
Engineer-to-Engineer Note EE-326

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or e-
mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Blackfin® Processor and SDRAM Technology
Contributed by Fabian Plepp Rev 2 – December 11, 2008

Copyright 2008, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The Analog Devices Blackfin® family of processors provides an External Bus Interface Unit (EBIU) with
which to interface to SDRAM.

This EE-Note covers the following topics:

 Register settings and their meaning

 SDRAM initialization

 SDRAM hardware design

 Using less than 16MB of SDRAM

 Performance optimization

 Power optimization

L This EE-Note discusses SDR-SDRAM (not DDR-SDRAM) devices only.
Furthermore, this document applies to ADSP-BF53x, ADSP-BF52x, ADSP-BF51x and
ADSP-BF561 processors only. It does not apply to ADSP-BF54x processors.

Although this document covers basic aspects of SDRAM functionality, you should read The ABCs of
SDRAM (EE-126)[1] for more information.

This document is separated into different topics, so you do not need to read the entire document when you
are looking for specific information.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 2 of 56

Table of Contents
Introduction ...1
Table of Contents..2
1 Brief Introduction to SDRAM ...5

1.1 Basics of SDRAM..5
1.2 SDRAM Parameters in Blackfin Registers ...6

1.2.1 EBCAW (SDRAM External Bank Column Address Width) ...6
1.2.2 EBSZ (SDRAM External Bank Size)..6
1.2.3 SDRAM Timing...6

1.3 Multiprocessor Environment Options...7
1.3.1 BGSTAT (Bus Grant Status) ..7
1.3.2 PUPSD (Power-Up Startup Delay) ..7
1.3.3 CDDBG (Control Disable During Grant) ..7

1.4 Mobile/ Low-Power SDRAM Options..8
1.4.1 PASR (Partial Array Self Refresh) ...8
1.4.2 TCSR (Temperature-Compensated Self-Refresh) ...8

1.5 Options to Fit the SDRAM Timing..8
1.5.1 Blackfin Output / SDRAM Input Equation (Write) ..9
1.5.2 Blackfin Input / SDRAM Output Equation (Read)...10

2 SDRAM Initialization..10
2.1 SDRAM Initialization Via an Emulator and VisualDSP++ .XML Files ..10
2.2 Initialization Using Memory-Mapped Registers ...12
2.3 Initialization Using System Services ..15
2.4 SDRAM Initialization by the Values in the OTP Memory ..17
2.5 Initializing Memory via Initialization Code Before Loading the Application18

3 Using an .LDF File to Place Data and Program Code in Memory ...21
4 SDRAM Hardware Design ...23

4.1 Connecting SDRAM to a Blackfin Processor (Schematics)..23
4.1.1 ADSP-BF53x Series Processors...23
4.1.2 ADSP-BF561 Processors (16-bit SDRAM) ..23
4.1.3 ADSP-BF561 Processors (32-bit SDRAM) ..24

4.2 High-Speed Design ...25
4.2.1 Effects that Impact Signal Quality...25
4.2.2 Avoid Reflections ...26

4.3 Design Guidelines for the SDRAM Connection..27
4.3.1 Component Placement Considerations...27
4.3.2 Using the Rounding Function of Your Layout Tool at Trace Edges ..28
4.3.3 Placing the VCC and GND Planes with as Little Distance as Possible.......................................28

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 3 of 56

4.3.4 Insulating Critical Signals by Placing Them in the Inner Layers ..29
4.3.5 Placing the Series Resistor Close to the SDRAM ..29
4.3.6 Avoiding Trenches in the GND Plane...29
4.3.7 Minimizing Back-Current Paths from Vias...30
4.3.8 Make use of the drive strength control functionality ..31
4.3.9 Make use of the slew control functionality..31

5 Using a Blackfin Processor with Less than 16 MB of SDRAM ..31
5.1 System Settings..32
5.2 Changing the .LDF File ...32

5.2.1 Excursus: Background..33
5.3 SDRAMs with 2 Banks ..34

6 Increasing the SDRAM Performance of Your System..35
6.1 Optimal Multi-Bank Accesses ...35
6.2 Optimal Pages Accesses ...36

Pages for the ADSP-BF53x Processors ..37
Pages for ADSP-BF561 Processors ..38

6.3 SDRAM Performance Items for Core Accesses ..39
6.3.1 Code Overlays ..40

6.4 SDRAM Performance Items When Using Cache ..40
Code ..40
Data ..40

7 Optimizing Power Consumption...41
7.1 Introduction: Power-Consumption Figures...41
7.2 Tips for Lowering SDRAM Power Consumption ..41
7.3 Mobile SDRAM...42
7.4 Going into Hibernate and Recover ...42

Step 1 ...42
Step 2 ...43
Step 3 ...43

7.5 Structuring Data for Low Power Consumption..43
Appendices ..44

Appendix A: Glossary ...44
Appendix B: Code Examples, Schematics, and Excursus..47

Initialization Code (Chapter 2) ..47
Schematics to Interface SDRAM to the Blackfin Processor (Chapter 4)...48
ADSP-BF561 in 16-Bit Mode ..49
ADSP-BF561 in 32-Bit Mode ..50
Excursus: Calculating Z0 (Chapter 4)..51

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 4 of 56

Calculating the Inductance of a Microstrip Trace..52
Calculating the Capacitance ...52
IPC’s and Douglas Brooks’ approach of Z0 (Chapter 4)..53
Microstrip Trace ...53
Embedded Microstrip Trace ..53
Stripline Trace..53
Asymmetric Stripline Trace..53
Dielectric Constants of Printed Circuit Boards (PCBs) (Chapter 4) ...54
Several Commonly Available Woven Glass Reinforces Laminates..54
List of Non-Woven or Very-Low Glass Content Laminate Materials ..54

References ..55
Readings ...55
Document History ..56

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 5 of 56

1 Brief Introduction to SDRAM
This section describes SDRAM (Synchronous Dynamic Random Access Memory) parameters and
SDRAM-related system setups. This provides a base on which to build a better understanding of the EBIU
(External Bus Interface Unit) register variables. Further, it will give you a foundation from which to base
other decisions. It is not a detailed discussion of SDRAM; refer to The ABCs of SDRAM (EE-126)[1] for
more details.

1.1 Basics of SDRAM

Although SRAM stores binary data using transistors, DRAM uses a capacitor and a transistor: The
capacitor is the storage itself; when charged, it will be a logical 1, otherwise a logical 0. The transistor
acts as a gate that controls access to the cell and traps the charge. The disadvantage of this technology is
that capacitors discharge over time.

To prevent the loss of data, the DRAM must be refreshed periodically to restore the charge on the memory
cells. Thus, a read and write operation must be performed to every memory location in the memory array
at least once during the refresh rate period, which is typically specified in milliseconds.

Figure 1. SDRAM

The DRAM cells are organized in an array of rows and columns. Every single cell can be accessed by a
well-defined row and column address. The row is often called the page, and the number of columns is
referred to as the page size. The address is time multiplexed; the row address is transmitted first, then the
column address is transmitted.

The /RAS (row access strobe) and by the /CAS (column access strobe) signals control the time
multiplexing of the row and column address. The /RAS signal indicates that a row address is available to
be loaded into the address buffer and decoded by the internal row address decoder. After a short delay, the
/CAS signal indicates that the column address, which is available in the address buffer, is forwarded to the
column address decoder.

If /WE is high, a read command is processed. The cells that are addressed by a row are read out
completely, amplified, and written back to the cells. The columns that are addressed are transmitted over
the data bus.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 6 of 56

If the /WE is low, a write command is processed. The isolated writing of a single cell is not possible; thus,
a complete row is first read into a buffer. In the buffer, the elements to be changed are written, and the
complete row is written back to the array.

1.2 SDRAM Parameters in Blackfin Registers

1.2.1 EBCAW (SDRAM External Bank Column Address Width)
Often, the external bank column address width is called the page size of the SDRAM. Blackfin processors
support page sizes of 512 bytes (8 bits), 1 Kbytes (9 bits), 2 Kbytes (10 bits), and 4 Kbytes (11 bits).

Besides the byte address bit, which is the least significant bit (LSB), these bits are the least significant bits
of the logical address. Depended on the width of the column address, the row address and bank have
different bits positions in the logical address. For example, with a column addressing width (CAW) of
11 bits, the row address has its LSB at bit 12 of the logical 32-bit address[31:0]. This is a very important
parameter if you want to access the SDRAM consciously. The number of the row address depends on the
size of the SDRAM. To determine the column addressing width in the data sheet, find how many address
pins are dedicated to column addressing. For a detailed overview, refer to the EBIU chapter of the
Blackfin processor’s Hardware Reference.

1.2.2 EBSZ (SDRAM External Bank Size)
The SDRAM external bank size can be determined by the following formula:

8
Banks ofNumber x pins Data ofNumber x sizeBank MemorySize =

For example, the MT48LC32M16A2 has 8 Mbytes x 16 pins x 4 banks, which is 536,870,912 bits,
equaling 64 Mbytes.

To use less than 16 MB, refer to Using a Blackfin Processor with Less than 16 MB of SDRAM.

1.2.3 SDRAM Timing

Address

Data

Pre

Row Column

Data

RPt
RCDt CL

ACTIV

Clock

RASt

ACTIV READCmd

Figure 2. SDRAM Timing

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 7 of 56

The SDRAM timing of SDRAM CAS Latency (CL), SDRAM bank activate command delay (RASt),
SDRAM bank precharge delay (RPt), RAS to CAS delay (RCDt), and write to precharge delay (WRt) are
described in detail in the EBIU chapter of your processor’s Hardware Reference.

1.3 Multiprocessor Environment Options

Blackfin processors can be used in a multiprocessor environment. One approach to interfacing the
processors with one another is to share external memory and pass the messages via external memory to
the other processors. In order to provide arbitration functionality, Blackfin processors have dedicated pins
for this purpose.

To use the Blackfin processor in a multiprocessor environment with shared memory, you must connect the
/BR, /BG, and /BGH pins to provide an access control. When the external device requires access to the bus,
it asserts the Bus Request (/BR pin) signal. If no other request is pending, the external bus request will be
granted. The processor will three-state the data and address bus, and the bus grant (/BG pin) signal will be
asserted. When the bus is granted to another external device, any data or instruction fetch from the
external memory will stop the processor until the bus is released and the access can be executed. When
the external device releases /BR, the processor deasserts /BG and continues execution from the point at
which it stopped. The processor asserts the /BGH pin when it is ready to start another external port access,
but is held off because the bus was previously granted.

1.3.1 BGSTAT (Bus Grant Status)
When the bus has been granted, the BGSTAT bit in the SDSTAT register is set. This bit can be used by the
processor to check the bus status to avoid initiating a transaction that would be delayed by the external
bus grant.

1.3.2 PUPSD (Power-Up Startup Delay)
This option sets a delay of 15 system clock cycles for the power-up start sequence. If one processor passes
the SDRAM to another processor, it has to send the SDRAM into self-refresh mode. Once self refresh
mode is engaged, the SDRAM provides its own internal clocking, causing it to perform its own auto-
refresh cycles. The SDRAM must remain in self-refresh mode for a minimum period equal to RASt .

The procedure for exiting self-refresh mode requires a sequence of commands. First, CLK must be stable
(stable clock is defined as a signal cycling within timing constraints specified for the clock pin) prior to
CKE going back high. When CKE is high, the SDRAM must have NOP commands issued for XSRt because
this length of time is required for the completion of any internal refresh in progress. To take the time
period XSRt into account, a delay of 15 cycles will occur until the Blackfin processor starts its power-up
sequence.

1.3.3 CDDBG (Control Disable During Grant)
If you are working in a multiprocessor environment with shared memory, where other devices than the
Blackfin processor have access to memory, this feature enables the external memory interface of the
processor to additionally three-state the address and data pins, its memory control pins (SRAS, SCAS, SWE,
SA10, and SCKE), and its clock pin (CLKOUT).

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 8 of 56

1.4 Mobile/ Low-Power SDRAM Options

Blackfin processors support mobile SDRAM chips (also called low-power SDRAM). Depending on the
series of Blackfin processors, you can use 3.3V, 2.5V, and 1.8V SDRAM. In order to use 2.5V and 1.8V
chips, verify in the processor’s data sheet (electrical specifications) that the processor is able to have an
output low voltage (maximum) as dictated by the SDRAM device data sheet. The mobile SDRAM
achieves low power consumption not only by its lower voltage, but also by its low currents. Another
advantage of mobile SDRAM is the ability to deactivate the self-refresh of the several banks you are not
using and to reduce the self-refresh rate by defining the temperature. These features enable you to
optimize power consumption for your specific application. If not otherwise stated in the Blackfin data
sheet, at 1.8V VDDEXT (the maximal frequency of the system clock) is limited to 100 MHz.

 ADSP-BF51x ADSP-BF52x ADSP-BF533/2/1 ADSP-BF537/6/4 ADSP-BF539/8 ADSP-BF561

1.8V

2.5 V / * / * / *

3.3 V

*Depending on selected SDRAM device.

Figure 3. Supported SDRAM voltages by processor series

To use the extended registers of mobile SDRAM, the EMREN bit must be set.

1.4.1 PASR (Partial Array Self Refresh)
Every refresh consumes power. If the application does not need to store the complete memory in special
modes, this feature provides a way to disable the refresh of several banks of the SDRAM. The benefit of
this feature is lower power consumption.

Take for example, an application that stores data (e.g., a picture) into SDRAM, does some signal
processing, transmits the data or stores it to a non-volatile memory(e.g., flash), and goes back into sleep
mode. Most of the SDRAM is needed only for the signal processing. The data is absolved after
processing, so the banks in which the data is placed does not need to be refreshed.

1.4.2 TCSR (Temperature-Compensated Self-Refresh)
In standard SDRAMs, the self-refresh rate is set to the worst-case scenario: A high temperature will cause
a higher discharge of the capacitors, which requires a higher refresh rate to maintain the data. But a higher
refresh rate will effect higher power consumption. By means of the TCSR bit, the user application is able to
set the self-refresh rate according to the temperature, which it is measuring.

1.5 Options to Fit the SDRAM Timing

Sometimes the timing parameter specification of an SDRAM does not fit the specification of the EBIU.
Therefore, the PLL control register provides an option to delay the output signal and shift the input latch
mechanism for 200 ps.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 9 of 56

Figure 4. PLL_CTL register (copied from Hardware Reference)

Bit 6 and bit 7 (Figure 4) provide a delay to the SDRAM signals. Apply the output delay when the
specification of a write access will be violated. It will delay the data hold for 200 ps. The input delay must
be applied when the specification of a read access will be violated. It delays the latch of the incoming data
signal by 200 ps.

sheet) data (SDRAMCLK from signal toimpedancehigh fromDelay t
sheet) data (SDRAMCLK from impedancehigh output theDelay to t

sheet) data (SDRAM timeHoldOutput t
sheet) data (BF CLKOUTafter Hold Data t

sheet) data (SDRAM timeHoldInput t
sheet) data (SDRAMCLK from timeAccess t
sheet) data (BF CLKOUT Before Setup Data t

Period CLKOUT t

OHZ

OLZ

OH

HSDAT

DH

AC

SSDAT

sclk

1.5.1 Blackfin Output / SDRAM Input Equation (Write)
For SDRAM input, the following equation must be valid:

HSDATDH tt <

DHt

SCLKt

HSDATt

Figure 5. Timing

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 10 of 56

1.5.2 Blackfin Input / SDRAM Output Equation (Read)
This case applies especially when setting the SDRAM clock to 133 MHz, which places the timing
parameters at the limit of the specification.

Data Data

Clock

ACt

DQ

OLZt OHt OHZt

SCLKt

SSDATt

Figure 6. Timing

To verify that the read operation processed correctly, ensure that ACSSDATsclk ttt +>

2 SDRAM Initialization
SDRAM initialization impacts application performance and SDRAM power consumption. Therefore, a
better understanding of the settings is highly desirable. This section describes how to set up the EBIU
(External Bus Interface Unit) registers in order to run your application. In order to initialize the SDRAM,
use one of the following approaches:

 SDRAM initialization via an emulator and VisualDSP++® .XML files

 SDRAM initialization by setting the registers within the application

 SDRAM initialization by using the VisualDSP++ system service model

 SDRAM initialization by an initialization file before loading the actual application

 SDRAM initialization by the values in the OTP (One Time Programmable) memory

2.1 SDRAM Initialization Via an Emulator and VisualDSP++ .XML Files

In the early stages of software development, you upload your software via an in-circuit emulator (ICE).
The emulator can set up the EBIU registers automatically when you upload a program to the processor.

To enable this functionality, from the VisualDSP++ Settings menu, chose Target Options. From the
resulting Target Options dialog box (Figure 7), select the Use XML reset values option.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 11 of 56

Figure 7. Target Options dialog box

For VisualDSP++ release 4.5 or lower the values are taken from an .xml file (extensible markup
language) named ADSP-BF5XX-proc.xml (where XX stands for the architecture; e.g., ADSP-BF537-
proc.xml or ADSP-BF561-proc.xml). These files are located in the <install_path>\Analog
Devices\VisualDSP X.X\System\ArchDef directory. By changing these values, you can configure the
settings of the EBIU. Figure 8 shows a portion of a processor .XML file. For more information, refer to
“custom board support” in VisualDSP++ Help.

Figure 8: A portion of the ADSP-BF5xx-proc.xml file (VisualDSP++ 4.5)

The processor .xml file is read at startup only. Any editing while VisualDSP++ IDDE is up and running
will not take effect. Ensure that you have edited the values before invoking VisualDSP++ development
tools. When VisualDSP++ tools are running, the values in the .XML files are used to set the corresponding
SDRAM values of the Analog Devices EZ-KIT Lite® development board.

L For VisualDSP++ release 5.0 or higher, it’s not recommended to modify the .XML
files in the ArchDef folder directly. Use the custom board support which is described
in the following paragraph.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 12 of 56

With custom board support in VisualDSP++ release 5.0 or higher, it is easier to set reset values in an
application: This feature enables developers to have multiple sets of reset settings and to change between
them without having to start up VisualDSP++ tools again. Open a text editor and place code like the
following into a file and save it. In this example (Listing 1), the filename is
My_custom_board_reset_settings.xml:

<?xml version="1.0" standalone="yes"?>

<custom-visualdsp-proc-xml
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="\Program Files\Analog Devices\VisualDSP
5.0\System\ArchDef\ADSP-custom-board.xsd"
 processor-family="BLACKFIN"
 file="My_custom_board_reset_settings.xml">

<!-- *** -->
<!-- ******* My_custom_board_reset_settings.xml -->
<!-- *** -->

<custom-register-reset-definitions>

 <register name="EBIU_SDRRC" reset-value="0x03A0" core="Common" />
 <register name="EBIU_SDBCTL" reset-value="0x25" core="Common" />
 <register name="EBIU_SDGCTL" reset-value="0x0091998D" core="Common" />

</custom-register-reset-definitions>
</custom-visualdsp-proc-xml>

Listing 1. Example custom board reset settings (VisualDSP++ 5.0)

To enable this feature in VisualDSP++ development tools, perform the following steps:

1. From the Settings menu, choose Session.

2. In the Session Settings dialog box, select Enable customizations.

3. In Custom board support file name, navigate to the file named
“My_custom_board_reset_settings.xml” that contains the SDRAM reset values.

Whenever the processor is reset by VisualDSP++ tools, these reset values will be set in the registers.

2.2 Initialization Using Memory-Mapped Registers

The classical approach to initializing the SDRAM controller is to assign the values directly to the
memory-mapped registers (MMRs).

As an example, we take a mobile SDRAM data sheet1.

1 Samsung K4M56163 R(B)N/G/L/F Mobile SDRAM

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 13 of 56

Figure 9. Example: portion of a data sheet for mobile SDRAM

Figure 10: Address configuration specification in the data sheet

Before setting the SDRAM registers, we must first configure the PLL. For our example, we are using a
system clock frequency of 133 MHz. First, we calculate the refresh rate:

)(
NRA

 RDIV RAS
REFSCLK

RPtttf
+−

⋅
=

From the data sheet (-75), we get the following information:

MHz133SCLK =f
ms 64 REF =t

NRA = 8192
ns 45 RAS =t at 133 MHz: cycles 6 RAS =t

ns 18RP =t at 133 MHz: cycles 3 RP =t

0x406 :Hexin 10300625.1030)36(
8192

106410133 RDIV
36

≈=+−
⋅⋅⋅

=
−

Further, we need to calculate the following values:

ns 18RCD =t at 133 MHz: cycles 3 RCD =t
For Samsung specific devices, WRt is called RDLt .

cycles 2 RDLWR == tt

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 14 of 56

Afterwards, we have to ensure that all derived parameters from the timings we specify are also within the
SDRAM specification. So we have to control:

PRttt += RASXSR -> 6 cycles + 3 cycles = 9 cycles at 133 MHz : 67.5 ns

1RCDRRD += tt -> 3 cycles + 1 cycle = 4 cycles at 133 MHz : 30 ns

PRttt += RASRC -> 6 cycles + 3 cycles = 9 cycles at 133 MHz : 67.5 ns

PRttt += RASRFC -> 6 cycles + 3 cycles = 9 cycles at 133 MHz : 67.5 ns

If we compare these values with the SDRAM’s data sheet, we notice we are within the specifications.

Additionally, we have to enable the extended register to set the temperature and the partial self-refresh.
The PASR can be set to following settings:

 PASR_ALL – All four SDRAM banks refreshed in self-refresh

 PASR_B0_B1 – SDRAM banks 0 and 1 are refreshed in self-refresh

 PASR_B0 – Only SDRAM bank 0 is refreshed in self-refresh

Listing 2 shows the initialization in C.

//SDRAM Refresh Rate Setting
 *pEBIU_SDRRC = 0x406;
//SDRAM Memory Bank Control Register
 *pEBIU_SDBCTL = EBCAW_9 | //Page size 512
 EBSZ_64 | //64 MB of SDRAM
 EBE; //SDRAM enable
//SDRAM Memory Global Control Register
 *pEBIU_SDGCTL = ~CDDBG & // Control disable during bus grant off
 ~FBBRW & // Fast back to back read to write off
 ~EBUFE & // External buffering enabled off
 ~SRFS & // Self-refresh setting off
 ~PSM & // Powerup sequence mode (PSM) first
 ~PUPSD & // Powerup start delay (PUPSD) off
 TCSR | // Temperature compensated self-refresh at 85
 EMREN | // Extended mode register enabled on
 PSS | // Powerup sequence start enable (PSSE) on
 TWR_2 | // Write to precharge delay TWR = 2 (14-15 ns)
 TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)
 TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)
 TRAS_6 | // Bank activate command delay TRAS = 4
 PASR_B0 | // Partial array self refresh Only SDRAM Bank0
 CL_3 | // CAS latency
 SCTLE ; // SDRAM clock enable

Listing 2. Initialization via registers

The code in assembly language can be found in Initialization Code (Chapter 2).

What will happen if we need to change the PLL settings later in the application? To obtain the best
memory performance, we have to change our settings as well. If memory performance does not matter, we
have to calculate the values at the worst-case scenario.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 15 of 56

Examples of initializing the SDRAM on the ADSP-BF537 EZ-KIT Lite (in assembler and C) and on the
ADSP-BF561 EZ-KIT Lite (in C) are included together with this EE-Note.

2.3 Initialization Using System Services

Another way to initialize the SDRAM is to handle the setup in the application itself. The most
comfortable way to change the EBIU settings is by means of system services. The main advantage of
using the EBIU system service is that you can set the EBIU without any calculations. And second benefit
is that the changes to the EBIU are in accordance to the PLL changes, so you do not need to be concerned
about the actual system clock frequency.

The initialization is done by the adi_ebiu_init function. We will take the same SDRAM as in the
section above.

To perform an initialization using the system services, we have to pass the SDRAM parameters to the
system. Therefore, we are using a command structure called ADI_EBIU_COMMAND_PAIR. (Table 1).

To initialize the structure in our example, we set the variables (for the -75) as shown in Listing 3.

// set the sdram to 64 MB
ADI_EBIU_SDRAM_BANK_VALUE bank_size = {0, ADI_EBIU_SDRAM_BANK_64MB};

//set the sdram to 9 bit Column Address Width (like we see in the Address
//Configuration)
// A0-A8 -> 9bits Column Address
ADI_EBIU_SDRAM_BANK_VALUE bank_caw = {0,
(ADI_EBIU_SDRAM_BANK_SIZE)ADI_EBIU_SDRAM_BANK_COL_9BIT}; // 9bit CAW

//set the twr to 2 sclk + no time
ADI_EBIU_TIMING_VALUE MyTWR = { 2, // 2 cycle
{0, ADI_EBIU_TIMING_UNIT_PICOSEC}}; // 0 ns

//set refresh rate to 64ms at 8192 rows as seen in the data sheet
ADI_EBIU_TIMING_VALUE Refresh = { // SDRAM Refresh rate:

 8192, // 8192 cycles
 {64, ADI_EBIU_TIMING_UNIT_MILLISEC }}; // 64ms

//set TRAS to 45ns
ADI_EBIU_TIME MyTRAS = {45, ADI_EBIU_TIMING_UNIT_NANOSEC};
//set TRP to 18ns
ADI_EBIU_TIME MyTRP = {18, ADI_EBIU_TIMING_UNIT_NANOSEC};
//set TRCD to 18ns
ADI_EBIU_TIME MyTRCD = {18, ADI_EBIU_TIMING_UNIT_NANOSEC};
//set CAS threshold frequency
u32 MyCAS = 133;
//Enable Extended Mode Register because we are using Mobile SDRAM
ADI_EBIU_SDRAM_EMREN MyEMREN = ADI_EBIU_SDRAM_EMREN_ENABLE;
//Refresh only the first bank
ADI_EBIU_PASR MyPASR = ADI_EBIU_PASR_INT0_ONLY;

//Temperature Compensation at 85°C
ADI_EBIU_SDRAM_TCSR MyTCSR = ADI_EBIU_SDRAM_TCSR_85DEG;
//we don't have any registered buffer
ADI_EBIU_SDRAM_EBUFE MyEBUFE = ADI_EBIU_SDRAM_EBUFE_DISABLE;
//no fast-back-to-back read/write
ADI_EBIU_SDRAM_FBBRW MyFBBRW = ADI_EBIU_SDRAM_FBBRW_DISABLE;

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 16 of 56

//Do not disable the control during bus grant
ADI_EBIU_SDRAM_CDDBG MyCDDBG = ADI_EBIU_SDRAM_CDDBG_DISABLE;
//We don't need any delay at Power Up
ADI_EBIU_SDRAM_PUPSD MyPUPSD = ADI_EBIU_SDRAM_PUPSD_NODELAY;
//Do first the refresh
ADI_EBIU_SDRAM_PSM MyPSM = ADI_EBIU_SDRAM_PSM_REFRESH_FIRST;

Listing 3.Initialization of the EBIU structure

Table 1. Overview of EBIU commands

After setting up the parameters, we need to initialize the service. Therefore, we bundle the parameters to a
command table and afterwards call the adi_EBIU_init function.

ADI_EBIU_COMMAND_PAIR Sdram_Values[] = {

 { ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size },
 { ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH, (void*)&bank_caw },
 { ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD, (void*)&MyCAS },
 { ADI_EBIU_CMD_SET_SDRAM_TRASMIN, (void*)&MyTRAS },
 { ADI_EBIU_CMD_SET_SDRAM_TRPMIN, (void*)&MyTRP },
 { ADI_EBIU_CMD_SET_SDRAM_TRCDMIN, (void*)&MyTRCD },
 { ADI_EBIU_CMD_SET_SDRAM_TWRMIN, (void*)&MyTWR },
 { ADI_EBIU_CMD_SET_SDRAM_REFRESH, (void*)&Refresh },
 { ADI_EBIU_CMD_SET_SDRAM_FBBRW, (void*)&MyFBBRW },
 { ADI_EBIU_CMD_SET_SDRAM_EMREN, (void*)&MyEMREN },
 { ADI_EBIU_CMD_SET_SDRAM_PASR, (void*)&MyPASR },
 { ADI_EBIU_CMD_SET_SDRAM_TCSR, (void*)&MyTCSR },
 { ADI_EBIU_CMD_SET_SDRAM_EBUFE, (void*)&MyEBUFE },
 { ADI_EBIU_CMD_SET_SDRAM_CDDBG, (void*)&MyCDDBG },
 { ADI_EBIU_CMD_SET_SDRAM_PUPSD, (void*)&MyPUPSD },
 { ADI_EBIU_CMD_SET_SDRAM_PSM, (void*)&MyPSM },
 { ADI_EBIU_CMD_END, 0}
 };
//Init the service and ensure that the Refresh rate is reset if fsclk is changing
Result = adi_ebiu_Init(Sdram_Values, true); // true enables automatic adjustment

Listing 4. Initialization of the EBIU

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 17 of 56

Code examples that demonstrate the use of system services for the ADSP-BF537 and the ADSP-BF561
processors are located in the .ZIP file attached to this EE-Note.

2.4 SDRAM Initialization by the Values in the OTP Memory

Devices with One-Time-Programmable (OTP) memory (ADSP-BF51x, ADSP-BF52x and ADSP-BF54x
processors) offer an additional approach to initializing the EBIU register settings. During booting, the
boot ROM program is able to initialize the EBIU settings by the programmed values in the OTP. The OTP
consists of a region called the Preboot Settings (PBS) block, which must be programmed via the
OTP_write function.

The PBS02L page contains the EBIU settings. Refer to your processor’s Hardware Reference for an
overview.

After setting up the EBIU control registers, the boot process accesses the SDRAM at address 0x00000000
in order to initialize the SDRAM. By default, setting a read access will be performed. Since a read access
consumes more time than a write access, this access can be customized by the
OTP_EBIU_POWERON_DUMMY_WRITE bit (Figure 11), which replaces the read access with a write access and
saves time. By using this option, you must ensure that no important data is stored at this address before
going to reset or hibernate.

Figure 11. Dummy write option

/* Declare local variable */
DU64 Data;
.
.
/* Enable the EBIU Init settings */
Data.h = 0x04000000 | //use the content of PBS02L for the EBIU
 ... | //other settings
Data.l = ...

otp_write(0x18, OTP_LOWER_HALF, &Data);

/* Assign SDRAM values */

/* The low data byte is the EBIU_SDGCTL register */
Data.l = ~CDDBG & // Control disable during bus grant off
 ~FBBRW & // Fast back to back read to write off
 ~EBUFE & // External buffering enabled off
 ~SRFS & // Self-refresh setting off
 ~PSM & // Powerup sequence mode (PSM) first
 ~PUPSD & // Powerup start delay (PUPSD) off
 TCSR | // Temperature compensated self-refresh at 85
 EMREN | // Extended mode register enabled on

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 18 of 56

 PSS | // Powerup sequence start enable (PSSE) on
 TWR_2 | // Write to precharge delay TWR = 2 (14-15 ns)
 TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)
 TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)
 TRAS_6 | // Bank activate command delay TRAS = 4
 PASR_B0 | // Partial array self refresh Only SDRAM Bank0
 CL_3 | // CAS latency
 SCTLE;

/* The upper 32 bit are EBIU_SDBCTL(0-15) and EBIU_SDRRC (16-27). Further we will
 Set the dummy write bit (32), which will speed up the initialization */

Data.h = 0x80000000 | // dummy write bit
 (0x406)<<16 | // Refresh rate
 EBCAW_9 | //Page size 512
 EBSZ_64 | //64 MB of SDRAM
 EBE; //SDRAM enable

;
otp_write(0x1A, OTP_LOWER_HALF, &Data);

Listing 5. Initialization via PBS

2.5 Initializing Memory via Initialization Code Before Loading the Application

If you want to place instruction and data sections into your SDRAM at initialization time, you must use an
initialization file that initializes the SDRAM before the application is loaded. Therefore, start a project
and code an initialization file. Build this project into a .DXE file. The initialization .DXE file can be
included into a loader file of your actual application via the Project Options dialog box
(Project:Load:Options page).

Figure 12. Specifying project load options

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 19 of 56

Listing 6 shows an example of how initialization code can be implemented.

#include <defBF537.h>
.section program;
 //save all registers on the stack
 [--SP] = ASTAT;
 ...
 [--SP] = L3;

//Setup the PLL Settings
 //Ensure no other interrupt will disturb us
 CLI R1;
 //Setup the voltage regulator
 P0.L = lo(VR_CTL);
 P0.H = hi(VR_CTL);
 R0 = 0x40DB (z);
 w[P0] = R0;

 //Wait the VR settings are done
 idle;
 //Setup the DIV of ssclk and cclk
 P0.L = lo(PLL_DIV);
 R0 = 0x0003 (z);
 w[P0] = R0;

 //Setup wait cycles until PLL is set
 P0.L = lo(PLL_LOCKCNT);
 R0 = 0x200 (z);
 w[P0] = R0;

 //Setup the PLL
 P0.L = lo(PLL_CTL);
 R0 = 0x2000 (z);
 w[P0] = R0;

 //Wait the PLL settings are done
 idle;
 //restore interrupts
 STI R1;

//Our program needs 4 MBs of RAM
 P0.L = lo(EBIU_AMGCTL);
 P0.H = hi(EBIU_AMGCTL); //Asynchronous Memory Global Control Register
//Uncomment your setting
 R0 = 0x00F0
// |AMBEN_NONE(Z); //No Asynchronous Memory
// |AMBEN_B0(Z); //1MB Asynchronous Memory
// |AMBEN_B0_B1(Z); //2MB Asynchronous Memory
// |AMBEN_B0_B1_B2(Z); //3MB Asynchronous Memory
 |AMBEN_ALL(Z); //4MB Asynchronous Memory
W[P0] = R0;

//Setup the SDRAM
//SDRAM Refresh Rate Setting
 P0.H = hi(EBIU_SDRRC);
 P0.L = lo(EBIU_SDRRC);
 R0 = 0x406 (z);
 w[P0] = R0;

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 20 of 56

//SDRAM Memory Bank Control Register
 P0.H = hi(EBIU_SDBCTL);
 P0.L = lo(EBIU_SDBCTL);
 R0 = EBCAW_9 | //Page size 512
 EBSZ_64 | //64 MB of SDRAM
 EBE; //SDRAM enable
 w[P0] = R0;

//SDRAM Memory Global Control Register
 P0.H = hi(EBIU_SDGCTL);
 P0.L = lo(EBIU_SDGCTL);
 R0.H= hi(~CDDBG & // Control disable during bus grant off
 ~FBBRW & // Fast back to back read to write off
 ~EBUFE & // External buffering enabled off
 ~SRFS & // Self-refresh setting off
 ~PSM & // Powerup sequence mode (PSM) first
 ~PUPSD & // Powerup start delay (PUPSD) off
 TCSR | // Temperature compensated self-refresh at 85
 EMREN | // Extended mode register enabled on
 PSS | // Powerup sequence start enable (PSSE) on
 TWR_2 | // Write to precharge delay TWR = 2 (14-15 ns)
 TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)
 TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)
 TRAS_6 | // Bank activate command delay TRAS = 4
 PASR_B0 | // Partial array self refresh Only SDRAM Bank0
 CL_3 | // CAS latency
 SCTLE); // SDRAM clock enable

 R0.L= lo(~CDDBG & // Control disable during bus grant off
 ~FBBRW & // Fast back to back read to write off
 ~EBUFE & // External buffering enabled off
 ~SRFS & // Self-refresh setting off
 ~PSM & // Powerup sequence mode (PSM) first
 ~PUPSD & // Powerup start delay (PUPSD) off
 TCSR | // Temperature compensated self-refresh at 85
 EMREN | // Extended mode register enabled on
 PSS | // Powerup sequence start enable (PSSE) on
 TWR_2 | // Write to precharge delay TWR = 2 (14-15 ns)
 TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)
 TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)
 TRAS_6 | // Bank activate command delay TRAS = 4
 PASR_B0 | // Partial array self refresh Only SDRAM Bank0
 CL_3 | // CAS latency
 SCTLE) ; // SDRAM clock enable
 [P0] = R0;
 ssync;
 //Restore registers from the stack
 L3 = [SP++];
 ...
 ASTAT = [SP++];
 RTS;

Listing 6. Initialization via an initialization file

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 21 of 56

3 Using an .LDF File to Place Data and Program Code in Memory
If the SDRAM is initialized before the application is loaded (see SDRAM Initialization by the Values in
the OTP Memory), you can place data and code into the memory sections. Therefore, you must define a
memory region in the Linker Description File (.LDF) and inform the linker as to the data or code that is to
be placed into memory.

Let’s assume we want to place data in SDRAM bank 1. If we take a closer look into a standard Linker
Description File (.LDF) which is generated by the VisualDSP++ Expert Linker wizard (in this example we
will have 512 MB of SDRAM), we see the internal SDRAM banks are named separately:

MEMORY
{ MEM_SYS_MMRS { TYPE(RAM) START(0xFFC00000) END(0xFFDFFFFF) WIDTH(8) }
 […]
 MEM_SDRAM0_BANK0 { TYPE(RAM) START(0x00000004) END(0x07ffffff) WIDTH(8) }
 MEM_SDRAM0_BANK1 { TYPE(RAM) START(0x08000000) END(0x0fffffff) WIDTH(8) }
 MEM_SDRAM0_BANK2 { TYPE(RAM) START(0x10000000) END(0x17ffffff) WIDTH(8) }
 MEM_SDRAM0_BANK3 { TYPE(RAM) START(0x18000000) END(0x1fffffff) WIDTH(8) }
} /* MEMORY */

Listing 7.Assigning memory

We will find the memory label “MEM_SDRAM0_BANK1” in the “SECTIONS” area again:

PROCESSOR p0
{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)
 RESOLVE(start, 0xFFA00000)
 KEEP(start, _main)

 SECTIONS
 { [...]

 sdram0_bank1
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(sdram0) $LIBRARIES(sdram0))
 INPUT_SECTIONS($OBJECTS(sdram0_bank1) $LIBRARIES(sdram0_bank1))
 INPUT_SECTIONS($OBJECTS(sdram0_data) $LIBRARIES(sdram0_data))
 INPUT_SECTIONS($OBJECTS(cplb) $LIBRARIES(cplb))
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 INPUT_SECTIONS($OBJECTS(voldata) $LIBRARIES(voldata))
 INPUT_SECTIONS($OBJECTS(constdata) $LIBRARIES(constdata))
 INPUT_SECTIONS($OBJECTS(cplb_data) $LIBRARIES(cplb_data))
 INPUT_SECTIONS($OBJECTS(.edt) $LIBRARIES(.edt))
 INPUT_SECTIONS($OBJECTS(.cht) $LIBRARIES(.cht))
 } > MEM_SDRAM0_BANK1

 [...]

 } /* SECTIONS */
} /* p0 */

Listing 8. Specifying memory sections

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 22 of 56

We see that several libraries and objects are mapped into this memory space. You can map an object or
library to more than one memory section. In this case, the linker decides which part of the data or code is
placed into each section of memory.

To place data explicitly in one memory section if using C/C++, use the pragma section directive. In our
case, we want to place the global variable x into internal SDRAM bank 1. The label sdram0_bank1 is
only mapped to internal SDRAM bank 1 and no other section. So we will use this label to map our
variable.

//define a variable which lies in SDRAM Bank 1
#pragma section ("sdram0_bank1")
long int x = 0;

We can do the same with our instruction code by assigning the prototypes of our functions to a section:

//define a function prototype of a function which lies in SDRAM Bank 1
#pragma section ("sdram0_bank1")
void foo();

As described in Increasing the SDRAM Performance of Your System, sometimes it is useful to map a data
section manually to prevent delays caused by opening and closing a page. Therefore, we define our own
memory section in the .LDF file:

 MEM_SDRAM0_BANK2 { TYPE(RAM) START(0x02000000) END(0x02ffffff) WIDTH(8) }
 MEM_SDRAM0_BANK3 { TYPE(RAM) START(0x03000800) END(0x03ffffff) WIDTH(8) }
 //define my own page
 MEM_SDRAM0_BANK3_PAGE0 { TYPE(RAM) START(0x03000000) END(0x030007FF) WIDTH(8) }

In the SECTIONS part of the Linker Description File, we will link all objects labeled MyDefinedMemory
into this memory space.

sdram0_bank3_page_0
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(MyDefinedMemory))
 } > MEM_SDRAM0_BANK3_PAGE0

Afterwards, in our C/C++ file, we place our array into this memory section.

//define an array which lies in my own defined memory space (Bank 3 Page 0)
#pragma section ("MyDefinedMemory")
long int MyArray[100];

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 23 of 56

4 SDRAM Hardware Design
Since the SDRAM is driven by frequencies greater than 50 MHz, the hardware layout must fulfill the
requirements of high-speed design. Nowadays, hardware designs satisfy many standards concerning EMI
and EMC. They have to ensure the signal integrity at high frequencies, and many of them are set in a low
power environment. Therefore, the right printed circuit board (PCB) design is a key factor. This section
explains how to design the connection between the Blackfin processor and the SDRAM on a PCB.

4.1 Connecting SDRAM to a Blackfin Processor (Schematics)

Blackfin processors provide a glueless interface to SDRAM. Depending on the Blackfin processor,
SDRAMs with a power supply requirement of 1.8V to 3.3V are supported.

A common design mistake occurs when is the Blackfin processor address pins are not connected to the
SDRAM correctly.

The address lines must be connected as described next.

4.1.1 ADSP-BF53x Series Processors
 Connect Blackfin processor’s ADDR1 to the SDRAM A0, ADDR2 to A1, etc.

 Do not use the ADDR11 of the Blackfin; connect SA10 to A10

 Connect ADDR18 to the SDRAM’s BA0

 Connect ADDR19 to the SDRAM’s BA1

 Connect /ABE0 to the DQML pin (for 16-bit SDRAM) or to DQM of the chip(s) connected to D0-D7

 Connect /ABE1 to the DQMH pin (for 16-bit SDRAM) or to DQM of the chip(s) connected to D8-D15

Figure 13. ADSP-BF53x processors: connections between the Blackfin processor and SDRAM

4.1.2 ADSP-BF561 Processors (16-bit SDRAM)
 Connect the Blackfin processor’s ADDR2 to the SDRAM’s A1, ADDR3 to A2, etc.

 Connect the Blackfin processor’s SDQM3 to the SDRAM’s A0

 Do not use the ADDR11 of the Blackfin processor; connect SA10 to A10

 Connect ADDR18 to the SDRAM’s BA0

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 24 of 56

 Connect ADDR19 to the SDRAM’s BA1

 Connect SDQM0 to DQML or to DQM (see above)

 Connect SDQM1 to DQMH or to DQM (see above)

 Connect the /SMSx to the /CS lines
(when using x16 and are using more than one SDRAM: to each chip one /SMS line)
(when using x8 and are using more than two SDRAMs: to each pair of two one /SMS line)

BF561

A2-A10, A12-A17 A1-A9, A11-A16

SDRAM

SA10 A10

D0-D15 DQ0-DQ15
SDQM0
SDQM1

DQML
DQMH

RAS

WE
CS

CAS

A18 A19 BA0 BA1

CKE
CLK

SRAS

SWE
SMS0-SMS3

SCAS

SCKE
CLK0_OUT SCLK

SDQM3 A0

Figure 14. ADSP-BF561 processors: connections between the Blackfin processor and 16-bit SDRAM

4.1.3 ADSP-BF561 Processors (32-bit SDRAM)
 Connect the Blackfin processor’s ADDR2 to the SDRAM’s A0, ADDR3 to A1, etc.

 Do not use the ADDR12 of the Blackfin; connect SA10 to A10

 Connect ADDR18 to the SDRAM’s BA0

 Connect ADDR19 to the SDRAM’s BA1

 Connect SDQM0 to DQML of SDRAM1(D0-D15)

 Connect SDQM1 to DQMH of SDRAM1

 Connect SDQM3 to DQML of SDRAM2(D16-D31)

 Connect SDQM4 to DQMH of SDRAM2

If you are using 8-bit SDRAM

 Connect SDQM0 to DQM of SDRAM1(D0-D7)

 Connect SDQM0 to DQM of SDRAM2(D8-D15)

 Connect SDQM0 to DQM of SDRAM3 (D16-D23)

 Connect SDQM0 to DQM of SDRAM4 (D24-D31)

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 25 of 56

Figure 15. ADSP-BF561 processors: connections between the Blackfin processor and 32-bit SDRAM

Another problem is caused when the /BR pin is left floating. The Blackfin processor interprets the signal
as bus request and will answer with the /BG signal, which will block the parallel bus for an infinite time.
So always put a pull-up resistor on the /BR pin.

Use decoupling capacitors to decouple the SDRAM power supply.

Add a series resistor close to each data pin of the SDRAM. The next section explains how to determine
the resistance.

4.2 High-Speed Design

The layout of the SDRAM connection is a critical factor, especially on low-power designs. This section
explains how to optimize the design of the SDRAM layout to fit your application’s requirements. The
most critical connections are the clock, the lower address lines, the DQM, and the data lines.

4.2.1 Effects that Impact Signal Quality
This section describes effects that are influenced by your hardware design.

Reflection
If the impedance of a connection line is equivalent to the input resistance of the receiver, the energy will
be fully absorbed by the resistance. Otherwise, the transmission’s energy will be thrown back. This will
interfere with the desired signal by superposition.

Coupling
The currents conducted through different traces influence each other. When a changing current flows
down trace A, it creates a changing magnetic field that couples into trace B. The coupling generates a
current in trace B that is dependent upon the coupling factor. The inducted current’s direction is opposite
to the current in trace A; this effect is negative if two signal traces influence each other (crosstalk). But
the effect can also be positive when the influence is between the signal line and its return line (GND). The
coupled signal helps to boost the return signal, and the returning signal boosts the primary signal.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 26 of 56

4.2.2 Avoid Reflections
Calculate the characteristic impedance to add the correct termination resistor.

There are several ways to terminate a transmission line:

 Series termination

 Parallel termination

 Thevenin termination

 Termination by diodes

 AC termination

The most important techniques for SDRAM devices are described next.

Series Termination
For SDRAM, use a series termination (Figure 16). Place the series resistor close to the output pin of the
transmitter. The advantage is that there will not be any DC current draw (like if you are using a parallel
termination). This is essential for low-power designs. The disadvantage is that there will be a nearly 100%
refection at the receiver, which is thrown back to the transmitter. Since the lengths of SDRAM traces are
short and the traces of one signal from the Blackfin processor to each of the SDRAM chips have nearly
the same length, this effect will not impact the SDRAM’s functionality.

Figure 16. Using series termination

To avoid a second reflection from the driver (transmitter), the resistor must have the right value. The
value for the series termination resistor has to be set so that the sum of it and the output impedance of the
driver equals the impedance of the trace. As an equation, we get the following:

OUTZZ −= 0SR , whereby ZOUT is the output impedance of the transmitter

The read command is more critical than a write command. Thus, place the resistor of the data line as close
as possible to the SDRAM data pin.

Parallel Termination
The alternative is to use a parallel termination (Figure 17). As mentioned earlier, this is not necessary for
standard SDRAM when you follow the design guidelines at the end of this chapter.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 27 of 56

Figure 17. Using parallel termination

0

0 coefficent Reflection
ZZ
ZZ

L

L

+
−

=ρ

To keep the reflection as low as possible, the parallel termination resistor (ZL) should be equivalent to Z0.

 Consider whether you even need termination. An additional resistor emits further EMI.

L Note that for ADSP-BF51x and ADSP-BF52x processors termination is mandatory.
Consult the datasheet for more details.

4.3 Design Guidelines for the SDRAM Connection

With regard to EMC and signal integrity, the following design guidelines are recommended. When you
start your SDRAM PCB layout, do not treat all signals the same, consider the importance of each signal
and place the traces of the most critical signals first. The following succession is suggested:

1. Clock distribution

2. Data lines and DQM lines, command lines including SA10

3. Address lines

4. Other signals (e.g., CKE)

4.3.1 Component Placement Considerations
Consider the following points while laying out your PCB:

 Place the SDRAM chips close to the Blackfin processor.

 Keep the traces as short as possible.

 When you are distributing a signal, all traces should have the same path length (Figure 18) to the
devices (if possible). Avoid loops like the one shown in Figure 19.

Figure 18. Right: spread traces and make their lengths equal

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 28 of 56

S
D
R
A
M

S
D
R
A
M

Figure 19. Wrong: traces that loop around

4.3.2 Using the Rounding Function of Your Layout Tool at Trace Edges
Figure 20 shows a PCB trace edge that does not use rounding. Figure 21 shows the same trace edge when
the rounding feature is enabled.

Figure 20. Wrong: Trace edges lack rounding

Figure 21. Right: Trace edges are rounded

4.3.3 Placing the VCC and GND Planes with as Little Distance as Possible
Figure 22 shows a 4-layer PCB, which does not insulate the critical signals. Figure 23 shows proper
insulation of a 4-layer PCB..

VCC

GND

other signals

critical signals

Figure 22. Wrong: VCC and GND planes are too far apart

critical signals

other signals

VCC
GND

Bold layer

As thin as possible

Figure 23. Right: VCC and GND planes are close together

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 29 of 56

4.3.4 Insulating Critical Signals by Placing Them in the Inner Layers
Figure 24 shows a 6-layer PCB, in which critical signals are not insulated. Figure 25 shows proper
insulation.

Figure 24. Wrong: critical signals not properly insulated

Figure 25. Right: minimize the distance between critical signals and the ground plane

4.3.5 Placing the Series Resistor Close to the SDRAM
Figure 26 shows a signal path that with too many vias; the series resistor is too far from the SDRAM.
Figure 27 shows a short signal path without vias and a series resistor that is next to the SDRAM.

Figure 26. Wrong: too many vias in critical signal path and series resistor is too far away

Figure 27. Right: the series resistor is close to the SDRAM

4.3.6 Avoiding Trenches in the GND Plane
Figure 28 shows a GND plane with a trench. The GND plane in Figure 29 avoids having a trench.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 30 of 56

Figure 28. Wrong: ground plane with a trench

Figure 29. Right: ground plane without a trench

4.3.7 Minimizing Back-Current Paths from Vias
If you are not able to avoid a direction change in a via from one layer to another, try to minimize the way
of the back current. Figure 30 shows a signal path that runs in two directions from the via. The direction
change in Figure 31 is better.

Figure 30. Wrong: layer-to-layer direction change

Figure 31. Right: avoiding a direction change

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 31 of 56

4.3.8 Make use of the drive strength control functionality
To reduce electromagnetic emissions, lower the drive strength of the EBIU pins. But keep an eye on the
signals: We have to ensure that we supply enough current to load the capacity of lines and pins within the
timing specifications. 00b within the bit fields indicates low drive strength (see data sheet), 01b indicates
high drive strength.

Figure 32. The Drive Strength control register of the BF52x

4.3.9 Make use of the slew control functionality
A smoother transition also helps reducing electromagnetic emissions. Verify again whether you stay
within the timing specifications after changing it to slower slew rate. 00b indicates a faster slew rate, 01b
a slower slew rate.

Figure 33. The Slew Rate register of the BF52x

5 Using a Blackfin Processor with Less than 16 MB of SDRAM
Using less than 16 MBs (128 Mbits) of SDRAM is especially important for low-power applications. This
section provides guidance for applications that use less than 16 MBs.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 32 of 56

5.1 System Settings

On the hardware side, there are no special settings. Just connect the address lines as described in SDRAM
Hardware Design.

The first step in using less than 16 MB is setting the SDRAM external bank size bits of the EBIU_SDBCTL
(SDRAM memory bank control) register to 16 Mbytes. This configures the Blackfin processor's internal
address to expect 16 Mbytes, and the address space will be fragmented as shown in Figure 34.

Figure 34. Address space

The “aliased” address space’s content is a copy of the according bank, and every write access to this space
results in a write access into the “real” bank. This must be considered by the Linker Description File
(.LDF), or the Blackfin processor will place instructions and data into addresses that do not exist.

a This type of address failure cannot be detected by the Blackfin processor. There is no
functionality that tests whether an address is valid. This will cause failures later in your
application when the core is tries to read from a non-existent address space, getting dummy
values, and then interprets this as valid instruction code or data.

5.2 Changing the .LDF File

First, ensure that the .LDF file will not be changed by the Expert Linker wizard. Therefore, open the
Project Options dialog box (Project -> Project Options) to the Remove Startup Code/LDF page
and select the Leave the files in the project, but stop regenerating them option (Figure 35).

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 33 of 56

Figure 35. Ensuring that the .LDF file will not be changed

Doing so allows you to change the .LDF file manually.

For example, if we use a 64-Mbit SDRAM (8 MB), the address space in the Linker Description File has:

MEM_SDRAM0_BANK0 { TYPE(RAM) START(0x00000000) END(0x001FFFFF) WIDTH(8) }
MEM_SDRAM0_BANK1 { TYPE(RAM) START(0x00400000) END(0x005FFFFF) WIDTH(8) }
MEM_SDRAM0_BANK2 { TYPE(RAM) START(0x00800000) END(0x009FFFFF) WIDTH(8) }
MEM_SDRAM0_BANK3 { TYPE(RAM) START(0x00C00000) END(0x00DFFFFF) WIDTH(8) }

Figure 36. Ensuring that the .LDF file will not be changed

As shown in Figure 36, there are gaps of 2 MB in our address space.

5.2.1 Excursus: Background
The .LDF file specifies where code and data are placed in memory space. The EBIU settings configure the
SDRAM controller of the Blackfin processor and specify size, timing, and features of the SDRAM. Since
the EBIU settings cannot set to that of an 8 MB SDRAM, we have to set the SDRAM size to 16 MB.
What does this mean to the addressing? We are using an SDRAM with a column address width (CAW) of
10 bits, which means we can address 2^10 = 1024 columns. With each column and row address, we are
addressing 2 bytes (for x16 SDRAM). Now, we have set the RAM to 16 MBs (=16777216 bytes), which
means we have a row address width of 13 (memory size / (data width * 2^addresses) = 16777216/(2 bytes
* 2^10)= 8192= 2^13), but we are using only a 8 MB RAM, which has a row address width of 12. But the
controller has calculated a row address width of 13. The row address and the column address are sent to
the SDRAM time multiplexed. Looking at your SDRAM, you see 12 address lines and 2 bank address
lines. But the controller has calculated 13 and is using 13. Since the 13th address line is not connected, you
will address the same physical address independent of the state of bit 13 of the row address. This is why
the memory space is mirrored.

For example, row address 0x1000 will access the same data as row address 0x0000. It is critical when you
place something into aliased memory space, because you overwrite something in the other address space.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 34 of 56

Therefore, we define the .LDF file that way, so we will not place anything into the mirrored RAM:

MEM_SDRAM0_BANK0 { TYPE(RAM) START(0x00000000) END(0x001FFFFF) WIDTH(8) }
MEM_SDRAM0_BANK1 { TYPE(RAM) START(0x00400000) END(0x005FFFFF) WIDTH(8) }
MEM_SDRAM0_BANK2 { TYPE(RAM) START(0x00800000) END(0x009FFFFF) WIDTH(8) }
MEM_SDRAM0_BANK3 { TYPE(RAM) START(0x00C00000) END(0x00DFFFFF) WIDTH(8) }

5.3 SDRAMs with 2 Banks

Several SDRAMs have only two banks. The hardware connection has to be like Figure 37.

Blackfin

Addr[1]

Addr[18]
Addr[19]

SDRAM

BA

A0

Figure 37. Hardware connection for SDRAM with two banks

BA is the bank selection pin of the SDRAM. It must be connected with the Addr[18] of the Blackfin
processor. Leave Addr[19] floating. Connect the other addresses as described in SDRAM Hardware
Design. Set the EBIU_SDBCTL (SDRAM memory bank control) register to 16 Mbytes. The logical address
space will be fragmented as shown in Figure 38.

Figure 38. Fragmented logical address space

So we have to use adjust the .LDF file again to set up the memory space. Proceed as described above.

Figure 39 shows an example memory space for a 16-Mbit (2 MB) SDRAM.

MEM_SDRAM0_BANK0 { TYPE(RAM) START(0x00000000) END(0x000FFFFF) WIDTH(8) }
MEM_SDRAM0_BANK1 { TYPE(RAM) START(0x00400000) END(0x004FFFFF) WIDTH(8) }

Figure 39. Example: Memory space for a 16-Mbit (2-MB) SDRAM

As shown, there is a 3-MB gap in our address space.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 35 of 56

6 Increasing the SDRAM Performance of Your System
In many applications, execution time is one of the key factors. The placement of data and instructions can
have a significant impact to the processing speed of your application. This section presents an overview of
the possible ways of increasing SDRAM performance. For a system approach, refer to System
Optimization Techniques for Blackfin Processors (EE-324)[2].

6.1 Optimal Multi-Bank Accesses

It is time-consuming to open a page via the activate command or close a page via the precharge command.
Thus, reducing page changeovers results in better SDRAM performance.

A case that applies to many applications is coping data from one array to another via memory DMA. The
problem occurs when both arrays are on the same internal bank. If this happens within a page, it will not
be a problem, but if the dimension of the two arrays exceeds the page size, the DMA will access at least
two pages.

Figure 40 shows how the DMA works within a bank (single bank access).

Figure 40. Accesses to one memory bank

The data is placed on different pages on the same bank. An activate and precharge must be executed after
each switch between source and destination DMA. Additionally, we need to take into account that the
core (or the cache) is may access the bank as well. There is a delay every time between the reads and the
writes. This delay can be enlarged by the internal DMA architecture: The DMA is designed as a feedback
control state machine, which introduces additional wait states under special circumstances.

To avoid such a time-consuming case, organize the memory in a way that allows inter-bank DMA copies.
Figure 41 shows such an approach.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 36 of 56

Figure 41. Multi-banking approach via DMA and core

The core gets its code from bank 0, and the MDMA transfer runs from bank 3 to bank 2. Figure 42 shows
the sequence of the data transfer between two banks. As shown, the number of precharge commands and
activate commands decreases significantly. As discussed earlier, because precharge and activate
commands are time-intensive procedures, this technique saves a lot of time.

Figure 42. Intelligent bank accesses

6.2 Optimal Pages Accesses

This section describes how to improve page accesses. If you are able to keep accesses within a page, now
further activate and precharge commands are necessary (besides those that are issued to do the refresh).
The following description shows how to access pages separately.

Open the Remove Startup Code/LDF page of the Project Options dialog box (Project -> Project
Options) and select the Leave the files in the project, but stop regenerating them option.
Also, select the Remove the generated LDF check box. Be sure to confirm the selections by clicking the
OK button.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 37 of 56

Figure 43. Project Options dialog box settings

Now we are able to change the Linker Description File (.LDF).

Pages for the ADSP-BF53x Processors
ADSP-BF53x processors have a 16-bit memory interface. The address mapping scheme is defined in
Figure 44.

Figure 44. ADSP-BF53x memory mapping scheme

There are different page sizes, depending on the SDRAM being used. Table 2 shows 16-bit EBIU page
size with regard to the EBCAW bits.

EBCAW Page bytes in Hex

8 bits 0x200

9 bits 0x400

10 bits 0x800

11 bits 0x1000

Table 2. Page sizes for 16-bit EBIU

Consider a column address width of 10 bits. Every page has 0x800 bytes, and we are able to define our
memory mapping in the .LDF file (Listing 9).

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 38 of 56

MEMORY
{...
/* We define 10 pages in bank 0 of a 10-bit memory of a BF53x
SDRAM_BANK_0_PAGE_0 { TYPE(RAM) START(0x00000000) END(0x000007FF) WIDTH(8) }
SDRAM_BANK_0_PAGE_1 { TYPE(RAM) START(0x00000800) END(0x00000FFF) WIDTH(8) }
SDRAM_BANK_0_PAGE_2 { TYPE(RAM) START(0x00001000) END(0x000017FF) WIDTH(8) }
SDRAM_BANK_0_PAGE_3 { TYPE(RAM) START(0x00001800) END(0x00001FFF) WIDTH(8) }
SDRAM_BANK_0_PAGE_4 { TYPE(RAM) START(0x00002000) END(0x000027FF) WIDTH(8) }
SDRAM_BANK_0_PAGE_5 { TYPE(RAM) START(0x00002800) END(0x00002FFF) WIDTH(8) }
SDRAM_BANK_0_PAGE_6 { TYPE(RAM) START(0x00003000) END(0x000037FF) WIDTH(8) }
SDRAM_BANK_0_PAGE_7 { TYPE(RAM) START(0x00003800) END(0x00003FFF) WIDTH(8) }
SDRAM_BANK_0_PAGE_8 { TYPE(RAM) START(0x00004000) END(0x000047FF) WIDTH(8) }
SDRAM_BANK_0_PAGE_9 { TYPE(RAM) START(0x00004800) END(0x00004FFF) WIDTH(8) }

//if we would define a section for each page we have to define 8192...
//so we define sections only for the amount of pages which are performance
//relevant
SDRAM_BANK_0_OTHER{ TYPE(RAM) START(0x00005000) END(0x00FFFFFF) WIDTH(8) }
/* the pages on the second bank… */
SDRAM_BANK_1_PAGE_0 { TYPE(RAM) START(0x01000000) END(0x010007FF) WIDTH(8) }
SDRAM_BANK_1_PAGE_1 { TYPE(RAM) START(0x01000800) END(0x01000FFF) WIDTH(8) }
SDRAM_BANK_1_PAGE_2 { TYPE(RAM) START(0x01001000) END(0x010017FF) WIDTH(8) }
SDRAM_BANK_1_PAGE_3 { TYPE(RAM) START(0x01001800) END(0x01001FFF) WIDTH(8) }
SDRAM_BANK_1_PAGE_4 { TYPE(RAM) START(0x01002000) END(0x010027FF) WIDTH(8) }
SDRAM_BANK_1_PAGE_5 { TYPE(RAM) START(0x01002800) END(0x01002FFF) WIDTH(8) }
SDRAM_BANK_1_PAGE_6 { TYPE(RAM) START(0x01003000) END(0x010037FF) WIDTH(8) }
...
}
PROCESSOR p0
{
SECTIONS
 { ...
 sdram0_page_0
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(sdram0page0))
 } > SDRAM_BANK_0_PAGE_0
 ...
}
}

Listing 9. Splitting memory into pages

Pages for ADSP-BF561 Processors
ADSP-BF561 processors have a 32-bit memory interface. When using the 16-bit interface, addressing is
the same as for ADSP-BF53x processors. The 32-bit address mapping scheme of the ADSP-BF561
processor is defined in Figure 45.

Figure 45. ADSP-BF561 memory mapping scheme

Table 3 shows page size for 32-bit EBIU with regard to the EBCAW bits.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 39 of 56

EBCAW Page bytes in Hex

8 bits 0x400

9 bits 0x800

10 bits 0x1000

11 bits 0x2000

Table 3. Page sizes for 32-bit EBIU

What’s the advantage of accessing the pages separately? If we can ensure that we stay within a page, no
additional precharge and activate commands are needed, saving time.

Figure 46 shows a peripheral DMA approach to avoid page switches. The DMA writes the incoming data
to pages to different banks.

Figure 46. Open page DMA approach

6.3 SDRAM Performance Items for Core Accesses

Core accesses are the most performance-critical SDRAM accesses. So, if you do not use data cache for
any reason, you must have a strategy to organize accesses to the SDRAM. This section describes the
reason for this bottleneck and how to handle it.

Buffers are used to handle the data transfer between the system clock domain and the core clock domain.
These buffers are organized as a state machine, which enables you to change the core and system clock
without concern for internal processes. Depended on the core/system clock ratio, wait states are
introduced to organize reads and writes by the core to and from the system domain.

One approach to solving this problem is to work with DMA transfers. Therefore, we are using DMA to
transfer data that we want to process into internal memory. DMA has an internal FIFO buffer structure
and can read from SDRAM without additional time penalties. Software planning and design is essential,
especially when working with very large (size of the array >> internal data memory) multi-dimensional
arrays. In this case, your algorithm must access this array in different manners. You can use DMA to
order the array optimally for your algorithm.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 40 of 56

6.3.1 Code Overlays
A disadvantage of using cache is that the cache expects a program flow that may not fit to your program;
thus, it results often in cache misses. Another approach is to load the necessary code into internal memory
by DMA transfer; the code will be organized by an intelligent overlay manager that can predict which
piece of code is needed next. Whether there are any performance improvements by using an overlay
manager depends very much on your system design and on program flow. For most applications, an
optimization of the cache will be a better and easier approach to improve system performance. The first
challenge is to identify the modules of your program that are relatively independent and do not need to
call each other directly. Separate the overlays from the program, and place their machine code in the
larger memory. Develop an overlay manager that organizes intelligent DMA transfers of the overlays
from the SDRAM to the internal memory.

6.4 SDRAM Performance Items When Using Cache

Code
Optimizing memory for cache access means reducing cache misses. We have to organize the code and
data in a way that minimizes cache misses. When optimizing the code for cache accesses, keep the code
straight as possible and declare functions that are not often used in the program code as inline. This keeps
the code compact and minimizes the number of cache misses. Functions that are often called should be
placed into internal memory, if possible.

Data
Look at the algorithm and try to find a way to perform sequential data accesses. An example for a Fast
Fourier Transformation (FFT) that accesses the data sequentially is shown in Writing Efficient Floating-
Point FFTs for ADSP-TS201 TigerSHARC® Processors (EE-218)[8]. In C, a multi-dimensional array has
the following order in memory (here a 3-D array):

0,0,0A , 0,0,1A , 0,0,2A , 0,1,0A , 0,1,1A , 0,1,2A , 0,2,0A , 0,2,1A , 0,2,´2A , 1,0,0A , 1,0,1A , 1,0,2A , 1,1,0A , 1,1,1A , 1,1,2A ,

1,2,0A , 1,2,1A , 1,2,´2A , 2,0,0A , 2,0,1A , 2,0,2A , 2,1,0A , 2,1,1A , 2,1,2A , 2,2,0A , 2,2,1A , 2,2,´2A

Listing 10 shows the code to fill an array by the sequential access.

 for (i=0;i<3; i++)
 {
 for (j=0;j<3; j++)
 {
 for (k=0;k<3; k++)
 { MyArray[i][j][k] = getValue();
 }
 }
 };

Listing 10. Accessing an array optimal

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 41 of 56

7 Optimizing Power Consumption
Blackfin processors are used often in portable applications or low-power applications. In such
applications, it is essential to drive the power consumption as low as possible. The SDRAM boosts power
consumption by a high percentage. Therefore, the right choice, use of, and configuration of SDRAM are
fundamental to low-power design. This section provides an overview of ways to minimize power
consumption.

7.1 Introduction: Power-Consumption Figures

Although various standard symbols (Table 4) are used by device manufacturers to define power
consumption, the procedures used to measure these figures vary. Thus, there are differences in
interpreting these values.

Symbo
l

Meaning

CC1I Operating current in active mode

CC2I Precharge standby current

CC3I No operating/ standby current

CC4I Operating current in burst mode / all banks
activated

CC5I Auto-refresh current

CC6I Self-refresh current

Table 4. Power consumption measurement symbols

7.2 Tips for Lowering SDRAM Power Consumption

Following are tips toward lowering SDRAM power consumption.

 Use as less SDRAM as possible.

 Use 1.8V or 2.5V mobile SDRAM (this is not possible for all Blackfin processors, see Brief
Introduction to SDRAM).

 Lower the refresh rate in a low-temperature environment. The refresh rate of 64 ms is specified for the
worst-case scenario – high temperature. Thus, you still have room left to lower it when you are
operating in a standard environment.

 Try to do data transfers between memory banks (not within memory banks).

 Enable the self-refresh bit (SRFS) in the EBIU_SDGCTL register. In this mode, the power dissipation of
the SDRAM is at the lowest point.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 42 of 56

7.3 Mobile SDRAM

Use mobile SDRAM or low-power SDRAM for embedded applications with high power-consumption
requirements. In these applications, the SDRAM is used very infrequently; thus, most of the time it is in
the idle state. Mobile SDRAM offers special modes that reduce the power consumption when the
SDRAM is in idle mode. Features that are supported by Blackfin processors are temperature-compensated
self-refresh (TCSR) and partial-array self-refresh. The temperature-compensated self-refresh feature
allows you to reduce the self-refresh frequency while it is in the idle state at temperatures below 45°C.
The leakage of the memory cells is very temperature dependent; when the temperature is high, the leakage
is higher than when the temperature is low. The self-refresh rate for standard SDRAM is set to a worst-
case value for the highest temperature, and the SDRAM is specified. At the Blackfin processor, you can
set the temperature via the TCSR bit of the EBIU_SDGCTL register. The value of TCSR indicates the
temperature border (for example, 45°C means you are operating below 45°C).

Many applications use most of the SDRAM devices only to buffer data arrays, which occurs after the
processing. For these applications, the partial-array self-refresh feature is a good approach to saving
power. This feature enables your application to select the memory banks that are to be refreshed during
idle mode. If you have any code on the SDRAM, place it at SDRAM bank 0 and bank 1; otherwise, it will
be lost.

For this application, use a low-voltage (1.8V or 2.5V) Blackfin processor.

7.4 Going into Hibernate and Recover

ADSP-BF537, ADSP-BF54x, and ADSP-BF52x processors preserve SDRAM content while the processor
is sent to hibernate mode. Therefore, the CKELOW bit in the VR_CTL register must be set to 1 to maintain the
CKE signal low during hibernate, which will prevent the SDRAM from losing data. The content of internal
memory and all registers (except the VR_CTL register) will be lost. Therefore, the program has to write all
the register settings and the internal memory content to SDRAM.

The following steps are used to go into hibernate mode and recover the data.

Step 1
Save all important registers to the SDRAM.

Save the important data of your internal memory to the SDRAM.

Ensure that the CKELOW bit is set in the VR_CTL register and the self-refresh bit in the SDGCTL register.

Send the processor into hibernate mode (Figure 47 and Listing 11).

Figure 47. Going into Hibernate mode

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 43 of 56

 SaveTheMemory();
 SaveTheRegister();
 //Let's setup the RTC to wake up
 SetupRTC();
 IntMask = cli();
 *pVR_CTL = (WAKE | //wake by
 CKELOW | //keeps the content of the SDRAM
 CANWE | //ensures that the CAN RX can wake up the BF
 (*pVR_CTL & ~FREQ)); // Send to hibernate

Listing 11. Going into Hibernate mode

Step 2
The processor is in hibernate mode (Figure 48). The content of all registers except VR_CTL are lost. The
data is stored in SDRAM.

Figure 48. Hibernate mode

Step 3
After waking up the processor from hibernate mode (Figure 49), the processor boots in the initialization
file. By checking the CKELOW bit, the processor determines whether it is coming from hibernate or from
reset. When the Blackfin processor is coming from reset, the processor continues the boot process;
otherwise, it calls a routine to restore the internal memory and the registers and then jumps to the
execution code.

Figure 49. Recovering from hibernate mode

7.5 Structuring Data for Low Power Consumption

Not only are the precharge and activate operations time consuming, they also have a massive impact on
power consumption. Therefore, keep the number of these operations as low as possible.

A precharge operation during the application will be executed at page breaks and SDRAM refreshes.
Therefore, organize the data in a way that keeps the number of page breaks as low as possible. Refer to
Increasing the SDRAM Performance of Your System for examples.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 44 of 56

Appendices

Appendix A: Glossary

access time The time from the start of one device access to the time when the next
access can be started.

array Memory area for data storage. The array consists of rows and columns,
where each memory cell is located at an address where an intersection
occurs. Each bit in memory is found by its row and column coordinates

asynchronous A process where operations proceed independently.

auto precharge An SDRAM function that closes a page at the end of a burst operation.

auto refresh A mode where an internal oscillator establishes the refresh rate, and an
internal counter keeps track of the address to be refreshed.

bank A bank can mean the number of physical banks (same as rows) on the
SDRAM module. It can also mean the number of internal logical banks
(usually 4 banks nowadays) within an individual SDRAM device.

burst mode Bursting is a rapid transfer of data to a series of memory cell locations.

bypass capacitor A capacitor with the primary function of stabilizing a power supply voltage,
especially for an adjacent device or circuit

bus cycle A single transaction between a memory device and the system domain of
the Blackfin processor.

CAS Column address strobe. A control signal that latches a column address into
the SDRAM control register.

CAS-before-RAS (CBR) Column address strobe before row address strobe. CBR is a fast refresh
function that keeps track of the next row to be refreshed.

column Part of the memory array. A bit is stored where a row and column intersect.

crosstalk A signal induced in one wire or trace by current in another wire or trace

DDR Double data rate. The data is transferred on the rising and falling edge of the
clock. Since the address lines keep the same, data of sequential addresses
are transferred.

DQM Data mask signal used for masking during a write cycle. There is one DQM
signal per eight I/Os.

DRAM Dynamic Random Access Memory. A type of memory device usually used
for mass storage in computer systems. The term dynamic refers to the
constant refresh the memory must have to retain data.

EBIU External Bus Interface Unit. It provides mainly the synchronous external
memory interface to SDRAM which is compliant to the PC100 and PC133
standard and an asynchronous interface to SRAM, ROM, FIFO, flash
memory, and FPGA/ASIC designs.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 45 of 56

EMC Compliance to rules and regulations controlling EMI

EMI Interference caused by electromagnetic radiation

external buffer An external buffer is needed to drive the SDRAM command, clock, clock
enable, and address pins, if they have a higher load than 50 pF. The
resulting capacitance is the number of input pins multiplied by the
capacitance of a SDRAM input pin (an input pin of the SDRAM has around
4.5 pF [consult your SDRAM data sheet]) plus the capacitance of the PCB
track.

FBBRW Fast back-to-back read-to-write. In the standard application, the write
command is delayed by one clock cycle after a read command is processed.
Fast-back-to-back-read-to-write enables to write directly after the read
command processing without the 1-cycle delay. Due to the fact that your
data bus has to switch quickly between the read and write data, this feature
is very dependent on the capacity of your data bus. This includes the
number of SDRAM chips and the design of the data bus circuit paths.

FPM Fast page mode. A common SDRAM data access scheme.

hibernate A special power mode of the Blackfin processor that provided the lowest
power dissipation. The I/O supply keeps established while the core is
powered down. The Blackfin processor can be awoken by several external
events.

interleaving The process of read/writing data alternately from two or more pages in the
SDRAM.

JEDEC Joint Electron Device Engineering Council

latency The length of time, usually expressed in clock cycles, from a request to read
a memory location and when the data is actually ready.

memory cycle time The time it takes for a complete memory operation (such as a read or write)
to take place.

microstrip A trace configuration where there is a reference plane on only one side of a
signal trace

OTP Memory One-Time-Programmable Memory. On-chip memory, which can be used
(among other things) to store setup values and keys for the Blackfin security
scheme.

page The number of bytes that can be accessed with one row address.

page mode An operation that takes place when RAS is taken logic low and a column
address is strobed in. The SDRAM remembers the last row address and
stays on that row and moves to the new column address.

PCB Printed circuit board

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 46 of 56

RAS Row address strobe. The control signal that latches the row address into the
SDRAM. It is used in conjunction with the column address to select an
individual memory location.

RAS to CAS delay The time between a row access strobe and a column address strobe.

read time The time required for data to appear at the output once the row and column
address become valid. Read time is also referred to as access time.

refresh A periodic restoration of an SDRAM cell charge needed to maintain data.

refresh cycle The time period in which one row of an SDRAM is refreshed

refresh period The minimum time that each row in the SDRAM must be refreshed

row Part of the memory array. A bit is stored where a row and column intersect.

SDR Single data rate. The data is transferred only once at one clock cycle. This
definition was introduced to differentiate this SDRAM from DDR.

SDRAM self-refresh In normal operating mode, the Blackfin processor will control the refresh of
the data cells by sending an auto-refresh command. But if the application
has a need to give up control over the SDRAM)for example, when the
processor is going into hibernate mode or in a multiprocessor application),
the SDRAM has to take over the responsibility of its data consistency.
Another case to send the SDRAM in self-refresh is reducing power
consumption. When the Blackfin processor is sending a self-refresh
command, the SDRAM will clock itself and will do self-refresh cycles. The
disadvantage is the delay when you want to access a SDRAM in self-
refresh.

strobe An input control signal that latches data synchronously into the SDRAM

stripline A circuit board configuration in which a signal trace is placed between two
reference planes

synchronous memory A memory device that has its signals synchronized to a reference clock.

termination One or more components used in conjunction with a transmission line to
control signal reflections

write time The time from which data is latched into the SDRAM until it is actually
stored in a memory location.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 47 of 56

Appendix B: Code Examples, Schematics, and Excursus

Initialization Code (Chapter 2)
Listing 12 shows an example of initialization in assembly language.

//SDRAM Refresh Rate Setting
 P0.H = hi(EBIU_SDRRC);
 P0.L = lo(EBIU_SDRRC);
 R0 = 0x406 (z);
 w[P0] = R0;
//SDRAM Memory Bank Control Register
 P0.H = hi(EBIU_SDBCTL);
 P0.L = lo(EBIU_SDBCTL);
 R0 = EBCAW_9 | //Page size 512
 EBSZ_64 | //64 MB of SDRAM
 EBE; //SDRAM enable
 w[P0] = R0;
//SDRAM Memory Global Control Register
 P0.H = hi(EBIU_SDGCTL);
 P0.L = lo(EBIU_SDGCTL);
 R0.H= hi(~CDDBG & // Control disable during bus grant off
 ~FBBRW & // Fast back to back read to write off
 ~EBUFE & // External buffering enabled off
 ~SRFS & // Self-refresh setting off
 ~PSM & // Powerup sequence mode (PSM) first
 ~PUPSD & // Powerup start delay (PUPSD) off
 TCSR | // Temperature compensated self-refresh at 85
 EMREN | // Extended mode register enabled on
 PSS | // Powerup sequence start enable (PSSE) on
 TWR_2 | // Write to precharge delay TWR = 2 (14-15 ns)
 TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)
 TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)
 TRAS_6 | // Bank activate command delay TRAS = 4
 PASR_B0 | // Partial array self refresh Only SDRAM Bank0
 CL_3 | // CAS latency
 SCTLE); // SDRAM clock enable

 R0.L= lo(~CDDBG & // Control disable during bus grant off
 ~FBBRW & // Fast back to back read to write off
 ~EBUFE & // External buffering enabled off
 ~SRFS & // Self-refresh setting off
 ~PSM & // Powerup sequence mode (PSM) first
 ~PUPSD & // Powerup start delay (PUPSD) off
 TCSR | // Temperature compensated self-refresh at 85
 EMREN | // Extended mode register enabled on
 PSS | // Powerup sequence start enable (PSSE) on
 TWR_2 | // Write to precharge delay TWR = 2 (14-15 ns)
 TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)
 TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)
 TRAS_6 | // Bank activate command delay TRAS = 4
 PASR_B0 | // Partial array self refresh Only SDRAM Bank0
 CL_3 | // CAS latency
 SCTLE) ; // SDRAM clock enable
 [P0] = R0;

Listing 12. Initialization code example in assembly language

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 48 of 56

Schematics to Interface SDRAM to the Blackfin Processor (Chapter 4)
The next few pages show implementation examples. These schematics are given to illustrate the right
connection between SDRAM and the Blackfin processor (rather than as an approach to signal integrity).

Ti
tle

S
ize

D
oc

um
en

t
N

um
be

r
R

ev

D
at

e:
S

he
et

of

<D
oc

>
1.

0

In
te

rf
ac

e
th

e
B

la
ck

fi
n

to
 S

D
R

A
M

A

1
1

W
ed

ne
sd

ay
,

Se
pt

em
be

r
13

,
20

06

P
11

A1
9

P
12

A1
8

P
13

A1
7

N
11

A1
6

M
11

A1
5

N
12

A1
4

N
13

A1
3

N
14

A1
2

M
14

A1
1

M
13

A1
0

M
12

A0
9

L1
2

A0
8

K
12

A0
7

L1
3

A0
6

K1
3

A0
5

J1
3

A0
4

L1
4

A0
3

K
14

A0
2

J1
4

A0
1

H
12

A
BE

1
H

13
AB

E
0

D
15

P4

D
14

P5

D
13

N
5

D
12

M
5

D
11

P6

D
10

N
6

D
09

M
6

D
08

P7

D
07

N
7

D
06

M
7

D
05

P8

D
04

N
8

D
03

M
8

D
02

P9

D
01

N
9

D
00

M
9

AM
S3

G
12

AM
S2

F1
3

AM
S1

F1
4

AM
S0

E1
4

A
O

E
G

13

A
R

E
G

14

A
W

E
H

14

A
R

D
Y

E1
3

C
LK

O
U

T_
SC

LK
B1

4

S
C

K
E

B1
3

SA
10

E1
2

S
R

A
S

D
13

S
C

A
S

C
14

S
W

E
D

12

S
M

S
C

13

BR
D

14

BG
H

N
10

BG
P1

0

U
1A

A
D

S
P-

BF
53

7

D
Q

0
2

D
Q

1
4

D
Q

2
5

D
Q

7
13

BA
0

20

BA
1

21

A1
0

22

A0
23

A1
1

35

A1
2

36

C
KE

37

C
LK

38

D
Q

M
H

39

D
Q

8
42

D
Q

9
44

D
Q

10
45

D
Q

11
47

D
Q

12
48

D
Q

3
7

D
Q

4
8

D
Q

5
10

D
Q

6
11

D
Q

M
L

15

W
E

16

C
AS

17

R
AS

18

C
S

19

A1
24

A2
25

A3
26

A4
29

A5
30

A6
31

A7
32

A8
33

A9
34

D
Q

13
50

D
Q

14
51

D
Q

15
53

VD
D

1

VD
D

14

VD
D

27

VD
D

Q
3

VD
D

Q
9

VD
D

Q
43

VD
D

Q
49

VS
S

Q
6

VS
S

Q
12

VS
S

Q
46

VS
S

Q
52

U
2

M
T4

8L
C

16
M

16
/T

S
O

P5
4

R
8

TB
D

R
7

TB
D

R
6

TB
D

R
5

TB
D

R
4

TB
D

R
3

TB
D

R
10

TB
D

R
9

TB
D

R
16

TB
D

R
15

TB
D

R
14

TB
D

R
13

TB
D

R
12

TB
D

R
11

TB
D

R
2

TB
D

R
1

TB
D

V
D

D

R
17

10
k

V
D

D

V
D

D

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 49 of 56

ADSP-BF561 in 16-Bit Mode

SCKE
ABE0SDQM0

SCAS

ABE1SDQM1

SWE
SRAS

D11

A3

D10

A4

SCKE

D9

D11

D8
D9
D10

D0

D6
D7

D2
D1

D5
D4
D3

A5

D15
D14

SCAS

D13
D12

D8

A6

A3

A5
A4

A6
A7

A9
A8

SA10
A10

ABE3SDQM3

A12

ABE0SDQM0

A2

A13

D7
A7 D6
A8

D1
D0

ABE1SDQM1

D2

D5

A9

D3
D4

A10

VDD

SA10

D15

A19 C4

A18 B3

A17 F6

A16 B4

A15 E5

A14 A5

A13 E6

A12 B5

A11 C6

A10 A6

A9 D7

A8 F11

A7 C14

A6 B14

A5 G10

A4 B15

A3 G11

A2 D13

D15
G12

D14
G13

D13
G15

D12
F14

D11
F16

D10
F12

D9
F15

D8
F13

D7
E15

D6
D16

D5
D15

D4
E14

D3
C16

D2
E12

D1
C15

D0
B16

ABE1SDQM1 B13

ABE0SDQM0 E11

AMS3
A7

AMS2 E7

AMS1 B7

AMS0 C8

AOE C7

ARE B8

AWE A8

ARDY D9

SCLK0_CLKOUT A11

SCKE B10

SA10 D11

SRAS C10

SCAS D10

SWE E10

SMS3 A10

BR B12

BG A13

BGH C12

A25 C3

A24 A2

A23 D4

A22 B2

A21 F5

A20 A3

ABE3SDQM3 A15

ABE2SDQM2 A14

D31 M15

D30 J12

D29 L16

D28 K12

D27 L15

D26 K13

D25
K15

D24
K14

D23
J16

D22
J13

D21
J15

D20
H14

D19
H16

D18
H13

D17
H15

D16
H12

SMS2 C9

SMS1 B9

SMS0 E9

SCLK1_CLKOUT A12

U13A

ADSP-BF561_BGA

D14

DQ0 2DQ1 4DQ2 5

DQ7 13

BA020 BA121

A1022

A023

A1135 A1236

CKE37

CLK38

DQMH39

DQ8 42DQ9 44DQ10 45DQ11 47DQ12 48

DQ3 7DQ4 8DQ5 10DQ6 11

DQML15

WE16

CAS17

RAS18
CS19

A124 A225 A326 A429 A530 A631 A732 A833 A934

DQ13 50DQ14 51DQ15 53

VDD1 VDD14 VDD27 VDDQ3 VDDQ9 VDDQ43 VDDQ49 VSSQ6 VSSQ12 VSSQ46 VSSQ
52

U5

MT48LC16M16/TSOP54

A12

ABE3SDQM3

SRAS
SWE

D13
A13

VDDR37

10k

VDD

D12

VDD

DQ0 2DQ1 4DQ2 5

DQ7 13

BA0
20 BA1
21

A1022

A023

A1135 A1236

CKE
37

CLK
38

DQMH
39

DQ8 42DQ9 44DQ10 45DQ11 47DQ12 48

DQ3 7DQ4 8DQ5 10DQ6 11

DQML
15

WE
16

CAS
17

RAS
18

CS
19

A124 A225 A326 A429 A530 A631 A732 A833 A934

DQ13
50DQ14
51DQ15
53

VDD
1 VDD

14 VDD
27 VDDQ
3 VDDQ
9 VDDQ

43 VDDQ
49 VSSQ
6 VSSQ

12 VSSQ
46 VSSQ
52

U14

MT48LC16M16/TSOP54

A2

VDD

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 50 of 56

ADSP-BF561 in 32-Bit Mode

SCKE
ABE0SDQM0

SCAS

A11

ABE1SDQM1

SWE
SRAS

D27
D26

A3
A4

SCKE

D11

D25

D8
D9
D10

D0

D6
D7

D2
D1

D5
D4
D3

A5

D15

D14

SCAS

D12
D13

D24

A6

A4

A6
A5

A7
A8

A10
A9

SA10
A11

A2

A13
A14

ABE0SDQM2

D23

A3

A7
D22A8

D17
D16

ABE1SDQM3

D21

D18

A9

D20
D19

A10

VDD

SA10

D31

A19
C4

A18
B3

A17 F6

A16 B4

A15 E5

A14 A5

A13 E6

A12 B5

A11
C6

A10
A6

A9 D7

A8 F11

A7 C14

A6 B14

A5 G10

A4
B15

A3
G11

A2
D13

D15 G12

D14 G13

D13 G15

D12 F14

D11 F16

D10
F12

D9
F15

D8 F13

D7 E15

D6 D16

D5 D15

D4 E14

D3 C16

D2
E12

D1
C15

D0 B16

ABE1SDQM1 B13

ABE0SDQM0 E11

AMS3 A7

AMS2 E7

AMS1 B7

AMS0
C8

AOE
C7

ARE
B8

AWE A8

ARDY D9

SCLK0_CLKOUT A11

SCKE
B10

SA10
D11

SRAS C10

SCAS D10

SWE E10

SMS3 A10

BR B12

BG A13

BGH C12

A25
C3

A24 A2

A23 D4

A22 B2

A21 F5

A20 A3

ABE3SDQM3 A15

ABE2SDQM2 A14

D31
M15

D30 J12

D29 L16

D28 K12

D27 L15

D26 K13

D25 K15

D24
K14

D23
J16

D22 J13

D21 J15

D20 H14

D19 H16

D18 H13

D17
H15

D16
H12

SMS2 C9

SMS1
B9

SMS0
E9

SCLK1_CLKOUT A12

U15A

ADSP-BF561_BGA

D30

DQ0 2DQ1 4DQ2 5

DQ7 13

BA020 BA121

A1022

A023

A11
35 A12
36

CKE
37

CLK38

DQMH39

DQ8 42DQ9 44DQ10 45DQ11
47DQ12
48

DQ3
7DQ4
8DQ5
10DQ6 11

DQML
15

WE16

CAS17

RAS18
CS19

A124 A225 A3
26 A4
29 A5
30 A631 A732 A833 A934

DQ13 50DQ14 51DQ15 53

VDD
1 VDD

14 VDD
27 VDDQ3 VDDQ9 VDDQ43 VDDQ49 VSSQ6 VSSQ
12 VSSQ
46 VSSQ52

U16

MT48LC16M16/TSOP54

A13

SRAS
SWE

D29
A14

VDD

VDD

R40

10k

D28

VDD

DQ0 2DQ1
4DQ2
5

DQ7 13

BA020 BA121

A10
22

A023

A1135 A1236

CKE37

CLK
38

DQMH39

DQ8
42DQ9
44DQ10
45DQ11 47DQ12 48

DQ3 7DQ4 8DQ5 10DQ6 11

DQML15

WE16

CAS17

RAS18
CS

19

A1
24 A2
25 A326 A429 A530 A631 A732 A8
33 A9
34

DQ13 50DQ14 51DQ15 53

VDD1 VDD14 VDD27 VDDQ3 VDDQ9 VDDQ
43 VDDQ
49 VSSQ
6 VSSQ12 VSSQ46 VSSQ52

U17

MT48LC16M16/TSOP54

A2

VDD

To Blackfin

To Blackfin

To Blackfin

To Blackfin

To Blackfin
To SDRAM 2

To SDRAM 1

To Blackfin

To SDRAM

To SDRAM

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 51 of 56

Excursus: Calculating Z0 (Chapter 4)
This section describes the Telegrapher’s equation approach.

The SDRAM connection is a transmission line. This is the reason the telegrapher’s equations accurately
model the propagation of electrical currents and voltages along the structure. The trace is not an ideal
conductor, so we have to use an equivalent circuit diagram (Figure 50) that includes the influence of the
trace itself.

L
Rs

C Rp

Input

Figure 50. Equivalent circuit including the influence of the trace itself

But a trace consists not only of one of these structures. We can imagine a connection line (Figure 51) as a
nearly infinite series of them.

L
Rs

C Rp

L
Rs

C Rp

Input

Figure 51. A connection line made up of infinite traces

The variable ZC is a function of the impedance and depends on the frequency. If you want to write it
mathematically correct, you have to write ZC(ω).

The variable Z0 is a single-valued constant showing the value of characteristic impedance at a particular
frequency ω0.

We simplify the model by defining the impedances Y and Z:

Z = jωL+Rs

Y = jωC+1/Rp

The resulting impedance is the sum of the impedance of Z and the impedance of Y and all the other stages
in parallel. We assume we have n elements each with the same Rp, Rs, C, and L.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 52 of 56

n
Yn

Z

+
+=

c

c

Z~
1

1Z~

Multiply both sides by)Z~1(cn
Y

+

cc

c
2

c

cccc

Z~Z~

Z~Z~

Z~)Z~1()Z~1(Z~

n
Z

Y
Z

n
Z

Y
Z

n
Y

n
Z

n
Y

+=

⇔+=

⇔++=+

Assuming a transmission line consists of infinite elements with the length 0:

Rp
RsLj

Y
Z

n
Z

Y
Z

n 1/+Χ
 +

==+=
∞→ ω

ω
j

Z~Z cc lim

As you increase the frequency, the terms R and G may eventually be neglected as they are overwhelmed
by jωL and jωC, respectively, leading to a steady plateau in impedance. The fine balance between the
inductive impedance jωL and the capacitive admittance jωC holds the impedance constant at high
frequencies. This constant-impedance plateau greatly aids the design of high-speed digital circuits, as it
makes possible the termination of transmission lines with a single resistor. The value of characteristic
impedance at the plateau is called Z0.

C
LZC ==

∞→

))((Z lim0 ω
ω

Calculating the Inductance of a Microstrip Trace
It is strongly recommended to measure these values, but to estimate the value you can use the following
formulas:

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⋅≅
w

h2πln5L

whereby:

L is the inductance in nH/inch

h ís the height above the plane (mils)

w is the trace width (mils)

Calculating the Capacitance

d
A

r **C 0 εε=

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 53 of 56

whereby:

A is the length times the width of the trace

d is the distance between ground and the trace

This must be calculated for every ground plane.

IPC’s and Douglas Brooks’ approach of Z0 (Chapter 4)

IPC and Douglas Brooks offer some equations for PCBs, which are very easy to use.

Microstrip Trace

⎟
⎠
⎞

⎜
⎝
⎛

+⋅
⋅

+
=

TW
H

r 8.0
98.5ln

41.1
87Z0 ε

Embedded Microstrip Trace

()
⎟
⎠
⎞

⎜
⎝
⎛

+⋅
⋅

⎥
⎦

⎤
⎢
⎣

⎡
−

=
⋅− TW

H

e H
H

r

8.0
98.5ln

1

60Z
155.1

0

ε

Stripline Trace

⎟
⎠
⎞

⎜
⎝
⎛

+⋅
+⋅

=
TW
TH

r 8.0
)2(9.1ln60Z0 ε

Asymmetric Stripline Trace

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⎟

⎠
⎞

⎜
⎝
⎛

+⋅
+⋅

=
14

1
8.0

)2(9.1ln80Z0 H
H

TW
TH

rε

whereby H1 > H

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 54 of 56

Dielectric Constants of Printed Circuit Boards (PCBs) (Chapter 4)
The tables are taken from A Survey and Tutorial of Dielectric Materials Used in the Manufacture of
Printed Circuit Boards[7].

Several Commonly Available Woven Glass Reinforces Laminates

List of Non-Woven or Very-Low Glass Content Laminate Materials

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 55 of 56

References
[1] The ABCs of SDRAM (EE-126), Rev. 1, March 2002. Analog Devices, Inc.

[2] System Optimization Techniques for Blackfin Processors (EE-324), Rev. 1, July 2007. Analog Devices, Inc.

[3] ADSP-BF52x Blackfin Processor Hardware Reference (Volume 1 of 2) Revision 0.31 (Preliminary). May, 2008.
Analog Devices, Inc.

[4] ADSP-BF52x Blackfin Processor Hardware Reference (Volume 2 of 2) Revision 0.3 (Preliminary). September, 2007.
Analog Devices, Inc.

[5] ADSP-BF533 Blackfin Processor Hardware Reference. Rev 3.2, July 2006. Analog Devices, Inc.

[6] ADSP-BF537 Blackfin Processor Hardware Reference. Rev 3.0, December 2007. Analog Devices, Inc.

[7] ADSP-BF561 Blackfin Processor Hardware Reference. Rev 1.1, February 2007. Analog Devices, Inc.

[8] ADSP-BF522/523/524/525/526/527 Blackfin Embedded Processor Preliminary Data Sheet. Rev PrE, August 2008.
Analog Devices, Inc.

[9] ADSP-BF512/ADSP-BF514/ADSP-BF516/ADSP-BF518 Blackfin Embedded Processor Preliminary Data Sheet.
Rev PrC, October 2008. Analog Devices, Inc.

[10] ADSP-BF531/ADSP-BF532/ADSP-BF533 Blackfin Embedded Processor Data Sheet. Rev F, 2008. Analog Devices, Inc.

[11] ADSP-BF534/ADSP-BF536/ADSP-BF537 Blackfin Embedded Processor Data Sheet. Rev E, March 2008.
Analog Devices, Inc.

[12] ADSP-BF538/ADSP-BF539 Blackfin Embedded Processor Data Sheet. Rev B, 2008. Analog Devices, Inc.

[13] ADSP-BF561 Blackfin Embedded Processor Data Sheet. Rev C, 2007. Analog Devices, Inc.

[14] A Survey and Tutorial of Dielectric Materials Used in the Manufacture of Printed Circuit Boards - By Lee W. Ritchey,
Speeding Edge, for publication in November 1999 issue of Circuitree magazine. Copyright held by Lee Ritchey of
Speeding Edge, September 1999.

[15] Writing Efficient Floating-Point FFTs for ADSP-TS201 TigerSHARC® Processors (EE-218), Rev. 2, March 2004

[16] Micron Technical Note 48-09 LVTTL DERATING FOR SDRAM SLEW RATE VIOLATIONS

[17] High Speed Digital Design – A Handbook of Black Magic by Howard W. Johnson and Martin Graham, 1993 PTR
Prentice Hall, ISBN 0-13-395724-1

[18] High-Speed Signal Propagation – Advanced Black Magic by Howard W. Johnson and Martin Graham, 2003, PTR
Prentice Hal, ISBN 0-13-084408-X

[19] EMV-Design Richtlinien by Bernd Föste and Stefan Öing, 2003 Franzis’ Verlag GmbH, ISBN 3-7723-5499-8

Readings
[20] ADSP-BF53x/ADSP-BF56x Blackfin Processor Programming Reference. Rev 1.2, February 2007. Analog Devices, Inc.

 a

Blackfin® Processor and SDRAM Technology (EE-326) Page 56 of 56

Document History

Revision Description

Rev 2 – December 11, 2008
by Fabian Plepp

Provides a more detailed description of the SDRAM initialization. Also, adds
information on drive strength control for ADSP-BF52x devices. Incorporates
support for ADSP-BF51x processors.

Rev 1 – May 12, 2008
by Fabian Plepp

Initial public release. Adds Low Power section, OTP and ADSP-BF52x processors.

Rev 0 – August 21, 2006
by Fabian Plepp

Internal version (draft).

	Introduction
	Table of Contents
	Brief Introduction to SDRAM
	Basics of SDRAM
	SDRAM Parameters in Blackfin Registers
	EBCAW (SDRAM External Bank Column Address Width)
	EBSZ (SDRAM External Bank Size)
	SDRAM Timing

	Multiprocessor Environment Options
	BGSTAT (Bus Grant Status)
	PUPSD (Power-Up Startup Delay)
	CDDBG (Control Disable During Grant)

	Mobile/ Low-Power SDRAM Options
	PASR (Partial Array Self Refresh)
	TCSR (Temperature-Compensated Self-Refresh)

	Options to Fit the SDRAM Timing
	Blackfin Output / SDRAM Input Equation (Write)
	Blackfin Input / SDRAM Output Equation (Read)

	SDRAM Initialization
	SDRAM Initialization Via an Emulator and VisualDSP++ .XML Fi
	Initialization Using Memory-Mapped Registers
	Initialization Using System Services
	SDRAM Initialization by the Values in the OTP Memory
	Initializing Memory via Initialization Code Before Loading t

	Using an .LDF File to Place Data and Program Code in Memory
	SDRAM Hardware Design
	Connecting SDRAM to a Blackfin Processor (Schematics)
	ADSP-BF53x Series Processors
	ADSP-BF561 Processors (16-bit SDRAM)
	ADSP-BF561 Processors (32-bit SDRAM)

	High-Speed Design
	Effects that Impact Signal Quality
	Reflection
	Coupling

	Avoid Reflections
	Series Termination
	Parallel Termination

	Design Guidelines for the SDRAM Connection
	Component Placement Considerations
	Using the Rounding Function of Your Layout Tool at Trace Edg
	Placing the VCC and GND Planes with as Little Distance as Po
	Insulating Critical Signals by Placing Them in the Inner Lay
	Placing the Series Resistor Close to the SDRAM
	Avoiding Trenches in the GND Plane
	Minimizing Back-Current Paths from Vias
	Make use of the drive strength control functionality
	Make use of the slew control functionality

	Using a Blackfin Processor with Less than 16 MB of SDRAM
	System Settings
	Changing the .LDF File
	Excursus: Background

	SDRAMs with 2 Banks

	Increasing the SDRAM Performance of Your System
	Optimal Multi-Bank Accesses
	Optimal Pages Accesses
	Pages for the ADSP-BF53x Processors
	Pages for ADSP-BF561 Processors

	SDRAM Performance Items for Core Accesses
	Code Overlays

	SDRAM Performance Items When Using Cache
	Code
	Data

	Optimizing Power Consumption
	Introduction: Power-Consumption Figures
	Tips for Lowering SDRAM Power Consumption
	Mobile SDRAM
	Going into Hibernate and Recover
	Step 1
	Step 2
	Step 3

	Structuring Data for Low Power Consumption

	Appendices
	Appendix A: Glossary
	Appendix B: Code Examples, Schematics, and Excursus
	Initialization Code (Chapter 2)
	Schematics to Interface SDRAM to the Blackfin Processor (Cha
	ADSP-BF561 in 16-Bit Mode
	ADSP-BF561 in 32-Bit Mode
	Excursus: Calculating Z0 (Chapter 4)
	Calculating the Inductance of a Microstrip Trace
	Calculating the Capacitance
	IPC’s and Douglas Brooks’ approach of Z0 (Chapter 4)
	Microstrip Trace
	Embedded Microstrip Trace
	Stripline Trace
	Asymmetric Stripline Trace
	Dielectric Constants of Printed Circuit Boards (PCBs) (Chapt
	Several Commonly Available Woven Glass Reinforces Laminates
	List of Non-Woven or Very-Low Glass Content Laminate Materia

	References
	Readings
	Document History

