
Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 1

Contributed by T. Lorenzen, European DSP Applications (Sept. 01)

SPI Booting of the ADSP-2191 using the Atmel AT25020N
on an EZ-KIT LITE Evaluation Board

Introduction:
Analog Devices ADSP-2191 is the first DSP that provides booting via SPI. This note shows how
to interface an ATMEL EEPROM (AT25020) in order to boot the ADSP-2191 via the SPI
interface. With the help of a little project, this app note will describe how to create a loader file
which is stored in the EEPROM and used to boot the DSP. The loader file format as well as the
Hardware will be covered in order to build the whole project.

W2.0:
The latest version of VisualDSP++2.0 creates loader files suitable for SPI booting (Serial
Peripheral Interface) automatically. Open Analog Devices VisualDSP++2.0 and make a new
project. Add the linker description file (LDF) of the ADSP-2191 to the project first. This file
defines the entire address range of the DSP and identifiers individual sections of memory with
labels.

Figure 1 create a new project with VisualDSP++ 2.0

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 2

Finally, add an existing assembly file of your choice (or create a new asm file to add) and the
header file “def2191.h” which defines all of the ADSP-2191’s memory-mapped registers. If the
ADSP-2191 processor is selected the project can now be build.

This way VisualDSP++2.0 will build an executable file “filename.dxe” which is required for
debugging your program on the simulator or loading it to and debugging it on the DSP via the
emulator.

Note:
Ensure you have the most recent loader “elfloader.exe”. Find one in the zip file.

To prepare VisualDSP++ 2.0 SPI booting please open the “Project Options” dialog box from the
“Project” menu. As shown in figure 2, on the project option tab change the option “type” in the
“target” frame from “DSP executable file” to “Loader file”. This causes VisualDSP++ 2.0 to
create a loader file which can be stored in non-volatile memory of your choice. The ADSP-2191
is able to boot from different memory types. To select the appropriate booting device, select the
“Loader” tab control in the “Project Options” box and set the Boot Type” to “SPI”. Select binary
format in the “Format” frame to create a binary file that is suitable for the most common
programmers as shown in figure 3. The ASCII format lets the VisualDSP++ 2.0 loader
“elfloader.exe” build a loader file in ASCII format. This file can be accessed by any text editor
easily. The binary file can be accessed by using a binary editor only. Finally, press the “OK”
button on the dialog “Project Options” and again rebuild the whole project again. A file with the
same name as the project and the extension .ldr will be generated. This .ldr file can be loaded
by a programmer and written to the booting device (in this case to the AT25020 EEPROM)
straight forward.

Figure 2 “Project” options dedicated to your project Figure 3 “Loader” options dedicated to your project

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 3

ADSP-2191 Startup basics:

The ADSP-2191 has a booting scheme that is different from former ADI DSPs. The boot kernel
is located on-chip and stored in a 24-bit wide, 1K ROM. After a hardware reset the processor
starts running at address FF0000h. Automatically the boot kernel will be processed. There are
three input pins on the ADSP-2191 whose input state upon hard /RESET determines the
booting mode. The state of the three pins (OPMODE, BMODE0 and BMODE1) are sampled on
the rising edge of /RESET and are captured into the corresponding bits (0,1 and 2) of the
System Configuration Register by software (boot kernel). In the case of SPI booting the kernel
branches to the SPI booting subroutine. It initializes the SPI port using SPISS0 and sends the
first commands to the SPI EEPOM. Referring to the AT25020 data sheet the first byte sent to
the EEPROM in order to receive data is the value “0x3” (Read Timing). Followed by this
command the starting address is sent (0x0 in this case). For more information see, section titled
Hardware investigations. Received data coming from the serial EEPROM will then be unpacked
and stored in the appropriate memory locations as the following section will explain.

Figure 4 Memory Map of the ADSP2191

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 4

Serial Peripheral Interface (SPI):

The ADSP-2191 serial peripheral interface is an industry standard synchronous serial link that
helps the DSP communicate with multiple SPI-compatible devices. The SPI peripheral is a
synchronous, 4-wire inter-face consisting of two data pins, MOSI (Master Out Slave In) and
MISO (Master In Slave Out); one device select pin, SPISS (SPI Slave Select); and a gated clock
pin, SCK (Serial Clock). With the two data pins, it allows for full-duplex operation to other SPI-
compatible devices. The SPI also includes programmable baud rates, clock phase, and clock
polarity. The SPI can operate in a multi-master environment by interfacing with several other
devices, acting as either a master device or a slave device. In a multi-master environment, the
SPI interface uses open drain data pad driver outputs to avoid data bus contention. Figure 5
provides a block diagram of the ADSP-2191 SPI Interface. The interface is essentially a shift
register that serially transmits and receives data bits, one bit a time at the SCK rate, to/from
other SPI devices. SPI data is transmitted and received at the same time through the use of a
shift register. When an SPI transfer occurs, data is simultaneously transmitted, or shifted out
serially via the shift register, as new data is received, or shifted in serially at the other end of the
same shift register. The SCK synchronizes the shifting and sampling of the data on the two
serial data pins, MOSI and MISO.

Figure 5 ADSP-2191 SPI Block Diagram

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 5

Boot stream format:

During booting the kernel follows a protocol to decode the loader file as shown below. The data
received from the SPI EEPROM is eight bits wide. Each byte received will be checked, shifted
together and than stored in memory. The processor stores the Header (Control Word, Flag (or
known as TAG) , Start Address, Page and Word Count) in data memory at first. With help of
these contents the processor knows where to store the instructions or data.

The Control Word will be stored in memory at the
beginning of the boot sequence, only. But these values
are ignored completely during SPI booting. It can just
be booted in 8 bit mode as well as with having no wait
states are required.

Each instruction or data block starts with a flag. This
flag includes whether to store the instr./data in DM or
PM. As well as zero filling or final block detection.

The start address indicates the location of the first DM
or PM word in memory. The address will be
incremented by 1 for all following words automatically.

The page extents the address in order to access more
memory.

Instructions are placed in PM . one by one,
consecutively. Word Count indicates the number of
instructions following this header.

Finally the instructions, just as many as instr. are
countered in Word Count as many 24 bits Data Words
are expected. Beginning after Word Count and placed
in memory dedicated to the Flag Word and starting at
the address held in Start Address.

The following Flag
indicates the next
instr./data words storing
in different areas.

Figure 6 Boot stream format
Table 1 Boot Flags (Tags)

Flag Function
0x00 24 bit PM
0x01 16 bit DM
0x02 Final PM
0x03 Final DM
0x04 Zero-init PM
0x05 Zero-init DM
0x06 Zero-init Final PM
0x07 Zero-init Final DM
0x08 Reserved

Control Word (16 bits):
(SPI Width 8 bits) (Wait State Information’s 8 bits)

Flag (16 bits):
(Indicates the memory locations 16 bits or 24 bits)

Start Address (16 bits):
(Indicates the start address of the corresponding
memory location)

Page (16 bits):
(Extents the address range to access higher memory)

Word Count (16 bits):
(Holds the number of words (instructions or data)
that must be loaded starting at the start address)

Data Words (16 bits or 24 bits):
(Instructions or data by it self)

Flag (16 bits):
(Indicates the memory locations DM or PM)

Start Address (16 bits):
(Indicates the start address of the corresponding
memory location)

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 6

Format of the loader file “Filename.ldr”:

This section will describe the loader file that has been build by VisualDSP++ 2.0. The whole file
will be analyzed and will explain how the processor does unpacks the contents in order to place
the code and data to the right location in DSPs memory.

Figure 7 shows the file in ASCII format. The programmer has to place the data starting at
address 0x0 in the EEPROM. Each line (address) contains one byte (byte wise organized). The
next job is to unpack the data by the boot kernel as shown in table 2.

Address 0x0:
2F
00
00
00
00
00
00
00
01
00
00
20
1C
04
00
01
00
00
00
DF
01
00
00
00
02
00
00

0E
00
00
30
50
14
00
50
08
00
50
00
00
40
00
10
06
00
C0
15
00
C0
15
00
C0
15
00

C0
15
00
C0
15
00
C0
15
00
C0
15
00
00
00
F3
FF
1F
07
00
F0
FE
00
00
10
01

Figure 7 Loader file created by VisualDSP++ 2.0

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 7

Table 2, figure 7 and figure 8 show how the
booted data will be shifted together and
placed in memory correctly. The first byte
received from the EEPROM is 0x02F (Wait
State) using the loader file above. This byte
will be stored in a 16 bit memory space. The
following zero (Width) at the next address.
The first word of the header (Flag) will be
loaded now as it can be seen in table 2. Two
bytes must be shifted together in order to
form the first sixteen bit value. The LSByte is
received first and placed into the shifter of
the DSP . The MSByte at next and shifted to
the LSB. The 16 bit result is stored into a
place in data memory. The whole header is
unpacked the same way. After the header is
completely transferred the first instruction
following the header is unpacked and placed
in memory. It works as follows.
Decode:
Flag: data is 24 bits wide and must

be placed in PM.
Address: start address is 0x0
Page: Internal memory space
Word Count: only one instruction

The same procedure starts at the next flag
again.

Table 2 Unpacking

2F Wait State

00 Width

00 00 Flag 24 bit data PM

00 00 Address

00 00 Page

00 01 Word count

1C 20 00 Instruction //Jump Start

00 04 Flag Zero init PM

00 01 Address

00 00 Page

01 DF Word count

00 00 Flag 24 bit data PM

02 00 Address

00 00 Page

00 0E Word count

50 30 00 Instruction //i0 = 0x300;

50 00 14 Instruction //m0 = 0x0001;

50 00 08 Instruction //l0 = 0x000;

40 00 00 Instruction //ax0 = 0x0000;

06 10 00 Instruction //reg(b0) = ax0;

15 C0 00 Instruction //ax0 = pm(i0+=m0);

15 C0 00 Instruction //ax0 = pm(i0+=m0);

15 C0 00 Instruction //ax0 = pm(i0+=m0);

15 C0 00 Instruction //ax0 = pm(i0+=m0);

15 C0 00 Instruction //ax0 = pm(i0+=m0);

15 C0 00 Instruction //ax0 = pm(i0+=m0);

15 C0 00 Instruction //ax0 = pm(i0+=m0);

00 00 00 Instruction //NOP;

1F FF F3 Instruction //Jump Loop1;

00 07 Flag Zero init final DM

FE F0 Address

00 00 Page

01 10 Word count //272 locations

Figure 8 Loader file decoded (DSP format)

Received Bytes
D7 D0

Wait States
Data Width
LSB of the Flag
MSB of the Flag
LSB of the Address
MSB of the Address
LSB of the Page
MSB of the Page
LSB of Word Count
MSB of Word Count
LSB of Instr./data
8-15 of Instr./data
MSB of Instr./data

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 8

The next block is implemented to fill a defined area with zeros. In order to save EEPROM
memory space zero filling will be done automatically. As shown in Table 1 flags will force the
boot kernel to fill a certain memory area by zeros. No data must be added to the header. The
header includes start address and word count to specify the area to be filled. After this is done
the next header can be processed.

By convention, the final block is always of the type “zero fill DM”. This and the contents of the
flag (0x07) lets the DSP jump to zero at the internal PM space to start executing the loaded
code.

Hardware investigations:
The AT25020 can be connected to the DSP easily as shown in figure 9. This EE-Note is
dedicated to the ADDS-2191M-EZLITE to connect the SPI EEPROM. The Bread Board
Connector P9 offers all the signals are required for the connection.

Note:
A ceramic capacitor (100nF) connected to the power supply and placed very close to the device
(AT25020) to decouple.
Four pull up resistors (10k) connected to the pins ensure a defined state of the DSP pins.

Figure 9 Schematic of the circuit placed on the Bread Board Area

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 9

The diagrams illustrates how the EEPROM can
be accessed. After reset the DSP initializes the
SPI Port 0, asserts the chip select line
(SPISS0) and starts the transfer. As it can be
seen at the clock line the DSP is configured to
transfer data eight bits wide. The Bit rate is set
to run at 122.0 kHz.

Diagram 1 Timing of the SPI Clock and Chip select line(SPISS)

Diagram 2 shows the Transfer line to the
EEPROM (MOSI) “Master Out Slave In”. The
first sent byte puts the EEPROM in read mode
(referring to AT25020 Data Sheet). The next
one sets the start address which is zero in this
case. Starting from this point on the EEPROM
sends the data continuously as long as the SPI
port is requesting (Clock runs). The MOSI line
will be held to low for ever after the start
address has been sent.

Diagram 2 Timing of the SPI Clock and Transfer line (MOSI)

Once the read instruction and the start address
received by the EEPROM the first data will be
sent immediately on the next clock cycles.
Diagram 3 shows the first byte coming from
address zero of the EEPROM. The EEPROM
increments the address pointer automatically
and sends the second data on the next clock
cycles. This way the whole program code will
be transferred to the DSP. After transfer the
boot kernel disables the SPI port again and
starts executing the code placed in program
memory of the DSP by jumping to
PM address 0.

Diagram 3 Timing of the SPI Clock and Receiver line (MISO)

SPI Clock

SPISS

MOSI

SPI Clock

SPI Clock

MISO

Engineer To Engineer Note EE - 145
Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or
for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices

regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes. 10

Finally the diagram 4 shows a part of the data transfer to the DSP.

Diagram 4 Timing of the SPI Clock and Receiver line (MISO)

Conclusion:
This note should have given an idea on how a DSP can be booted via the SPI interface.
Furthermore it has been described the hole project from beginning to the end of booting via SPI
in hard- and software. Attached to this document please find the DSP software project used to
create this file and the latest loader patch. (elfldr2191.dll).

References:
- VisualDSP++ 2.0 Getting Started Guide for ADSP-21xx DSPs
- VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xx DSPs
- ADSP-2191 EZ –KIT LITE Manual
- ADSP-2191 Hardware Reference Manual
- All documents:

http://www.analog.com/industry/dsp/tech_doc/gen_purpose.html
- ATMEL AT25020 data sheet
- http://www.atmel.com

