
Engineer To Engineer Note EE-18
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Choosing and Using FFTs for ADSP-
21xx

Last Modified: 06/18/96

FFT is a fast algorithm for computing DFT. There are
several different implementations on fixed point ADSP-
21xx. This EZ-Notes will help you choose the different
implementations and use the results.

The equation for computing DFT is,

X(k) = Σ {x(n)*W(n)}

Choosing different FFT implementation

The main considerations in choosing FFT
implementations are: speed and accuracy. The factors
include radix, points in FFT, windowing and scaling.
Since the DIT and DIF give the same accuracy at the same
speed, choosing one or the other won’t affect performance.

1. DIT and DIF
FFT has a special processing order. This results in a
requirement on a special input order (address bit-reversed)
or the FFT will produce the output in the special order.
The FFT which takes the bit-reversed ordered input and
generates a sequential ordered output is called ‘decimation
in frequency’ (DIF) and the FFT which takes the
sequential ordered inputs but generates a bit-reversed
ordered output is called ‘decimation in time’ (DIT). The
two approaches give the same results if the orders are
adjusted appropriately. In the DIT case, an input is in
original data order and, after FFT processing, the output
should be adjusted (unscrambled). In DIF case, a input is
pre-adjusted(scrambled) and then FFT is called and the
output is in the correct order. The flow diagrams for two
implementation is as below.

DIT inputs
 |
scramble the inputs
 |
FFT
 |
outputs

DIF inputs
 |
FFT
 |
unscramble the outputs
 |
outputs

2. Radix 2 vs. radix 4
The FFT divides DFT into smaller DFTs. If the division
ratio is two, the FFT is called radix-2. If the ratio is four,
the FFT is called radix-4. The results from two
approaches are the same. Compared with radix-2, the
radix-4 trades more complex data addressing and twiddle
factors with less computation. Due to the advanced
addressing mechanism, the ADSP-21xx can process the
radix-4 FFT significant faster than radix-2 FFT.

For instance, 1024 points radix-2 DIT(and DIF) FFT takes
73928 cycles while radix-4 takes 37016 cycles, which
saves about half of cycles radix-2 takes.

3. Points in FFT
The number of points in FFT depends on the resolution
we need. An FFT output can be thought as a series of
bins at specific frequencies evenly spread over the range 0
to f/2 (f is the sampling frequency) with the space of f/N.
If the N input samples contain full period or multiple
period, the frequency component falls into a frequency bin.
If the N input points does not contain one full period or
multiple periods, some frequency components will split to
two adjacent bins. Therefore f/N decides the resolution of
the frequency domain. Note that, there is a tradeoff
between the higher resolution and more computation. The
larger the N the better the resolution and the more DSP
horsepower needed.

graph illustration

4 . Windowing
If exactly one period or a multiple of periods of a signal
can not be captured exactly, the leakage(side lobe) will
result. The windowing is a technique to reduce the
leakage. The window function is selected for two
characteristics: reducing the effects of side lobe and
narrowing the main lobe of the window. There are two

EE-18 Page 2

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

commonly used windows: Hanning and Hamming
windows as shown below.

Hanning: w(n) = 1/2[1-cos(2*pi*n/(N-1))]
Hamming: w(n) = 0.54 - 0.46*cos(2*pi*n/(N-1))

The N input samples to your FFT are multiplied by the
windowing coefficients before executing the FFT. A
‘Rectangular window’ is the default and results when no
multiply is performed (think of it as multiplying your
input data by a rectangle of 1’s).

5. Scal ing
The scaling is an important difference between the floating
point FFT and fixed point FFT implementations. At each
calculation stage of fixed point FFT butterfly, the
computation could cause the data to grow by two bits
from the input to output. To avoid the overflow on the
fixed-point chips, we have to scale the data. There are
three possible ways to do this: input data scaling,
unconditional block floating-point scaling and conditional
block floating-point scaling.

The input scaling (IS) FFT doesn’t scale at all, so the
input data must be pre-scaled by log2N+1. This means
that for a 1024-pt FFT, you’d have to scale the data by
10+1 or 11 bits. For the 16-bit 21xx family this would
leave you with only 5 bits of valid data giving you a large
truncation error. However, input scaling is the fastest and
may be a good choice for small N FFTs. The
unconditional block floating-point scaling (UCBFS)
scales the input data unconditionally at each butterfly
stage. The data must still be pre-scaled to give two guard
bits. The conditional block floating-point scaling (CBFS)
scales the input data at each butterfly stage by 2 IF
NECESSARY. The number of scaling down bits is equal
to the number of growth bits of the previous butterfly
stage. The UCBFS is the special case of CBFS which
assumes the data always grows two bits at each butterfly
stage.

As for the accuracy, the CBFS gives the best result and
the UCBFS is next. The IS gives worst accuracy. As for
the speed, the IS is fastest. The CBFS and UCBFS
nearly the same speed (both have butterfly inner loops of
12 instructions) which is about 30% slower than IS
(whose butterfly inner loop is 9 instructions). Since the
UCBFS has almost the same speed as CBFS but with less
accuracy, the CBFS is recommended for large FFTs.

Using of FFTs on ADSP-21xx

The output of FFT processing is the complex DFT X(k)
of the input signal where k is the discrete frequency point.
The square of magnitude of the spectrum is

real{X(k)} * real{X(k)} - imag{X(k)} * imag{X(k))}

and phase is

arctan [imag{X(k)}/real{X(k)}]

In most cases, you use the square of magnitude of the
spectrum. In some cases such as in image processing, the
phase information may also be used.

1. Example fi les
Several versions of FFTs have been coded in ADI
assembly language and are available on the FTP and in the
Digital Signal Processing Applications Using the ADSP-
2100 Family applications book. The example files for
different fixed point FFT implementations are

DSP files: Inputs
__
DIT dit_main.dsp inputrea.dat

dit_fft.dsp inputima.dat
scramble.dsp twidreal.dat
bfp_adj.dsp twidimag.dat

DIF dif_main.dsp inplaced.dat
dif_fft.dsp (interleaved real
unscramb.dsp and imaginary data)
bfp_adju.dsp twidreal.dat

twidimag.dat

Radix-4 m4n1024.dsp input.dat (interleaved)
m4n1024.dsp cos1024.dat

__

2. The inputs and outputs
The inputs can be loaded from a file on your hard drive by
reassembling the program or by loading the memory
directly from a file. When finishing the execution of a
program, the outputs are saved in simulator memory. The
outputs for both DIT and DIF are separated into real and
imaginary parts while the outputs are interleaved and saved
as one file in Radix-4 FFT. The diagram of testing the
DIT and DIF is as below.

DIT inputrea.dat inputima.dat

DIT FFT

EE-18 Page 3

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

inplacereal inplaceimag

DIF inplaced.dat

DIF FFT

real_results imag_results

Radix-4 input.dat

Radix-4 FFT

 output

All the input and output files are in hexadecimal format.

3. Checking the results
The FFT result can be checked by plotting the result in
the ADSP-21xx simulator data memory. The simulator
command is,

plot dm(address)/length n

where n indicates interleaving span.

