
Engineer-to-Engineer Note EE-204

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Blackfin® Processor SCCB Software Interface for Configuring I2C®
Slave Devices
Contributed by Thorsten Lorenzen Rev 2 – March 13, 2007

Copyright 2003-2007, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note describes the implementation of
the Serial Camera Control Bus (SCCB) interface
using software and general-purpose pins on
Blackfin® processors. Because of its architecture
and video processing capabilities, Blackfin
processors are well-suited to interface with video
devices. Many of these video devices in the
signal chain must be configured by an I2C®-
compatible hardware interface. For those
Blackfin derivatives not equipped with this two-
wire interface (TWI), the software described in
this document can be used to emulate the
function of I2C with the help of two general-
purpose pins. The protocol is compliant with the
I2C protocol and supports slave devices only.
The Blackfin processor is always acting as the
master. No multi-master bus network can be
accessed.

Basics
The SCCB interface can be realized with the use
of two general-purpose pins. In this example,
PF0 is used to generate the clock line, and PF1 is
used to transmit and receive data. This
functionality is most common in configuring
video devices. The associated software for this
EE-Note includes the protocol stack
(I2C_BF5xx_revXX.asm, I2C_BF5xx_revXX.h)
and the C/ASM API (I2C_BF5xx_ASM_C_API.c,
I2C_BF5xx_ASM_C_API.h) to call the protocol

within a C program. One programmable timer
(timer0) is used to run the two-wire state
machine. The timer generates an interrupt after
its counter has expired. All activities of the
SCCB interface are performed during the timer
interrupt. The rate of the SCCB clock is
determined by the interrupt interval of the timer.
For example, the time between these interrupts
can be used to process video data as it is
received. The associated software contains two
projects, ADSP-BF533_I2C_ASM.dpj and ADSP-
BF561_I2C_ASM.dpj, to implement the software
SCCB protocol for the ASDP-BF533 and the
ADSP-BF561 processors, respectively.

I2C Software Protocol
Common video devices are fitted with an I2C-
compatible interface that is dedicated to set up
all the registers in the devices. Because an
addressing scheme is used, multiple devices can
be connected on the same lines. Figure 1 shows
an example connection.

Figure 1. Device connection

 a

Blackfin® Processor SCCB Software Interface for Configuring I2C® Slave Devices (EE-204) Page 2 of 8

In order to generate a write to a device’s register,
the data line must first send the “device address”,
followed by the register’s “word address”. At
this point, the actual data can be transferred.
Each bit must be aligned to a clock cycle
generated by the clock line. As long as the clock
is continuous, data words will be sent to the
slave. The address will be incremented internally
by the slave.

After every 8th bit transferred, an
acknowledge bit (9th bit) is tested by the
master (Blackfin processor). The SCCB
interface will set the data line high and
reconfigure PF1 as an input. If the slave
(video device) does not pull down the
data line, the code will end in an error
routine indicating a failed access.

Figure 2 shows a write access. As can be seen,
the 8th bit of the device address indicates that the
following data will be written in the device.

Figure 2. I2C write access

Read accesses start in the same fashion, writing
the “device address” and the register’s “word
address” to the device. After this is done, an
extra start condition must be inserted, as shown
in Figure 4. The device address will be written to
the device again, but the 8th -bit is set to high,
indicating that a read access follows. If a second
device address is received, as shown in Figure 3,
the device starts sending the contents of the
location that the internal address pointer points
to. Multiple data words can be sent from the
slave device to the processor (master).

Similar to the write sequence, sending the device
address, word address and device address again
ends with an “acknowledge” test, as described

above. This time, if the master does not pull
down the data line, the slave will go into power
down mode and keep the data line high. Finally,
the read sequence will end in a “no
acknowledge” bit (9th bit is driven high by the
master). This is required to gracefully complete
the access. If the “no acknowledge” bit is missed,
some devices may remain in read mode,
regardless whether a stop condition follows.

Figure 3. I2C read access

Figure 4 shows the start condition, stop
condition, and the data and clock alignment.
After the start condition, the data bit must be
available before the rising edge of the clock. In
addition, it must not be released before the
falling edge.

Figure 4. I2C start, stop condition

The SCCB software interface meets all these
requirements. More details about the I2C timing
can be found in dedicated literature or on the
World-Wide Web.

Functional Support
As explained in the “I2C Software Protocol”
section above, many devices function on an 8-bit
basis. However, more and more devices can be
found today with either 16-bit address capability
or even 16-bit register width (e.g., Micron,
Atmel). This has been adapted by the protocol.

 a

Blackfin® Processor SCCB Software Interface for Configuring I2C® Slave Devices (EE-204) Page 3 of 8

The list below summarizes the four different
address and data widths supported within the
ASM/C API.

 8-bit address, 8-bit register width support

 8-bit address, 16-bit register width support

 16-bit address, 8-bit register width support

 16-bit address, 16-bit register width support

The protocol stack itself is capable of
expanding address width or data width
to a higher degree, as explained below.

Assembly Program Use
The SCCB interface is defined and used in the
I2C_BF5xx_revXX.asm / I2C_BF5xx_revXX.h
files. Before calling the transfer startup routine
(SCCB_Interface()), some configuration is
required. To understand the usage of the
interface, the following steps are provided.

1. Open the I2C_BF5xx_revXX.h file to select
the register addresses and bit settings for a
dedicated Blackfin derivative. For example,
configurations for the ADSP-BF561 and
ADSP-BF533 processors can be found, along
with explanatory comments.

Both hardware description blocks (for
ADSP-BF533 and ADSP-BF561
processors) are selected automatically
via a preprocessor definition
(__ADSPBF533__ or __ADSPBF561__).
This must be taken into account when
making modifications to it.

2. Review some variables defined in
I2C_BF5xx_rev_XX.asm to configure the
interface before calling it.

Transmission or reception is chosen using
_SCCB_Control. Setting this variable to one
(1) will trigger a read sequence. Setting this
variable to two (2) triggers a write sequence.

_SCCB_Word_Count holds the number of
general transfers to be performed. Device

addresses and word addresses are included.
This generic form allows expanding address
and data widths, if required.

The transmission data (including device and
word address) is held in the
_SCCB_DataIn[x] array. The receive data
from a read sequence is held in the
_SCCB_DataOut[x] array.

_SCCB_In_Progress can be polled for
notification of when a transmission has
completed. Therefore, before calling
_SCCB_Interface(), this variable must be
set to a non-zero value by the user
application. The final step of the protocol
will be to clear this variable (set it to zero).

Missing acknowledges during transmission
will trigger an error message. To be notified
of errors, _SCCB_Error can be used. The user
application must clear this variable before
calling the SCCB interface. In the event of an
error, _SCCB_Error is set to one and the
transfer is aborted by execution of the I2C
stop condition.

3. After these settings are established, the
_SCCB_Interface() subroutine (defined in
the I2C_BF5xx_rev_XX.asm file) must be
called to start the transfer.

_SCCB_Interface() stores and restores all
registers used by the I2C protocol. It starts
the timer and sets up the interrupt and PF
pins on a user-defined basis.

User-defined interrupt priority cannot be
selected within the protocol because the
SIC_IARx registers are not modified.
The default values are:

- ADSP-BF533: Timer0 = IVG11

- ADSP-BF561. Timer0 = IVG10

If a change is required, it must be made
by the user application.

4. When the initialization process is completed,
the core returns to the user application code.
A timer interrupt is raised after a certain

 a

Blackfin® Processor SCCB Software Interface for Configuring I2C® Slave Devices (EE-204) Page 4 of 8

time, following its generation in the
initialization process. Each timer interrupt
will be taken to drive a signal change or
insert an extra delay.

5. During the SCCB transfer, all used PF pins
and the selected timer must not be used for
any other purposes. The registers and
pointers may be used because they will be
stored and restored before and after the end
of each interrupt.

Avoid starting the SCCB interface a
second time before the pending transfer
has been completed. For multiple device
setups, use conditional loops or place
code between each call that guarantees
the delay required to finish the process.

6. The final timer interrupt will turn off the
timer and disable all I2C resources.

C Program Use (ASM Interface)
In order to make the protocol functional in C, a
C/ASM API was created. This section explains
how to use the protocol stack in this case.

As discussed in the previous section, open the
I2C_BF5xx_revXX.h file and select the register
addresses and bit settings for a specific Blackfin
derivative.

Both hardware description blocks (for
ADSP-BF533 and ADSP-BF561
processors) are selected automatically
via a preprocessor definition
(__ADSPBF533__ or __ADSPBF561__).
This must be taken into account when
making modifications to it.

In addition to the I2C_BF5xx_revXX.asm and
2C_BF5xx_revXX.h source files, the
I2C_BF5xx_ASM_C_API.c and
I2C_BF5xx_ASM_C_API.h files must be added to
the project.

The API sources include two types of accesses:
blocking and non-blocking. A blocking access

means that, for the duration of an I2C transfer,
the processor will stall (i.e., it polls
SCCB_In_Progress internally in the subroutine).
In contrast, the non-blocking access just triggers
the transmission and immediately returns to the
application code. The advantage is that
application code can be executed in parallel to
the I2C transfer. However, SCCB_In_Progress
must be polled externally (i.e., in the user
application) to detect completion of a pending
transmission. It is left to the user to determine
which type of access to use.

The I2C_NonBlocked_Write() and
I2C_Blocked_Write() functions can be found
in the I2C_BF5xx_ASM_C_API.c file. They are
the entry points to the write functions. The
Boolean addr_size_16 and data_size_16
elements configure the interface to either
send/receive 16-bit or 8-bit addresses or data
values. TWIBase_Addr will hold the device
address to identify the target external device. The
start_address parameter can either include 16
or 8 bits and identifies the register/memory
address within the identified device. The values
pointer requires the address to an array where the
data is located to be sent. Num_Transactions
indicates the number of transfers to be executed.
It includes the number of data transfers only! For
blocking accesses, an integer return value returns
the number of successful transfers. For non-
blocking accesses, _SCCB_Error must be polled
in order to recognize whether the transfer
completed gracefully.

For non-blocking accesses, avoid
starting the SCCB interface a second
time before the pending transaction has
completed. For multiple device setups,
use conditional loops (e.g.,
while(SCCB_In_Progress)) or place
code between each call that guarantees
the delay required to finish the process.

Similarly, the I2C_NonBlocked_Read() and
I2C_Blocked_Read() read functions use the
same variables. For blocking accesses, the
received data can be obtained directly from the

 a

Blackfin® Processor SCCB Software Interface for Configuring I2C® Slave Devices (EE-204) Page 5 of 8

values variable. For non-blocking accesses, the
data cannot be obtained before the transfer has
been completed. Therefore, it is left to the user
application to get the values.

The Listings below show how to use the C
interface in the user application.

unsigned int I2C_Blocked_Write(bool addr_size_16, // Addr width select 8/16
 bool data_size_16, // Data width select 8/16
 unsigned char TWIBase_Addr, // I2C device addr
 unsigned short start_address,// I2C register addr
 unsigned short* values, // Values to send
 int Num_Transactions); // Number of transfers

Listing 1. I2C blocked write prototype

void I2C_NonBlocked_Write (bool addr_size_16, // Addr width select 8/16
 bool data_size_16, // Data width select 8/16
 unsigned char TWIBase_Addr, // I2C device addr
 unsigned short start_address,// I2C register addr
 unsigned short* values, // Values to send
 int Num_Transactions); // Number of transfers

Listing 2. I2C non-blocked write prototype

unsigned int I2C_Blocked_Read(bool addr_size_16, // Addr width select 8/16
 bool data_size_16, // Data width select 8/16
 unsigned char TWIBase_Addr, // I2C device addr
 unsigned short start_address,// I2C register addr
 unsigned short* values, // Values to send
 int Num_Transactions); // Number of transfers

Listing 3. I2C blocked read prototype

void I2C_NonBlocked_Read (bool addr_size_16, // Addr width select 8/16
 bool data_size_16, // Data width select 8/16
 unsigned char TWIBase_Addr, // I2C device addr
 unsigned short start_address,// I2C register addr
 int Num_Transactions); // Number of transfers

Listing 4. I2C non-blocked read prototype

ErrorIdent = I2C_Blocked_Write(false, false, DeviceAddr, RegAddr, &TxArray[i], CN);
// Application code can be executed as transfer has been completed

Listing 5. I2C blocked write function call

I2C_NonBlocked_Write(false, false, DeviceAddr, RegAddr, &TxArray[i], CN);
// Application code can be executed while I2C transfer is in progress
while(SCCB_In_Progress); // Before kick off a subsequent I2C access check progress
if(SCCB_Error == 1) while(1); // Check for errors after transfer complete

Listing 6. I2C non-blocked write function call

 a

Blackfin® Processor SCCB Software Interface for Configuring I2C® Slave Devices (EE-204) Page 6 of 8

ErrorIdent = I2C_Blocked_Read(false, false, DeviceAddr, RegAddr, &RxArray[i], CN);
// Application code can be executed as transfer has been completed

Listing 7. I2C blocked read function call

I2C_NonBlocked_Read(false, false, DeviceAddr, RegAddr, CN);
// Application code can be executed while I2C transfer is in progress
while(SCCB_In_Progress); // Before kick off a subsequent I2C access check progress
if(SCCB_Error == 1) while(1); // Check for errors after transfer complete
for (i=0; i<1; i++) RxArray[j++] = SCCB_DataOut[i]; // Get values received

Listing 8. I2C non-blocked read function call

Performance
The following example shows the measured
performance. The core clock (CCLK) is running at
432 MHz. The peripheral clock (SCLK) is running
at 108 MHz. The timer0 is set to run the SCCB at
70 KHz (see Figure 5).

Figure 5. Write access timing

Figure 5 shows a register write. Three bytes are
sent (channel 1 is SDA, channel 2 is SCL). The
first 8 bits include the device address. In this
case, it is “0xC0”. The 9th bit is held low by the
slave (acknowledge). The following 8 bits hold
the word address, “0x13”, within the identified
device, followed by the second acknowledge.
Finally, the last 8 bits carry the register’s
content, “0x21”, followed by the third
acknowledge.

Looking at Figure 5 again, the time between the
signal changes of the data line and the clock line
can be used by the core to execute other
instructions. Figure 6 zooms in on the write
transfer displayed in Figure 5 and shows some
additional pins. Channel 1 shows the timer0 pin
(TMR0), channel 2 shows PF4, which is
programmed to toggle outside the timer interrupt.
Channel 3 represents the SDA line, and
channel 4 is the SCL line.

As can be seen, each positive edge of the timer0
pin (channel 1) will trigger an interrupt. The
interrupt will cause the PF4 pin to stop and to
start toggling.

Figure 6. Performance test timing

 a

Blackfin® Processor SCCB Software Interface for Configuring I2C® Slave Devices (EE-204) Page 7 of 8

For this test, the core is running in a loop outside
of interrupt events. The loop executes the
following instructions:

P0 = 0x02FF(Z);
LSETUP(Loop_Start,performance_test)
LC0=P0;
Loop_Start:
 p0.h = hi(FIO_FLAG_C);
 p0.l = lo(FIO_FLAG_C);
 r0.l = 0x10;
 w[p0] = r0;
 p0.l = lo(FIO_FLAG_S);
 r0.l = 0x10;
performance_test: w[p0] = r0;

Listing 9. Performance test instructions

These instructions just toggle the PF4 pin
continuously, as shown in Figure 6. PF4 does not
toggle when the core is executing SCCB
instructions during the timer interrupt. Each
positive edge of the TMR0 pin causes the timer
interrupt.

Figure 7 illustrates the processor load. At the
beginning, PF4 is toggling. The positive edge of
TMR0 generates the timer interrupt, which causes
PF4 to stop toggling. The first interrupt
(Figure 6) forces the clock line (SCL) to clear its
pin. After the interrupt is completed, PF4 toggles
again until the next positive edge of the TMR0 pin
appears. The next interrupt caused by TMR0 again
forces the data line to clear.

Figure 7. Performance test timing

Figure 7 shows the clearance of SCL zooming
into Figure 6.

The frequency of PF4 (channel 2) is not
related to only the core frequency. Each
instruction in the loop (Listing 9) will be
executed in one or two cycles, but
toggling the actual pin implies use of the
system bus, which runs at 108 MHz.

The frequency of PF4 is a combination
of the core speed (CCLK) and the system
speed (SCLK).

Conclusion
If the CCLK is running at 432 MHz, the SCLK is
running at 108 MHz, and the SCCB interface is
running at 70 KHz during the SCCB action, the
entire transfer (shown in Figure 5) will take
404 µs. After the transfer completes, the core
processes data at 100% again. As can be seen
during the transfer, 5% of the timer period is
used by the SCCB interrupt, leaving 95% of the
timer period available to the core to process data.
Additionally, the core performance can be
increased by slowing down the timer. This
results in a higher percentage of data processing
performance, but it extends the SCCB transfer
time.

This example was developed to emulate an I2C-
compatible hardware interface for ADSP-BF53x
and ADSP-BF561 Blackfin processors. Further
performance optimizations may be realized via
restructuring of the provided code.

 a

Blackfin® Processor SCCB Software Interface for Configuring I2C® Slave Devices (EE-204) Page 8 of 8

References
[1] ADSP-BF561 Blackfin Processor Hardware Reference. Revision 1.1, February 2007. Analog Devices, Inc.

[2] ADSP-BF53 Blackfin Processor Hardware Reference. Revision 3.2, July 2006. Analog Devices, Inc.

[3] ADSP-BF53x/BF56x Blackfin Processor Programming Reference. Revision 1.1, February 2006. Analog Devices, Inc.

[4] ADSP-BF561 Blackfin Embedded Symmetric Multi-Processor Data Sheet. Revision A, May 2006. Analog Devices, Inc.

[5] ADSP-BF533 Blackfin Embedded Processor Data Sheet. Revision D, September 2006. Analog Devices, Inc.

Document History

Revision Description

Rev 2 – March 13, 2007
by Thorsten Lorenzen

Initial public release.

Rev 1 – July 30, 2003
by Thorsten Lorenzen

Maintained internally.

	Introduction
	Basics
	I2C Software Protocol
	Functional Support
	Assembly Program Use
	C Program Use (ASM Interface)
	Performance
	Conclusion
	References
	Document History

