Oiee Engineer To Engineer Note

EE-139

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Interfacing the ADSP-2191 to an
AD7476 via the SPI port.

Last modified: 8/08/01

Contributed By: H.Desai. European DSP Applications

The purpose of this note is to describe how to
set-up an SPI interface between the ASDP-2191
and an A/D converter (AD7476) in both
hardware and software. It will show how easy it
is to connect an external SPI compatible
peripheral device (such as A/D converters etc.)
to the DSP via the SPI port.

The hardware for this system was tested using
ADSP-2191-EZ-KIT LITE, the included asm
and C code was built using the VisualDSP++
2.0® tools.

Introduction

The ADSP-2191 has two independent serial
peripheral interface ports (SPI0/1). In this
example SPIO is set up as a master.

The SPI is a full duplex, 4 wire, synchronous
interface, which supports both master and slave
modes and multi-master environments. The
interface consists of two data pins (MOSI &
MISO), one device select pin (SPISS/PFx) and a
clock pin (SCK). The programmable flag pins
on the ADSP-2191 can be configured to behave
like a device select signal. Using the flag pins
the Master ADSP-2191 can select up to seven
slave devices on each SPI port.

The SPI interface is essentially a shift register
that serially transmits and receives data bits, one
bit a time at SCK rate, to and from other SPI
compatible devices. During an SPI transfer,
data is simultaneously transmitted and received.

A serial clock line synchronizes the shifting and
sampling of the information on the two serial
data lines.

Hardware Interface

In this application an AD7476 is connected to
the SPIO port.

The AD7476 is a 12bit ADC with a SPI
interface. The part operates from a single power
supply up to 5.25V and features throughput rates
up to IMSPS.

The AD7476 has 3 pins that connect to the DSP,
the SCLK (which is an input from the DSP), the
'CS (also an input from the DSP) and the
SDATA (an output to the DSP). The AD7476 is
a 12bit converter but the conversion result is
output in a 16bit word with four leading zeros
followed by the MSB of the 12-bit result.

A voltage reference (ref198) is used as the
power supply to the AD7476. The reference is
used to decouple noise from the power supply
and give more precise results. The output from
the reference is a steady voltage (4.096V).

The configuration of connecting the reference
device to the ADC is stated in the data sheets.

The input to the reference device is taken from
the breadboard area of the ADSP2191, but can
be something else i.e. signal generator.

The input to the ADC is taken from a POT.

The ADC output data line is connected to the
DSP data input line (MISO) via a voltage
devider, this is due to the output voltage from
the ADC (4.096V) being higher then the input
voltage of the DSP (3.3V).

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices
regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

The SPI pins on the DSP and the ADC are all
originally at tri state hence pull-up resisters
(10K)) are used at the pins.

Software Description

Once all the hardware is connected it is time to
generate the system software to control the SPI
port. For this to work we need to have working
software for the Master (DSP).

The assembly code has been broken into 4 files.
SPI MAIN.asm —

This is the main routine used to call all the other
source files in the project.

PRIORITY.asm —
This file is used to set up the interrupt.

The first thing that is always required when
initializing an SPI interface is to set the
OPMODE bit (bit 0) in the System
Configuration Register (SYSCR).

SYSCR (0x00:0x204)

OPMODE
Fig 1: System Configuration Register

The state of the OPMODE pin during hardware
reset determines if SPORT2 or the SPI ports are
active, as the SPI ports are multiplexed with
SPORT2. Setting this bit enables SP10/1 and
disables SPORT2.

Next, is to prioritize the peripheral interrupts.
This is optional; the default priority at reset of
each of the peripheral interrupts can be used.

For this example the peripheral interrupt is
being assigned a different priority. The priority

of each interrupt is set in the Interrupt Priority
Registers (IPRO — 3). In this example only the
SPIO interrupt is being used, and the peripheral
interrupt is assigned priority 1, the second
highest priority. This makes it interrupt 5 in the
vector table (remember that the first four
interrupts (0-3) are the core interrupts with the
highest priority and all other interrupts are
assigned after, starting at position 4 in the vector
table).

IPR1 is set to 0xBB1B and IPR0/2/3 are set to
0xBBBB. The one indicates SPIO set to priority
1 and the B’s indicate all the other interrupts set
to 11 (lowest priority).

Finally the SPIO interrupt is unmasked in the
IMASK register.

SPI CONFIG.asm —
This source file sets up the SPI port.

Once the interrupt is enabled, the SPI port
(hardware) needs to be configured.

The first thing to configure is the slave select
pin by writing to the SPIO Flag Register
(SPIFLGO). In this register the individual SPI
slave-select lines are enabled, when the SPI is
enabled as a master. Bit 1 enables
programmable flag 2 (PF2) as an output. Since
the slave select line is active-low, the
corresponding value of the pin (bit 9) is kept
high until it is time to transmit/receive.

The handling of this register is determined by
the value of clock phase bit (CPHA) in SPI
control register.

SPIFLGO (0x04:0x001) & SPIFLG1 (0x04:0x201)

X X

‘ FLG 71 | ‘ FLS 74 |
Value Enable

Fig 2: SPIx Flag Register

EE-139

Page 2

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp

If CPHA = 1 the value of the flag bit is set by
software control (FLG bits manually toggled by
user). If CPHA = 0 the value is set by the SPI
hardware (FLS bits in SPIFLGx toggled
automatically).

Next the baud rate, the rate at which the SPI
transfer will operate is set in the SPI Baud Rate
Register (SPIBAUDO) for a master device.

The baud rate is determined by the following
equation
HCLK

SCK =
(2 * SPIBAUD)

Writing a 0 or 1 to this register disables the
serial clock.

Now finally the SPI Control Register
(SPICTLO) is set to configure the SPI system.
This register is used to enable the SPI interface,
select the device as a master or slave, and
determine the data transfer format and word
size.

SPICTLO (0x04:0x000)

0/ 1|0| 1{1]{0[0[1/0/0/0|0f 1 00

Fig 3: SPI Control Register

Bit 0-1 — Transfer initiate mode (TIMOD)
instructs the DSP when to have the interrupt
occurring and when to begin the transfer.

Bit 2-3 — instruct what to do when
receive/transmit buffers are empty/full.

Bit 4 — used when DSP is configured as a slave
device.

Bit 5 — needed when using multiple slaves
Bit 6-7 — reserved

Bit 8 — sets the transmission word size (SIZE)

Bit 9 — sets the data format (LSBF)
Bit 10 — Clock phase (CPHA)
Bit 11 — clock polarity (CPOL)

Bit 12 — Configures DSP as master or slave
(MSTR)

Bit 13 — Enable open-drain (WOM) is needed in
the event that you do not wish to have data-lines
connected in a multi-master mode or multi-slave
environment. As this is a single master-slave
design, this feature is not enabled.

Bit 14 — this bit enables the SPI module (SPE).

Bit 15 —reserved

A note to remember is that certain components
of this control register in both the master and
slave devices need to be configured identically
to one another.

The SPI clock phase (CPHA), polarity (CPOL),
data format (LSBF) and word length (SIZE)
must be the same in both master and slave
devices, else the interface will not function

properly.

From the data sheet of AD7476 and the timing
diagram shown in fig 4, it can be seen that the
ADC starts transmitting on the first falling clock
edge and SCK high is the idle state, hence
CPHA =0 and CPOL = 1.

cE ’ |; |-l
1 [
BOLK - |||| |||| H |I|| LII' || |||’ ” Ve
[o
EDATA _< 4 LEADING ZFEROSE + CONWEF SION REELLT >—

MSB LSB

Fig 4: Timing diagram of AD7476.

EE-139

Page 3

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp

Also the data format and word size information
can be found in the data sheet of the AD7476.

As mentioned earlier the AD7476 outputs a 16-
bit word with four leading zeros followed by the
MSB of the 12-bit result.

Once all the registers are set it is time to start the
transfer.

An output buffer has been set up to store the
results into memory.

Finally the transfer is kicked-off with a dummy
read of the SPI0 Receive data buffer (RDBRO)
and the results written into the received data
buffer in memory.

For this example we do not need to write to the
SPIO flag register to enable and disable the slave
on PF2 as CPHA = 0, which means that the FLG
value is automatically set by the hardware.

ISR.asm —

This file contains the interrupt handler.

This is the main interrupt service routine. It
uses the secondary set of registers to read the
data from RDBRO and store the data in the
received data buffer in memory.

C code

This example only contains one file, main.c,
which contains four functions. The source code
in the functions performs the same task as the
assembler codes.

The memory mapped registers are accessed
using i0_space read and i0_space write
commands. The non-memory mapped registers
are accessed using sysreg read and sysreg_write
commands. These commands allow easy access
to the i0-pages that contain the required registers
to set up the system and are contained in the
sysreg.h header file.

Results

From the diagrams below it can be seen that
data is transmitted when CS goes low. The first
four bits are all zeros (the four leading zeros
sent by the ADC) and then the resulting data is
sent. The clock starts toggling at the middle of
the first data bit.

2.00V Ch2 2.00V M20.0Ms A Chi v 2.32V

i 10.20 %

Fig 5: Results of SPI system

Conclusion

This note should have given you an idea on how
to connect SPI compatible peripheral devices to
the ADSP-2191 via the SPI port and also how to
very simply configure the port (write a small
piece of code to allow communication).

Finally please refer to additional documents to
help getting a better understanding of this note.

Prevu o ———— & =)
o . ._.;..g;_ib“.g%v
SCK—p] jﬂ ﬂ’ﬂ‘ﬂ'l‘ A 6.61kHZ
| i 2 @: 1 6.65kH2
B b UU L ‘ J U
CS > ,‘ l : : i : l Cchi Freq
H] 99.99kHz
2 A A s o A,]
Chi1 ampl
320V
DATA—p»

EE-139

Page 4

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp

References

- ADSP 2191 Hardware Reference
Manual

- 2191 EZ-KIT LITE (hardware)

- ADSP-2191 EZ-KIT LITE Schematic
- Data sheet of AD7476

- Data sheet of REF198

- Data sheet of ADSP-2191

- www.analog.com

EE-139 Page 5

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp

Appendix A

Listed below are the source codes used to illustrate the SPI
2191. (Please note that these included code modules were t
tools for the 219x processor family and the ADSP-2191 EZ

Assembler code

MAIN.asm

SRR sk kR Rk sk kR R Rk kR R ks Rk R R KRRk R R R sk R R Rk ok

File Name: SPI interface to AD7476
Date Created: 06/01 H.Desai
PURPOSE: SPI interface routine for connecting the AD7476 to the ADSP-2191.

stk kR Rk R R R ks kR sk R R sk R R ks R R Rk R R R ok

#include <def2191.h>

/1
1 GLOBAL & EXTERNAL DECLARATIONS
/1

.GLOBAL Start;
.EXTERN SPIl_Interrupt_Priority;
.EXTERN Initialization_of SPII1;

/
/ Program memory code
/

.SECTION /pm program;

Start:
call SPIO_Interrupt_Priority;
call Initialization_of SPIO;

wait_forever:
jump wait_forever;

SRR sk kR R Rk R R Rk kR ks R R sk kR R sk kR R ks ko

EE-139

Technical Notes on using Analog Devices' DS
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@an

PRIORITY.asm

SRR sk kR Rk sk R R Rk R kR R ks R KRRk Rk R Rk R KRRk ok

Interrupt Priority Configuration

stk kR Rk kR R ks R KRR sk R R sk R R R sk R R R sk kR R R ko

#include <def2191.h>

/1

1 GLOBAL & EXTERNAL DECLARATIONS

/1

.Global SPI0_Interrupt_Priority;

1

/ INTERRUPT PRIORITY CONFIGURATION

1

.section/code program;

SPI0_Interrupt_Priority:
IOPG =0;
ar=io(SYSCR);
ar = setbit 4 of ar;
ar = setbit 0 of ar;
i0o(SYSCR)=ar;

DIS int;
IRPTL = 0x0;
ICNTL = 0x0;
IMASK = 0;

I0PG = Interrupt_Controller Page;
ar = 0xBB1B;
io(IPR1) = ar;
ar = 0xBBBB;
i0(IPRO) = ar;
io(IPR2) = ar;
io(IPR3) = ar;

AY0=IMASK;
AY1=0x0020;

AR =AYOor AY1;
IMASK=AR;

RTS;

/* Map Interrupt Vector Table to Page 0*/

/* Turn on SPI */

/* Disable all interrupts */

/* Clear all interrupts */

/* Interrupt nesting disable */
/* Mask all interrupts */

/* Set Interrupt Priorities */

/* Set SPIO to priority of 1 */
/* Set all other peripherals to lowest priority */

/* Unmask SPIO0 Interrupt */

/7 e e e e ke e ke e ke e e e ke e ke e ke e ke e ke e ke e e ke e e ke e e ke ke e ke e ke ke ke ke ke ke ke ke ke e ke ke ke e ke ke ke ke ke e ke ke ke e ke e ke ke ke e ke ke ke e ke e ke ke ke kel skl sk sk ok ke ok ok kol ok skok /

SPI_CONFIG.asm

s sk s sk s sk s sk s sk sk sk s sk sk sk s sk s s s s s o s o s ok s oo s s s e s e o e o e e s e e s e e s e s s s e ook

SPI Port Configuration
***/
#include <def2191.h>
/1

/ GLOBAL & EXTERNAL DECLARATIONS
%

.GLOBAL Initialization_of SPIO;

%
/ DM DATA
%

.SECTION /dm dmdata;
VAR recieved data[16];

/1
/ SPI0 REGISTER INTIALIZATION

%

.SECTION /pm program;
Initialization_of SPIO:
IOPG = SPI0_Controller Page;

AR = 0xFF02; /* Enable Slave On PF2 */

IO(SPIFLGO) = AR;

AR = 0x50; /* Set SPI0 Baud rate, => SCLKO ~= 50Khz*/
IO(SPIBAUDO) = AR;

AR = 0x5908; /* Set SPI0 Configuration Reigster */
IO(SPICTLO) = AR; /* Enable SPI0 as MASTER */

10 = recieved_data; /* Set data buffer */

Ml=1;

L0 = LENGTH(recieved_data);

ax0 = 10;

REG(B0) = ax0;
ENA INT;

IOPG = SPI0_Controller Page;
AR =IO(RDBRO); /* Dummy read from SPI0 */

RTS;

J e Y]

ISR.asm

/7 ke e ke e ke e e e ke e ke e ke e e e ke e ke e e e e e ke e e e ke ke ke e ke e ke e ke e ke e ke e ke e ke e ke ke ke e ke e ke e ke e ke e ke e ke e ke e ke e ke ke ke e ke ek sk stk ok ok ok ok ok stk ok ok ok

SPI Interrupt handler
***/
#include <def2191.h>

/

/ EXTERNAL DECLARATIONS
/1

.EXTERN Start;

/1
1 DM DATA
/1

.SECTION /dm dmdata;
VAR counter = 0;
.VAR save io_page;

/1
/ PM Reset interrupt vector code
/1

.section/pm IVreset;
jump Start;
nop; nop; nop;

/]
1 SPIO ISR
/]
.section/pm IVint5;
ENA SR;
AR =10PG;

dm(save io_page) = AR;
IOPG = SPI0_Controller Page;

AR = dm(counter); /* Interrupt counter for debugging purposes*/
AR =AR + 1;
DM(counter) = AR;

AR =10(RDBRO); /* Read from SPI0 Receive Buffer Register */
DM(I0 += M1) = AR;

AR = dm(save io page);
IOPG = AR;
DIS SR;

C code

[skl sk skesk skl skl skesk skl skl skokskok ok

Title: SPI - C-interface - ADSP-2191 Evaluation Board

Date : 06/01

Information- Connection of an AC7476 to the ADSP-2191 via SPL

**/

#include<signal.h>
#include<sysreg.h>

/1

/ GLOBAL & EXTERNAL DECLARATIONS

/1

void SPI0_Interrupt Priority(void);
void Initialization_of SPI0(void);
void SPI recieve();

/1

/! DM DATA

/1

int received_data[16];

int i;

/1

// Program memory code

/1

void main(void)

{
SPI0_Interrupt_Priority(); /* call SPI0_Interrupt_Priority */
Initialization_of SPIO(); /* call Initialization_of SPI0 */
sysreg_write(sysreg_IOPG , 0x4); /* Select 10 page */
received_data[i] =io_space read(0x4); /* Dummy read from SPI0 */
interrupt(SIG_INTS,SPI recieve); /* SPIO0 interrupt masks and calls interrupt routine */
for (;;)
{

asm("idle;");

}

}

F i Y]

void SPI0_Interrupt_Priority(void)
{
sysreg_write(sysreg_IOPG , 0x1);

/* Select 10 page */

sk s sk s sk s sk s s s sk s s s sk s o s o s o s o e o e o e s e s e s e e e e e e e e e e e e e e e e e e e s e s e sk /

void Initialization_of SPIO(void)

{
sysreg_write(sysreg_IOPG , 0x0); /* Select 10 page */
io_space_write(0x204, 0x11); /* Map Interrupt Vector Table to Page 0%/
/* Turn on SPI */
sysreg_write(sysreg_IOPG , 0x4); /* Select 10 page */
io_space_write(0x1, 0xff02); /* Enable Slave On PF2 */
io_space_write(0x5, 0x50); /* Set SPI0 Baud rate, => SCLKO0 ~= 50Khz*/
io_space_write(0x0, 0x5908); /* Set SPI0 Configuration Reigster */
/* Enable SPI0 as MASTER */
}

J Y]

void SPI recieve()

{

static int count=0;

sysreg_write(sysreg_IOPG , 0x4); /* Select 10 page */
count-++; /* Interrupt counter */
received_data[i] =1io_space read(0x4); /* Read from SPI0 Receive Buffer Register */
it++;
if (i >= 80)
i=0;

}

[k sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk s sk s s s s e s s s s s s o s o e o e o e o e o e s e e e e e e e e e e e e e s e e e e e e s e s e s ek /

EE-139 Page 11

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp

ﬁxﬁﬂmmﬁm_ depisGipl @@ v /8 191E]D

=13 FASOWON 1awWn30g

SIR AT I45 PFTLIL

[e[elsls]

T
o

&
7

i

BESA
RIS
S

e

I EE——

e L

20 L |l aad

g, £

Em a4

] E

:_.D_ n..._dn“....ﬂ

e st

% : fag (e
E F ¥
- ._”c

IMNPRY um

LAR) b PR,

