size of the payload in the smallest addressable
units of the processor (sizeof(char)).

inPayloadAddr is (typically) a pointer to the beginning of the payload
buffer.
5-136 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Thrown

Full instrumentation and error checking libraries:

• kInvalidMessageOwner indicates that the running thread is not the
current owner of the message.

• kInvalidMessageID indicates that the argument inMessageID is not
a valid message identifier.

• kMessageInQueue indicates that the message has been posted to a
thread (the ThreadID is not known at this point), and it needs to
be removed from the message queue by a call to PendMessage().

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-137
for 16-bit Processors

API Functions
SetPriority()

C Prototype

void VDK_SetPriority(const VDK_ThreadID inThreadID,

const VDK_Priority inPriority);

C++ Prototype

void VDK::SetPriority(const VDK::ThreadID inThreadID,

const VDK::Priority inPriority);

Description

Dynamically sets the priority of the named thread, overriding the default
value. All threads are given an initial priority level at creation time. The
thread’s template specifies the priority initial value.

Parameters

inPriority is the new priority level. The Priority data type is described on
on page 4-37.

inThreadID is the thread to modify.

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Not deterministic

Return Value

No return value
5-138 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Errors Thrown

Full instrumentation and error checking libraries:

• kUnknownThread indicates that inThreadID is not a valid identifier.

• kInvalidPriority indicates that inPriority is not a priority of the
Priority type.

• kInvalidThread indicates that inThreadID specified the
IdleThread.

Non error checking libraries: None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-139
for 16-bit Processors

API Functions
SetThreadError()

C Prototype

void VDK_SetThreadError(VDK_SystemError inErr, int inVal);

C++ Prototype

void VDK::SetThreadError(VDK::SystemError inErr, int inVal);

Description

Sets the running thread’s error value.

Parameters

inErr is the error enumeration. See “SystemError” on page 4-40 for more
information about errors.

inVal is the value whose meaning is determined by the error enumeration.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

No return value

Errors Thrown

None
5-140 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
SetThreadSlotValue()

C Prototype

bool VDK_SetThreadSlotValue(int inSlotNum, void *inValue);

C++ Prototype

bool VDK::SetThreadSlotValue(int inSlotNum, void *inValue);

Description

Sets the value in the currently running thread’s slot table associated with
inSlotNum. Returns FALSE if (and only if) inSlotNum does not identify a
currently allocated slot. Otherwise, stores inValue in the thread slot iden-
tified by inSlotNum and returns TRUE.

Parameters

inSlotNum is the static library’s preallocated slot number.

inValue is the value to store in thread’s slot table (at inSlotNum entry).

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Return Value

FALSE if inSlotNum does not identify a currently allocated slot and TRUE
otherwise.

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-141
for 16-bit Processors

API Functions
SetTickPeriod()

C Prototype

void VDK_SetTickPeriod (double inPeriod);

C++ Prototype

void VDK::SetTickPeriod (double inPeriod);

Description

Sets the tick period to inPeriod. The clock is stopped, the clock parame-
ters are recalculated using the new value for tick period, and then the
clock is restarted.

Parameters

inPeriod is the new value for the tick period.

Scheduling

Does not invoke the scheduler.

Determinism

Not deterministic

Return Value

No return value

Errors Thrown

None
5-142 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Sleep()

C Prototype

void VDK_Sleep(VDK_Ticks inSleepTicks);

C++ Prototype

void VDK::Sleep(VDK::Ticks inSleepTicks);

Description

Causes a thread to pause execution for at least the given number of clock
ticks. Once delay ticks have elapsed, the calling thread is in the
ready-to-run state. The thread resumes execution only if it is the highest
priority thread with ready status. The minimum delay is one.

Parameters

inSleepTicks is a value less than INT_MAX that specifies the duration in
ticks for which the thread should sleep.

Scheduling

Invokes the scheduler and will result in a context switch

Determinism

Not deterministic

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-143
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:

• kBlockInInvalidRegion indicates that Sleep() is being called in an
unscheduled region, causing a scheduling conflict.

• kInvalidDelay indicates that inSleepTicks is not within the valid
range of 1 to (INT_MAX -1).

Non error checking libraries: None
5-144 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
SyncRead()

C Prototype

unsigned int VDK_SyncRead(VDK_DeviceDescriptor inDD,

char *outBuffer,

const unsigned int inSize,

VDK_Ticks inTimeout);

C++ Prototype

unsigned int VDK::SyncRead(VDK::DeviceDescriptor inDD,

char *outBuffer,

const unsigned int inSize,

VDK::Ticks inTimeout);

Description

Invokes the read functionality of the driver.

Parameters

inDD is the DeviceDescriptor returned from OpenDevice().

outBuffer is the address of the data buffer to be filled by the device.

inSize is the number of words to be read from the device.

inTimeout is the number of ticks to wait before timeout occurs.

Scheduling

Does not call the scheduler, but the user written device driver can call the
scheduler.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-145
for 16-bit Processors

API Functions
Determinism

Constant time. Note that this function calls user written device driver
code that may not be deterministic.

Return Value

Return value of the dispatch function if the device exists and UINT_MAX if it
does not.

Errors Thrown

Full instrumentation and error checking libraries:

kBadDeviceDescriptor indicates that inDD is not a valid DeviceDescriptor.

Non error checking libraries: None

Note that other errors may be thrown by user-written device driver code
executed by this API.
5-146 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
SyncWrite()

C Prototype

unsigned int VDK_SyncWrite(VDK_DeviceDescriptor inDD,

char *outBuffer,

const unsigned int inSize,

VDK_Ticks inTimeout);

C++ Prototype

unsigned int VDK::SyncWrite(VDK::DeviceDescriptor inDD,

char *outBuffer,

const unsigned int inSize,

VDK::Ticks inTimeout);

Description

Invokes the write functionality of the driver.

Return Value

Return value of the dispatch function if the device exists and UINT_MAX if it
does not.

Parameters

inDD is the DeviceDescriptor returned from OpenDevice().

outBuffer is the address of the data buffer to be read by the device.

inSize is the number of words to be written to the device.

inTimeout is the number of ticks to wait before timeout occurs.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-147
for 16-bit Processors

API Functions
Scheduling

Does not call the scheduler, but the user written device driver can call the
scheduler.

Determinism

Constant time. Note that this function calls user written device driver
code that may not be deterministic.

Errors Thrown

Full instrumentation and error checking libraries:

kBadDeviceDescriptor indicates that inDD is not a valid DeviceDescriptor.

Non error checking libraries: None

Note that other errors may be thrown by user-written device driver code
executed by this API.
5-148 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Yield()

C Prototype

void VDK_Yield(void);

C++ Prototype

void VDK::Yield(void);

Description

Yields control of the processor and moves the thread to the end of the wait
queue of threads at its priority level. When Yield() is called from a thread
at a priority level using round-robin multithreading, the call also yields
the remainder of the thread’s time slice.

Parameters

None

Scheduling

Invokes the scheduler and may result in a context switch

Determinism

Constant time and conditional context switch.

Return Value

No return value
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-149
for 16-bit Processors

API Functions
Errors Thrown

Full instrumentation and error checking libraries:
kBlockInInvalidRegion indicates that Yield() is called in an unscheduled
region, causing a scheduling conflict.

Non error checking libraries: None
5-150 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
Assembly Macros
This section describes the assembly-language macros that allow interrupt
service routines (ISRs) to communicate with the VDK kernel. These mac-
ros are known collectively as the ISR API and are the only part of VDK
that can be safely called from interrupt level.

In VDK applications, interrupt service routines should execute quickly
and should leave as much of the processing as possible to be performed
either by a thread or by a device driver activation. The principle purpose
of the ISR API is therefore to provide the means to initiate such (thread or
driver) activity.

In order to eliminate the overhead of saving and restoring the processor
state, and of setting up a C run-time environment for each ISR entry,
interrupt service routines for VDK are always written in assembly lan-
guage and are responsible for saving and restoring any registers that they
use. No assumptions can be made about the processor state at the time of
entry to an ISR.

Each ISR API macro saves and restores all of the registers that it uses, and
the macros are safe to use with nested interrupts enabled.

The ISR assembly macros are:

• “VDK_ISR_ACTIVATE_DEVICE_()” on page 5-152

• “VDK_ISR_CLEAR_EVENTBIT_()” on page 5-153

• “VDK_ISR_LOG_HISTORY_EVENT_()” on page 5-154

• “VDK_ISR_POST_SEMAPHORE_()” on page 5-155

• “VDK_ISR_SET_EVENTBIT_()” on page 5-156
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-151
for 16-bit Processors

Assembly Macros
VDK_ISR_ACTIVATE_DEVICE_()

Prototype

VDK_ISR_ACTIVATE_DEVICE_(VDK_IOID inID);

Description

Executes the named device driver prior to execution returning to the
thread domain.

Parameters

inID is the device driver to run.

Scheduling

Invokes the scheduler prior to returning to the thread domain.

Determinism

Constant time

Errors Thrown

None
5-152 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
VDK_ISR_CLEAR_EVENTBIT_()

Prototype

VDK_ISR_CLEAR_EVENTBIT_(VDK_EventBitID inEventBit);

Description

Clears the value of inEventBit by setting it to 0 (FALSE). All event bit
clears which occur in the interrupt domain are processed immediately
prior to returning to the thread domain.

Parameters

inEventBit specifies the event bit to clear.

Scheduling

If inEventBit is currently set (1), the macro invokes the scheduler prior to
returning to the thread domain. This allows the value of all dependent
events to be recalculated and may cause a thread context switch.

Determinism

Constant time

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-153
for 16-bit Processors

Assembly Macros
VDK_ISR_LOG_HISTORY_EVENT_()

Prototype

VDK_ISR_LOG_HISTORY_EVENT_(VDK_HistoryEnum inEnum,

int inVal,

VDK_ThreadID inThreadID);

Description

Adds a record to the history buffer. It is NULL if the
VDK_INSTRUMENTATION_LEVEL_ macro is set to zero or one (the value of two
indicates that fully instrumented libraries are in use). See online Help for
more information.

Parameters

inEnum is the enumeration value for this type of event. For more informa-
tion, see “HistoryEnum” on page 4-18.

inVal is the information defined by the enumeration.

inThreadID is the ThreadID to be stored with History Event.

Scheduling

Does not invoke the scheduler

Determinism

Constant time

Errors Thrown

None
5-154 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

VDK API Reference
VDK_ISR_POST_SEMAPHORE_()

Prototype

VDK_ISR_POST_SEMAPHORE_(VDK_SemaphoreID inSemaphoreID);

Description

Posts the named semaphore. Every time a semaphore is posted, its count
increases until it reaches its maximum value, as specified on creation. Any
further posts have no effect. All semaphore posts which occur in the inter-
rupt domain are processed immediately prior to returning to the thread
domain.

Parameters

inSemaphoreID is the semaphore to post.

Scheduling

If a thread is pending on inSemaphoreID, the macro invokes the scheduler
prior to returning to the thread domain.

Determinism

Constant time

Errors Thrown

None
VisualDSP++ 3.5 Kernel (VDK) User’s Guide 5-155
for 16-bit Processors

Assembly Macros
VDK_ISR_SET_EVENTBIT_()

Prototype

VDK_ISR_SET_EVENTBIT_(VDK_EventBitID inEventBit);

Description

Sets the value of inEventBit by setting it to 1 (TRUE). All event bit sets
which occur in the interrupt domain are processed immediately prior to
returning to the thread domain.

Parameters

inEventBit specifies the event bit to set.

Scheduling

If inEventBit is currently clear (zero), the macro invokes the scheduler
prior to returning to the thread domain. This allows the value of all
dependent events to be recalculated and may cause a thread context
switch.

Determinism

Constant time

Errors Thrown

None
5-156 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

A PROCESSOR-SPECIFIC
NOTES

This appendix provides processor-specific information for Blackfin and

ADSP-219x processors.

Information will be added to this appendix to cover DSP architectures for
which subsequent releases of VisualDSP++ 3.5 take place.

VDK for Blackfin Processors
(AD6532, ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF535, and
ADSP-BF561)

User and Supervisor Modes
The Blackfin processor’s architecture makes a distinction between execu-
tion in user and supervisor modes. Unlike VDK of VisualDSP++ 2.0,
which supports both modes and switches back and forth as necessary,
VDK of VisualDSP++3.5 runs entirely in supervisor mode, including all
user thread code.

Since supervisor mode provides a superset of the capabilities of user mode,
applications using VDK no longer need to be aware of the processor mode
and do not need to raise exceptions in order to access protected resources.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide A-1
for 16-bit Processors

VDK for Blackfin Processors (AD6532, ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF535, and ADSP-BF561)
Thread, Kernel, and Interrupt Execution Levels
VDK reserves execution level 15 as the run-time execution level for most
user and VDK API code, and execution level 14 for internal VDK opera-
tions. In the following text, these are referred to as “Thread Level” and
“Kernel Level”, respectively. Execution levels 13–6 are collectively referred
to as “Interrupt Level”. All of these levels (15–6) execute in supervisor
mode.

All thread functions execute at Thread Level (execution level 15), includ-
ing Run() and ErrorHandler(). Conversely, all Interrupt Service Routines
(ISRs) execute at higher priority (lower numbered) execution levels,
according to the interrupt source that invoked them. The implementation
function for device drivers (their single entry point) may be called by the
kernel at either Thread Level (execution level 15) or at Kernel Level (exe-
cution level 14), depending on the purpose of the call.

Device driver ‘activate’ (kIO_Activate) functionality is the only user code
that executes at Kernel Level. All other device driver code executes at
Thread Level. Entry to Kernel Level is, in this case, initiated by an ISR
calling VDK_ISR_ACTIVATE_DEVICE_() and is, therefore, asynchro-
nous with respect to Thread Level, except within a critical region. Thus,
care must be taken to synchronize access to shared data between Thread
level and Kernel Level, as well as between Thread Level and Interrupt
Level (and also between Kernel Level and Interrupt Level). Critical regions
may be used for both of these purposes.

Compared with VisualDSP++ 2.0, there are fewer limits on the operations
that can be performed in threads. System memory mapped registers may
be accessed directly and at any time. It is, however, the user’s responsibil-
ity to ensure the operations are performed correctly and at appropriate
times.
A-2 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Processor-Specific Notes
Critical and Unscheduled Regions
Because VDK now executes entirely in supervisor mode, the execu-
tion-time cost of entering or leaving a critical region is reduced, compared
to that in VisualDSP++ 2.0. However, because VDK now disables inter-
rupts for much shorter periods of time, it is more likely that the worst-case
interrupts-off time will be set by critical regions in user code. Therefore,
care must be taken that such usage does not impact the interrupt latency
of the system to an unacceptable degree.

Exceptions
VDK reserves service exception ID 0 (EXCPT 0) for internal use. Addition-
ally, the Integrated Development and Debugging Environment (IDDE)
automatically generates a source file for all VDK projects for Blackfin pro-
cessors. The source file defines an entry point for any service or error
exceptions you wish to trap. When an exception occurs, VDK intercepts
the exception; if it is not the VDK exception, the user defined exception
handler executes.

Do not manipulate the IMASK system register from within your exception
handler. If you need to mask or unmask an interrupt in response to an
exception, raise an interrupt and change the value of IMASK in the ISR
after the exception handler.

ISR APIs
The Blackfin processor’s assembly syntax requires the use of separate API
macros, depending on whether the arguments are constants (immediate
values, enumerations) or data registers (R0 through R7). The arguments to
VisualDSP++ 3.5 Kernel (VDK) User’s Guide A-3
for 16-bit Processors

VDK for Blackfin Processors (AD6532, ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF535, and ADSP-BF561)
the default APIs, described in Chapter 5, “VDK API Reference”, must be
constants. When passing data registers as arguments, append “REG_” to the
macro name as follows.

VDK_ISR_POST_SEMAPHORE_REG_(semaphore_num_);

VDK_ISR_ACTIVATE_DEVICE_REG_(dev_num_);

VDK_ISR_SET_EVENTBIT_REG_(eventbit_num_);

VDK_ISR_CLEAR_EVENTBIT_REG_(eventbit_num_);

VDK_ISR_LOG_HISTORY_REG_(enum_, value_, threadID_);

The API macros, as defined in “” on page 5-151 (without “REG_”), only
accept constants as arguments. Passing a register name results in an assem-
bler error.

Interrupts
The following hardware events (interrupts) are reserved for use by VDK
on Blackfin processors.

• EVT_EVX – the software exception handler. User code handles soft-
ware exceptions by modifying the source file created by
VisualDSP++ named ExceptionHandler-<processor_name>.asm,
for example ExceptionHandler-BF533.asm..

• EVT_IVTMR – the interrupt associated with the timer integral to the
processor core. This timer generates the interrupts for system ticks
and provides all VDK timing services. Disabling this timer stops
sleeping, round-robin scheduling, pending with timeout, and peri-
odic semaphores.

• EVT_IVG14 – general interrupt #14. This interrupt is reserved for
use by VDK and may not be used in any other manner.

• EVT_IVG15 – general interrupt #15. This interrupt is reserved to
provide a supervisor mode runtime for user and VDK code and
may not be used in any other manner.
A-4 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Processor-Specific Notes
The ADSP-BF53x processor designates hardware events seven (EVT_IVG7)
through thirteen (EVT_IVG13) as ‘general interrupts’ and maps each to
more than one physical peripheral. The IDDE generates source code tem-
plates with a single entry point per interrupt level, rather than for each
peripheral. Therefore, you are responsible for dispatching interrupts when
more than one peripheral is used at the same level. The technique used
depends on the application, but, typically, either chaining or a jump table
is used. When chaining, a handler will check to see whether the interrupt
was caused by the specific peripheral it knows how to handle. If not, exe-
cution is passed to the next handler in the chain. A jump table uses an
identifier or a constant as index to a table of function pointers when
searching for the appropriate interrupt handler.

Timer
VDK Ticks are derived from the timer implemented in the inner proces-
sor core of Blackfin processors and are synchronized to the main core
clock CCLK. However, this timer is disabled when a Blackfin processor
enters low power mode. Thus, all VDK timing services (such as sleeping,
time outs, and periodic semaphores) do not operate while the core is in
IDLE or low power mode.

ADSP-BF531, ADSP-BF532 and ADSP-BF533
Processor Memory

The default VDK linker description files for these processors
(VDK-BF531.LDF, VDK-BF532.LDF and VDK-BF533.LDF) place all code and
data, and the default heap, into L1 SRAM. These default assignments may
be changed by customizing the LDF file used by a project. Refer to the
VisualDSP++ 3.5 Linker and Utilities Manual for Blackfin Processors for
details on how to do this. An alternative mapping is included in the
default LDF files, which uses part or all of the L1 SRAM as cache (assumes
that external memory is present). However, caching of code and data is
VisualDSP++ 3.5 Kernel (VDK) User’s Guide A-5
for 16-bit Processors

VDK for Blackfin Processors (AD6532, ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF535, and ADSP-BF561)
not enabled by default. For details on how to enable and configure cach-
ing see the VisualDSP++ 3.5 C/C++ Compiler and Library Manual for
Blackfin Processors.

ADSP-BF535 and AD6532 Processor Memory
The default VDK linker description files for these processors
(VDK-BF535.LDF and VDK-AD6532.LDF) place all code and data, and the
default heap, into L2 memory. The L1 memory regions are not used by
default. These default assignments may be changed by customizing the
LDF file used by a project. Refer to the VisualDSP++ 3.5 Linker and Util-
ities Manual for Blackfin Processors for details on how to do this. An
alternative mapping is included in the default LDF files, which uses the L1
SRAM as cache. However, caching of code and data is not enabled by
default. For details on how to enable and configure caching see the Visu-
alDSP++ 3.5 C/C++ Compiler and Library Manual for Blackfin Processors.

ADSP-BF561 Processor Memory
The default VDK linker description file for the ADSP-BF561 processor
(VDK-BF561.LDF) places code and data, and the default heap, into both L1
SRAM and L2 memory. These default assignments may be changed by
customizing the LDF file used by a project. Refer to the VisualDSP++ 3.5
Linker and Utilities Manual for Blackfin Processors for details on how to do
this. An alternative mapping is included in the default LDF files which
uses part of the L1 SRAM as cache. However, caching of code and data is
not enabled by default. For details on how to enable and configure cach-
ing see the VisualDSP++ 3.5 C/C++ Compiler and Library Manual for
Blackfin Processors.
A-6 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Processor-Specific Notes
Interrupt Nesting
In VisualDSP++ 3.5, VDK fully supports nested interrupts:

• The skeleton interrupt service routines, which are generated by the
VisualDSP++ 3.5 IDDE for user defined interrupt handlers, enable
nesting by pushing the contents of the RETI register onto the stack
on entry and popping it immediately prior to exit.

• The ISR API macros are fully reentrant.

Note that the skeleton ISRs in VisualDSP++ 2.0 do not enable nesting.
When converting existing VisualDSP++ 2.0 projects to VisualDSP++ 3.5,
manually add the [––SP] = RETI; and RETI = [SP++]; instructions to the
existing ISRs to obtain the benefits of interrupt nesting. Conversely, if
nesting is not required in VisualDSP++ 3.5 projects, it is acceptable to
manually delete these instructions from the ISRs.

Thread Stack Usage by Interrupts
Because all thread code executes in supervisor mode, there is no automatic
switching between user and system stack pointers. Therefore, all ISRs exe-
cute using the stack of the current thread, which is the thread that is
executing at the time the interrupt is serviced. This means each thread
stack must—in addition to the thread’s own requirements—reserve suffi-
cient space for the requirements of ISRs. This is also applicable to the Idle
thread's stack and, in VisualDSP++ 3.5, the size of the Idle thread's stack
can be configured within the IDDE (see online Help for further informa-
tion). When interrupt nesting is enabled (as it is by default), the
worst-case space requirement is the total of the requirements of the indi-
vidual ISRs. When nesting is disabled, the requirement is only the largest
of the individual ISR requirements, which is one possible reason for dis-
abling interrupt nesting.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide A-7
for 16-bit Processors

VDK for Blackfin Processors (AD6532, ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF535, and ADSP-BF561)
Interrupt Latency
Every effort has been made to minimize the duration of the intervals in
which interrupts are disabled by VDK. Interrupts are disabled only where
necessary for synchronization with Interrupt Level and for the shortest
feasible number of instructions. The instruction sequences executed dur-
ing these interrupts-off periods are deterministic.

Within VDK itself, synchronization between Thread Level and Kernel
Level is achieved by selectively masking the Kernel Level interrupt, while
leaving the higher priority interrupts unmasked.

Multiprocessor Messaging
The dual-core ADSP-BF561 is the only processor in the Blackfin family
for which multiprocessor messaging is presently supported. A device driver
that uses the two Internal Memory DMA (IMDMA0 and IMDMA1)
channels for communication between the two cores is included under the
examples directories in the VisualDSP++ 3.5 installation.

Because the IMDMA channels only support L1 and L2 memory, care
needs to be exercised if external memory (SDRAM) is also in use. Memory
payloads placed in external memory cannot be written or read by the
IMDMA device driver and, therefore, cannot be automatically be tran-
ferred by the marshalling functions. However, since external memory is
visible to both cores, at the same addresses, it is not normally necessary to
copy the payload contents between the cores. Provided that the applica-
tion is carefully designed, it should be possible to pass the payload address
and size as an unmarshalled payload type and to access the payload con-
tents in place from either core. This is also the more efficient solution.

Note that there is no cache-coherency between the two cores of
ADSP-BF561. Therefore, if caching is enabled, then any memory regions
that are accessed from both cores (this applies both to L2 memory and to
A-8 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Processor-Specific Notes
external SDRAM) must be defined as uncached in the CPLB tables. See
the "Caching and Memory Protection" section in the C/C++ Compiler
and Library Manual for more information about CPLBs.

Additionally, the thread stacks for Routing Threads must not be placed in
external memory. This is because the buffer structures used for the trans-
mission and reception of message packets are stored on the stack — these
must be located in either L1 or L2 memory.

VDK for ADSP-219x DSPs
(ADSP-2191, ADSP-2192-12, ADSP-2195,
and ADSP-2196)

Thread, Kernel, and Interrupt Execution Levels
VDK runs most user and VDK API code at the normal (non-interrupt)
execution level but also reserves one of the low priority interrupt levels for
internal VDK operations. In the following text, these are referred to as
“Thread Level” and “Kernel Level”, respectively. The remaining interrupt
levels are collectively referred to as “Interrupt Level”.

All thread functions execute at Thread Level, including Run() and
ErrorHandler(). Conversely, all Interrupt Service Routines execute at
higher priority execution levels, according to the interrupt source that
invoked them. The implementation function for device drivers (their sin-
gle entry point) may be called by the kernel at either Thread Level or at
Kernel Level, depending on the purpose of the call.

Device driver ‘activate’ (kIO_Activate) functionality is the only user code
which executes at Kernel Level (all other device driver code executes at
Thread Level). Entry to Kernel Level is, in this case, initiated by an ISR
calling VDK_ISR_ACTIVATE_DEVICE_() and is, therefore, asynchro-
nous with respect to Thread Level, except within a critical region. For this
VisualDSP++ 3.5 Kernel (VDK) User’s Guide A-9
for 16-bit Processors

VDK for ADSP-219x DSPs (ADSP-2191, ADSP-2192-12,
ADSP-2195, and ADSP-2196)
reason, care must be taken to synchronize access to shared data between
Thread Level and Kernel Level, as well as between Thread Level and Inter-
rupt Level (and also between Kernel Level and Interrupt Level). Critical
regions may be used for both of these purposes.

Critical and Unscheduled Regions
VDK in VisualDSP++ 3.5 disables interrupts internally for much shorter
periods of time than in VisualDSP++ 2.0. It is, therefore, more likely that
the worst-case interrupts-off time will now be set by the use of critical
regions in user code. Care must be taken that such usage does not impact
the interrupt latency of the system to an unacceptable degree.

Interrupts on ADSP-2192 DSPs
The following interrupts are reserved for use by VDK on the ADSP-2192
DSP.

• IRPTL[5] – the timer interrupt. Timer2 generates the interrupts for
system ticks and provides all VDK timing services. Disabling this
timer stops sleeping, round robin scheduling, pending with time-
out, and periodic semaphores. This interrupt is reserved for use by
the scheduler and may not be used in any other manner.

• IRPTL[14] – the kernel interrupt. This interrupt is reserved for use
by VDK and may not be used in any other manner.

When using VDK, there are some restrictions placed on the ISRs associ-
ated with the AC'97 codec port. This is due to the AC’97 interrupt being
hard wired to IRPTL[15] and, therefore, executing at a lower priority than
VDK’s Kernel Level interrupt. This means that your entire ISR at priority
level 15 must execute with interrupts disabled. You should never enable
interrupts while servicing an AC'97 Frame, and a nested interrupt should
never be allowed to occur once an AC'97 Frame ISR begins.
A-10 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Processor-Specific Notes
Interrupts on ADSP-2191 DSPs
The following interrupts are reserved for use by VDK on the ADSP-2191
DSP.

• IRPTL[4] – the timer interrupt. Timer2 generates the interrupts for
system ticks and provides all VDK timing services. Disabling this
timer stops sleeping, round robin scheduling, pending with time-
out, and periodic semaphores. This interrupt is reserved for use by
the scheduler and may not be used in any other manner.

• IRPTL[15] – the kernel interrupt. This interrupt is reserved for use
by VDK and may not be used in any other manner.

The ADSP-2191 DSP interrupt controller allows Interrupt Levels five
(IRPTL[5]) through fourteen (IRPTL[14]) to be mapped in software to the
various on-chip peripherals. VDK uses this facility itself to map Timer2 to
priority level four, as mentioned above. User code may set up other map-
pings but must neither change the mapping of Timer2 nor map any other
peripheral onto priority four.

The VisualDSP++ 3.5 IDDE generates ISR source code templates with a
single entry point per Interrupt Level, rather than one for each peripheral.
Therefore, if several peripherals share the same Interrupt Level, then user
code (within the ISR for that level) is responsible for determining the true
source of the interrupt and dispatching to the appropriate handler.

Timer
The ADSP-2192 DSP has a single timer, which is reserved by VDK for its
internal timekeeping functions and may not be used in any other manner.

The ADSP-2191 DSP has three identical timers (Timer0-Timer2), one of
which (Timer2) is reserved by VDK for its internal timekeeping functions
and may not be used in any other manner.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide A-11
for 16-bit Processors

VDK for ADSP-219x DSPs (ADSP-2191, ADSP-2192-12,
ADSP-2195, and ADSP-2196)
Memory
By default, the VDK LDF file places all user and VDK code into 24-bit
sections and global and static data into 16-bit sections. A separate memory
region is used for the heap. The stack regions for individual threads are
allocated from the heap.

The default arrangements can be customized by editing the project’s LDF
file. Refer to the VisualDSP++ 3.5 Linker and Utilities Manual for
ADSP-21xx DSPs for information on segmenting your code.

Interrupt Nesting
In VisualDSP++ 3.5, VDK fully supports nested interrupts (with the
exception, as mentioned on page A-10, of the AC’97 interrupt on
ADSP-2192 DSPs):

• The skeleton Interrupt Service Routines, which are generated by
the VisualDSP++ 3.5 IDDE for user defined interrupt handlers,
enable nesting by re-enabling interrupts after entry.

• The ISR API macros are re-entrant between different interrupt
levels.

Note that the skeleton ISRs in VisualDSP++ 2.0 do not enable nesting.
When converting existing VisualDSP++ 2.0 projects, it is, therefore, nec-
essary to add the “ENA INT;” instructions by hand to the existing ISRs in
order to obtain the benefits of interrupt nesting. Conversely, if nesting is
not required in VisualDSP++ 3.5 projects, it is acceptable to manually
delete these instructions from the ISRs.
A-12 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Processor-Specific Notes
Interrupt Latency
Every effort has been made to minimize the duration of the intervals
where interrupts are disabled by VDK. Interrupts are disabled only where
necessary for synchronization with Interrupt Level, and then for the short-
est feasible number of instructions. The instruction sequences executed
during these interrupts-off periods are deterministic.

Within VDK itself, synchronization between Thread Level and Kernel
Level is achieved by selectively masking the Kernel Level interrupt, while
leaving the higher priority interrupts unmasked.

Multiprocessor Messaging
None of the processors in the ADSP-219x family support multiprocessor
messaging.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide A-13
for 16-bit Processors

VDK for ADSP-219x DSPs (ADSP-2191, ADSP-2192-12,
ADSP-2195, and ADSP-2196)
A-14 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

B MIGRATING DEVICE
DRIVERS

The device driver architecture has fundamentally changed between

VisualDSP++ 2.0 and VisualDSP++ 3.5. Device drivers have become part
of the I/O interface, and as a part of that move are now class based. While
the underlying changes to device drivers have a minimal effect from the
usage perspective, device drivers created under VisualDSP++ 2.0 are
incompatible with the device drivers of VisualDSP++ 3.5.

This appendix describes how to convert device drivers of the previous
release for use in projects built using VisualDSP++ 3.5.

The converting procedure includes:

• “Step 1: Saving Existing Sources” on page B-1

• “Step 2: Revising Properties” on page B-2

• “Step 3: Revising Sources” on page B-3

• “Step 4: Creating Boot Objects” on page B-4

Step 1: Saving Existing Sources
Make backup copies of all of the existing VisualDSP++2.0 device driver
sources and header files.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide B-1
for 16-bit Processors

Step 2: Revising Properties
Step 2: Revising Properties
Open the existing VisualDSP++ 2.0 device driver project in VisualDSP++
3.5 IDDE. The following changes pertaining to device drivers can be
observed in the kernel window:

a. The VisualDSP++ 2.0 Device drivers node can now be found
under the I/O Interface node in the kernel window. Due to the
class based model of device drivers in VisualDSP++3.5, there is also
the Boot I/O Objects node under the I/O Interface node.

b. Under the I/O Interface node, there is a newly added property
Max number of I/O Objects. Set this property to the number of
device drivers to be used.

c. Device flags are no longer associated directly with a specific device
driver. In VisualDSP++ 3.5, there is a separate Device Flags node
in the kernel window.

Create a device flag with the same name under the Device Flags
node for each device flag present in the original VisualDSP++ 2.0
project.
B-2 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

Migrating Device Drivers
Step 3: Revising Sources
Changing the existing device driver source and header files to the new
model:

a. Delete all the existing Device Drivers that have been imported
from the original VisualDSP++ 2.0 project under the I/O Inter-
face, Device Drivers node in the kernel window. Remove the
original device driver source and header files from the project
directory.

b. Create new device drivers from the I/O Interface, Device Drivers
node with the same names as those in the original VisualDSP++
2.0 project. The automatically generated source files use the Visu-
alDSP++ 3.5 templates.

c. Copy any code added to the VisualDSP++ 2.0 device driver header
files to the analogous location in the equivalent header files gener-
ated from the VisualDSP++3.0 templates. Changes may include
additional variable declarations and include files.

d. Copy any code added to the VisualDSP++ 2.0 device driver source
files to the analogous location in the equivalent header files gener-
ated from the VisualDSP++3.0 templates.

Note that the dispatch function cases are renamed from kDD::xxx
to kIO::xxx in C++ device drivers and kDD_xxx to kIO_xxx in C
device drivers.

e. Check all project sources and header files for references to the dis-
patch functions VDK::kDD_xxx (C++ device drivers) or VDK_kDD_xxx
(C device drivers) and replace them with VDK::kIO_xxx or
VDK_kIO_xxx, respectively.
VisualDSP++ 3.5 Kernel (VDK) User’s Guide B-3
for 16-bit Processors

Step 4: Creating Boot Objects
For C++ device drivers, the dispatch function is scoped under the
device driver class in VisualDSP++ 3.5. For C device drivers, the
dispatch function is identical to that in VisualDSP++ 2.0, apart
from the renaming of cases.

f. Modify the error checking code.

The errors thrown by VDK functions have changed from
VDK::kDDxxx (C++ device drivers) or VDK_kDDxxx (C device drivers)
to VDK::kxxx or VDK_kxxx, respectively.

g. The DeviceDispatchUnion data type has been renamed Dis-
patchUnion in VisualDSP++ 3.5 and any variables of that type
must be renamed accordingly.

Step 4: Creating Boot Objects
Create boot I/O objects for each device driver:

In VisualDSP++ 3.5 the created device drivers are merely tem-
plates. In order to instantiate a device driver so it can be used at
boot, an I/O object must be created using the device driver
template.

For each device driver created under the I/O Interface, Device
Drivers node, create a boot I/O object of that type from under I/O
Interface, Boot I/O Objects.

Note that the name of the boot I/O object must be different from
that of the device driver template.
B-4 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

I INDEX

Symbols alignment constraints, 3-69

.EXTERN, assembly directive, 3-8
.GLOBAL, assembly directive, 3-8
.LDF files, 2-2, 5-2, A-12

A
abstract base thread class, 3-6
abstracting hardware implementation,

3-51
AC'97 codec port, A-10
ADSP-219x DSPs

enabling/disabling interrupts, A-10
execution levels, A-9
interrupt latency, A-13
interrupt nesting, A-12
ISRs, A-10, A-11
memory, A-12
timer, A-10, A-11
VDK for, A-9

ADSP-BF531, ADSP-BF532 and
ADSP-BF533 processor memory,
A-5

ADSP-BF535 and AD6532 processor
memory, A-6

ADSP-BF53x processors, See Blackfin
processors

ADSP-BF561 processor memory, A-6

AllocateThreadSlot() function, 5-11
AllocateThreadSlotEx() function, 5-13
allocating

memory, malloc/new, 3-5, 3-7
system resources, threads, 3-5

API
function parameters, 5-3
functions list, 5-5
header (vdk.h), 5-3
library, reference format, 5-10
linking library functions, 5-2
naming conventions, 5-3
See also assembly macros

API functions
AllocateThreadSlot(), 5-11
AllocateThreadSlotEx(), 5-13
ClearEventBit(), 5-15
ClearInterruptMaskBits(), 5-17
ClearThreadError(), 5-18
CloseDevice(), 5-19
CreateDeviceFlag(), 5-21
CreateMessage(), 5-22
CreatePool(), 5-24
CreatePoolEx(), 5-26
CreateSemaphore(), 5-28
CreateThread(), 5-30
VisualDSP++ 3.5 Kernel (VDK) User’s Guide I-1
for 16-bit Processors

INDEX
API functions (continued)
CreateThreadEx(), 5-32
DestroyDeviceFlag(), 5-34
DestroyMessage(), 5-35
DestroyMessageAndFreePayload(),

5-37
DestroyPool(), 5-39
DestroySemaphore(), 5-41
DestroyThread(), 5-43
DeviceIOCtl(), 5-45
DispatchThreadError(), 5-47
ForwardMessage(), 5-49
FreeBlock(), 5-52
FreeDestroyedThreads(), 5-54
FreeMessagePayload (), 5-55
FreeThreadSlot(), 5-57
GetClockFrequency(), 5-59
GetEventBitValue(), 5-60
GetEventData(), 5-61
GetEventValue(), 5-62
GetHeapIndex(), 5-63
GetInterruptMask(), 5-65
GetLastThreadError, 5-66
GetLastThreadErrorValue(), 5-67
GetMessageDetails (), 5-68
GetMessagePayload(), 5-70
GetMessageReceiveInfo(), 5-72
GetNumAllocatedBlocks(), 5-74
GetNumFreeBlocks(), 5-75
GetPriority(), 5-76
GetSemaphoreValue(), 5-77
GetThreadHandle(), 5-78
GetThreadID(), 5-79
GetThreadSlotValue(), 5-80

GetThreadStackUsage(), 5-81
GetThreadStatus(), 5-83
GetThreadType(), 5-84
GetTickPeriod(), 5-85
GetUptime(), 5-86
GetVersion(), 5-87
InstallMessageControlSemaphore (),

5-88
InstrumentStack(), 5-90
Kernel Panic, 2-5
LoadEvent(), 5-92
LocateAndFreeBlock(), 5-94
LogHistoryEvent(), 5-95
MakePeriodic(), 5-96
MallocBlock(), 5-98
MessageAvailable(), 5-100, 5-101
OpenDevice(), 5-102
PendDeviceFlag(), 5-104
PendEvent(), 5-106
PendMessage(), 5-108
PendSemaphore(), 5-111
PopCriticalRegion(), 5-113
PopNestedCriticalRegions(), 5-115
PopNestedUnscheduledRegions(),

5-117
PopUnscheduledRegion(), 5-118
PostDeviceFlag(), 5-120
PostMessage(), 5-121
PostSemaphore(), 5-124
PushCriticalRegion(), 5-126
PushUnscheduledRegion(), 5-127
RemovePeriodic(), 5-128
ResetPriority(), 5-130
SetClockFrequency(), 5-132
I-2 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

INDEX
API functions (continued)
SetEventBit(), 5-133
SetInterruptMaskBits(), 5-135
SetMessagePayload(), 5-136
SetPriority(), 5-138
SetThreadError(), 5-140
SetThreadSlotValue(), 5-141
SetTickPeriod(), 5-142
Sleep(), 5-143
SyncRead(), 5-145
SyncWrite(), 5-147
Yield(), 5-149

architecture, ISRs, 3-47
assembly macros

VDK_ISR_ACTIVATE_DEVICE_
(), 5-152

VDK_ISR_CLEAR_EVENTBIT_()
, 5-153

VDK_ISR_LOG_HISTORY_EVE
NT_(), 5-154

VDK_ISR_POST_SEMAPHORE_
(), 5-155

VDK_ISR_SET_EVENTBIT_(),
5-156

assembly threads, 3-7
association of data with threads, 3-70

B
behavior of device flags, 3-45
Bitfield data type, 4-4
Blackfin DSPs

enabling/disabling interrupts, A-3
exceptions, A-3
execution levels, A-2

interrupt latency, A-8
interrupt nesting, A-7
ISR APIs, A-3
ISRs, A-4
memory, A-5
thread stacks, A-7
timer, A-5

blocking on semaphores, 3-16, 3-18
blocks of memory, 3-68
boot I/O objects, B-4
boot objects

creating, B-4
boot threads, 3-5, 3-27
breakpoints

inserting, 2-5
non-thread-aware, 2-5
thread-specific, 2-5

C
C threads, 3-7
C++ threads, 3-6
C/C++ heap, 3-35
calling library functions, 5-2
channels, 3-22
circular buffers, 2-3
ClearEventBit() function, 3-39, 3-43,

5-15
ClearInterruptMaskBits() function,

3-46, 5-17
ClearThreadError() function, 5-18
CloseDevice() function, 3-60, 3-61,

5-19
cluster bus address, 3-33
code reuse, 1-3
VisualDSP++ 3.5 Kernel (VDK) User’s Guide I-3
for 16-bit Processors

INDEX
Communication Manager, 3-52
configuraitons

grids, cubes and hypercubes, 3-37
configuring VDK projects, 2-1
constructors, C++ threads, 3-4, 3-5
context switches, 3-21, 3-43, 3-47,

3-50
conventions of this manual, -xxvi
cooperative

multithreading, 3-10
scheduling, 3-10

CPLB tables, A-9
Create function, 3-4
create functions, threads, 3-4
CreateDeviceFlag() function, 3-7, 5-21
CreateMessage() function, 5-22
CreatePool() function, 5-24
CreatePoolEx() function, 5-26
CreateSemaphore() function, 5-28
CreateThread() function, 3-4, 5-30
CreateThreadEx() function, 5-32
creating a new heap, 3-69
creating boot objects, B-4
critical regions, 3-9, 3-45, 3-46, 3-48,

3-53, 3-60, 3-67
custom marshalling functions, 3-34
customer support, -xx

D
data transfer, 3-33
data type summary, 4-1
data types

Bitfield, 4-4
DeviceDescriptor, 4-5

DeviceFlagID, 4-6
DeviceInfoBlock, 4-7
DispatchID, 4-8
DispatchUnion, 4-9
DSP_Family, 4-11
DSP_Product, 4-12
EventBitID, 4-14
EventData, 4-16
EventID, 4-15
HeapID, 4-17
HistoryEnum, 4-18
IMASKStruct, 4-20
IOID, 4-21
IOTemplateID, 4-22
MarshallingCode, 4-23
MarshallingEntry, 4-25
MessageDetails, 4-26
MessageID, 4-27
MsgChannel, 4-28
MsgFormat, 4-30
PanicCode, 4-32
PayloadDetails, 4-33
PFMarshaller, 4-34
PoolID, 4-36
Priority, 4-37
RoutingDirection, 4-38
SemaphoreID, 4-39
SystemError, 4-40
ThreadCreationBlock, 4-44
ThreadID, 4-46
ThreadStatus, 4-47
ThreadType, 4-49
Ticks, 4-50, A-5
VersionStruct, 4-51
I-4 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

INDEX
dd (device) descriptor, 4-7
debugged control structures, 1-2
debugging VDK projects, 2-3

general tips, 2-5
destination node ID, 3-28
DestroyDeviceFlag() function, 5-34
DestroyMessage() function, 5-35
DestroyMessageAndFreePayload()

function, 5-37
DestroyPool() function, 5-39
DestroySemaphore() function, 5-41
DestroyThread() function, 3-5, 3-15,

5-43
Destructor, 3-5
destructor functions, threads, 3-5
device drivers, 1-10, 3-51, A-2

dispatch functions, 3-50, 3-52, 3-56,
3-66

execution of, 3-52
general notes, 3-67
init functions, 3-60
initializing, 3-52
interacting with ISRs, 3-52
interfacing with threads, 3-55
migrating to VisualDSP++ 3.0, B-1
open/close by threads, 3-60
using, 3-55
variables in, 3-67

device drivers for messaging, 3-36
device flags, 3-45, 3-64, B-2

pending on, 3-65
posting, 3-45, 3-66

DeviceDescriptor data type, 4-5
DeviceFlagID data type, 4-6

DeviceInfoBlock data type, 4-7
DeviceIOCtl() function, 3-55, 3-62,

5-45
disabling

interrupts, 1-8, 3-46
scheduling, 1-7, 3-12

dispatch functions
posting device flags, 3-66
See also device drivers

DispatchID data type, 4-8
DispatchThreadError() function, 3-4,

5-47
DispatchUnion data type, 4-9, B-4
DispatchUnion, dispatch function

parameter, 3-57
documentation

online, -xxiii
domains

interrupt domain, 3-18
thread domain, 3-18

DSP product information, -xxi
DSP_Family data type, 4-11
DSP_Product data type, 4-12
dynamic threads, creating, 3-4

E
effect of unscheduled regions on event

calculation, 3-41
entering scheduler

from API calls, 3-13
from interrupts, 3-13

enumeration
error codes, 3-9
error functions, 3-4
VisualDSP++ 3.5 Kernel (VDK) User’s Guide I-5
for 16-bit Processors

INDEX
enumeration (continued)
priorities of threads, 3-3

errno, 3-70
error codes, 3-8
Error function, 3-4
error functions, threads, 3-4
error handling facilities, 3-8
ErrorFunction() function, 3-8
ErrorHandler() function, A-9
event bits, 3-38

changing status from interrupt
domain, 3-43

changing status from thread domain,
3-42

global state, 3-39
event calculation

effect of unscheduled regions on,
3-41

EventBitID data type, 4-14
EventData data type, 4-16
EventID data type, 4-15
events

behavior of, 3-38
calculating, 3-38, 3-39
combination of event bits, 3-38
loading new event data, 3-44
mask flag, 3-39
matchAll flag, 3-39
number of in a system, 3-38
recalculating, 3-43
setting up, 3-39
state (TRUE or FALSE), 3-38
triggering, 3-44
values flag, 3-39

VDK_EventData, 3-38
EVT_EVX, hardware interrupt, A-4
EVT_IVG14, hardware interrupt, A-4
EVT_IVG15, hardware interrupt, A-4
EVT_IVTMR, hardware interrupt,

A-4
execution levels, A-2, A-9

for ADSP-219x DSPs, A-9
Interrupt Level, A-2, A-9
Kernel Level, A-2, A-9
Thread Level, A-2, A-9

execution modes
supervisor, A-1
user, A-1

existing sources
saving, B-1

EXTERN, assembly directive, 3-8

F
ForwardMessage() function, 5-49
FreeBlock() function, 5-52
FreeDestroyedThreads() function,

5-54
freeing

memory with free/delete, 3-5
thread resources, 3-5

FreeMessagePayload () function, 5-55
FreeThreadSlot() function, 5-57

G
GetClockFrequency() function, 5-59
GetEventBitValue() function, 5-60
GetEventData() function, 3-44, 5-61
GetEventValue() function, 5-62
I-6 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

INDEX
GetHeapIndex() function, 5-63
GetInterruptMask() function, 3-46,

5-65
GetLastThreadError function, 5-66
GetLastThreadError() function, 3-8
GetLastThreadErrorValue() function,

3-8, 5-67
GetMessageDetails () function, 5-68
GetMessagePayload() function, 5-70
GetMessageReceiveInfo() function,

3-24, 5-72
GetNumAllocatedBlocks() function,

5-74
GetNumFreeBlocks() function, 5-75
GetPriority() function, 5-76
GetSemaphoreValue() function, 5-77
GetThreadHandle() function, 3-7,

5-78
GetThreadID() function, 3-2, 5-79
GetThreadSlotValue() function, 5-80
GetThreadStackUsage() function, 5-81
GetThreadStatus() function, 5-83
GetThreadType() function, 5-84
GetTickPeriod() function, 5-85
GetUptime() function, 5-86
GetVersion() function, 5-87
global

data, 3-48
variables, 3-8

global slot table, 3-70
GLOBAL, assembly directive, 3-8
grids, cubes and hypercubes

configuraitons, 3-37

H
hardware abstraction, 1-3
header file (vdk.h), 2-2
header files for C/assembly threads, 3-7
heap, 3-2, 3-35

creating a new, 3-69
fragmentation, 3-68
separate memory region, A-12

heap index, 3-34, 4-25, 4-34
HeapID data type, 4-2, 4-17
heaps

dynamically created, 3-69
history

buffers, 2-3
logs, 2-3

HistoryEnum data type, 4-18

I
I/O

interface, 3-51, B-1
migrating device drivers, 3-52
templates, 3-51

I/O interface, 3-51
I/O timeout duration, 4-34
Idle thread, 3-15
idle thread, 2-4, 3-5, 3-14
import list, 3-26
init functions

C++ constructor, 3-5
C/assembly, 3-5
device drivers, 3-60
threads, 3-4

InitFunction() function
C/assembly threads, 3-5
VisualDSP++ 3.5 Kernel (VDK) User’s Guide I-7
for 16-bit Processors

INDEX
inserting breakpoints, 2-5
InstallMessageControlSemaphore ()

function, 5-88
instantiation, 3-4, 3-8

member variables as
instantiation-specific, 3-7

multiple, 2-5
with stack, state, priority, and other

local variables, 3-2
instrumented build info, 2-3
InstrumentStack() function, 5-90
internal memory DMA (IMDMA0

and IMDMA1) channels, A-8
internal payload, 3-33
interrupt latency, A-8
Interrupt Service Routines (ISRs), 3-46
interrupt service routines (ISRs), 1-10
interrupt vector table, 3-47
interrupts, 1-10, 3-46

ADSP-2191 DSPs, A-11
ADSP-2192 DSPs, A-10
domain, 3-18, 3-53
handler, 3-47
handling, 3-47
latching, 3-19
latency, 3-47
nesting, 3-47, A-7, A-12

inter-thread communication
mechanism, 3-21

invoking scheduler
from APIs, 3-13
from ISRs, 3-13

inWhichHeap, 5-26
IOCtl_t struct, 3-63

command, 3-63
data, 3-63
parameters, 3-63
timeout, 3-63

IOID data type, 3-64, 4-21
IOTemplateID data type, 4-22
ISRs, 3-46

activating device drivers, 3-64
architecture, 3-47
assembly implemented, 3-46
communicating with thread domain,

3-49
disabling (masking), 3-46
enabling (unmasking), 3-46
re-enabling, 3-46

K
kernel interrupt, A-10, A-11
Kernel Panic function, 2-5
kIO_Activate, 3-57, 3-66, A-2, A-9
kIO_Close, 3-57, 3-58
kIO_Init, 3-57
kIO_IOCtl, 3-57, 3-58
kIO_Open, 3-57, 3-58
kIO_SyncRead, 3-57, 3-58
kIO_SyncWrite, 3-57, 3-58

L
LDF (Linker Description File), 2-2
library

documented functions, 5-5
format, 5-10
working with headers, 5-3
I-8 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

INDEX
linking
API functions, 5-2
thread safe libraries, 2-2

LoadEvent() function, 3-44, 5-92
LocateAndFreeBlock() function, 5-94
LogHistoryEvent() function, 5-95
lowest priority interrupts, 3-48, 3-49,

3-50, 3-64

M
MakePeriodic() function, 5-96
malloc, 3-68
MallocBlock() function, 5-98
manuals

printed, -xxiv
marshalling table, 3-33
MarshallingCode data type, 4-23
MarshallingEntry data type, 4-25
memory allocations, 3-68

alternative to malloc, 3-68
with malloc/new, 3-5

memory blocks
addresses of, 3-69
on demand creation, 3-69

memory pool
blocks, 3-36
creating a new memory pool in the

specified heap, 5-26
memory pool functionality, 3-68
memory pools, 3-68
message packets

size, 3-36
message payload, 3-27

MessageAvailable() function, 5-100,
5-101

MessageDetails data type, 4-26
MessageID data type, 4-27
messages, 3-21

behavior of, 3-22
interacting with threads, 3-23
ownership, 3-22
pending on, 3-23
posting from scheduled regions, 3-24
posting from unscheduled regions,

3-25
priority of, 3-22

messaging
device drivers for, 3-36

motivation for using VDK, 1-1
MsgChannel data type, 4-28, 4-30
MsgFormat data type, 4-30
multiple heaps, 3-69
multiprocessor messaging, 3-26, A-8,

A-13
multitasking, 3-10

N
namespaces

VDK, 3-7, 5-4
node, 3-26
node ID, 3-26
non-thread-aware breakpoints, 2-5
notation conventions, API library, 5-3

O
online documentation, -xxiii
open/close functions, threads, 3-60
VisualDSP++ 3.5 Kernel (VDK) User’s Guide I-9
for 16-bit Processors

INDEX
OpenClose_t struct, 3-61
dataH, 3-61
flags, 3-61

OpenDevice() function, 3-60, 3-61,
5-102

P
PanicCode data type, 4-32
parallel scheduling domains, 3-53
partitioning applications, 1-4
passing function parameters, 5-3
payload marshalling, 3-33
PayloadDetails data type, 4-33
payloads, message associated, 3-22
PendDeviceFlag() function, 3-45,

5-104
PendEvent() function, 3-42, 5-106
pending

on device flags, 3-65
on semaphores, 3-17

pending on a message, 3-23
PendMessage() function, 3-23, 5-108
PendSemaphore() function, 3-18,

5-111
periodic semaphores, 3-17, 3-21
PFMarshaller data type, 4-34
pool marshalling, 3-35
PoolID data type, 4-36
PopCriticalRegion() function, 3-46,

5-113
PopNestedCriticalRegions() function,

5-115
PopNestedUnscheduledRegions()

function, 3-13, 5-117

PopUnscheduledRegion() function,
3-12, 3-39, 5-118

porting existing device drivers, B-2
PostDeviceFlag() function, 3-45, 3-65,

5-120
posting a message, 3-24
PostMessage() function, 5-121
PostSemaphore() function, 3-18, 3-21,

5-124
preemption, 1-7
preemptive scheduling, 3-11
printed manuals, -xxiv
priorities of threads, 1-5, 3-3

changing dynamically, 3-3
default, 3-3
highest, 3-3

Priority data type, 4-37
priority data type, 4-37
processor memory

ADSP-BF531, ADSP-BF532 and
ADSP-BF533, A-5

ADSP-BF535 and AD6532, A-6
ADSP-BF561, A-6

processors
supported, -xx

product information
DSP, -xxi

properties
revising, B-2

protected regions, 1-7, 3-8, 3-9, 3-62,
3-67

nested, 3-12
PushCriticalRegion() function, 3-46,

5-126
I-10 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

PushUnscheduledRegion() function,
3-12, 5-127

Q
queue of ready threads, See ready queue
queue of waiting threads, 3-3

R
RAD (Rapid Application

Development), 1-2
ReadWrite_t struct, 3-61

data, 3-62
data size, 3-62
handle, 3-62
timeout, 3-62

ready queue, 1-5, 3-9, 3-11, 3-18,
3-21, 3-38, 3-45

recalculating events, 3-39
re-enabling interrupts, 3-46
reentrancy, 3-8
RemovePeriodic() function, 5-128
required thread functionality, 3-3
reschedule ISRs, 3-50
ResetPriority() function, 3-3, 5-130
revising properties, B-2
revising sources, B-3
round-robin scheduling, 3-11
routing table, 3-28
routing threads, A-9
routing topology, 3-37
RoutingDirection data type, 4-38
RThreads, 3-27, 3-28
run function, 3-3
run functions, threads, 3-3

Run() function, C++ threads, 3-3
RunFunction() function, C/assembly

threads, 3-3

S
saving existing sources, B-1
scheduled regions, 3-25, 3-43
scheduler, 3-19, 3-43, 3-44
scheduling, 1-5, 3-9

disable, 3-12
enable, 3-21
pending on events, 3-39
pending on semaphores, 3-18, 3-39
periodic semaphores, 3-21

scheduling methods/modes, 3-10
cooperative, 3-10
preemptive, 3-11
round-robin, 3-11

scope, thread data members, 3-7
SemaphoreID data type, 4-39
semaphores, 3-16

behavior of, 3-16
pending on, 3-16
periodic, 3-17
posting from interrupt domains, 3-19
posting from thread domains, 3-18
posting of, 3-17

sender attribute, 5-50
SetClockFrequency() function, 5-132
SetEventBit() function, 3-39, 3-43,

5-133
SetInterruptMaskBits() function, 3-46,

5-135
SetMessagePayload() function, 5-136
VisualDSP++ 3.5 Kernel (VDK) User’s Guide I-11
for 16-bit Processors

SetPriority() function, 3-3, 5-138
SetThreadError() function, 5-140
SetThreadSlotValue() function, 5-141
SetTickPeriod() function, 5-142
signal.h, 3-46, 3-47
signals, 3-15

device flags, See device flags
events, See events and event bits
semaphores, See semaphores

simple ring configuration, 3-37
Sleep() function, 5-143
software interrupts, 3-19
source templates, 3-5
sources

revising, B-3
stack

overflows, 3-3
size of threads, 3-2

standard C/C++ libraries, thread safe
versions, 2-2

state of the system, 3-38
storing event bits state in global

variables, 3-39
supported processors, -xx
synchronization, threads, 3-15

device flags, 3-45
events and event bits, 3-38
semaphores, 3-16

SyncRead() function, 3-61, 5-145
SyncWrite() function, 3-61, 5-147
system heap, 5-24
SystemError data type, 4-40

T
technical support, -xx
thread domain, 3-18, 3-49, 3-53

calling dispatch function, 3-58
software scheduling, 1-9

Thread Local Storage, 3-70
thread parameters, 3-2

stack size, 3-2
priority, 3-3

thread safe libraries, 2-2
ThreadCreationBlock data type, 4-44
ThreadID data type, 3-2, 4-46
threads, 3-1

assembly implemented, 3-7
blocking, 1-7, 3-45
C implemented, 3-7
C++ implemented, 3-6
C++ template, 3-6
controlling device parameters, 3-62
create functions, 3-4
creating a message, 3-22
destructor functions, 3-5
dynamic creation with malloc/new,

3-5
entry point, 3-3
error functions, 3-3, 3-18
hardware interaction, 1-8
header file, 3-5
interacting with device flags, 3-45
interacting with events, 3-41
interacting with semaphores, 3-17
lowest priority (idle), 2-4
open/close device drivers, 3-61
I-12 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

threads (continued)
pending on device flags, 3-45
pending on events, 3-38, 3-42
pending on messages, 3-23
posting messages, 3-22, 3-25
posting semaphores, 3-18
priority, See priorities of threads
reading to /writing from, 3-61
required functionality, 3-3
Run() function, 3-3
scope of, 3-5
scope of data members, 3-6
setting/clearing event bits, 3-42
stack size, 3-2
state and status data, 2-4
types of, 3-2

thread-specific breakpoints, 2-5
ThreadStatus data type, 4-47
ThreadType data type, 4-49
tick period, 5-85
Ticks data type, 4-50
time slicing, 3-11
timed system events, 3-50
timeout, 3-16, 3-18

I/O timeout duration, 4-34
timer

ADSP-BF53x processor, A-5
timer ISR, 3-48, 3-50, A-10, A-11
touting threads (RThreads), 3-27
triggering multiple events, 3-41

U
unscheduled regions, 3-9, 3-12, 3-25,

3-41, 3-44, 3-46, 3-60, 3-67

using, C++ keyword, 3-7

V
variables, 3-67
VDK, 3-64

Communication Manager, 3-52
device drivers conversion, B-2
namespace, 3-7, 5-4
State History window, 2-3
target load graph, 2-4

VDK for ADSP-219x DSPs, A-9
VDK HeapID, 3-69
VDK library

assembly macros, 5-150
function list, 5-5
header (vdk.h), 5-3
linking library functions, 5-2
naming conventions, 5-3
reference format, 5-10

VDK memory pool, 3-35
VDK project

Linker Description File, 2-2
vdk.h header file, 2-2

VDK Status window, 2-4
VDK_DispatchUnion, 3-61, 3-62
VDK_EventData, 3-38, 3-41, 3-44
VDK_ISR_ACTIVATE_DEVICE_,

3-64, A-2, A-9
VDK_ISR_ACTIVATE_DEVICE_()

assembly macro, 5-152
VDK_ISR_CLEAR_EVENTBIT_,

3-43
VDK_ISR_CLEAR_EVENTBIT_()

assembly macro, 5-153
VisualDSP++ 3.5 Kernel (VDK) User’s Guide I-13
for 16-bit Processors

VDK_ISR_LOG_HISTORY_EVEN
T_() assembly macro, 5-154

VDK_ISR_POST_SEMAPHORE_,
3-19, 3-21, 3-49

VDK_ISR_POST_SEMAPHORE_()
assembly macro, 5-155

VDK_ISR_SET_EVENTBIT_, 3-43
VDK_ISR_SET_EVENTBIT_()

assembly macro, 5-156
VDK_kIO_Activate, 3-64
VDK_kIO_Close, 3-64
VDK_kIO_Init, 3-60
VDK_kIO_IOCtl, 3-62
VDK_kIO_Open, 3-60
VDK_kIO_SyncRead, 3-61
VDK_kIO_SyncWrite, 3-61
vector table, 3-47
VersionStruct data type, 4-51

VisualDSP++
migrating device drivers, B-1
state history graph, 2-3
System State History window, 2-3
Target Load graph, 2-4
Thread History window, 3-15

VisualDSP++ multiple heap API
extensions, 3-35

volatile variables, 3-67

W
working with library headers, 5-3
writing threads in different languages,

3-6

Y
Yield() function, 3-10, 5-149
I-14 VisualDSP++ 3.5 Kernel (VDK) User’s Guide
for 16-bit Processors

	VisualDSP++ Kernel (VDK) User’s Guide for 16-Bit Processors (10/31/03)
	Contents
	Preface
	Purpose of this Manual
	Intended Audience
	Manual Contents
	What’s New in this Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Data Sheets

	Contacting DSP Publications

	Notation Conventions

	1 Introduction to VDK
	Motivation
	Rapid Application Development
	Debugged Control Structures
	Code Reuse
	Hardware Abstraction

	Partitioning an Application
	Scheduling
	Priorities
	Preemption

	Protected Regions
	Disabling Scheduling
	Disabling Interrupts

	Thread and Hardware Interaction
	Thread Domain with Software Scheduling
	Interrupt Domain with Hardware Scheduling
	Device Drivers

	2 Configuration and Debugging of VDK Projects
	Configuring VDK Projects
	Linker Description File
	Thread Safe Libraries
	Header Files for the VDK API

	Debugging VDK Projects
	Instrumented Build Information
	VDK State History Window
	Target Load Graph Window
	VDK Status Window
	General Tips
	Kernel Panic

	3 Using VDK
	Threads
	Thread Types
	Thread Parameters
	Stack Size
	Priority

	Required Thread Functionality
	Run Function
	Error Function
	Create Function
	Init Function/Constructor
	Destructor

	Writing Threads in Different Languages
	C++ Threads
	C and Assembly Threads

	Global Variables
	Error Handling Facilities

	Scheduling
	Ready Queue
	Scheduling Methodologies
	Cooperative Scheduling
	Round-robin Scheduling
	Preemptive Scheduling

	Disabling Scheduling
	Entering the Scheduler From API Calls
	Entering the Scheduler From Interrupts
	Idle Thread

	Signals
	Semaphores
	Behavior of Semaphores
	Thread’s Interaction With Semaphores
	Pending on a Semaphore
	Posting a Semaphore
	Periodic Semaphores

	Messages
	Behavior of Messages
	Thread’s Interaction With Messages
	Pending on a Message
	Posting a Message

	Multiprocessor Messaging
	Routing Threads (RThreads)
	Data Transfer (Payload Marshalling)
	Device Drivers for Messaging
	Routing Topology

	Events and Event Bits
	Behavior of Events
	Global State of Event Bits
	Event Calculation
	Effect of Unscheduled Regions on Event Calculation

	Thread’s Interaction With Events
	Pending on an Event
	Setting or Clearing of Event Bits
	Loading New Event Data into an Event

	Device Flags
	Behavior of Device Flags
	Thread’s Interaction With Device Flags

	Interrupt Service Routines
	Enabling and Disabling Interrupts
	Interrupt Architecture
	Vector Table
	Global Data
	Communication with the Thread Domain

	Timer ISR
	Reschedule ISR

	I/O Interface
	I/O Templates
	Device Drivers
	Execution
	Parallel Scheduling Domains
	Using Device Drivers
	Dispatch Function

	Device Flags
	Pending on a Device Flag
	Posting a Device Flag

	General Notes
	Variables
	Critical/Unscheduled Regions

	Memory Pools
	Memory Pool Functionality

	Multiple Heaps
	Thread Local Storage

	4 VDK Data Types
	Data Type Summary
	Bitfield
	DeviceDescriptor
	DeviceFlagID
	DeviceInfoBlock
	DispatchID
	DispatchUnion
	DSP_Family
	DSP_Product
	EventBitID
	EventID
	EventData
	HeapID
	HistoryEnum
	IMASKStruct
	IOID
	IOTemplateID
	MarshallingCode
	MarshallingEntry
	MessageDetails
	MessageID
	MsgChannel
	MsgWireFormat
	PanicCode
	PayloadDetails
	PFMarshaller
	PoolID
	Priority
	RoutingDirection
	SemaphoreID
	SystemError
	ThreadCreationBlock
	ThreadID
	ThreadStatus
	ThreadType
	Ticks
	VersionStruct

	5 VDK API Reference
	Calling Library Functions
	Linking Library Functions
	Working With VDK Library Header
	Passing Function Parameters
	Library Naming Conventions
	API Summary
	API Functions
	AllocateThreadSlot()
	AllocateThreadSlotEx()
	ClearEventBit()
	ClearInterruptMaskBits()
	ClearThreadError()
	CloseDevice()
	CreateDeviceFlag()
	CreateMessage()
	CreatePool()
	CreatePoolEx()
	CreateSemaphore()
	CreateThread()
	CreateThreadEx()
	DestroyDeviceFlag()
	DestroyMessage()
	DestroyMessageAndFreePayload()
	DestroyPool()
	DestroySemaphore()
	DestroyThread()
	DeviceIOCtl()
	DispatchThreadError()
	ForwardMessage()
	FreeBlock()
	FreeDestroyedThreads()
	FreeMessagePayload ()
	FreeThreadSlot()
	GetClockFrequency()
	GetEventBitValue()
	GetEventData()
	GetEventValue()
	GetHeapIndex()
	GetInterruptMask()
	GetLastThreadError()
	GetLastThreadErrorValue()
	GetMessageDetails ()
	GetMessagePayload()
	GetMessageReceiveInfo()
	GetNumAllocatedBlocks()
	GetNumFreeBlocks()
	GetPriority()
	GetSemaphoreValue()
	GetThreadHandle()
	GetThreadID()
	GetThreadSlotValue()
	GetThreadStackUsage()
	GetThreadStatus()
	GetThreadType()
	GetTickPeriod()
	GetUptime()
	GetVersion()
	InstallMessageControlSemaphore ()
	InstrumentStack()
	LoadEvent()
	LocateAndFreeBlock()
	LogHistoryEvent()
	MakePeriodic()
	MallocBlock()
	MessageAvailable()
	OpenDevice()
	PendDeviceFlag()
	PendEvent()
	PendMessage()
	PendSemaphore()
	PopCriticalRegion()
	PopNestedCriticalRegions()
	PopNestedUnscheduledRegions()
	PopUnscheduledRegion()
	PostDeviceFlag()
	PostMessage()
	PostSemaphore()
	PushCriticalRegion()
	PushUnscheduledRegion()
	RemovePeriodic()
	ResetPriority()
	SetClockFrequency()
	SetEventBit()
	SetInterruptMaskBits()
	SetMessagePayload()
	SetPriority()
	SetThreadError()
	SetThreadSlotValue()
	SetTickPeriod()
	Sleep()
	SyncRead()
	SyncWrite()
	Yield()

	Assembly Macros
	VDK_ISR_ACTIVATE_DEVICE_()
	VDK_ISR_CLEAR_EVENTBIT_()
	VDK_ISR_LOG_HISTORY_EVENT_()
	VDK_ISR_POST_SEMAPHORE_()
	VDK_ISR_SET_EVENTBIT_()

	Appendix A Processor-Specific Notes
	VDK for Blackfin Processors (AD6532, ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF535, and ADSP-BF561)
	User and Supervisor Modes
	Thread, Kernel, and Interrupt Execution Levels
	Critical and Unscheduled Regions
	Exceptions
	ISR APIs
	Interrupts
	Timer
	ADSP-BF531, ADSP-BF532 and ADSP-BF533 Processor Memory
	ADSP-BF535 and AD6532 Processor Memory
	ADSP-BF561 Processor Memory
	Interrupt Nesting
	Thread Stack Usage by Interrupts
	Interrupt Latency
	Multiprocessor Messaging

	VDK for ADSP-219x DSPs (ADSP-2191, ADSP-2192-12, ADSP-2195, and ADSP-2196)
	Thread, Kernel, and Interrupt Execution Levels
	Critical and Unscheduled Regions
	Interrupts on ADSP-2192 DSPs
	Interrupts on ADSP-2191 DSPs
	Timer
	Memory
	Interrupt Nesting
	Interrupt Latency
	Multiprocessor Messaging

	Appendix B Migrating Device Drivers
	Step 1: Saving Existing Sources
	Step 2: Revising Properties
	Step 3: Revising Sources
	Step 4: Creating Boot Objects

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

