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Introduction 
In any system, memory partitioning and data 
flow management are crucial elements for a 
successful multimedia framework design. 
Blackfin® processors have a hierarchal memory 
and non-intrusive DMA with the Parallel 
Peripheral Port interface. When used in your 
application, they can provide very high system 
efficiency. 

This EE-Note discusses the following topics that 
should be considered for obtaining maximum 
performance on ADSP-BF533 and ADSP-BF561 
Blackfin family processors in video processing 
applications: 

 Memory considerations 

 Internal memory space 

 SDRAM memory space 

 Managing external data accesses 

  DMA modes for PPI capture and display 

 Working with ITU-R-656 input modes 

 Outputting ITU-R-656 video frames 

 DMA prioritization and traffic control 
register 

Memory Considerations 
The Blackfin processor architecture supports a 
hierarchical memory that allows the programmer 
to access faster, smaller memories for code that 
runs the most often and larger memory for data 

buffers associated with video applications. The 
Blackfin processor's memory has a unified 
address range, which includes the internal L1 
memory, (in case of the ADSP-BF561 processor 
also L2 memory) SDRAM memory, and 
asynchronous memory spaces. 

Internal Memory Space 

The L1 memory operates at core clock frequency 
and hence, has lowest latency compared to the 
other memory spaces. Blackfin processors have 
separate Data and Instruction L1 memory.   

 
Figure 1. Un-Optimized L1 Memory Allocation 

The L1 data SRAM is constructed from single-
ported subsections, each subsection consisting of 
4 Kbytes of memory. This organization results in 
multi-ported behavior when there are 
simultaneous access to different sub-banks or 
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accessing one even and one odd 32-bit word 
within the same 4K sub-bank. 

 
Figure 2. Optimized L1 Memory Allocation 

Figure 1 shows the un-optimized allocation of 
memory for different buffers. Each block in the 
figure represents a 4 Kbyte sub-bank in internal 
data memory. Here the internal data buses are not 
used effectively, since the processor cannot fetch 
the two data words simultaneously. 

Figure 2 shows the optimized memory allocation 
across internal 4 Kbyte data memory banks. This 
memory allocation allows simultaneous dual 
DAG and a DMA access, and hence, maximum 
throughput over data buses. 

In video encoding and decoding applications, 
optimized memory allocation reduces the latency 
involved in accessing L1 data memory due to 
simultaneous access from core and DMA 
controller 

SDRAM Memory Space 

The SDRAM Controller (SDC) enables the 
processor to transfer data to and from 
Synchronous DRAM (SDRAM). The SDRAM 
controller supports a connection to four internal 
banks within the SDRAM. In end applications, 
by mapping the data buffers appropriately in 
different internal sub-banks, the latency involved 
in accessing data by core/DMA can be 

minimized. The SDC can keep track of one row 
per bank (with up to four internal SDRAM 
banks) at a time, hence it can switch between 
four internal SDRAM banks without any stalls. 

 
Figure 3. Un-Optimized SDRAM Memory Allocation 

In image processing applications, the video 
frame is bought into the memory using a PPI 
DMA. Because of the image size (i.e., VGA, D-1 
NTSC, D-1 PAL, 4CIF, 16CIF, etc.), each frame 
of the image must be captured in SDRAM 
memory using a PPI DMA channel. The 
algorithm can read the pixels block by block 
from SDRAM and process each block as it is 
brought in. The PPI captures the next frame into 
another buffer while core is processing the 
previous buffer. Since both core and DMAs are 
accessing the SDRAM memory simultaneously, 
it is necessary to map the code, video frame, and 
other buffers appropriately to minimize the 
latency involved in accessing SDRAM memory. 

Figure 3 shows the un-optimized memory 
allocation in SDRAM internal sub-banks. In 
Figure 3, both the code and video frame buffer 
are mapped to SDRAM internal Bank 0. This 
allocation method causes more latency because 
SDRAM row activation cycles occur at almost 
every cycle. This is due to alternating core 
accesses (fetching the instructions) and DMA 
accesses to different pages within the same 
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SDRAM internal bank. The latency may cause a 
PPI FIFO overflow error (in the case of image 
capture) or underflow (in the case of image 
display). In order to increase throughput of 
external memory accesses, it is necessary to 
allocate video/reference buffers such that only 
one DMA accesses an SDRAM bank at any 
given time. 

 

Figure 4. Optimized SDRAM Memory Allocation 

Figure 4 shows the optimized memory allocation 
within SDRAM internal banks.  In this memory 
allocation example, at any time, either the core or 
the DMA controller is accessing the particular 
internal bank of SDRAM memory. Hence, the 
latency is minimized, since row activation cycles 
are spread across hundreds of SDRAM accesses. 

Managing External Data Accesses 

Accessing the external memory is performed 
more efficiently when the transfer is made in the 
same direction. While accessing the SDRAM 
memory, performing group transfers in a single 
direction (avoiding frequent direction turn-
arounds) can reduce the latency involved in the 
data transfer. Frequent turnarounds on the DMA 
controller can increase the latency due to a write 
followed by a read access. 

DMA Modes for PPI Capture and 
Display 
The Blackfin DMA controller can transfer data 
between its memory space and peripherals 
efficiently. The designer can choose appropriate 
DMA modes (for example: stop mode, auto 
buffer, or descriptor-based DMA) to transfer the 
data. Also, the programmer can choose the DMA 
priority for a particular peripheral by using 
appropriate DMA channel. 

The Blackfin processor's PPI port supports the 
industry-standard ITU-R-656 mode and general-
purpose I/O mode with various internal and 
external frame sync options. Images can be 
seamlessly captured or displayed using the PPI 
along with the appropriate DMA mode. The 
programmer has to choose the appropriate DMA 
mode such that images can be processed in real 
time without loosing a frame. 

In image encoding applications, the PPI can be 
programmed in descriptor chaining mode to 
capture images in two or more buffers. The core 
can process one buffer while DMA is filling the 
other buffer. You must ensure that the core and 
the DMA controller do not access the same 
SDRAM bank, as discussed in SDRAM Memory 
Space section. 

 
Figure 5. PPI DMA and Core Accesses Without Any 
Conflict in Accessing SDRAM Internal Sub-banks 

In image encoding and decoding applications, the 
number of million cycles per cycles (MIPS) 
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consumed by the processor is not constant. The 
MIPS consumed varies from the compression 
ratio, captured image, and so on. In image 
decoding applications, if the decoded frame to be 
displayed is not yet ready, the PPI can transmit 
the recently decoded frame again. In order to 
achieve this functionality, the PPI can be 
programmed in stop mode DMA. This mode has 
more control over the data that needs to display 
as output. 

In stop mode DMA, an interrupt is generated 
after each work unit and the DMA channel is in a 
paused state. 

Hence, if the next frame to be displayed is not 
yet ready, the same frame can be re-transmitted. 
This can be achieved inside the PPI DMA 
interrupt subroutine. 

Working with ITU-R-656 Input Modes 

The PPI supports three input modes for ITU-R-
656-framed data. 

 Entire field mode 

 Active field only 

 Vertical blanking only 

In video encoding applications, the video frame 
can be captured in active field only mode, so that 
only Field 1 and Field 2 are captured. Since the 
ITU-R-656 has interlaced video format, video 
algorithms may require the video data to be in 
de-interlaced format. Using Memory DMA, the 
programmer can de-interlace the video frame. 

 
Figure 6. Typical ITU-R-656 Video Frame Partitioning 

In order to minimize processor overhead to de-
interlace the frame, the PPI can capture the video 
frame by skipping one line after each active line 
(as depicted in Figure 7). Then memory DMA 
can de-interlace the Field 2 into the Field 1 by 
filling the blank lines. 

 
Figure 7. 2-D DMA Capture Alternating Lines 

 

 
Figure 8. De-Interlacing Using Memory DMA 

Figure 8 illustrates de-interlacing using memory 
DMA. The data in Field 2 must be de-interlaced 
with data in Field 1. Hence, the skipped line is 
replaced with the data in Field 2. Here, the 
MDMA source address should contain the 
address of the first line of Field 2, and the 
MDMA destination address should contain the 
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first skipped line. Both the source and destination 
MDMAx_Y_MODIFY should be configured for count 
to skip one line. 

Outputting ITU-R-656 Video Frames 

The PPI does not explicitly provide functionality 
for framing an ITU-R-656 output stream with 
proper preambles and blanking intervals. 
However, this is achieved by first creating a 
complete frame in the memory and then 
transmitting the same via the PPI in zero frame 
sync mode. The video data, blanking data, and 
control code can be set up in memory prior to 
sending out the video stream. The horizontal and 
vertical blanking information can be set up in 
memory (one time) and then only the active 
fields can be updated on a frame-by-frame basis. 

 
Figure 9. Blanking and Active Video in Memory 

DMA Prioritization and Traffic 
Control Registers 
In Blackfin processors, all peripherals are DMA 
capable. By default, each peripheral is linked to a 
particular DMA channel. Each DMA channel has 
its own priority to access the memory. DMA 
channels with the lowest number have the 

highest priority. Programmers can assign a 
particular DMA channel to a peripheral and 
hence can change the priority of peripheral 
DMA. 

By default, the PPI uses higher priority channels, 
compared to other peripherals. If an application 
has more than one DMA running in parallel, the 
peripherals with high data rates or low latency 
requirements can be assigned to lower numbered 
(higher priority) channels via the 
DMA_PERIPHERAL_MAP registers. 

Using DMA Traffic Control registers, the 
programmer can influence the direction of data 
movement in internal DMA buses (DAB, DCB, 
and DEB). Traffic control provides a way to 
influence how often the transfer direction on the 
data buses may change, by automatically 
grouping same-direction transfers together. 

The DAB, DCB, and DEB buses provide a 
means for DMA-capable peripherals to gain 
access to on-chip and off-chip memory with little 
or no degradation in core bandwidth to memory. 

The DMA controller uses the DAB bus to access 
the DMA-capable peripherals. The DCB bus is 
used to access internal memory. Similarly, the 
DEB bus used to access external memory 
through the EBIU. 

 
Figure 10. DMA Traffic Control Register 
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DMA bus independently, by grouping same 
direction transfers together. 

Figure 10 shows the fields in the DMA_TC_PER 
register. For example, consider an application in 
which both the Memory DMA and PPI DMA are 
active and a traffic control register is used. If 
both the PPI DMA and Memory DMA request 
the DEB bus (with memory DMA going “with 
the traffic” and the PPI DMA going “against the 
traffic”), the memory DMA is granted the DEB 
bus even though PPI DMA has higher priority. 
Since the PPI DMA is “against the traffic” of the 
DEB bus, the effective priority of the PPI DMA 
is increased by 16, and hence, the memory DMA 
is granted access to the DEB bus. The PPI DMA 
gets access to the DEB bus when the traffic 
control counter times out (or until traffic stops or 
changes direction on its own). 

For more information DMA Traffic Control 
registers, refer the ADSP-BF533 and ADSP-
BF561 Hardware Reference manuals. 

Bus Arbitration 

The DMA bus has higher priority over the core 
bus while accessing internal L1 memory. By 
default, when accessing external memory, the 
core has higher priority over the DMA bus. By 
setting the CDPRIO bit in the EBIU_AMGCTL 

register, all DEB transactions to the external bus 
have priority over core accesses to external 
memory. Programmers can use this bit, 
depending on their application requirement.  

DMA and Cache Coherency 

In an application, if both core and DMA access 
the shared buffer and cache is enabled, the 
software should provide cache coherency support 
by invalidating the data in the shared buffer. In 
Blackfin processors, the cache can be invalidated 
using memory-mapped registers. Also, the 
VisualDSP++® 4.0 development tools provide 
C-callable library functions to invalidate the 
individual cache banks. Software can invalidate 
the cache each time before accessing the shared 
“volatile” buffer. 

Conclusion 
By considering the various factors discussed in 
this EE-Note, you can obtain maximum 
performance from Blackfin processors in image 
processing applications. 
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