Engineer To Engineer Note EE-78

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 1999, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products
or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders.
Information furnished by Analog Devices Applications and Development Tools Engineersis believed to be accurate and reliable, however no responsibility is assumed by Analog
Devicesregarding thetechnical accuracy of the content provided in all Analog Devices' Engineer-to-Engineer Notes.

BDMA Usage on 100 pin ADSP-218x DSPs configured for IDMA use.

The 100 pin versons of the ADSP-218x processors can be configured to either fully support the IDMA
interface of amemory interface. When these components are configured to utilize the IDMA interface, the
memory interfaceis only partidly functiond. This alows only limited usage for the memory interfaces The
BDMA interface can il be used in this mode, abet in a somewhat limited way.

This document will show how to set up BDMA in IDMA mode with the following features.
- 20 Bitsof BMDA address space.
Approx. 8 cycles overhead per DM or PM word transferred in blocks of up to 256 DM words or
170 PM words.
Supports both reading and writing of BM.

This document will show example source code demongtrating the use of BDMA on the ADSP-2185 in IDMA
mode. This codeis shown at the end of this documen.

In this mode of operation the processor only normally provides 1 address bit. This does not make it impossble
to use the BDMA functions. Up to 20 bits of address can be generated for use with the BDMA function. The
approach used in this document crestes and address for BDMA in the following way:

Pin name fiz | fl1 | fio pf7:0 d23:16 a0
Number of bits 3 8 8 1

This creates an address of up to 20 bits which can address 1 Megabyte. The different sections of the address
need to be updated manudly, but atrick in setting up the transfers dlows the d23:16 section of the address to
automatically be updated. By setting the BEAD regigter to dl ones for the bits which are not used causes an
automatic carry into the BMPAGE regigter. This dlows the one, two, or three transfers needed to trandfer an
internal memory word to be done as asingle BDMA transfer.

The example code is structured to set up a block transfer of up to 256 words for DM and 170 words for PM.
The blocks are transferred at arate of one DM or PM word per BDMA interrupt. The interrupt routine
automatically sets up the next word for transfer. The block size is limited due to the fact that the code shown
does not update ether the pf7:0 pins or the f12:0 pins. The problem is basicaly that asingle DM or PM word
which would cross a 512 byte boundary set by the number of bits automatically updated by the BDMA

ANALOG
DEVICES

interface would require the update the other address fields. There is a tradeoff between supporting larger blocks
and overhead. This example shows a bias toward limiting overhead at a cost of additiond limitations.

The code has three parts, the main program, a block transfer setup subroutine, and the BDMA interrupt
handler. The main program creates asmal DM buffer full of data and then uses the block transfer subroutine to
copy it out to BM. It then readsiit back from the BM to a smdl buffer in DM. It then copiesthe first 100 words
of PM (itsdlf) to BM. The main program polls the number of remaining wordsin each transfer to determine
when to continue. The main program would be available do other tasks a these waiting points.

The block transfer subroutine “hokeyb” is used to set up the BMDA control registers and the address bitsto
cause the requested transfer.

The BDMA interrupt routine does the necessary adjustments to the control words, decrements the block count,
and triggers the next trandfer. 1t could dso call auser BDMA subroutine when the block is finished.

Show an exanpl e of BDMA on | DMA configured part

uses address bus nmade up of:
fl10, pf7:0, d23:16, a0

transfers nmultiple dmor pmwords to/frombmwth
one word transferred per BDMA interrupt. This version
does not automatically update pf7:0 or flO.

Dat e: May 16, 1997

__ }
. modul e/ ram abs=0 hokey;
.var/dm ram hbwor ds;
junp START; nop; nop; nop; {0x0000 reset}
rti; nop; nop; nop; {0x0004 irqg2}
rti; nop; nop; nop; {0x0008 irql 1}
rti; nop; nop; nop; {0x000c irql 0}
rti; nop; nop; nop; {0x0010 spOt x}
rti; nop; nop; nop; {0x0014 spOrx}
rti; nop; nop; nop; {0x0018 irqge}
j ump BDMAI NT; nop; nop; nop; {0x001lc bnda}
rti; nop; nop; nop; {0x0020 spltx/nirql}
EE-78 Page 2

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftfp.analog.com, EMAIL: dsp.support@analog.com

rti; nop; nop; nop; {0x0024 splrx/nirq0}
rti; nop; nop; nop; {0x0028 timner}
rti; nop; nop; nop; {0x002c pwd}

#def i ne ENABDMA 0x8
#defi ne CLRBDVMA 0x8

START:

{ Set wait states to O for PMand 0 for DM}
i cntl =0x03;
ax0=CLRBDMA, {clear bnda interrupt if left over from booting}
i f c=axO0;

ax0=0x1bff; {1 bdma waitstate, cnms normal, pfs=output}
dm(Ox3f e6) =axO0;

i msk=ENABDMA; {unmask bdma interrupt}

{mai n code begi ns here}
i 0=0x3000;
no=1;
| 0=0;

my0=0x4321; {initialize dmwth a pattern}
cntr=24;
do | oopy until ce;
mxO0=cntr;
nT =mx0* ny0(ss) ;
| oopy: dm(i 0, mD) =nr 0;

{ set up first transfer (wite of dmto bm}
ax0=0x3000; {set bi ad}
dm(Ox3f el) =axO0;

ax0=24; {number of words}
dm(hbwor ds) =axO0;
ay0=0x05; {direction and node}
si =0x0; {address |sb's}
ax0=0x0000; {address nsb' s}
call hokeyb; {do the transfer}
EE-78 Page 3

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftfp.analog.com, EMAIL: dsp.support@analog.com

wai t 0:
i dle; {wait until transfer conplete}
ar =dm(hbwor ds) ;
ar =pass ar;
if ne junmp waitO;

{ set up second transfer read the buffer back to internal dn
ax0=0x3100; {set biad}
dm(Ox3f el) =axO0;

ax0=24; {nunmber of words}
dm(hbwor ds) =axO0;
ay0=0x01; {direction and node}
si =0x0; {address |sb' s}
ax0=0x0000; {address nsb' s}
call hokeyb;
waitl:
i dle; {wait until transfer conplete}

ar =dm hbwor ds) ;
ar =pass ar;
if ne junmp waitl;

{set up third transfer (wite pmto bm}
ax0=0x0; {set biad}
dm(Ox3f el) =axO0;

ax0=100; {nunmber of words}
dm(hbwor ds) =axO0;
ay0=0x07; {direction and node}
si =512; {address |sb' s}
ax0=0x0000; {address nsb' s}
call hokeyb;
wait 2:
i dl e; {wait until transfer conplete}

ar =dm(hbwor ds) ;
ar =pass ar;
if ne junmp wait2;

EE-78 Page 4

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftfp.analog.com, EMAIL: dsp.support@analog.com

END: junp END;

EE-78 Page 5

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftfp.analog.com, EMAIL: dsp.support@analog.com

{ Hokeyb is a routine which sets up bdma for the "hokey"
bdma feature on the 100 pin 218x conmponents. Its calling
convention is as shown:

bi ad: set to internal address
dm(hbwor ds): nunmber of words to transfer

ay0: bdir,btype for transfer (3bits, other bits 0)
si: 16 Isb's of starting address
ax0: remai ning address bits (right justified)

Restrictions:
- specified transfer nmust not cross a 512 byte bl ock.
- this exanple code does not set f1,fl2
- this exanple code uses the secondary registers
during the service of the bdma interrupt.

}
hokeyb:
{ build bdma control word }
sr = Ishift si by 7 (lo); {line up bits for bnpage}
ar = tsthit 7 of sroO; {check a0 bit}
ar = Oxffff; {set bead to all 1's}
if eq ar = clrbit 0 of ar; {set bit 0 to be |sb}
dm(0x3f e2) =ar; {write bead register}
ar = clrbit 7 of sroO; {l ose the a0 bit}
ar = ar OR ayO0; {add in control bits}
dm(Ox3f e3) =ar; {write bdnma control reg}
sr = Ishift si by -9 (lo); {get rid of 9 used bits}
si = axO0;
sr = sr or Ishift si by 7 (lo); {full remaining address}
dm(Ox3f e5) =sr 0; {put out the 8 bits on the pfs}
ar = tsthit 8 of sro0; {put out one bit on the fl0O pin}
if ne set flO;
I f eq reset flO0;
ar=1;
dm(Ox3f e4) =ar ; {set count, start bdnma}
rts;
BDMVAI NT:
{ we got or sent one word, now set up the next one }
ena sec_reg; {use alternate registers}
EE-78 Page 6

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftfp.analog.com, EMAIL: dsp.support@analog.com

ayO0=dm(0x3f e2);
ar =0x3ff e;
ar=ar OR ayO0;
dm(Ox3f e2) =ar;

ar =dm(hbwor ds) ;
ar=ar-1;

dm(hbwor ds) =ar ;
if eq rti;

{if eq call userbdnms;}

{reset the bits in bead so carry}
{updat es bnpage}

{set bead}

{decrenment word count}

{none left, either return}
{wi thout starting next fetch}
{or call user routine...}
{call user bdma routine }
{which ends with an rti }

ar =1; {count not zero, get next}
dm(Ox3f e4) =ar ; {wor d}
rei;
. endnod;
EE-78 Page 7

Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftfp.analog.com, EMAIL: dsp.support@analog.com

