
Engineer To Engineer Note EE-164

a

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs
Contributed by Benno Kusstatscher April 15, 2003

Introduction
EPROM or Flash devices are often used to boot
ADSP-2191/95/96 DSPs, but after booting, the
EPROM/Flash is not used anymore.

The goal of this document is to demonstrate that
EPROM/Flash is of use at run-time as well.

It may store coefficient tables, overlays and, last
but not least, the DSP may execute instructions
directly from it.

If you take advantage of the boot device this
way, you may reduce the SRAM requirements of
your application. Perhaps you can choose a
derivative with less on-chip memory, perhaps
you can save an additional external SRAM
device.

This document discusses various scenarios of
advanced Boot EPROM usage. Besides ADSP-
2191 specific aspects it will explain how
VisualDSP++TM 3.01 helps you to manage such
applications.

EPROM Booting Tools Chain
Details of standard EPROM booting are
discussed in application note EE-131 [1]. Just to
complete the picture, this first section provides a
brief overview about the related tool chain.

If you build a VisualDSP++ project during the
development cycle the linker will output a so-

called Executable File (.dxe) that meets the ELF /
DWARF-2 standard. This file is passed to the
debugging tools and contains application data as
well as debugging information.

1 Some features discussed require latest patches installed.
Download from: ftp://ftp.analog.com/pub/tools/

The DSP itself cannot access such a Executable File
(.dxe). It simply expects properly formatted data
in the EPROM/Flash. Before you can program
the EPROM/Flash physically you need to
convert the Executable File (.dxe) into any format
known by the EPROM programming tool.

A common file format for such purposes is the
Enhanced Intel Hex File format. Therefore,
VisualDSP++ provides another utility that post
processes the Executable File (.dxe). It generates the
boot stream and emits it to a so-called Loader File
(.ldr) that meets these Intel Hex conventions. This
post-processor is called Loader Utility (elfloader.exe).

Figure 1 illustrates how to set up the Project
Options in order to make VisualDSP++ invoke the
Loader Utility. If you set the Type field in the Project
Options Dialog to Loader file, VisualDSP++
invokes the Loader Utility during the project build
to post-process the project’s Executable File (.dxe).

To burn the Loader File (.ldr) into the
EPROM/Flash device externally you may use a
separate programming tool. Flash devices can
also be programmed in circuit, alternatively. Use
the VisualDSP++ plug-in Tools Flash Programmer
to download and flash the Loader File (.ldr) through
the JTAG emulator (or even the USB connection
if you are working with the EZ-KIT Lite™).

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

a

Figure 1: VisualDSP++ 3.0 Project Options Figure 2: Load Property Page

If the DSP detects EPROM boot configuration
mode after reset, it starts executing the Loader
Kernel. This is a program residing at the on-chip
ROM address 0xFF.0000. It is responsible for
the boot process. Initially, the Loader Kernel reads
two control bytes from /BMS space to determine
the BMSCTL and EMICTL register settings, such as
Wait states, EMI Clock divider and EMI Bus width (8 or
16 bit).

Once the control registers of the External Memory
Interface (EMI) are set up accordingly, the Loader
Kernel parses the boot stream in the EPROM and
completes the boot process without further user
intervention. When the DSP is booted, the Loader
Kernel executes a JUMP instruction to on-chip
address 0x00.0000 and the user application gets
control over the DSP.

Loader Utility and Loader Kernel hide all the boot
stream details from you. Application note EE-
131 [1] provides further explainations.

Using the Load property page shown in Figure 2
you can choose whether the boot device is 8-bit
or 16-bit wide. Also, you have access to the Wait
states and to the EMI Clock divider used for EPROM
accesses. According to the speed-grade of the
used EPROM/Flash device you may speed up the
boot process by altering the default values.

The Opmode field specifies the preferred
hardware setting (SPI0 + SPI1 versus SPORT2)
during booting only. The Start address box is
useful if the DSP has to share the boot EPROM
with other processors or if multiple boot images
need to be stored in a single EPROM.

The settings shown in Figure 2 make the loader
utility generate Intel Hex Loader File (.ldr) for 8-bit
EPROM booting. They result in the Loader Utility
command line:
elfloader -proc ADSP-2191
 -f HEX -b PROM
 -width 8 -opmode 0
 -clkdivide 5 -waits 7
 -o test test.dxe

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 2 of 16

a
Alternatively, one may set the Width field to 16 bit
if the DSP is booted from a 16-bit EPROM or to
8+8 bit if the DSP is booted from two 8-bit
EPROMS in 16-bit mode. In the last case, the
Loader Utility will output two Loader Files (.ldu,.ldl).

Before burning/flashing the Loader File (.ldr) you
may evaluate it in software. The VisualDSP++
3.0 simulator can read the image file from the
tools command menu Settings Simulator Boot
EPROM.Rx. The simulator interprets the Loader File
(.ldr) in the same way as the Loader Kernel does.

Once a file is loaded, the simulator boots the
memory content every time a reset is issued until
the menu setting Settings Simulator Boot No
Booting is checked again.

ADSP-219x Memory
Booting is nothing else than initializing RAM
after power-up or system reset. In most of cases
only on-chip SRAM of the ADSP-219x DSPs is
initialized by the boot process.

Figure 3: On-chip Memory Map

Figure 3 illustrates the physical layout of the on-
chip memory. The ADSP-2191 has four
independent memory blocks. Two are 24-bit
wide and can store instructions, but may also
store 16-bit data. The other two blocks can only
store 16-bit data. In total, 32k words of 24-bit
memory and 32k of 16-bit memory are integrated
on-chip. These 64k address locations build the
memory page 0. While accessing on-chip
memory, always set the related page registers
DMPG0, DMPG1 and IJPG to zero.

In addition the ADSP-219x DSPs may access
additional external SRAM through the EMI port.
This parallel interface supports both, 8-bit and
16-bit data width.

The ADSP-219x DSPs may address 16M words,
organized as 256 Memory Pages of 64k words size.
Page 0 is reserved for on-chip memory. Page 255
holds the on-chip boot ROM. All accesses to any
of the pages 1 to 254 initiate an off-chip bus
transfer.

24 address line are required to access the
complete 16M address space. To avoid the need
of off-chip address decoders, ADSP-219x DSPs
provide four memory strobes /MS0 to /MS3. Every
strobe controls one Memory Bank, 4M words each.
Consistently, the EMI features only 22 address
lines.

Every memory bank has its own control register
MSxCTL. Access parameters such as wait-states
can be controlled individually. Although the
MEMPGx registers may redefine the start page of
the individual memory banks, this application
note always assume the default settings.

16k x 24 bit

16k x 24 bit

16k x 16 bit

16k x 16 bit

16k x 24 bit

16k x 16 bit

8k x 24 bit

8k x 16 bit

ADSP-2191 ADSP-2195 ADSP-2196

003FFF

000000

007FFF

004000

00BFFF

008000

00FFFF

00C000

 Bank 0 (/MS0) 0x010000 – 0x3FFFFF
 Bank 1 (/MS1) 0x400000 – 0x7FFFFF
 Bank 2 (/MS2) 0x800000 – 0xBFFFFF
 Bank 3 (/MS3) 0xC00000 – 0xEFFFFF

Note that the address range of Bank 0 is
overlapped by the on-chip memory page.
Similarly, the boot ROM page overlaps Bank 3.

If a 4MWord device is connected to /MS0, the
lower 64k addresses cannot be access using this
scheme. Typically, devices are much smaller,
and all locations can be reached by address
aliases. For example, device address 0x000000
can be accessed through alias address 0x200000,
if the connected device features less than 22
address lines.

Beside the /MSx strobes, the EMI features an
additional Boot Memory Select (/BMS) pin. There are
three bits in the E_STAT register, that may
overwrite the normal /MSx functionality, for
instruction fetch, DM bus access or PM access

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 3 of 16

a
operations. If set, the the EMI activates the /BMS
strobe instead of the /MSx ones whenever the
address range 0x010000 to 0xEFFFFF is
accessed, by one of the three operations.

The Boot Kernel typically reads the boot stream
from the so-called Boot Memory Space by activating
/BMS. If it is booting off-chip SRAM, the Boot
Kernel manages the E_STAT bits properly.

Finally, the ADSP-219x DSPs feature an I/O
memory space. This one is typically not booted
and is not described in this document, therefore.

Logical versus Physical Addresses
There is a need to distinguish between logical and
physical parameters. Logical settings describe
memory from the core’s perspective: logical data
width is either 16 or 24 bit wide; logical
addresses are the ones used by program coding.

Physical addresses and memory width may differ
from the logical parameters, especially when
describing off-chip memories.

The physical width of on-chip memory can be
either 16 bit or 24 bit, according to the individual
memory blocks shown in Figure 3. 16-bit
operations to/from 24-bit on-chip memory access
the upper 16-bits of the addressed memory
locations only. 24-bit writes to on-chip 16-bit
memory ignore the lower 8 bits stored in the PX
register. 24-bit reads from on-chip memory zero
the PX register.

The E_BWS bit in the EMICTL register controls,
whether the interface is 8-bit or 16-bit wide.

Logical width Physical width Address
Multiply

16 bit 8 bit 2

24 bit 8 bit 4

16 bit 16 bit 1

24 bit 16 bit 2

Table 1: Physical Address Multiply Factor

When physical data width does not match the
logical one, multiple physical address locations
are required to built one logical address location.

Consistently, physical addresses are multiples of
logical addresses. The multiply factor depends
on logical to physical data width relationship
(and EMI settings) as shown in Table 1.

When multiplying logical addresses with the
proper factor, the resulting address may be of
theoretical nature. Often the result exceeds the
address range supported by a given memory
devices.

If, for example, a 64kByte SRAM is connected
to /MS0, and the program performs a 16-bit
access to address 0x011000, the physical address
is not 0x022000. It is 0x002000.

In the general case, the logical to physical
address calculation performs the multiplication
and masks non-existing address bits out,
afterwards.

Whether off-chip data accesses are trade as 16-
bit or 24-bit operations is controlled by the
E_DFS bit in the E_STAT register. At run-time this
bit is usually cleared. If set, it helps to load 24-bit
instructions into on-chip memory.

Memory Segment Types
When you are managing EPROM boot scenarios
you need to be familiar with a few basic
commands of the Linker Description File (.ldf).

While processing the Executable File (.dxe) the
Loader Utility evaluates the individual memory
segments. Memory segments are defined within
the memory layout of the Linker Description File
(.ldf).

Besides the logical address range, every segment
specifies its physical width by the WIDTH()
command. External memory segments set their
physical width according to EMI port settings. It
is possible that the invidual off-chip memory
segments have different width settings. Then,

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 4 of 16

a
software must take care, that the E_BWS bit is
managed propely at run-time.

Also, every memory segment has a type. The
dedicated TYPE() command accepts four different
options:

 TYPE(DM RAM)
 TYPE(PM RAM)
 TYPE(DM ROM)
 TYPE(PM ROM)

The Loader Utility ignores all segments declared by
the TYPE(ROM) option and reads the TYPE(RAM)
segments only. It generates 16-bit boot streams
for TYPE(DM RAM) segments and 24-bit boot
streams for TYPE(PM RAM) segments.

Please note that this naming convention is of
historical nature. TYPE(PM) segments are 24-bit
wide and may contain data and program code. If
a segment holds 16-bit data only, it can be
defined by the TYPE(DM) command, regardless
whether the containing data is accessed through
the DM or the PM bus.

MEMORY {

 seg_code {
 TYPE(PM RAM) WIDTH(24)
 START(0x000000) END(0x007FFF)
 }

 seg_data1 {
 TYPE(DM RAM) WIDTH(16)
 START(0x008000) END(0x00BFFF)
 }

 seg_data2 {
 TYPE(DM RAM) WIDTH(16)
 START(0x00C000) END(0x00FFFF)
 }

}

Listing 1: LDF Memory Layout Example

Listing 1 illustrates a very basic example of an
ADSP-2191 memory layout according to Figure
3. It sets up on-chip memory for booting,
because all segments are of TYPE(RAM).

Note that the Linker Description File (.ldf) does not
describe the boot memory itself. Use the Load
property page in Figure 2 to define whether the

DSP is booted from 8-bit or from 16-bit
EPROM.

Booting Off-chip SRAM
So far we discussed booting to internal memory.
If you have additional SRAM connected to the
system bus you may want to initialize its content
at boot-time, too.

This section discusses an example scenario with
an 8-bit boot EPROM connected to /BMS and an
additional 8-bit SRAM that is connected to the
memory strobe /MS1.

Although the ADSP-2191 Loader Kernel
can boot on-chip and off-chip memory
from 8-bit and from 16-bit EPROMs, the
E_BWS bit in the EMICTL register is set
only once. As a result, external SRAM
must use the same bus width as the boot
EPROM, if you want to boot it.

This example can still use the project options
shown in Figure 1 and Figure 2. However the
Linker Description File (.ldf) needs to be enriched by
external memory segments.

MEMORY {

 seg_code {
 TYPE(PM RAM) WIDTH(24)
 START(0x000000) END(0x007FFF)
 }

 seg_data1 {
 TYPE(DM RAM) WIDTH(16)
 START(0x008000) END(0x00BFFF)
 }

 seg_data2 {
 TYPE(DM RAM) WIDTH(16)
 START(0x00C000) END(0x00FFFF)
 }

 seg_data_ext {
 TYPE(DM RAM) WIDTH(8)
 START(0x400000) END(0x40FFFF)
 }

 seg_code_ext {
 TYPE(PM RAM) WIDTH(8)
 START(0x408000) END(0x417FFF)
 }

}

Listing 2: LDF Memory Layout Example

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 5 of 16

a
If new segments are introduced in the LDF
memory map, also proper section assignment is
required like shown in Listing 3.
PROCESSOR p0 {

 SECTIONS {

 ...

 ext_data_dxe {
 INPUT_SECTIONS($OBJECTS(extdata))
 } > seg_data_ext

 ext_code_dxe {
 INPUT_SECTIONS($OBJECTS(extcode))
 } > seg_code_ext

 }

}

Listing 3: LDF Section Assignment Example

Listing 2 introduces one 24-bit TYPE(PM RAM)
segment intended to store instructions and one
16-bit TYPE(DM RAM) segment for data. Both are
bootable. The WIDTH(8) commands in Listing 2
define the physical width to 8 bit as required.

A little understanding of EMI address translation
is required to determine start and end address of
the external memory segments.

Provided that the E_DFS bit in the E_STAT
register is cleared, the EMI uses the following
packing schemes: if core or DMA engine access
16-bit data in the segment seg_data_ext, then two
8-bit accesses are required. Logical addresses are
multiplied by two.

However, if the core fetches 24-bit instructions
from segment seg_code_ext, three 8-bit reads are
required, resulting in an address multiply factor
of four.

Since not just the packing but also the addressing
scheme differs, the memory map of the off-chip
8-bit SRAM needs to be defined carefully:
segment seg_data_ext starts at logical address
0x40.0000. Therefore it activates the memory
strobe /MS1. The corresponding byte address
would be 0x80.0000, but the ADSP-2191 DSPs
feature only 22 address lines A0..A21. Therefore a
data read from logical address 0x40.0000
accesses the byte addresses 0x00.0000 and
0x00.0001 of the SRAM. Similarly, a read from

logical address 0x40.FFFF accesses the SRAM
at address 0x01.FFFE and 0x01.FFFF
(0x81FFFE and 0x81FFFF ANDed with
0x03.FFFF).

It is obvious that the code segment seg_code_ext
should follow contiguously to seg_data_ext
without wasting SRAM locations due to address
gaps. Segment seg_code_ext reserves space for
65536 instructions and every instruction word
takes four byte locations. Thus, seg_code_ext
should fit into SRAM addresses 0x02.0000 to
0x05.FFFF.

To achieve this goal, the logical address space of
the code segment spans from 0x40.8000 to
0x41.7FFF. Table 2 summarizes the address
translation of the example used in Listing 2.

logical address theoretical
8-bit address

physical 8-bit
SRAM address

seg_data_ext (16 bit)

40 0000 080 0000 00 0000

40 FFFF 081 FFFE 01 FFFE

seg_code_ext (24 bit)

40 8000 102 0000 02 0000

41 7FFF 105 FFFC 05 FFFC

Table 2: EPROM Boot Example Address Translation

Please note that the Clock divide and Wait States
settings specified in the Load property page do
not apply to SRAM accesses. The Loader Kernel
does not alter the MSxCTL registers.

No-Boot Option
Although rarely used, there may be good reasons
to refuse the booting capabilities of the ADSP-
2191 family. One example is applications that
use on-chip memory for data storage only. Also,
this mode helps to implement customized boot
loader scenarios.

Being programmable by the hardware pins (strap
pins), the DSP can bypass the Loader Kernel and
start program execution at address 0x01.0000.

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 6 of 16

a
Two different options support instruction
fetching from 8-bit as well as from 16-bit
memory connected to the strobe /MS0.

The memory connected to /MS0 is usually an
EPROM or Flash, but it can also be a volatile
memory controlled by another processor in the
system.

In order to generate a proper EPROM file, the
so-called Splitter Utility needs to be invoked. This
Splitter Utility is part of the same elfloader.exe tool
like the Loader Utility mentioned above.

Also the Splitter Utility parses a VisualDSP++
Executable File (.dxe), but this time it ignores all
segments declared by TYPE(RAM) and reads
TYPE(ROM) segments only.

Listing 4 shows a very basic example of an LDF
memory layout that meets the requirements. The
segment seg_code contains all programming code
including the interrupt vector table. Section
assignment instructions are not shown explicitly.

MEMORY {

 seg_data1 {
 TYPE(PM RAM) WIDTH(24)
 START(0x000000) END(0x007FFF)
 }

 seg_data2 {
 TYPE(DM RAM) WIDTH(16)
 START(0x008000) END(0x00FFFF)
 }

 seg_code {
 TYPE(PM ROM) WIDTH(16)
 START(0x010000) END(0x01FFFF)
 }

 seg_constants {
 TYPE(DM ROM) WIDTH(16)
 START(0x040000) END(0x05FFFF)
 }

}

Listing 4: No-boot LDF File Example

If the boot mode is set up accordingly, after reset
the DSP starts program execution at the reset
vector 0x01.0000. The example assumes a 16-bit
wide EPROM/Flash connected to /MS0. No
packing and no address multiplication is needed
to access 16-bit words off-chip. Whereas

fetching 24-bit instructions still requires two off-
chip reads and addresses are multiplied by two.

The first instruction is located at physical
EPROM addresses 0x02.0000 and 0x02.0001.
The segment seg_code occupies EPROM space up
to address 0x03.FFFF.

EPROM location lower than 0x02.0000 can be
accessed through alias addresses. The example in
Listing 4 uses the these locations to store
constant 16-bit data tables mapped to the data
segment seg_constants. Nevertheless the explained
procedure can also be used to allocate the same
EPROM space for a second code segment.

Assuming the size of the used EPROM is 256k
by 16 bits, only the address lines A0..A17 are
connected. EPROM addresses are aliased
periodically in the DSP address space. The reset
vector can be read from address 0x02.0000 but
also from address 0x06.0000 or 0x0A.0000.
Similarly, the EPROM space 0x00.0000 to
0x01.FFFF can be accessed through the physical
address alias 0x04.0000 to 0x05.FFFF. No
address translation is required for 16-bit
accesses. Thus, also the LDF file may use the
address range between 0x04.0000 and
0x05.FFFF to define segment seg_constants.
Again, Table 3 summarizes the address
translation.

logical address theoretical
16-bit address

physical 16-bit
EPROM address

seg_constants (16 bit)

04 0000 04 0000 00 0000

05 FFFF 05 FFFF 01 FFFF

seg_code (24 bit)

01 0000 02 0000 02 0000

01 FFFF 03 FFFE 03 FFFE

Table 3: No-Boot Example Address Translation

If the Splitter Utility processes an Executable File
(.dxe) based on the example LDF file, it would
emit EPROM address from 0x02.0000 to

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 7 of 16

a
0x05.FFFF. This is unacceptable because the
256k EPROM used in this example provides
addresses from 0x00.0000 to 0x03.FFFF only.
That is why the Splitter Utility features the
additional –maskaddr addressbit command line
switch. This switch enables the masking of the
upper physical address bits.

If, in the example above, all physical address bits
greater or equal A18 are masked out, every
EPROM address is ANDed with 0x03.FFFF
before it is emitted to the Intel Hex file. All
addresses belonging to segment seg_code remain
unchanged, but seg_constants addresses are
mapped into address space 0x00.0000 to
0x01.FFFF as required.

The complete command line may look as
follows:
elfloader -proc ADSP-2191
 -romsplitter -maskaddr 18
 -f HEX -width 16
 -o test test.dxe

Using the integrated environment of
VisualDSP++ the same command line is
generated if the Load property page is set up as
shown in Figure 4.

Figure 4: No-boot Property Page

Currently, the VisualDSP++ single-
stepping and breakpoint features are
supported for off-chip code execution
debug.

When the DSP detects no-boot option after reset,
the interrupt vector table starts from off-chip
address 0x01.0000. If you want to map it to on-
chip address 0x00.0000 set the RMODE bit in the
SYSCR register. Make sure, that corresponding
on-chip memory locations have been initialized
accordingly. You may also clear the RMODE bit
again to map the interrupt vector table back to
0x01.0000.

Combining Boot + No-Boot
Fortunately, the Splitter functionality discussed in
the previous section is not restricted to the no-
boot options only.

Almost all applications require booting after
reset. Booting is transparent to the user and once
all code and data resides in on-chip memory
program execution can perform at full speed.

In today’s applications DSPs have to perform
several tasks rather than executing a single real-
time algorithm repetitively. Memory
requirements increase, perhaps beyond the
SRAM resources available on-chip.

Adding an additional SRAM device could help.
Although this increases systems costs, complex
applications may or may not give you the choice
here.

But, you have another option. There is already
additional memory connected to your system: the
boot EPROM/Flash device.

ADSP-2191 processors have full access to the
boot device at run-time. Not only can flash be
used to store data and boot code, it can also be
used to store program instructions. These
instructions can be directly executed by the DSP
without moving them into internal memory first.
VisualDSP++ provides you all the support you
need.

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 8 of 16

a
The same elfloader.exe tool covers both Loader and
Splitter functionality. It can combine both
techniques easily and emits Loader and Splitter
data to the same Intel Hex EPROM image file.
With the –readall command line switch or the Load
property page settings shown in Figure 5, you
can force the elfloader.exe tool to consume
TYPE(RAM) as well as TYPE(ROM) segments.

Figure 5: Boot+No-boot Property Page

The command line could look like this:
elfloader -proc ADSP-2196
 -b PROM -readall
 -width 8 -maskaddr 19
 -f HEX –opmode 0
 –clkdivide 0 –waits 5
 -o test test.dxe

As an example you may balance system costs by
utilizing the on-chip memories for DSP
algorithms and data storage only and executing
slower program parts directly from the EPROM.
Evaluate your application and distinguish
between real-time code and less speed-critical
parts of a program such as initialization and
control code. Typically, DSP algorithms are
speed-sensitive and execute in highly optimized
program loops. It is the setup and control code
that - due to its linear nature - consumes many
memory locations for program storage.

Assign different section names to the individual
code fragments in order you can manage them in
the LDF file properly.

The following example executes the initialization
code directly from EPROM and continues with
on-chip program execution afterward. Also it
accesses some EPROM constants.

.section / data constants;
.var myconst[2] = 0xdead, 0xbeaf;

.section / code IVreset;
_reset:
 iopg = External_Memory_Interface_Page;
 ar = 0x086D;
 io(BMSCTL) = ar;
 io(MS0CTL) = ar;
 ar = 0x0070;
 io(EMICTL) = ar;
 iopg = External_Access_Bridge_Page;
 ar = 0x0007;
 io(E_STAT) = ar;

 lcall _initsystem;
 jump _algorithm;

.section / code setup_code;
_initsystem:
 dmpg1 = 0; dmpg2 = 0;
 l0 = 0; l1 = 0; l2 = 0; l3 = 0;
 l4 = 0; l5 = 0; l6 = 0; l7 = 0;
 ...
 rts;

.section / code dsp_code;
_algorithm:
 dmpg1 = PAGE(myconst);
 ax0 = dm(myconst);
 ax1 = dm(myconst+1);
 do algo until forever;
 call _library;
 ...
algo: ...

.section / code lib_code;
_library:
 ...
 rts;

Listing 5: Code example with off-chip setup routine

The sections Ivreset, lib_code and dsp_code are
booted in the normal way, but section setup_code
will execute from EPROM. Within the reset
vector routine the EMI port is configured
accordingly before the off-chip function
_initsystem is invoked by a long call instruction.

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 9 of 16

a
Make sure that you are using long branch
instructions when jumping from on-chip
memory to external instructions or vice
versa. Alternatively you can use indirect
branches by taking advantage of the IJPG
register. RTS and RTI instructions restore
the page by themselves.

We need to describe the memory layout within
the LDF file, but first let us discuss how to
manage the EPROM addresses.

The example is based on the ADSP-2196
architecture, with 8k of 24-bit memory and 8k of
16-bit memory available on-chip as shown in
Figure 3. This example assumes that 32k of
EPROM bytes are sufficient to store the
complete boot stream. Note that this assumption
does not cover the worst case (48k + some extra
boot control words)!

Assuming a 4MBit EPROM (512k x 8 bit) the
byte addresses 0x00.8000 to 0x07.FFFF are
available for further usage. Just as an example let
us reserve addresses 0x00.8000 to 0x01.FFFF for
constant data storage and 0x02.0000 to
0x07.FFFF for code execution. Due to the size of
the EPROM the elfloader tool will be invoked
with the –maskaddr 19 command. One possible
result of the required address calculation is
shown in Table 4:

logical address theoretical
8-bit address

physical 8-bit
EPROM address

seg_ext_constants (16 bit)

04 4000 08 8000 00 8000

04 FFFF 09 FFFE 01 FFFE

seg_ext_code (24 bit)

02 8000 0A 0000 02 0000

03 FFFF 0F FFFC 07 FFFC

Table 4: Boot+No-boot Example Address Translation

Accordingly, the memory layout in the LDF files
is specified as follows:

MEMORY {

 seg_ivt {
 TYPE(PM RAM) WIDTH(24)
 START(0x000000) END(0x000241)
 }

 seg_int_code {
 TYPE(PM RAM) WIDTH(24)
 START(0x000242) END(0x001FFF)
 }

 seg_ext_code {
 TYPE(PM ROM) WIDTH(8)
 START(0x028000) END(0x03FFFF)
 }

 seg_ext_constants {
 TYPE(DM ROM) WIDTH(8)
 START(0x044000) END(0x04FFFF)
 }

}

Listing 6: Boot + No-boot LDF File Example

Finally, you can manage the individual sections
by editing the LDF SECTIONS assignment. Use it
as a cross table.

PROCESSOR p0 {

 SECTIONS {

 vectors_dxe {
 INPUT_SECTIONS($OBJECTS(IVreset))
 } > seg_ivt

 dsp_code_dxe {
 INPUT_SECTIONS($OBJECTS(dsp_code))
 } > seg_int_code

 lib_code_dxe {
 INPUT_SECTIONS($OBJECTS(lib_code))
 } > seg_int_code

 setup_code_dxe {
 INPUT_SECTIONS($OBJECTS(setup_code))
 } > seg_ext_code

 constants_dxe {
 INPUT_SECTIONS($OBJECTS(constants))
 } > seg_ext_constants

}

Listing 7: LDF Section Assignment Example

Keep in mind that the elfloader.exe tool generates a
boot stream for TYPE(RAM) segments only.
TYPE(ROM) segments are stored without
formatting.

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 10 of 16

a
Speed Estimation
It is obvious that code that executes from
EPROM is slower than the one executed from
on-chip memory. Without providing a complete
speed analysis, this chapter will just impart a first
idea of how much slower code execution from
EPROM is by discussing one example.

Assuming an ADSP-2191 device running at
160MHz (CCLK) and 80MHZ (HCLK) and a Flash
device with a read access time of 70ns the EMI
can be clocked with full speed (E_CDS = 000b),
but requires five additional wait-states (E_RWC =
101b). Then, any instruction fetch takes 18
HCLK cycles if the Flash is 16-bit wide and 25
HCLK cycles if the Flash is 8-bit wide.

Depending on the bus width, off-chip program
execution is 36 to 50 times slower than on-chip
execution if a standard 70ns Flash device is used.

EPROM Overlays
We learned that code execution from off-chip
EPROM is very easy to handle, but the execution
speed is not that efficient. One may use an
overlay approach, by loading speed-sensible
algorithms from EPROM into internal memory
on demand during run-time.

ADSP-219x overlays are discussed in application
notes EE-152 [2] and AN-572 [3]. This
document assumes the basic VisualDSP++
overlay principle is already known.

Usually, overlay ‘live’ in off-chip SRAM. With
the restriction that overlay data is read-only
(code overlays, coefficient sets etc.) overlays
may also ‘live’ in any kind of ROM. If this ROM
is the same as the boot EPROM, system
complexity and costs will be reduced drastically,
because no additional SRAM device is required.

In order to implement such an EPROM overlay
scenario properly, all information of EE-152 [2]
is still valid, except that overlays cannot be
written back and ‘live’ segments are changed
from TYPE(RAM) to TYPE(ROM).

Section “Code Example” on page 12 provides a
complete example.

About Memory Strobes
The question is whether all these scenarious
discussed in the previous sections can be
implemented glue-less, or whether additional
logic is required.

At run-time the E_STAT register controls whether
the several types of off-chip accesses activate the
/BMS or the /MSx strobes. As long as there is only
the boot EPROM connected to the system, it
should be connected to /BMS. After booting set
the three bits, E_PI_BE, E_PD_BE and E_DD_BE to
one and all off-chip accesses (except IO
transfers) will activate the EPROM.

These control bits belong to all /MSx strobes. If
additional SRAM is connected to the system
things are getting tricky. Nevertheless there are
three possibilities to handle this:

• Combine /BMS and /MS0 with an AND gate
(logical OR due to negative logic) prior to
connecting them to the chip enable pin of the
EPROM. Connect the SRAM to /MS1, for
example.

• Alter the E_STAT register anytime the program
is accessing the SRAM or the EPROM.

• Once booted, use the EPROM for additional
code execution but not for data storage
anymore. Also use the SRAM for data storage
only. Then, you can set E_PI_BE but keep
E_PD_BE and E_DD_BE cleared.

Please note that we recommend keeping E_PD_BE
equal to E_DD_BE. In many cases it is just a
question of the optimization level whether a data
access uses the PM or the DM bus. Note the
difference between the following two
instructions:
ar=ax0+ay0, ay0=dm(i4,m4);

and
ar=ax0+ay0, ax0=dm(i0,m0), ay0=pm(i4,m4);

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 11 of 16

a
Another issue of interest is that a boot EPROM
needs to be connected to /BMS but if the ADSP-
2191 detects the no-boot option it expects an
EPROM connected to /MS0. If hardware needs to
support both scenarios ANDing /BMS and /MS0
sounds like a great idea. The ADSP-2191 EZ-
KIT Lite features such a gate.

At the other hand, if the AND gate is missing and
the EPROM is connected to /BMS directly, it is
very simple to simulate the no-boot option by
booting a small program into on-chip memory
that just sets up the EMI port properly and jumps
to address 0x01.0000 afterwards.

Generally, when booting from EPROM always
pull the ACK down by a 10kΩ resistor. A floating
ACK signal could prevent off-chip accesses from
being completed according to the wait-states,
because the E_WMS field in the BMSCTL register
is set to binary 11 during the boot process.

Code Example
The following code example is written for the
ADSP-2191 EZ-KIT Lite. It assumes an 8-bit
flash device connected to /BMS. It takes
advantage of the boot device in two ways: the
initialization code executes directly from flash
and also code overlays are loaded from it.

In order to concentrate on the functionality
discussed in this application note, the example
(specially the overlay manager) is kept as simple
as possible.

The example consists of four source files
• main.asm
• ovlman.asm
• overlays.h
• example.ldf

The main assembly file main.asm contains the
complete application code, including reset vector
and overlays. The initialization code is not
booted. It executes from EPROM directly. Only
a few instructions are required to setup the EMI
port accordingly before accessing the EPROM.

Please note that this example sets the E_DFS bit
in the E_STAT register.

Also the overlay code is not loaded at boot-time,
but loaded on demand at run-time. It executes
from on-chip memory (run space).

#include <def2191.h>

/**
 * Reset Vector
 * this piece of code is booted normally
 * to on-chip address 0x0000
 */

.section / code IVreset;

_reset:

/* configure EMI
 * use 5 wait states
 * ignore ACK
 * set EMI clock equal HCLK
 */

 iopg = External_Memory_Interface_Page;
 ar = 0x086D;
 io(BMSCTL) = ar;
 io(MS0CTL) = ar;

/* set EMI width to 8-bit and
 * use active-low strobes
 */

 ar = 0x0070;
 io(EMICTL) = ar;

/* active /BMS for all off-chip accesses
 * also use 24-bit access scheme, because
 * the core-based overlay manager reads
 * instructions using 24-bit PM moves.
 */

 iopg = External_Access_Bridge_Page;
 ar = 0x000F;
 io(E_STAT) = ar;

 nop; nop; nop; nop;
 nop; nop; nop; nop;

/* long call, note that _sys_init
 * resided in off-chip memory and the jump
 * crosses page boundary
 */

 lcall _sys_init;

 do _algo until forever;
 call _algorithm;
 nop;
_algo: nop;

 idle;

/**
 * Initialition Routine
 * this piece of code is not critical in
 * terms of speed. Therefore it is not
 * booted. It resides in off-chip ROM.
 */

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 12 of 16

a
.section / code romcode;

_sys_init:

 l0 = 0; l1 = 0; l2 = 0; l3 = 0;
 l4 = 0; l5 = 0; l6 = 0; l7 = 0;
 dmpg1 = 0;
 iopg = 0;

 rts;

/***************************************
 * Data Section
 * The example requires some variables
 * to store results.
 */

.section / data data1;

.var result_add = 0;

.var result_sub = 0;

.var result_mul = 0;

.var result_div = 0;

/**
 * Normal DSP code
 * this piece of code is booted normally
 * after reset
 */

.section / code program;

_algorithm:

 ena mm;
 ax0 = 10;
 ay1 = 2;

 call _func_add;
 dm(result_add) = ar;

 call _func_sub;
 dm(result_sub) = ar;

 call _func_mul;
 dm(result_mul) = ar;

 call _func_div;
 dm(result_div) = ar;

 rts; // set breakpoint here

/**
 * Overlay code
 * these functions live in off-chip ROM
 * and are loaded on demand into internal
 * memory. In this example every overlay
 * consists of a single function. Overlay
 * entry functions have to be global.
 */

.section / code code_overlay1;

.global _func_add;

_func_add:

 ar = ax0 + ay1;
 rts;

.section / code code_overlay2;

.global _func_sub;

_func_sub:

 ar = ax0 - ay1;
 rts;

.section / code code_overlay3;

.global _func_mul;

_func_mul:

 rts (db);

 mr = ax0 * ay1 (ss);
 ar = mr0;

.section / code code_overlay4;

.global _func_div;

_func_div:

 // divide ax0 by ay1
 // integer division requires left shift

 sr = lshift ax0 by 1 (lo);

 // unsigned division core
 // ay0 = af:ay0 / ay1

 af = pass 0, ay0 = sr0;
 astat = 0;
 ar = ay1;

 divq ar; divq ar; divq ar; divq ar;
 divq ar; divq ar; divq ar; divq ar;
 divq ar; divq ar; divq ar; divq ar;
 divq ar; divq ar; divq ar;

 rts (db);
 divq ar;
 ar = ay0;

Listing 8: main.asm

The Linker Description File plays an important
role. Note that PLIT code, overlay manager and
overlay run space are all mapped into the general
on-chip code segment. Similar overlay live space
shares its segment with off-chip ROM code.

#include "overlays.h"

ARCHITECTURE(ADSP-2191)

$OBJECTS = $COMMAND_LINE_OBJECTS;

MEMORY {

 mem_INT_RSTI {
 TYPE(PM RAM) WIDTH(24)
 START(0x000000) END(0x00001f)
 }

 mem_code {
 TYPE(PM RAM) WIDTH(24)
 START(0x000242) END(0x007fff)
 }

 mem_data2 {
 TYPE(DM RAM) WIDTH(16)
 START(0x008000) END(0x00bfff)
 }

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 13 of 16

a
 mem_data1 {
 TYPE(DM RAM) WIDTH(16)
 START(0x00c000) END(0x00ffff)
 }

 mem_romcode {
 TYPE(PM ROM) WIDTH(8)
 START(0x028000) END(0x03ffff)
 }

} // end of memory map

PROCESSOR p0 {

 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 PLIT {

 // assuming ar and ay0 are scratch
 // registers
 ar = PLIT_SYMBOL_OVERLAYID;
 ay0 = PLIT_SYMBOL_ADDRESS;

 // assuming plit and run address are
 // both located in internal memory no
 // ljump intruction is required and a
 // simple jump is sufficient
 jump _ovl_man;
 } // plit

 SECTIONS {

 IVreset_dxe {
 INPUT_SECTIONS($OBJECTS(IVreset))
 } > mem_INT_RSTI

 program_dxe {
 INPUT_SECTIONS($OBJECTS(program))
 } > mem_code

 .plit {} > mem_code

 // OVL_SECTION() is a PP macro
 run_dxe {
 OVL_SECTION(1) > mem_romcode
 OVL_SECTION(2) > mem_romcode
 OVL_SECTION(3) > mem_romcode
 OVERLAY_SECTION(4) > mem_romcode
 } > mem_code

 setup_dxe {
 INPUT_SECTIONS($OBJECTS(romcode))
 } > mem_romcode

 data1_dxe {
 INPUT_SECTIONS($OBJECTS(data1))
 } > mem_data1

 data2_dxe {
 INPUT_SECTIONS($OBJECTS(data2))
 } > mem_data2

 } // SECTIONS

} // PROCESSOR p0

Listing 9: example.ldf

This LDF file uses the preprocessor macro
OVL_SECTION() that has been defined in the file
overlays.h shown in Listing 11.

The PLIT code calls the overlay manager shown
in Listing 10. This is a very basic overlay
manager for demonstration purposes. It uses core
instructions to load overlays into on-chip
memory rather than DMA. Please refer to EE-152
[2] for real-world overlay managers.

// import C-style structure
.import "overlays.h";

// include preprocessor macros
#include "overlays.h";

.section / data data1;

.extern OVL_EXTERNALS(1);

.extern OVL_EXTERNALS(2);

.extern OVL_EXTERNALS(3);

.extern OVL_EXTERNALS(4);

.struct ovl_struct _ovl_tab[] = {
 OVL_STRUCT_INIT(1),
 OVL_STRUCT_INIT(2),
 OVL_STRUCT_INIT(3),
 OVL_STRUCT_INIT(4)
};

.global _ovl_id;

.var _ovl_id;

.global _ovl_addr;

.var _ovl_addr;

.var _ovl_loaded = -1;

.var _save_dmpg2;

.var _run_addr;

/**
/* this simple example assumes
 * dmpg1 = 0, iopg = 0
 * l4 = 0, l2 = 0;
 * run space is in page 0
 * _ovl_tab in page 0
 * input parameters
 * ar = overlay_id
 * ay0 = run address
 * also it alters several registers
 */

.section / code program;

.global _ovl_man;

_ovl_man:

 // save run address
 dm(_run_addr) = ay0;

 // is ovl already loaded?
 ay0 = dm(_ovl_loaded);
 ar - ay0;
 if eq rts;
 dm(_ovl_loaded) = ar;

 // read overlay structure
 i4 = _ovl_tab - sizeof(ovl_struct);
 ay0 = dmpg2;
 dm(_save_dmpg2) = ay0;
 dmpg2 = 0;
 m4 = sizeof(ovl_struct);

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 14 of 16

a
 cntr = ar;
 do getstructaddr until ce;
getstructaddr: modify(i4+=m4);

 ar = dm(i4+offsetof(ovl_struct,run_size));
 cntr = ar;
 ay0 =
dm(i4+offsetof(ovl_struct,run_addr));
 i2 = ay0;
 ar =
dm(i4+offsetof(ovl_struct,live_addr));
 ay0 =
dm(i4+offsetof(ovl_struct,live_page));
 dmpg2 = ay0;
 i4 = ar;
 m4 = 1;
 m2 = 1;

 // load overlay
 do loadovl until ce;
 ar = pm(i4+=m4);
loadovl: pm(i2+=m2)=ar;

 // jump to run address
 i4 = dm(_run_addr);
 flush cache;
 jump (i4) (db);
 ay0 = dm(_save_dmpg2);
 dmpg2 = ay0;

Listing 10: ovlman.asm

The overlay manager takes advantage of C-style
structures, first time supported by the
VisualDSP++ 3.0 assembler. The special overlay
structure ovl_struct is defined in Listing 11. The
overlay manager uses the .IMPORT assembly
directive to get access to this structure.
Furthermore overlays.h defines preprocessor
macros that help you to define and initialize the
ovl_struct structure. In order to group structure
definition and macros in one file, the structure
definition needs to be encapsulated by the #ifdef
_LANGUAGE_C statement.

#ifndef __overlay_header__
#define __overlay_header__

/*** ASM macros *************************/

#define OVL_EXTERNALS(N) \
 _ov_word_size_live_##N,\
 _ov_word_size_run_##N,\
 _ov_startaddress_##N, \
 _ov_runtimestartaddress_##N

#define OVL_STRUCT_INIT(N) \
 { \
 PAGE(_ov_startaddress_##N), \
 _ov_startaddress_##N, \
 _ov_word_size_live_##N, \
 PAGE(_ov_runtimestartaddress_##N), \
 _ov_runtimestartaddress_##N, \

 _ov_word_size_run_##N \
 }

/*** LDF macros ************************/

#define OVL_SECTION(N) \
 OVERLAY_INPUT { \
 ALGORITHM (ALL_FIT) \
 OVERLAY_OUTPUT (\
 $COMMAND_LINE_OUTPUT_DIRECTORY\ovl \
 ##N##.ovl) \
 INPUT_SECTIONS (\
 $OBJECTS(code_overlay##N)) \
 }

/*** C-style structures ***************/

#ifdef _LANGUAGE_C

typedef struct {
 int live_page;
 int live_addr;
 int live_size;
 int run_page;
 int run_addr;
 int run_size;
} ovl_struct;

#endif

#endif

Listing 11: overlays.h

Finally make sure that the project is built using
the settings shown in Figure 1 and Figure 2.

If you are working with VisualDSP++
3.0 you may need some patches to get
this example to work. Please download
the latest assembler / linker / loader
patches from

ftp://ftp.analog.com/pub/tools/patches.

To evaluate this example you may use an ADSP-
2191 EZ-KIT Lite. Download the Loader File (.ldr)
using the VisualDSP++ Flash Programming plug-in.
Afterward deactivate the VisualDSP++
debugging session. Make sure the boot mode is
set to EPROM boot, and press the Reset push
button. Then, invoke the debugging session again
and use the File Load Symbols command to
download the debugging information stored in
the project’s Executable File (.dxe). Without
performing single-steps, set a breakpoint at the
RTS instruction of the _algorithm subfunction.
Press F5. As soon as the DSP halts due to the
breakpoint you may verify the content of the
result variables starting from address 0x00.C000.

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 15 of 16

ftp://ftp.analog.com/pub/tools/patches

a
Conclusion
In the successful story of Analog Devices DSPs,
booting from parallel EPROM or Flash devices
has always played an import role.

Although the soft overlay approach of the ADSP-
218x DSPs already took advantage of the boot
EPROM during run-time, the ADSP-2191 DSP is

the first processor from ADI that enables
unrestricted access to the boot EPROM during
run-time.

VisualDSP++ 3.0 takes this architecture into
consideration and provides powerful scenarios to
reduce system complexity and costs.

References
[1] Booting the ADSP-2191/95/96 DSPs (EE-131),

April 2003, Analog Devices Inc.

[2] Using Software Overlays with the ADSP-219x and VisualDSP 2.0++ (EE-152),
February 2002, Analog Devices Inc.

[3] Overlay Linking on the ADSP-219x (AN-572),
January 2001, Analog Devices Inc.

Recommended Readings
[4] VisualDSP++ 3.0 Linker and Utilities Manual,

July 2002, Analog Devices Inc.

[5] ADSP-2191 DSP Hardware Reference,
July 2001, Analog Devices Inc.

[6] ADSP-219x DSP Instruction Set Reference,
October 2000, Analog Devices Inc.

[7] ADSP-2191 DSP Data Sheet, Rev. 0,
April 2002, Analog Devices Inc.

[8] ADSP-2106x EPROM Overlays Support with VisualDSP++ 2.0 (EE-166),
June 2002, Analog Devices Inc.

[9] Using Code Overlays from ROM on the ADSP-21161 EZ-Kit Lite (EE-180),
December 2002, Analog Devices Inc.

Document History

Version Description

April 15, 2003 by B.Kusstatscher Initial Release, focusing on ADSP-2191/95/96 DSPs

Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs (EE-164) Page 16 of 16

	Introduction
	EPROM Booting Tools Chain
	ADSP-219x Memory
	Logical versus Physical Addresses
	Memory Segment Types
	Booting Off-chip SRAM
	No-Boot Option
	Combining Boot + No-Boot
	Speed Estimation
	EPROM Overlays
	About Memory Strobes
	Code Example
	Conclusion
	References
	Recommended Readings
	Document History

