
aaaa Engineer To Engineer Note EE-129
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices
regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

ADSP-2192 INTERPROCESSOR
COMMUNCATION

 Modified 11/8/2000

Overview

Each DSP core on the ADSP-2192 has the ability
to communicate with the other DSP core directly
with DSP-to-DSP semaphores and interrupts or
indirectly with shared memory. The purpose of
this application note is to describe the
functionality of both forms.

ADSP-2192 Shared Memory

The ADSP-2192 is a 16-bit DSP with dual 219x
cores. The DSP memory map is shown in Figure
1.

There are 140K words of internal memory on the
ADSP-2192. Within this space, the P0 DSP core

has 80K words of SRAM and 4K words of ROM.
The P1 DSP core has 48K words of SRAM and 4K
words of ROM. The P0 and P1 DSP cores also
share a 4K x 16-bit memory space.

The ADSP-2192 has a modified Harvard
architecture, which allows each DSP core to access
a data word and an instruction simultaneously.
This is accomplished by using two Data Address
Generators (DAG). As shown in Figure 2, each
DSP core has a DAG1 and a DAG2.

Each DAG is associated with a particular data bus
and 16K word memory page, which allows it to
access its own DM/PM memory in addition to the
Shared Memory. From settings at reset, DAG1
supplies addresses over the DM bus for memory
page 0 and DAG2 supplies addresses over the PM
bus for memory page 1. These memory page
selections may be changed using DMPGx
registers. For more information on address
generation, please refer to the Hardware
Reference Manual.

As shown in Figure 2, unlike core memory, shared
memory is internally single ported, so stalls will
happen when being accessed by both cores. Each
DSP core using the Data Memory (DM) bus can
access shared memory. Shared memory is
mapped to address 0x020000 and is thus on page
2. To access shared memory, DAG1 would be
initialized as follows:

INTERRUPT CONTROLLER/
TIMER/FLAGS

CACHE
64 X 24-BIT

PM ADDRESS BUS

DM ADDRESS BUS

PM DATA BUS

DM DATA BUS

24

16

ADSP-219X
DSP CORE

DATA
REGISTER

FILE

MULT BARREL
SHIFTER ALU

INPUT
REGISTERS

RESULT
REGISTERS

16 X 16-BIT

CORE
INTERFACE

24

24

BUS
CONNECT

(PX)

PROGRAM
SEQUENCER

DAG1
4X4X16

DAG2
4X4X16

INTERRUPT CONTROLLER/
TIMER/FLAGS

CACHE
64 X 24-BIT

PM ADDRESS BUS

DM ADDRESS BUS

PM DATA BUS

DM DATA BUS

24

16

ADSP-219X
DSP CORE

DAT A
REGISTER

FILE

MULTBARREL
SHIFTERALU

INPUT
REGISTERS

RESULT
REGISTERS

16 X 16-BIT

CO RE
INTERFACE

24

24

BUS
CONNECT

(PX)

PROGRAM
SEQ UENCER

DAG1
4X4X16

DAG2
4X4X16

PROCESSOR P0 PROCESSOR P1

SHARED
MEMORY

4K3 16 DM

ADDR DAT A

P0
MEMORY

16K3 24 PM
64K3 16 DM
BOOT ROM

P1
MEMORY

16K3 24 PM
32K3 16 DM
BOOT ROM

ADDR DATA ADDR DAT A

P0 DMA
CONTROLLER

FIFOS

SHARED DSP
I/O MAPPED
REGISTERS

P1 DMA
CONTROLLER

FIFOS

ADDR DATA

HOST PORT

PCI 2.2
OR

USB 1.1

SERIAL PORT

AC'97
COMPLIANT

GP I/O PINS

(& OPTIONAL
SERIAL

EEPROM)

JTAG
EMULATION

PORT

ADDR DATAADDR DATA

Figure 1. ADSP-2192 Memory Map

Figure 2. ADSP-2192 Dual-Core DSP Block Diagram

EE-129 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

 DMPG1 = 0x2;
Shared memory could then be accessed over the
DM bus using either Direct or Indirect addressing.
The following example would write 0xFF to
location 0x020010, which resides in shared
memory.

 AX0 = 0xFF;

DMPG1 = 0x2;
 DM(0x0010) = AX0;

Unlike the internal memory of each DSP core,
every access to shared memory incurs at least one
cycle of stall (to perform synchronization),
therefore a minimum latency of 2 cycles is
incurred.

When accessing shared memory, a DSP core ‘locks
out’ the other DSP core for several cycles. A DSP
core can completely lock out the other core from
shared memory by performing back-to-back or
nearly back-to-back accesses to shared memory.
Once a particular DSP core "owns" the shared
memory, the shared memory interface is
relinquished only after 2 cycles of inactivity on the
interface. In the case where both cores try to
access shared memory in the same cycle, the
ADSP-2192 has a bus arbitration scheme to
handle the conflict. Arbitration is fixed at the
following priority: DSP0, DSP1.

Performing burst accesses is an effective way to
get good bandwidth from shared memory. Each
access after the first will take 2 cycles, which is
the maximum throughput.

Inter-processor Semaphores

The ADSP-2192 has a two internal DSP-to-DSP
core flags and an internal DSP-to-DSP core
interrupt controlled in the core semaphores
register. This is shown below in Figure 3.

Flag
Bit

Direction Function DSP Core
Flag In

0 Output DSP-DSP Semaphore 0
1 Output DSP-DSP Semaphore 1
2 Output DSP-DSP Interrupt
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Output Register Bus Lock
8 Input DSP-DSP Semaphore 0 0
9 Input DSP-DSP Semaphore 1 1
10 Input DSP-DSP Interrupt 2
11 Input Reserved
12 Input AC’97 Register – PDC

Bus Access Status
4

13 Input PDC Interface Busy
Status (write from DSP
pending)

5

14 Input Reserved
15 Input Register Bus Lock

Status
7

The following example will illustrate the case
where DSP core P0 asserts DSP-DSP semaphore 0
of DSP core P1.

/* assert DSP-to-DSP flag 0 */
ax0 = 0x0001;
reg(0x34) = ax0;

When a 1 is written to bit 0 of the core
semaphores register of DSP core P0, the resulting
core semaphore of DSP core P1, bit 8, is set. The
DSP-to-DSP semaphore 1 function the same way.

The DSP-to-DSP interrupt allows DSP core P0 to
interrupt DSP core P1 if the DSP-DSP interrupt is
unmasked in the IMASK register of DSP core P1.
The DSP-DSP interrupt routine can either be

Figure 3. DSP-to-DSP Semaphore Register Table

EE-129 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

nested with higher priority interrupts taking
precedence or processed sequentially.

The following example will illustrate the
initialization of DSP-DSP Interrupt.

/* Initialize DSP-to-DSP Interrupt */

AY0=IMASK;
AY1=0x0100;
AR = AY0 or AY1;

/* Unmask DSP-DSP Interrupts */

IMASK=AR;

/* Enable global interrupts */

ENA INT;

The content of IMASK is OR’d with 0x0100 and
written back to IMASK. This unmasks DSP-DSP
interrupt for that particular DSP core. The last
instruction globally enables interrupt servicing. If
the above DSP-DSP interrupt initialization is
executed on DSP core P1, DSP core P0 would
initiate the DSP-DSP interrupt by asserting bit 2
of its core semaphores register.

Inter-processor Communication Example

The following example will illustrate the use of
shared memory and inter-processor
communication. This is performed using two FIR
routines, one executed on each core. The FIR on
DSP core P0 uses a set of coefficients to
implement a low pass filter (Fir_core_p0.asm)
while the filter implemented on DSP core P1 uses
a separate set of coefficients to implement a high
pass filter (Fir_core_p1.asm). The example filters
a buffer of input samples using the FIR filters in
both cores, implementing a band pass filter.

1) DSP core P0 filters a block of samples located in
a buffer in internal memory and stores the filtered
results in shared memory. At this point, DSP core
P0 flags DSP core P1 using the DSP-DSP
semaphore 1.

/* DSP core P0 */

...
ax0=0x0002;
reg(0x34)=ax0;
...

When bit 9 of DSP core P1 core semaphore
register is set, it indicates there is valid data in
shared memory.

2) At this point, DSP core P1 can now begin
processing that data. DSP core P1 reads the data
from shared memory and filters the data again
using a high pass FIR routine. These filtered
samples are stored in the internal memory of DSP
core P1.

3) When DSP core P1 has completed filtering the
bin of data, DSP core P1 asserts bit 2 of the
semaphore register, which initiates a DSP-to-DSP
interrupt in DSP core P0.
/* DSP core P1 */

 ...
 ax0=0x0004;
 reg(0x34)=ax0;
 ...

When core P0 latches and services the DSP-DSP
interrupt, it indicates that P1 is requesting
another bin of data to be place in shared memory.

4) DSP core P0 then acknowledges the request by
also generating a DSP-DSP interrupt in P1 and
begins filtering another bin of input data storing
the result in shared memory.

/* DSP core P0 */

/* DSP-DSP interrupt vector code */
.section/pm IVdspdspint;
 ax0=0x0004;
 RTI (db);
 reg(0x34)=ax0;
 ax0=0x1000;

5) Steps 1 to 4 are repeated.

EE-129 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Appendix A
Listed below are the source codes used to illustrate the inter-processor communication and shared memory usage of a dual
core band pass FIR for the ADSP-2192. (Please note that these included code modules were built using the
v7.0 VisualDSP development tools for the 219x processor family.)

Fir_core_p0.asm

/**
 CONSTANT & MACRO DEFINITIONS
**/
#define Num_Samp 512 /* Number of Input samples */
#define Taps 31 /* Number of filter taps */
#define Shift 2 /* Number of shifts */
#define Samps_per_Bin 40 /* Number of Input samples in each bin */
#define Num_Bins (Num_Samp/Samps_per_Bin) /* Number of bins */

/**
 EXTERNAL DECLARATIONS
**/
.EXTERN SHARED_MEM;

/* DM data */
.section/data seg_dmda;
.VAR IN[Num_Samp] = "input_dec.dat"; /* Input buffer */
.VAR Delay_Line[Taps]; /* Delay line */

/* PM data */
.section/pm seg_pmda;
.VAR COEFF[Taps] = "coeff_l.dat"; /* Low pass filter coefficients */

/* PM interrupt vector code */
.section/pm seg_rth;
 JUMP start; NOP; NOP; NOP;

/* PM DSP-DSP interrupt vector code */
.section/pm IVdspdspint;
 ax0=0x0004;
 RTI (db);
 reg(0x34)=ax0;
 ax0=0x1000; /* Assert DSP-DSP interrupt to core 1 */

/* Program memory code */
.section/pm seg_pmco;
start:
 I0=Delay_Line; /* Initialize delay line pointer */
 M1 = 1;
 I1 = IN; /* Initialize Input pointer */
 I2 = SHARED_MEM; /* Initialize Shared Memory pointer */
 L1=0; /* Initialize for modulo addressing */
 M3=-1;
 M4=1;
 SE = Shift;
 DMPG2=page(COEFF);
 L0=LENGTH (Delay_Line); /* Initialize delay line circular buffer */
 ax0 = Delay_Line;
 REG(b0) = ax0; /* Initialize pointer to delay line */
 L2=LENGTH (SHARED_MEM); /* Initialize shared memory circular buffer */
 ax0 = SHARED_MEM;
 REG(B2) = ax0; /* Initialize pointer to shared memory */
 L4=length(COEFF); /* Initialize coeficient circular buffer */
 ax0 = COEFF;
 reg(b4) = ax0; /* Initialize pointer to coeficient */
/** Zero the Delay Line **/
 CNTR=Taps; /* 'Taps' location delay line */
 DO zero UNTIL CE;
zero: dm(I0,M1)=L0; /* Delay_line = 0 */

 AY0=IMASK;
 AY1=0x0100;
 AR = AY0 or AY1; /* Enable DSP-DSP Interrupts */
 IMASK=AR;
 ENA INT; /* Enable global interrupts */
 CNTR = Num_Bins; /* Num_Bins to process Num_Samp */
 do per_bin until CE;
 call fir_p0 (db); /* Call FIR routine */
 I4=COEFF; /* Load Coeff buffer pointer */
 nop;
 ax0=0x0002; /* Assert 'Bin Ready' flag */
 reg(0x34)=ax0;
 ay0=0x1000;
bin_rqst:

EE-129 Page 5
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

 ar = ax0 AND ay0;
 if eq jump bin_rqst; /* Wait for DSP-DSP interrupt 'Bin request' */
 ax0=0x0000; /* Deassert DSP-DSP interrupt 'Bin request acknowledge' */
per_bin:
 reg(0x34)=ax0;

looping:
 nop;
 JUMP looping; /* Loop upon itself */

/**
 FIR SUBROUTINE
**/
fir_p0:
 MR = 0, MX0 = DM(I1,M1), MY0 = PM(I4,m4); /* Read Input sample and read coefficient */
 DM(I0,M3) = MX0; /* Put Input sample in delay line */
 CNTR=Samps_per_Bin;
 DO mult_acc UNTIL CE;
 .repeat (Taps-1);
 MR=MR+MX0*MY0(SS), MX0=DM(I0,M3), MY0=PM(I4,M4);
 .end_repeat;
 MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
 SR=ASHIFT MR2 (HI), MX0=DM(I1,M1);
 SR=SR OR LSHIFT MR1 (LO), DM(I0,M3) = MX0;
 DMPG1 = page(SHARED_MEM);
 MR = 0, DM(I2,M1)=SR0; /* Write to shared memory */
mult_acc:
 DMPG1 = 0;
 RTS (db);
 MX0 = DM(I0,M1); /* Update delay pointer */
 MX0 = DM(I1,M3);

Fir_core_p1.asm

/**
 CONSTANT & MACRO DEFINITIONS
**/
#define Num_Samp 512 /* NUmber of Input samples */
#define Samps_per_Bin 40 /* Number of Input samples in each bin */
#define Taps 31 /* Number of filter taps */
#define Shift 2 /* Number of shifts */
#define Num_Bins (Num_Samp/Samps_per_Bin) /* Number of bins */

/**
 EXTERNAL DECLARATIONS
**/
.EXTERN SHARED_MEM;

/* DM data */
.section/data seg_dmda;
.VAR OUT[Num_Samp]; /* Output buffer */
.VAR Delay_Line[Taps]; /* Delay line */

/* PM data */
.section/pm seg_pmda;
.VAR COEFF[Taps] = "coeff_h.dat"; /* High pass filter coefficients */

/* PM interrupt vector code */
.section/pm seg_rth;
 JUMP start; NOP; NOP; NOP;

/* PM DSP-DSP interrupt vector code */
.section/pm IVdspdspint;
 ax0=0x1000; RTI; NOP; NOP;

/* Program memory code */
.section/pm seg_pmco;
start:
 I0=Delay_Line; /* Initialize delay line pointer */
 M1 = 1;
 I2 = OUT; /* Initialize Output pointer */
 L2=0; /* Initialize for modulo addressing */
 M3=-1;
 M4=1;
 SE = Shift;
 DMPG2=page(COEFF);
 L0=LENGTH (Delay_Line); /* Initialize delay line circular buffer */
 ax0 = Delay_Line;
 REG(b0) = ax0; /* Initialize pointer to delay line */
 L1=LENGTH (SHARED_MEM); /* Initialize shared memory circular buffer */

EE-129 Page 6
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

 ax0 = SHARED_MEM;
 REG(b1) = ax0; /* Initialize pointer to shared memory */
 L4=length(COEFF); /* Initialize coeficient circular buffer */
 ax0 = COEFF;
 reg(b4) = ax0; /* Initialize pointer to coeficient */
/** Zero the Delay Line **/
 CNTR=Taps; /* 'Taps' location delay line */
 DO zero UNTIL CE;
zero: dm(I0,M1)=L0; /* Delay_line = 0 */

 AY0=IMASK;
 AY1=0x0100;
 AR= AY0 or AY1; /* Enable DSP-DSP Interrupts */
 IMASK=AR;
 ENA INT; /* Enable global interrupts */
 AY0 = 0x0200; /* Initialize 'Bin Ready' check */
 CNTR = Num_Bins; /* Num_Bins to process Num_Samp */
 do per_bin until CE;
wait_bin_rdy:
 ax0=reg(0x34);
 ar = ax0 AND ay0;
 if eq jump wait_bin_rdy; /* Wait for 'Bin Ready' flag */
 call fir_p1 (db); /* Call FIR routine */
 I4=COEFF; /* Load Coeff buffer pointer */
 I1 = SHARED_MEM; /* Initialize Shared Memory pointer */
 ax0=0x0004;
 reg(0x34)=ax0; /* Assert 'Bin Request' Interrupt */
 ax0=0x0000; /* De-assert 'Bin Request' */
 reg(0x34)=ax0;
 ay0=0x1000;
bin_rqst_ack:
 ar = ax0 AND ay0;
 if eq jump bin_rqst_ack; /* Wait for 'Bin Request Recieved' interrupt */
per_bin:
 ay0 = 0x0200; /* Re-initialize 'Bin Ready' check */

looping:nop;
 JUMP looping; /* Loop upon itself */

/**
 FIR SUBROUTINE
**/
fir_p1:
 DMPG1 = page(SHARED_MEM);
 MR = 0, MX0 = DM(I1,M1), MY0 = PM(I4,m4); /* Read Input sample from shared memory and read coefficient */
 DMPG1 = 0;
 DM(I0,M3) = MX0; /* Put Input sample in delay line */
 CNTR=Samps_per_Bin;
 DO mult_acc UNTIL CE;
 .repeat (Taps-1);
 MR=MR+MX0*MY0(SS), MX0=DM(I0,M3), MY0=PM(I4,M4);
 .end_repeat;
 MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
 DMPG1 = page(SHARED_MEM);
 SR=ASHIFT MR2 (HI), MX0=DM(I1,M1);
 DMPG1 = 0;
 SR=SR OR LSHIFT MR1 (LO), DM(I0,M3) = MX0;
mult_acc: MR = 0, DM(I2,M1)=SR0; /* Write to output */
 RTS (db);
 MX0 = DM(I0,M1); /* Update delay pointer */
 NOP;

Fir_shared.asm

/**
 CONSTANT & MACRO DEFINITIONS
**/
#define Samps_per_Bin 40 /* Number of samples in each bin */

/**
 GLOBAL DECLARATIONS
**/
.global SHARED_MEM;

/* Shared DM data */
.section/data Dm_Shared1;
.var SHARED_MEM [Samps_per_Bin]; /* Initialize buffer in shared memory */

