
Engineer-to-Engineer Note EE-183

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Rational Sample Rate Conversion with Blackfin® Processors
Contributed by J. Sondermeyer Rev 5 – January 3, 2006

Copyright 2003 - 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The process of converting the sampling rate of a signal
from one rate to another is called sampling rate conversion
(or SRC). This technique is encountered in many
application areas such as:

• Digital Audio (the focus of this paper)
• Communications systems
• Speech Processing
• Antenna Systems
• Radar Systems

Sampling rates may be changed upward or downward.
Increasing the sampling rate is called interpolation, and
decreasing the sampling rate is called decimation.
Reducing the sampling rate by a factor of M is achieved by
discarding every M-1 samples, or, equivalently keeping
every M’th sample. Increasing the sampling rate by a
factor of L (interpolation by factor L) is achieved by
inserting L-1 zeros into the output stream after every
sample from the input stream of samples.
This system can perform SRC for the following cases:

• Decimation by a factor of M
• Interpolation by a factor of L
• SRC by a rational factor of L/M.

SRC by L/M requires performing an interpolation to a
sampling rate which is divisible by both L and M. The final
output is then achieved by decimating by a factor of M.
Appropriate lowpass filtering is required to prevent both
imaging and aliasing. This system employs the polyphase,
multistage technique in the process of the sampling rate
conversion for computational savings.

1.1 Sample Rate Conversion
Designs
SRC designs use the basic properties of decimation and
interpolation to change sampling rates. Decimation is the

reduction of the sampling rate and interpolation is the
increasing of the sample rate.

1.1.1 Decimation
A reduction of sample rate (decimation) by a factor of M is
achieved by sequentially discarding M-1 samples and
retaining every M’th sample. While discarding M-1 of
every M input samples reduces the original sample rate by
a factor of M, it also causes input frequencies above one-
half the decimated sample rate to be aliased into the
frequency band from DC to the decimated Nyquist
frequency. To mitigate this effect, the input signal must be
lowpass filtered to remove frequency components from
portions of the output spectrum which are required to be
alias free in subsequent signal processing steps. A benefit
of the decimation process is that the lowpass filter may be
designed to operate at the decimated sample rate, rather
than the faster input sample rate, by using a FIR filter
structure, and by noting that the output samples associated
with the M-1 discarded samples need not be computed.

1.1.2 Interpolation
An increase in sample rate (interpolation) by a factor of L
is achieved by inserting L-1 uniformly spaced, zero value
samples between each input sample. While adding L-1 new
samples between each input sample increases the sample
rate by a factor of L, it also introduces images of the input
spectrum into the interpolated output spectrum at
frequencies between the original Nyquist frequency and
the higher interpolated Nyquist frequency. To mitigate this
effect, the interpolated signal must be lowpass filtered to
remove any image frequencies which will disturb
subsequent signal processing steps. A benefit of the
interpolation process is that the lowpass filter may be
designed to operate at the input sample rate, rather than the
faster output sample rate, by using a FIR filter structure,
and by noting that the inputs associated with the L-1
inserted samples have zero values.

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 2 of 25

1.1.3 Sample Rate Changes Using Both
Interpolation and Decimation
When the specified SRC factor is not an integer factor,
SRC design uses interpolation to increase the sample rate
to a rate which is divisible by both the input and final
output sample rates. This interpolation is then followed by
decimation to achieve the specified output rate. Note that
the output sample rate may be faster or slower than the
original input rate. In cases where both interpolation and
decimation are performed in tandem it is possible to
combine the anti-imaging filter of the interpolator and the
anti-aliasing filter of the decimator into a single filter
which satisfies both requirements. The filters which run at
the low data rate are actually implemented as a particular
structure known as a polyphase filter, which will be
discussed shortly.

1.2 Decimation
If the sampling rate is decreased by a factor M, in order to
avoid aliasing, a lowpass filter is needed with the specific
restrictions that the ratio of the half sample frequency to
the passband frequency must be less than or equal to M.

Let x(m) be the input signal, h(k), 0 <= k < K, be the
coefficients of a given lowpass filter and z(m) be the output
signal before decimating by a factor M, then:

z(m) =∑
=

−
K

k
kmxkh

0
)()((1)

Now let the output signal after the decimator be y(r) =
z(rM) where the sampling rate is reduced by a factor M.
Clearly, y(r) = z(rM) if the output signal is decimated by a
factor M.

y(r) =∑
=

−
K

k
krMxkh

0
)()((2)

Looking carefully at this equation, one can see that the
filter is in effect using the downsampled signal. Thus the
operations of downsampling and lowpass filtering have

been embedded in such a way that the lowpass filter is
operating at the reduced data rate and the average number
of computations to generate one output sample is reduced
by M.

1.3 Interpolation
Given an incoming sample rate of Fin and an interpolation
factor of L, then the resulting output sampling frequency is
Fout = L*Fin . To prevent imaging, a lowpass filter on the
output signal is required such that the cutoff frequency is
Fin/2.

Let x(n) be the original input sequence, v(n) the sequence
with L-1 zeros inserted, y(n) the output sequence of the
lowpass filter and let h(0), ..., h(K-1) be the coefficients of
the lowpass filter, then:

y(n) =∑
=

−
K

k
knvkh

0
)()((3)

However, v(n-k) = 0 unless n-k is a multiple of L, since L-
1 zeros were inserted in the sequence x(n) to get v(n).

Again let x(n) be the input signals, and h(k) be the filter
coefficients. Then the output signal y(r) has a simple
formula:

y(r) =∑
=

−
LK

n
nxLnrh

/

0
)()((4)

The average number of computations during one sampling
time is reduced by L, the interpolation factor.

1.4 Sample Rate Conversion by
Rational Factor L/M
To perform sample rate conversion by a rational factor
L/M, the incoming signal is first interpolated by a factor M.
The interpolation must be performed first to preserve the
spectral content of the signal. Graphically, this process can
be represented by the following diagram:

Up Sampler
by L

Anti-imaging
lowpass filter

Anti-Aliasing
lowpass filter

Down
Sampler

by M

sample rate LFx

x(n)
Sampling rate

Fx

y(m)
Sampling rate

(L/M)Fx

Figure 1. Block Diagram of a Rational SRC

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 3 of 25

The anti-aliasing and anti-imaging lowpass filters can be
combined into a single low-pass filter.

1.5 Polyphase Filters
Polyphase filters are used to implement multirate filters.
The polyphase filters for interpolation-only and
decimation-only filters have a simpler structure than the
polyphase filter used between an interpolator and a
decimator.

1.5.1 Interpolator-Only Polyphase Filters
The computational efficiency of the Interpolator filter
structure can also be achieved by reducing the large FIR
filter of length K into a set of smaller filters. These smaller
filters will have a length N = K/L, where K is selected to be
a multiple of L. Since the interpolation process inserts L - 1
zeros between successive values of x(n), only N out of the
K input values stored in the FIR filter at any one time are
nonzero. At one time instant, these nonzero values coincide
and are multiplied by the filter coefficients h(0),h(L),
h(2L),...,h(K - L). In the following instant, the nonzero
values of the input sequence coincide and are multiplied by
the filter coefficients h(1), h(L + 1), h(2L + 1),...h(K - L +
1), and so on. This observation leads us to define a set of
smaller filters called polyphase filters, with unit sample
responses:

pk (n)=h(k+nL) k = 0,1,...,L – 1

 n = 0,1,...,N – 1 (5)

where N = K/L is an integer.
Additional insight can be gained about the characteristics
of the set of polyphase subfilters by noting that pk(n) is
obtained from h(n) by decimation with a factor L.
Consequently, if the original filter frequency response
H(w) is flat over the range each of the polyphase subfilters
will possess a relatively flat response over the range (i.e.
the polyphase subfilters are basically allpass filters and
differ primarily in their phase characteristics). This
explains the reason for the term “polyphase” in describing
these filters. The polyphase filter can also be viewed as a
set of L subfilters connected to a common delay line.
Ideally, the kth subfilter will generate a forward time shift
of (k/L)Fin for k = 0, 1 2,..., L - 1, relative to the zeroth
subfilter. Therefore, if the zeroth filter generates zero
delay, the frequency response of the kth subfilter is:

pk(w) =e L
k

jw (6)

1.5.2 Decimator-Only Polyphase Filters
By transposing the interpolator structure we obtain a
commutator structure for a decimator that is based on the
parallel bank of polyphase filters. The unit sample
responses of the polyphase filter are now defined as:

pk(n) = h(k+nM) k = 0,1,...,M - 1

n = 0,1,...,N – 1 (7)
where N = K/M is an integer when K is selected to be a
multiple of M. The commutator rotates in a counter-
clockwise direction starting with filter p0 (n).

1.5.3 Simultaneous Interpolator and Decimator
Polyphase Filter
A Polyphase filter which is used to perform lowpass
filtering between an interpolator and decimator function is
more complicated than the structures previously discussed
for either the Decimator-Only or Interpolator-Only phases.
In the Interpolator-Only case, one input leads to several
outputs, and in the Decimator-Only case, many inputs lead
to a single output. Thus, there is a relatively simple
relationship between the polyphase subfilters and h(n), the
lowpass filter coefficients. An interpolator of L samples
followed by a decimator of M samples means that L input
values must lead to M output values.

y(m) is the output of the polyphase filter

g(n,m) is the polyphase filter coefficients

h(n) is the lowpass filter used for both anti-
imaging of the interpolator and anti-aliasing of the
decimator

[x] denotes the largest integer in x (8)

g(n,m) = h(nL +mM - [
L

mM]* l)

 n=0,…,N-1 and m=0,…,L-1 (9)

y(m) = ∑
−

=

1

0

N

n
g(n,m-[

L
M] • L) x([

L
mM]-n)

where K is the filter length of h(n) and L|K

with N = K/L, m=0,…,L-1 (10)
In a multistage implementation, this type of polyphase
filter is used between the interpolator and the decimator
stage. All other stages are either simple decimation or
interpolation stages. The polyphase filters are exactly those
described in Section1.5.1 and Section1.5.2. An excellent

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 4 of 25

discussion of this topic is available in Chapter 10 of Digital
Signal Processing by Proakis and Manolakis.

1.6 Polyphase, Multistage Filter
Design
Given an input sampling frequency Fin (integer) and an
output sampling frequency Fout (integer), then the smallest
frequency Fmin is the Least Common Multiplier (or LCM)
of both Fin and Fout. The decimator of the sample rate
conversion is defined as D = Fmin/ Fout and the interpolator
is defined as U = Fmin/ Fin. The number of primes in the
decimator is the maximum number of stages in the
decimation structure design. If the decimator is 24= 2 * 2 *
2 * 3, then the maximum number of stages is 4. Likewise,
the number of primes in the interpolator is the maximum
number of stages in the interpolation structure design. Thus
it is possible to have a different optimum multirate
structure for a multistage decimation structure as opposed
to a multistage interpolation structure.

If you choose M = D, L = U, then you are in a design of a
SRC system (U/D), but you can also choose M = RD, and
L = RU to get an equivalent system (RU/RM) for any
positive integer R. The user can choose R = 1, 2, 4,...

A design of a SRC requires the selection of a structure:
decimation or interpolation, over-sample rate R = 1, 2,
4,…, number of stages, a factor for each stage, and a
lowpass filter for each stage. The product of all the stage
factors should be equal to the decimator if a decimation
structure is selected or interpolator if an interpolation
structure is selected, times the over-sample rate R.

Momentum Data Systems (MDS) has developed a program
to create and optimize SRC structures and generate
coefficients: Advanced QED Series Sample Rate
Conversion System (Windows 95/NT Version only) Version
2.2. (www.mds.com). This program has two methods for
best design of decimation and interpolation structures:
minimizing the sum of filter lengths, and minimizing the
number of computations of the signal filtering. The number
of computations is calculated as follows:

If U1, U2 and U3 are up-sample factors for a 3-stage
interpolation structure, and L1, L2 and L3 are the filter
lengths for 3-stages respectively, then the number of
computations is

L1 + L2 * U1 + L3 * U1 * U2, or equivalent L3/U3 +
L2/(U2*U3) + L1/(U1*U2*U3)

If D1, D2 and D3 are down-sample factors for a 3-stage
decimation structure, then the number of computations is

L3 + L2 * D3 + L1 * D3 * D2, or equivalent L1/D1 +
L2/(D1*D2) + L3/(D1*D2*D3)

This design problem is not a single-objective optimization
problem. The number of computations, the number of filter
taps and the complexity of the multi-structure enter in the
calculations. The problem becomes particularly
complicated if the number of stages is greater than 3.

This EE-Note used the QED Series Sample Rate
Conversion System to determine the optimum SRC
structures and all coefficients.

1.7 SRC Code Overview
The work described in this EE-Note was based on the
principles discussed in Section 1.1 through Section 1.6.
From this, a polyphase multistage SRC was implemented
on the ADSP-BF535 Blackfin® Processor.

A zip file (SRC.zip) containing the VisualDSP++®
projects discussed here can be obtained from Analog
Devices (www.analog.com). These files can be easily
imported into later versions of VisualDSP++. The Default
C Linker Description File (*.ldf) for the latest version of
VisualDSP++ should be used to recompile/relink these
projects. Make sure BUFIN is defined in the assembly
options (see Section 1.7.3). The SRC and main program C
shell (SRC.c) were developed using the ADSP-BF535
EZ-KIT Lite® Evaluation Platform. The C shell contains
function calls and routines to initialize the state of the
ADSP-BF535 as well as the SRC. Since this code does not
use any DMA capabilities or peripherals, this ‘core’ code
should port directly to next generation ADSP-BF5xx
Blackfin Processors. The code has been verified on the
ADSP-BF533 EZ-KIT Lite as well. All code for this
project is listed in the Appendix.

The following were the design objectives used in
developing the SRC functions:

• The optimized assembly routines are to be C callable
(See src_init.asm and src_flt.asm in the
Appendix).

• All input and output data should be 16 bits.

• All intermediate calculations should be 32-bit double-
precision (maintaining 31.5 bits of precision per MAC).

• All filter coefficients should be 32-bit.

• All filters were designed for audio applications with
these criteria:

 0.2dB passband ripple
 58dB stopband ripple

• The MIPS budget should be ≤ 2 MIPS for all SRC
examples.

http://www.mds.com/

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 5 of 25

The program assumes input data comes from a 16-bit
buffer (initialized as ‘x’ in the shell). This data is copied
into a 32-bit buffer ‘in1’ within src_flt.asm. At the
end of src_flt.asm, the last 32-bit buffer inx (where
‘x’ is the last stage) is copied into a 16-bit buffer (‘y’ in the
shell). These 16-bit input/output buffers can be eliminated
to conserve data space. In this case, you will need to
undefine BUFIN and preload in1 with 32-bit data and
then use the 32-bit output data from inx.

The filters were designed to convert between selected
standard audio sample rates (Hz): 48000, 44100, 32000,
22050, 16000, 11025, and 8000. See Figure 1 for the audio
SRC matrix. Note that an ‘x’ in the matrix denotes that the
SRC filter was designed and is included in SRC.zip. If
you have the SRC program from MDS (or similar) you can
generate coefficients for any SRC. See Section 1.7.2
below.

Figure 2. Audio SRC Matrix

The #2 workspace in this project has all the necessary plots
of the input/output stages as well as the intermediate
buffers. You can look at the data in the time domain or
apply the VisualDSP++ built-in FFT plotting function to
analyze the frequency domain. Load
plots_xxxxtoxxxx.vdw for a particular SRC.

A SINE_xxxxx_16bit_1024.dat input file was
generated to test every SRC. This is a 16-bit, 1024-sample,
1 KHz or 250 Hz sine wave at the input sample rate. These
input files were generated using MATLAB® scripts (see
gen_sine_wave_comma_16.m). It's easy to verify
proper SRC functionality by counting samples in one
period at both the input rate (in the ‘x’ plot) and the output
rate (in the ‘y’ plot) in workspace #2. See Figure 2 and
Figure 3.

Figure 3. ‘x’ Input Data for 44.1 KHz Sampling of a
250 Hz Sine Wave.

Figure 4. 'y' Output Data for 48 KHz SRC of a
250 Hz Sine Wave

The built-in FFT plotting functions were also used to
analyze input and output data. See Figure 4 and Figure 5.

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 6 of 25

Figure 5. FFT of 'x' Input Data at 250 Hz

Figure 6. FFT of 'y' Output Data at 250 Hz

1.7.1 Input/Output Data Sizes and the GCD
The size of NINPS and NOUTS can be modified in each
src_xxxxtoxxxx.h file (see example of
src_441to48.h in the Appendix). This will allow the
user to vary the size of the input/output buffers according
to system block processing needs. It was envisioned that
the end application would be operating on blocks of audio
samples. Note that the smallest block size can be no less
than the LCM discussed in Section 1.6. However, an
integer multiple of the LCM can be applied to increase the

processed block size. The user can increase or decrease the
integer multiple of the LCM (or Greatest Common
Denominator, GCD, in Table 2) by changing the buffer
sizes NINPS and NOUTS. These two numbers must be at
least half of the greatest filter coefficient count times the
INTPx to ensure valid output data. Table 1 was generated
from a simple C program:

GCD=48000, Original=48000/48000, NEW=1/1
GCD=300, Original=48000/44100, NEW=160/147
GCD=16000, Original=48000/32000, NEW=3/2
GCD=150, Original=48000/22050, NEW=320/147
GCD=16000, Original=48000/16000, NEW=3/1
GCD=75, Original=48000/11025, NEW=640/147
GCD=8000, Original=48000/8000, NEW=6/1
GCD=300, Original=44100/48000, NEW=147/160
GCD=44100, Original=44100/44100, NEW=1/1
GCD=100, Original=44100/32000, NEW=441/320
GCD=22050, Original=44100/22050, NEW=2/1
GCD=100, Original=44100/16000, NEW=441/160
GCD=11025, Original=44100/11025, NEW=4/1
GCD=100, Original=44100/8000, NEW=441/80
GCD=16000, Original=32000/48000, NEW=2/3
GCD=100, Original=32000/44100, NEW=320/441
GCD=32000, Original=32000/32000, NEW=1/1
GCD=50, Original=32000/22050, NEW=640/441
GCD=16000, Original=32000/16000, NEW=2/1
GCD=25, Original=32000/11025, NEW=1280/441
GCD=8000, Original=32000/8000, NEW=4/1
GCD=150, Original=22050/48000, NEW=147/320
GCD=22050, Original=22050/44100, NEW=1/2
GCD=50, Original=22050/32000, NEW=441/640
GCD=22050, Original=22050/22050, NEW=1/1
GCD=50, Original=22050/16000, NEW=441/320
GCD=11025, Original=22050/11025, NEW=2/1
GCD=50, Original=22050/8000, NEW=441/160
GCD=16000, Original=16000/48000, NEW=1/3
GCD=100, Original=16000/44100, NEW=160/441
GCD=16000, Original=16000/32000, NEW=1/2
GCD=50, Original=16000/22050, NEW=320/441
GCD=16000, Original=16000/16000, NEW=1/1
GCD=25, Original=16000/11025, NEW=640/441
GCD=8000, Original=16000/8000, NEW=2/1
GCD=75, Original=11025/48000, NEW=147/640
GCD=11025, Original=11025/44100, NEW=1/4
GCD=25, Original=11025/32000, NEW=441/1280
GCD=11025, Original=11025/22050, NEW=1/2
GCD=25, Original=11025/16000, NEW=441/640
GCD=11025, Original=11025/11025, NEW=1/1
GCD=25, Original=11025/8000, NEW=441/320
GCD=8000, Original=8000/48000, NEW=1/6
GCD=100, Original=8000/44100, NEW=80/441
GCD=8000, Original=8000/32000, NEW=1/4
GCD=50, Original=8000/22050, NEW=160/441
GCD=8000, Original=8000/16000, NEW=1/2
GCD=25, Original=8000/11025, NEW=320/441
GCD=8000, Original=8000/8000, NEW=1/1

Table 1. Greatest Common Denominator for Audio
SRC

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 7 of 25

1.7.2 Coefficient Generation and Formatting
Assuming a program that is similar to the MDS tool is
used, some data formatting must be performed. The
following must be done to convert the raw decimal filter
coefficients. With MDS, a *.dsp file is produced. Table 2
is an example of the MDS data format for the *.dsp file.
This file must be properly formatted as a 32-bit
hexadecimal VisualDSP++ input data file (*.dat). This is
then read (by VisualDSP++) into the corresponding
variable at initialization:

a. Use Microsoft Excel to import the *.dsp file (space
delimited). Select the "D" column and erase everything
but the decimal filter coefficients. Save the file as a
‘Formatted Text (Space Delimited)(*.prn)’ file.

/* External References */
.external src_init;
.external src_flt;

#define STAGE 3 /* Number of stages */
#define INTP0 160 /* Interpolation factor */
#define DOWN0 147 /* Decimation factor */

/* -- */

/* parameters for each stage */
#define INTP1 2
#define DOWN1 1
#define LENG1 223
#define PLEN1 112
#define MLEN1 224
#define SHFT1 0
#define NINP1 147
#define SZIN1 512

#define INTP2 5
#define DOWN 2 1
#define LENG2 27
#define PLEN2 6
#define MLEN2 30
#define SHFT2 0
#define NINP2 94
#define SZIN2 512

#define INTP3 16
#define DOWN3 147
#define LENG3 49
#define PLEN3 4
#define MLEN3 64
#define SHFT3 0
#define NINP3 1470
#define SZIN3 2048

#define NINP4 160
#define SZIN4 256

/* -- */

.VAR/DM flt1[MLEN1];
.INIT flt1:
 0xffc8, /* -1.72471041e-003 cf 000 pp 000 ft 1 */
 0xfffe, /* -8.01035724e-005 cf 002 pp 000 ft 1 */

 0x000f, /* 4.65568547e-004 cf 004 pp 000 ft 1 */
 0xfffa, /* -2.00361260e-004 cf 006 pp 000 ft 1 */
 0x000c, /* 3.90279025e-004 cf 008 pp 000 ft 1 */
 0xfff2, /* -4.43292360e-004 cf 010 pp 000 ft 1 */
 0x0013, /* 6.04802800e-004 cf 012 pp 000 ft 1 */
 0xffe8, /* -7.54936936e-004 cf 014 pp 000 ft 1 */
 0x001e, /* 9.43581218e-004 cf 016 pp 000 ft 1 */
 ., . . .
 ., . . .
 ., . . .

Listing 1. Coefficient Format from MDS

b. Use the included MATLAB script dec_file_to-
_hex_file_converter.m. This script will read in
decimal (exponential) data from the *.prn file and
convert to a 32-bit Hexadecimal format (*.dat file)
suitable to be read by VisualDSP++ within a data
initialization section. This MATLAB script can be
easily modified for other formats.

1.7.3 BUFIN Define
When BUFIN is undefined (under VisualDSP++:
PROJECT OPTIONS> ASSEMBLER> ADDITIONAL
OPTIONS: -D BUFIN), the SRC program assumes that
buffer in1 is preloaded with 32-bit input data AFTER the
src_init is accomplished (buffer zeroing). This requires
that the shell program preload in1 from a 32-bit source.
Define BUFIN to include the 16-bit buffer transfer code
within src_flt.asm. ‘x’ and ‘y’ 16-bit input buffers are
not necessary for a final application but they do allow for
easier data manipulation for test purposes.

1.7.4 Zeroing Filter Delays
To "zero" out filter delays, use the following equations as
offsets to first valid output data:

1st Offset = (LENG1-1)/(2*DOWN1)
2nd Offset = INTP2/DOWN2*1st Offset + (LENG2-1)/(2*DOWN2)
3rd Offset = INTP3/DOWN3*2nd Offset + (LENG3-1)/(2*DOWN3)

See the constants generated in the src_xxxxtoxxxx.h
files. DOFSx is actually the offset from the end of the
buffer. Therefore it is the number of valid output data
samples. This will determine how often this routine needs
to be executed in a block processed system. Be careful with
this number. The preprocessor in VisualDSP++ will not
generate fractional constants. Therefore, depending on the
math here, DOFSx could have an error of ±1 sample. For a
particular SRC, check the first sample in ‘y’ and adjust the
DOFSx accordingly.

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 8 of 25

1.7.5 Reducing Intermediate Buffers
One idea to reduce the number of intermediate buffers is to
implement a zero_buf function (not included) that
would re-zero the buffers between filter sections. This
would reduce the number of intermediate buffers to two at
the expense of more MIPS to accomplish the SRC.
However, the MIPS increase would be negligible and is on
the order of the size of the buffer times the number of
times it is zeroed. These two intermediate buffers should
be sized to the maximum needed for any SRC.

1.7.6 Restrictions
If there is a large interpolation constant INTPx, this
severely reduces the number of valid data samples in the
final output buffer. For example, in the 44.1K to 48K SRC,
there is an interpolation constant of 16 in the 3rd stage. If
we only use L1 data sections (max = 4096 bytes) we only
get 111 valid data samples in the final output buffer.
However, if we can use L2 (like what is available in the
ADSP-BF535) and make this intermediate buffer as large
as 4096 words (16K bytes), we can get a relatively large
number of valid output data samples. Depending on
interpolation constants and the need to run out of single
cycle L1 memory, the limiting factor appears to be the L1
section size. We can maximize all the filters based on this
L1 section size (4096 bytes or 1024 32-bit words) or
assume we can use L2 (internal or external) and make the
intermediate buffers larger. In the latter case, the number of
valid output data samples greatly increases.

1.7.7 Unresolved Issues
The following SRCs produced corrupted output data when
using a 3-stage interpolator structure:

11025to16,

16to2204, and

8to11025

Therefore, a 2-stage filter decimator structure was used
instead and produced valid results. It appears that the MDS
filter generator produced corrupted 3rd stage outputs for all
SRCs that up-converted between two similar rates. The
MDS program chose by default a 3-stage interpolator
structure in each of these cases.

1.7.8 Case Study of Total SNR
Two common SRC changes are 44.1 KHz to 48 KHz and
48 KHz to 44.1 KHz. Instead of using the stopband and
passband ripples above, a filter was generated with

passband ripple = 0.0001 and a stopband ripple = 98 dB.
This provided a overall SNR of 90 dB through all 3 stages
of the filter. This was tested using Cooledit 2000 software.
If a lesser system SNR is desirable (50-70 dB), a 32-bit
implementation will provide a SNR that is close to the
stopband attenuation. For higher system SNR's (above
90 dB), much higher stopband attenuations are required.

Conclusions
The code and filters in this EE-Note were generated
specifically with audio SRC in mind. Notwithstanding, by
generating new filter input files with tighter passband and
stopband ripple, this code could be used unaltered for
many different applications. Keep in mind that we gained
computational efficiency by eliminating the LxL multiply
and thus only retaining 31.5 bits of precision for each
Multiply And Accumulate (MAC). This amount of
precision is more than enough for most applications.
Notice in src_flt.asm that the inner MAC loops are
only 2 cycles, enabling double precision math with very
little overhead. This “low cycle” double precision
capability of Blackfin is one of the great advantages of this
architecture over competing single MAC architectures.

Placement of data and code sections (i.e. L1, internal or
external L2) is up to the user. However, coefficients and
data should be placed in separate banks to avoid stalls
(only applies to L1). Also, whether cache or SRAM is used
will greatly impact the overall cycle counts. Since there are
many filters required for all the various audio SRC
combinations, it was assumed that coefficients would be
placed in a larger external L2 SRAM or SDRAM. These
coefficients could either be cached internally or brought
into L1/L2 via DMA concurrent to block processing.

Recommendations for Further Development
The code developed in this EE-Note can be applied to any
application requiring SRC. For example, many video
applications require the ability to scale images to change
the video size (D1 to CIF, etc.). This Polyphase multistage
SRC approach could be modified to work on byte-wide
single precision video data. The basic structure of this code
would not require many alterations. Instead of working on
one time-domain double-precision data sample per cycle,
the SRC would be modified to operate on two byte-wide
frequency-domain data samples per cycle.

Finally, the code has not been completely optimized.
Improvements can be made to reduce overall cycles
particularly the elimination of pipeline stalls.

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 9 of 25

Appendix

SRC.c

/**
* File: SRC.c
* Date Started: Sept 26 2002
* Created: Jeff Sondermeyer
**/

/*
(C) Copyright 2002 - Analog Devices, Inc. All rights reserved.

File Name: SRC.c

Date Modified: 12/28/2005 Jeff Sondermeyer Rev 0.5

The example in directory C:\SRC Rev 5 Dec 2005\src_mod illustrate a Sample Rate Converter (SRC) and
Main Program Shell utilizing the ADSP-BF53x EZ-KIT Lite Evaluation Platforms. Note that if the user
would like to use the other "precanned" filters (include files) please apply changes to
src_xxxtoxxx.h per "IPDC comment" in the example project directory. I leave this as an exercise
to the user :-)

This C shell contains function calls and routines to initialize the state of the BF53x as well as the
SRC. This program assumes input data comes from a 16-bit buffer (initialized as 'x' in this shell).
This data is copied into a 32-bit buffer 'in1' within src_flt.asm. At the end of src_flt.asm, the
last 32-bit buffer 'inx' (where 'x' is the last stage) is copied into a 16-bit buffer ('y' in this
shell). These 16-bit input/output buffers can be eliminated to conserve data space. In this case,
you will need to undefine 'BUFIN' and preload 'in1' with 32-bit data and then use the 32-bit output
data from 'inx'.

The converter was designed to convert between any of the following rates:
48000, 44100, 32000, 22050, 16000, 11025, and 8000. If you have the SRC program from Momentum Data
Systems (or similar) you can generate coefficients for any SRC. Follow #3 below. One might use
workspaces within VDSP to verify all necessary plots of the input/output stages as well in the
intermediate buffers. You can look at the data in the time domain or apply the built-in FFT plotting
function to analyze the frequency domain. Load "*.vdw" from the example SRC.

I have generated a "SINE_xxxxx_16bit_1024.dat" input file to test every SRC. This is a 16-bit,
1024-sample, 1KHz sine wave at the input sample rate. These were generated using MATLAB (see
gen_sine_wave_comma_16.m'). it's easy to verify proper conversion by counting samples in one
period at both the input rate (in the 'x' plot) and the output rate (in the 'y' plot) in workspace #2.

 Notes:

1. You can modify the size of NINPS and NOUTS in each 'src_xxxxtoxxxx.h' file. However, it MUST be
the same multiple of the GCD.

2. Buffer sizes, NINPS and NOUTS must be at least half of the filter coefficient sizes times the
INTPx value to ensure valid output data.

3. Do the following to convert the decimal filter coefficients from Momentum Data Systems SRC *.dsp
file to properly format this data as 32-bit Hexidecimal value. This is then read into the
corresponding variable at initialization:
a. Use Excel to import the *.dsp file (space delimited). Select the "D" column and erase everything
else. Save the file as a "Formatted Text (Space Delimited)(*.prn)" file.
b. Use the MATLATB program "dec_file_to_hex_file_converter.m". This MATLAB program will read in
floating point decimal (exponential) data from a file (*.prn) and convert to a 32-bit Hexidecimal
format (*.dat file) suitable to be read by VisualDSP within a data initialization section.

4. When 'BUFIN' is undefined, the program assumes that 'in1' is preloaded with 32-bit input data
AFTER the src_init is accomplished (buffer zeroing). This requires that the shell program preload
'in1' from a 32-bit source. Define 'BUFIN' to include the 16-bit buffer transfer code within
src_flt.asm. x and y 16-bit
buffers are nice for debug and prototyping but they do represent additional memory usage.

5. To "zero" out filter delays, use the following equations as offsets to first valid data:
1st Offset = (LENG1-1)/(2*DOWN1)
2nd Offset = INTP2/DOWN2*1st Offset + (LENG2-1)/(2*DOWN2)
3rd Offset = INTP3/DOWN3*2nd Offset + (LENG3-1)/(2*DOWN3)

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 10 of 25

See the constants generated in the 'src_xxxxtoxxxx.h' files.

6. DOFSx (in src_xxxxtoxxxx.h) is the offset and also is the number of valid output data samples.
This will allow you to figure how often this routine needs to be executed in a block-processed
system. Be careful with this number. The preprocessor in VDSP will not generate fractional
constants. Therefore, depending on the math here, DOFSx could have an error of +/-1. For a
particular SRC, check the first sample in 'y' and adjust the DOFSx accordingly.

7. One idea of reducing the number of intermediate buffers is to call a 'zero_buf' function that
would rezero the buffers between filter sections. This would reduce the number of intermediate
buffers to two at the expense
of more MIPs. However, the MIPs increase would be negligable and is on the order of the size of
the buffer. These two intermediate buffers should be sized to the maximum needed for any SRC.

8. If there is a big interpolation constant, this severely reduces the number of valid data samples
in the final output buffer. For example, in the 44.1K to 48K case, there is an interpolation
constant of 16 in the 3rd stage. If we only use L1 data sections (max = 4096 bytes) we only get 111
valid data samples in the final output buffer. However, if I use L2 and make this intermediate
buffer as large as 4096 words (16K bytes), I can get a relatively large number of valid output
data samples. The point here is that.. depending on interpolation constants, the limiting
factor appears to be the L1 section size. I can maximize all my filters based on this L1 section
size (4096 bytes or 1024 words) ...OR.. assume someone can use L2 and make the intermediate buffers
larger. In the later case, the number of VALID output data samples greatly increases.

9. The half band code was not implemented. Therefore, the HALFB define is not used.

10. 11025to16, 16to2204, and 8to11025 produced corrupted data with 3-stage filters. Had to use
2-stages. MDS filter generator produces corrupted 3rd stage output for close sample rate
conversions that required up sampling??? Not sure why.

11. Revision 4 of the code was debugged on a Momentum Systems Hawk PCI board. All FileIO was
done over the PCI bus. Several things need to change in this code to work with the Hawk board:
a. Define 'HAWK'
b. Add idle.c and the basiccrt.s file for the Hawk board to the project.

12. With Rev 5, I have verified the code works on the BF533 EZKIT and on ALL existing Blackfins. I
removed the LDF from the project so this code will work "out of box" with just about any VDSP
version.
*/

/* -- */
#include "fract_math.h"
#include <defBF535.h>
#include "src_inc.h"
#include "src_441to48.h"
#include <stdlib.h>
#include <stdio.h>

/* -- */

// 16-bit input/output buffers

static segment("L1_data_b")
short x[NINPS];

static segment("L1_data_b")
short y[NOUTS];

FILE *inFile,*outFile;

// 32-bit intermediate buffers

segment("L1_data_a")
int in1[SZIN1];

segment("L1_data_a")
int in2[SZIN2];

#if STAGE>=2
segment("L1_data_a")
int in3[SZIN3];
#endif

#if STAGE==3

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 11 of 25

segment("L1_data_a")
int in4[SZIN4];
#endif

// Filter Coefficients

static segment("L1_data_b")
int filter_h1[MLEN1] =
{
#include "441to48_32bit_flt1.dat"
};

#if STAGE>=2
static segment("L1_data_b")
int filter_h2[MLEN2] =
{
#include "441to48_32bit_flt2.dat"
};
#endif

#if STAGE==3
static segment("L1_data_b")
int filter_h3[MLEN3] =
{
#include "441to48_32bit_flt3.dat"
};
#endif

///
// This line enables the PCI as the default device for file I/O
//#pragma retain_name
//extern int __default_io_device = PCI_IO;
//extern int __default_io_device = FILEIO;
///

/* -- */

static void init_first_stage(STAGE_HANDLE *S) {

 FIRST_STAGE_ENTRY *V;

 V = S->V;
 V->in_s = &in1[0];
 V->in_z = SZIN1;
 V->out_s = &in2[0];
 V->out_z = SZIN2;
 V->h = &filter_h1[0];
 V->plen = PLEN1-1;
 V->up = INTP1;
 V->dn = DOWN1;
 V->nis = NINP1;
 V->nos = NINP2;
 V->nshft = SHFT1;
 V->in_c = &in1[0];
 V->out_c = &in2[0];

}

#if STAGE>=2
static void init_sec_stage(STAGE_HANDLE *S) {

 SEC_STAGE_ENTRY *M;

 M = S->M;
 M->in_s = &in2[0];
 M->in_z = SZIN2;
 M->out_s = &in3[0];
 M->out_z = SZIN3;
 M->h = &filter_h2[0];
 M->plen = PLEN2-1;
 M->up = INTP2;
 M->dn = DOWN2;
 M->nis = NINP2;
 M->nos = NINP3;

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 12 of 25

 M->nshft = SHFT2;
 M->in_c = &in2[0];
 M->out_c = &in3[0];
}
#endif

#if STAGE==3

static void init_last_stage(STAGE_HANDLE *S) {

 THIRD_STAGE_ENTRY *L;

 L = S->L;
 L->in_s = &in3[0];
 L->in_z = SZIN3;
 L->out_s = &in4[0];
 L->out_z = SZIN4;
 L->h = &filter_h3[0];
 L->plen = PLEN3-1;
 L->up = INTP3;
 L->dn = DOWN3;
 L->nis = NINP3;
 L->nos = NINP4;
 L->nshft = SHFT3;
 L->in_c = &in3[0];
 L->out_c = &in4[0];
 }
#endif

/* -- */

static segment("L1_data_b")
FIRST_STAGE_ENTRY vst;
static segment("L1_data_b")
SEC_STAGE_ENTRY mst;
static segment("L1_data_b")
THIRD_STAGE_ENTRY lst;
static segment("L1_data_b")
STAGE_HANDLE sth;
static segment("L1_data_b")
FUNDAMENT_DATA_ENTRY vfd;

/* -- */

void init_stage_handle (void) {

STAGE_HANDLE *S;
S = &sth;
S->V = &vst;

#if STAGE>=2
S->M = &mst;
#endif

#if STAGE==3
S->L = &lst;
#endif
init_first_stage (S);

#if STAGE>=2
init_sec_stage (S);
#endif

#if STAGE==3
init_last_stage (S);
#endif

}

/* -- */

void init_src (void) {

FUNDAMENT_DATA_ENTRY *F;

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 13 of 25

F = &vfd;
F->S = &sth;

F->half_band = HALFB;
F->up_stage = NUPST;
F->pivot_stage = PVTFL;
F->down_stage = NDWNS;
F->nstages = STAGE;
F->ninputs = NINPS;
F->noutputs = NOUTS;

src_init (F);

}

/* -- */

/*
Shell test program.. eventually I will use Fread and Fwrite to input/output ASCII files
(JWS)
*/
int i,j=0,count,file_status;

int getInput(short *inBuf,int count);
int writeOutput(short *outBuf,int count);

int main()
{

//int i,j=0,count,file_status;

 /* initialize filter */

inFile = fopen("C:\\DSP\\sin_1khz_44khz.dat","rb");
outFile = fopen("C:\\DSP\\out_1khz_44to48.dat","wb");

init_stage_handle();
init_src();

count = getInput(x,NINPS);

while(count==NINPS)
{
 /* filter samples */
j=j+1;
#if STAGE==3
src_flt (x, y, DOFS3, &vfd);
#endif

#if STAGE==1
src_flt (x, y, DOFS1, &vfd);
#endif

#if STAGE==2
src_flt (x, y, DOFS2, &vfd);
#endif

count = writeOutput(y,NOUTS);

count = getInput(x,NINPS);
}

fclose(inFile);
fclose(outFile);

}

int getInput(short *inBuf,int count)
{
 int wordsRead=0;
 wordsRead = fread(inBuf,sizeof(short),count,inFile);
 return wordsRead;
}

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 14 of 25

int writeOutput(short *outBuf,int count)
{
 int wordsRead=0;
 wordsRead = fwrite(outBuf,sizeof(short),count,outFile);
 return wordsRead;
}

Listing 2. SRC.c

Src_flt.asm

/* File: src_flt.asm Version 0.1

fundemental structure order:

1. stage data handle
2. half band flag (0,1, or 2)
3. number of up stages
4. pivot flag (0 or 1)
5. number of down stages
6. number of stages (total)
7. number of input samples per block
8. number of output samples per block

 P0 -> fundamental structure
 P1 -> input samples
 P2 -> output samples
 P3 -> memory storage and retreival
 P4 = temporary pointer
 P5 = loop counter

 R0 = Loop counters
 R1 = temporary storage
 R2 = Loop counters
 R3 = Shift count
 R4 = inner loop calculations
 R5 = inner loop calculations
 R6 = temporary storage
 R7 = temporary storage

 I0 = dedicated to input buffer 'inx'
 I1 = general use...reading 'inputData' plus others
 I2 = general use...reading 'inx' for output data
 I3 = general use...

 Input Data Structure (VAR_SIZE words)
 AIS: address of input signal (circular), updated after return,
 SIS: circular size of AIS,
 AOS: address of output signal (circular), updated after return,
 SOS: circular size of AOS,
 AFA: address of filter array,
 LEN: poly-phase filter length,
 UPR: up sample rate >= 2,
 DNR: down sample rate = 1 is assumed
 NIS: number of input signals
 NOS: number of output signals
 SHF: number of shift counter, 0 or 1

*/

.SECTION L1_data_a;
.align 4;

.byte4 pt_fundst; // pointer to fundamental structure
.byte4 pt2_fundst; // pointer to fundamental structure
.byte4 st_handle; // pointer to stage data handle
.byte2 inputs; // number of inputs
.byte2 outputs; // number of outputs
.byte2 diff_offset; // Offset difference

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 15 of 25

.GLOBAL _src_flt;

.SECTION program;

_src_flt:

 [--SP]=(R7:4,P5:3); // Push R7...
 P1 = R0; // Address of input data
 P2 = R1; // Address of output data
 P0 = [SP+40]; // Address of fundemental structure

 p3.l = diff_offset;
 p3.h = diff_offset;
 w[p3] = r2; /* save DOFS3 (difference offset to strip filter delay off of final
 buffer */

 p3.l = pt_fundst; // p3 -> to fundemental structure
 p3.h = pt_fundst;
 [p3] = p0; // save fundemental stage pointer in memory pointed at by p3

#ifdef BUFIN

 p5 = 24; /* 6*4 = 24 bytes (post increment points to number input samples per
 block) */
 r6 = [p0++p5];
 p4 = r6; // p4 -> stage handle

 r6 = [p0++]; // r6 = number of inputs samples per block
 p3.l = inputs; // p3 -> to number of input samples per block
 p3.h = inputs;
 w[p3] = r6; // save number of input samples per block

 r6 = [p0++]; // r6 = number of output samples per block
 p3.l = outputs; // p3 -> to number of output samples per block
 p3.h = outputs;
 w[p3] = r6; // save number of output samples per block
 p0 = [p4++]; // p0 -> fist data structure
/******** IPDC comment *******/
// r6 = [p0++]; // r6 -> first input buffer 'inx'
// i0 = r6; // i0 -> first input buffer 'inx'
// b0 = r6; // b0 -> base of first input circular buffer
/******************************/

/*********IPDC addition*******/
 p5 = 44;
 r6 = [p0++p5]; // r6 -> first input buffer 'inx'
 i0 = r6; // i0 -> first input buffer 'inx'
 p5=-40;
 r6 = [p0++p5];
 b0 = r6; // b0 -> base of first input circular buffer
/******************************/
 r6 = [p0++];
 r6 = r6 << 2; // double length (4 bytes per word)
 l0 = r6; // l0 = first input circular buffer size 'SZINx'

go_back:

// p3.l = num_blocks;
// p3.h = num_blocks;
// r6 = w[p3]; // get number of blocks
// r6 += -1; // Decrement number of blocks
// w[p3] = r6; // save decremented number of blocks
// CC = r6 < 0;
// IF CC JUMP RETURN_TO_SENDER; // Return if less than 1 block

 p3.l = inputs; // p3 -> to number of input samples per block
 p3.h = inputs;
 r7 = w[p3](Z);
 p5 = r7; // p5 = number of input samples per block

 i1 = p1; // load i1 with address of 'inputData'
 l1 = 0;

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 16 of 25

 LSETUP(READ_INPUTS_BEGIN, READ_INPUTS_END) LC0 = p5;
READ_INPUTS_BEGIN:
 r6.h = w[i1++]; // read the input buffer 'inputData'
 r6.l = 0;

READ_INPUTS_END:
 [i0++] = r6; // write input into input buffer 'inx'

// p1 = i1; // save i1 into p1

 p3.l = pt_fundst; // p3 -> to fundemental structure
 p3.h = pt_fundst;
 r7 = [p3];
 p0 = r7; // p0 -> to fundemental structure

#endif

src_core:

 r7 = [p0++];
 p3.l = st_handle;
 p3.h = st_handle;
 [p3] = r7; // store stage data handle

 r6 = [p0++]; // r6 = half band flag (move past this for now)

 r2 = [p0++]; // r2 = # of up stages
 p3.l = pt2_fundst;
 p3.h = pt2_fundst;
 [p3] = p0; // save pointer to current fundemental structure

 CC = r2 <= 0;
 IF CC JUMP over_upstage; // if upstage = 0, jump over

UPSTAGE_BEGIN:

 p3.l = st_handle;
 p3.h = st_handle;
 p4 = [p3]; // p4 -> current stage data handle

 r7 = [p4++];
 p0 = r7; // p0 -> stage data

 [p3] = p4; // save pointer to stage data handle

up_src:
/******** IPDC comment *******/
// r7 = [p0++]; // r7 -> input signal 'inx'
// b3 = r7; // b3 set for circular buffering
/******************************/

/*********IPDC addition*******/
 p4 = 44;
 r7 = [p0++p4]; // r7 -> input signal 'inx'
 p4 = -40;
 r5 = [p0++p4];
 b3 = r5; // b3 set for circular buffering
/******************************/

 r5 = [p0++];
 r5 = r5 << 2; // double the length (4 bytes per word)
 l3 = r5; // l3 = Size of Input Stage (SIS)

/******** IPDC comment *******/
// r6 = [p0++];
// i2 = r6; // i2 -> output signal 'inx'+1 buffer (output buffer)
// b2 = r6; // b2 set for circular buffering

/******************************/

/*********IPDC addition*******/

 p4 = 40;

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 17 of 25

 r6 = [p0++p4];
 i2 = r6; // i2 -> output signal 'inx'+1 buffer (output buffer)
 p4 = -36;
 r6 = [p0++p4];
 b2 = r6; // b2 set for circular buffering
/******************************/

 r6 = [p0++];
 r6 = r6 << 2; // double the output size (4 bytes per word)
 l2 = r6; // l2 = Size of Output Stage (SOS)

 r3 = [p0++]; // r3 -> the filter coefficients
 r6 = [p0++]; // r6 = poly-phase filter size
 p3 = r6; // save poly-phase into p3
 p4 = 8; // always skip over DNR (2*4bytes) in the up SRC

 r4 = [p0++p4]; // r4 = UPR
 p5 = r4; // p5 = Up Sample Rate (UPR)
 r0 = [p0++p4]; // r0 = NIS

 p4 = -40; // Backup 10 words (10x4bytes)
 r6 = [p0++p4]; // r6 = number of shifts (always a arithmatic left
shift..upshift)
 m2 = r6; // Save in m2

UP_SRC_OUTER_BEGIN:

 i1 = r3; // i1 -> filter coefficients
 l1 = 0; // linear addressing???

 LSETUP(UP_SAMPLE_BEGIN, UP_SAMPLE_END) LC0 = p5;

UP_SAMPLE_BEGIN:
 i3 = r7; // i3 - > 'in' buffer
 A1=A0=0 || R6=[I1++] || R5=[I3--]; // r6=filter coef, r5='inx' buffer

 LSETUP(POLY_PHASE_BEGIN, POLY_PHASE_END) LC1 = p3;

POLY_PHASE_BEGIN: R4=(A0+=R6.H*R5.H), A1+=R6.H*R5.L (M);
POLY_PHASE_END: R1=(A1+=R5.H*R6.L) (M) || R6=[I1++] || R5=[I3--];

// R1=R1>>16;
// R4=R4+R1 (S);

 r5=m2; // load r5 with number of shifts
/******** IPDC comment *******/
// A1 = A1>>16;
/******************************/

/*********IPDC addition*******/
 A1=A1>>>15;
/******************************/
 A0+=A1;
 A0 = ASHIFT A0 BY r5.l;
 r4 = A0; // high half-word extraction with 16-bit saturation.
 // Rounding cntrl by
 // RND_MOD. 0 = unbiased rounding = default

// A0 = A0 >>> 1;
// R4 = A0;

UP_SAMPLE_END: [i2++] = R4; // save output into 'inx'+1

 i3 = r7; // get input back at beginning of 'inx'
 m3 = 4;
 i3 += m3; // increment by 1 word (4 bytes)
 r7 = i3; // update r7 -> 'inx' buffer

UP_SRC_OUTER_END:
 r0 += -1; // Check number of input samples (NIS)
 CC = r0 <= 0;
 IF !CC JUMP UP_SRC_OUTER_BEGIN; // if NIS equal to 0, jump to UP_SRC_OUTER_BEGIN

 p4 = 8; // 2 words (2*4bytes per word)

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 18 of 25

 [p0++p4] = r7; // save the input signal address
 r6 = i2;
 [p0] = r6; // save the output signal address

UPSTAGE_END:
 r2 += -1; // Check number of stages
 CC = r2 <= 0;
 IF !CC JUMP UPSTAGE_BEGIN; // if upstage not equal to 0, jump to UPSTAGE_BEGIN

over_upstage:

 p3.l = pt2_fundst;
 p3.h = pt2_fundst;
 p0 = [p3]; // p0 -> fundamental structure

 r6 = [p0++]; // r6 = pivot flag
 [p3] = p0; // save fundamental structure

 CC = r6 <= 0;
 IF CC JUMP over_pivotstage; // if pivotstage = 0, jump over

 p3.l = st_handle;
 p3.h = st_handle;
 p4 = [p3]; // p4 -> current stage data handle

 r7 = [p4++];
 p0 = r7; // p0 -> stage data

 [p3] = p4; // save pointer to stage data handle

pvt_src:

/******** IPDC comment *******/
// r7 = [p0++]; // r7 - > input signal ('in*' buffer)
// i3 = r7; // i3 - > input signal
// b3 = r7; // b3 set for circular buffering

/******************************/

/*********IPDC addition*******/
 p4 = 44;
 r7 = [p0++p4]; // r7 -> input signal 'inx'
 i3 = r7;
 p4 = -40;
 r5 = [p0++p4];
 b3 = r5;
/******************************/

 r5 = [p0++];
 r5 = r5 << 2; // double the length (4 bytes per word)
 l3 = r5; // l3 = Size of Input Stage (SIS)

/******** IPDC comment *******/
// r6 = [p0++];
// i2 = r6; // i2 -> output signal 'inx'+1 buffer (output buffer)
// b2 = r6; // b2 set for circular buffering
/******************************/

/*********IPDC addition*******/
 p4 = 40;
 r6 = [p0++p4];
 i2 = r6; // i2 -> output signal 'inx'+1 buffer (output buffer)
 p4 = -36;
 r6 = [p0++p4];
 b2 = r6; // b2 set for circular buffering
/******************************/

 r6 = [p0++];
 r6 = r6 << 2; // double the output size (4 bytes per word)
 l2 = r6; // l2 = Size of Output Stage (SOS)

 r3 = [p0++]; // r3 -> the filter coefficients
 r6 = [p0++]; // r6 = poly-phase filter size
 p3 = r6; // save poly-phase into p3

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 19 of 25

 r6 = [p0++]; // r6 = UPR (filter step)
 r6 = r6 << 2; // post increment must be two bytes
 m1 = r6; // post increment set to UPR
 p4 = 8; // always skip over UPR (2*4bytes) in the up SRC

 r0 = [p0++p4]; // r0 = DNR
 r0 = r0 << 2; // four bytes per word
 r6 = [p0++]; // r6 = NOS
 p5 = r6; // p5 = Number of Outputs (NOS)

 p4 = -40; // Backup 10 words (10x4)
// r1.l = w[p0]; // r1.l = Number of shifts (can be left shift=upshift or right
 // shift=downshift)
 r6 = [p0++p4];
 m2 = r6; // m2 = Number of shifts

 r2 = 0; // set poly index value to 0
 i1 = r3; // i1 -> filter coefficients

// CC = r6 <= 0;
// IF !CC JUMP pvt_positive; // if # of shifts > 0, jump over
// CC = r6 < 0;
// IF CC JUMP pvt_negative; // if # of shifts < 0, jump over

 LSETUP(PVT_OUT_BEGIN, PVT_OUT_END) LC0 = p5;
PVT_OUT_BEGIN:

 m3 = i3; // save i3 into m3;
 A1=A0=0 || R6=[I1] || R5=[I3--]; // r6=filter coef, r5='inx' buffer
// i1 += m1;
 LSETUP(PVT_FILTER_BEGIN, PVT_FILTER_END) LC1 = p3;

PVT_FILTER_BEGIN:
 R4=(A0+=R6.H*R5.H), A1+=R6.H*R5.L (M)||i1 += m1;
PVT_FILTER_END:
 R1=(A1+=R5.H*R6.L) (M) || R6=[I1] || R5=[I3--];
 i1 += m1;

// R1=R1>>16;
// R4=R4+R1 (S);

 r5 = m2;
/******** IPDC comment *******/
// A1 = A1>>16;
/******************************/

/*********IPDC addition*******/
 A1=A1>>>15;
/******************************/
 A0+=A1;
 A0 = ASHIFT A0 BY r5.l;
 r6 = A0; // high half-word extraction with 16-bit saturation.
 // Rounding cntrl by
 // RND_MOD. 0 = unbiased rounding = default
 [i2++] = r6; // save output into 'inx'+1

// R6.H=(A1+=R6.L*R5.H) || NOP || NOP;

// [i2++] = r4; // save output into 'inx'+1

// new_poly:

 r7 = r2; // r7 = poly_index
 r7 = r7 + r0; // r7 = poly_index + DNR
 i3 = m3; // restore i3
 r6 = m1; // r6 = UPR

test_address:
 r5 = r7 - r6; // (poly_index + DNR)-UPR
 CC = r5 < 0;
 IF CC JUMP next_address; // if true, jump over
 r7 = r5; // r7 = new poly_index
 m0 = 4;

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 20 of 25

 i3 += m0; // increment by 1 word (4 bytes)

 JUMP test_address; // test the new poly_index
next_address:

 r2 = r7; // save the new address
 r7 = r7 + r3; // r7 -> adjusted filter address

PVT_OUT_END:
 i1 = r7; // i1 -> poly-phase filter

pvt_return:

 r7 = i3; // update r7 -> 'inx' buffer
 p4 = 8; // 2 words (2*4bytes per word)
 [p0++p4] = r7; // save the input signal

 r6 = i2;
 [p0] = r6; // save the output signal address

over_pivotstage:

 p3.l = pt2_fundst;
 p3.h = pt2_fundst;
 p0 = [p3]; // p0 -> fundamental structure

 r0 = [p0++]; // r0 = number of down stages
 CC = r0 <= 0;

 IF CC JUMP return_src_core; // if number of down stages = 0, RTS

DOWNSTAGE_BEGIN:

 p3.l = st_handle;
 p3.h = st_handle;
 p4 = [p3]; // p4 -> current stage data handle

 r7 = [p4++];
 p0 = r7; // p0 -> stage data

 [p3] = p4; // save pointer to stage data handle

dn_src:

/******** IPDC comment *******/
// r7 = [p0++]; // r7 -> input signal 'inx'
// i3 = r7; // i3 -> input signal 'inx'
// b3 = r7; // b3 set for circular buffering
/******************************/

/*********IPDC addition*******/
 p4 = 44;
 r7 = [p0++p4]; // r7 -> input signal 'inx'
 i3 = r7;
 p4 = -40;
 r5 = [p0++p4];
 b3 = r5;
/******************************/

 r5 = [p0++];
 r5 = r5 << 2; // double the length (4 bytes per word)
 l3 = r5; // l3 = Size of Input Stage (SIS)

/******** IPDC comment *******/
// r6 = [p0++];
// i2 = r6; // i2 -> output signal 'inx'+1 buffer (output buffer)
// b2 = r6; // b2 set for circular buffering
/******************************/

/*********IPDC addition*******/
 p4 = 40;
 r6 = [p0++p4];
 i2 = r6; // i2 -> output signal 'inx'+1 buffer (output buffer)
 p4 = -36;

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 21 of 25

 r6 = [p0++p4];
 b2 = r6; // b2 set for circular buffering
/******************************/

 r6 = [p0++];
 r6 = r6 << 2; // double the output size (2 bytes per word)
 l2 = r6; // l2 = Size of Output Stage (SOS)

 p4 = 8; // always skip over DNR (2*4bytes) in the up SRC

 r3 = [p0++]; // r3 -> the filter coefficients
 r6 = [p0++p4]; // r6 = filter length
 p3 = r6;

 r4 = [p0++p4]; // r4 = DNR
 r4 = r4 << 2; // Four bytes per word
 m3 = r4;

 p5 = [p0++]; // p5 = number of outputs

 p4 = -40; // Backup 10 words (10x4)
 r2 = [p0++p4]; // r2 = number of shifts

 LSETUP(DN_OUT_BEGIN, DN_OUT_END) LC0 = p5;

DN_OUT_BEGIN:

 i1 = r3; // i1 -> filter coefficients
 m1 = i3; // save i3 into m1

 A1=A0=0 || R6=[I1++] || R5=[I3--]; // r6=filter coef, r5='inx' buffer
 LSETUP(DOWN_FILTER_BEGIN, DOWN_FILTER_END) LC1 = p3;
DOWN_FILTER_BEGIN:
 R4=(A0+=R6.H*R5.H), A1+=R6.H*R5.L (M);
DOWN_FILTER_END:
 R1=(A1+=R5.H*R6.L) (M) || R6=[I1++] || R5=[I3--];

// R1=R1>>16;
// R4=R4+R1 (S);
/******** IPDC comment *******/
// A1 = A1>>16;
/******************************/

/*********IPDC addition*******/
 A1=A1>>>15;
/******************************/
 A0+=A1;
 A0 = ASHIFT A0 BY r2.l;
 r6 = A0; // high half-word extraction with 16-bit saturation.
 // Rounding cntrl by
 // RND_MOD. 0 = unbiased rounding = default
 [i2++] = r6; // save output into 'inx'+1
// JUMP shiftDone;

//shiftPos: // Left Shift = Up shift = positive number
// A1 = ASHIFT A1 BY r2.l;
// r6.h = A1; // high half-word extraction with 16-bit saturation.
 // Rounding cntrl by
 // RND_MOD. 0 = unbiased rounding = default

// w[i2++] = r6.h; // save output into 'inx'+1

//shiftDone:
 i3 = m1; // restore i3

DN_OUT_END:
 i3 += m3; // increment by 4 bytes per word
 r7 = i3;

 p4 = 8; // 2 words (2*4bytes per word)
 [p0++p4] = r7; // save the input signal address

 r6 = i2;
 [p0] = r6; // save the output signal address

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 22 of 25

DOWNSTAGE_END:

 r0 += -1; // Check number of downstages
 CC = r0 <= 0;
 IF !CC JUMP DOWNSTAGE_BEGIN; // if # equal to 0, jump to DOWNSTAGE_BEGIN

return_src_core:

#ifdef BUFIN

 p3.l = diff_offset; // p3 -> Offset difference to strip leading zeroes off of final
 // buffer
 p3.h = diff_offset;
 r7 = w[p3](Z); // r7 = number of outputs samples per block
// r7 = 147;
 p5 = r7; // p5 = number of outputs samples per block (OSPB)

 r7 = r7 << 2; // 4 bytes per word.
 m2 = r7;
 i2 -= m2; // modify i2 = i2-#OSPB (backup pointer by output block size)

 i3 = p2; // i3 -> 'outputData'
 l3 = 0; // non-circular

 LSETUP(READ_OUTS_BEGIN, READ_OUTS_END) LC0 = p5;

READ_OUTS_BEGIN:
 r6 = [i2++]; // get 32-bit output from buffer

READ_OUTS_END:
 w[i3++] = r6.h; // write 16-bit output to 'outputData'

// p2 = i3; // save i3 into p2

// JUMP go_back; // jump if more inputs

#endif

RETURN_TO_SENDER:

 (R7:4,P5:3)=[SP++]; // Pop R7 ...P5
 L0=0;
 L1=0;
 L2=0;
 L3=0;

 RTS;

_src_flt.end:

Listing 3. Src_flt.asm

initial.asm

/* --

File: initial.asm

Sample Rate Conversion Version 0.1

 P0 -> fundamental structure

 Registers used: P0, P1, P2, P5, R2, R3, R4, R5, R6, R7

 -- */

.GLOBAL _src_init;

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 23 of 25

.SECTION program;

/*
 initialize all the buffers (inputs and delay)
 P0 -> a fundamental structure
*/

_src_init:
 [--SP]=(R7:4,P5:3); // Push R7 and

 P0 = R0; // Address of fundemental structure
 p5 = 20; // 5*4 bytes = 20 byte-wide increment
 r6 = [p0++p5]; // Pointer to fundemental structure 'fs_x' post increment of
 // 5 32-bit words
//jws p1 = r2; // p1 = 32-bit pointer 'st_handle'

 r7 = [p0++]; // load number of stages
 p5 = r7;
 p1 = r6; // p1 = 32-bit pointer 'st_handle'

 LSETUP(L_BEGIN, L_END) LC0 = p5;
L_BEGIN: r2 = [p1++];

 p2 = r2; // p2 -> 'datax'
 r3 = [p2++]; // r3 -> first element 'inx'
 r4 = [p2++]; // r4 = length 'SZINx'

 i0 = r3; // i0 -> 'inx' buffer
 p5 = r4;
 r5 = 0;
 l0 = 0; // l0 = length of 'inx' buffer SZINx
 LSETUP(SET_ZERO_BEGIN, SET_ZERO_END) LC1 = p5;
SET_ZERO_BEGIN:
SET_ZERO_END: [i0++] = r5; // zero out a 32-bit word

L_END: nop;

_src_init_end1: (R7:4,P5:3)=[SP++]; // Pop R7 and P5
RTS;

Listing 4. initial.asm

src_441to48.h

//Include file for 44.1KHz to 48KHz. Greatest Common Denominator (GCD) = 147/160.

#define HALFB 0 // Half band flag
#define NUPST 2 // Number of up stages
#define PVTFL 1 // Pivot flag
#define NDWNS 0 // Number of down stages
#define STAGE 3 // Number of total stages
#define NINPS 147 // Number of imput samples (Should be a even multiple of the GCD)
#define NOUTS 160 // Number of output samples (Should be the same multiple as above
 // of the GCD)

#define INTP1 2
#define DOWN1 1
#define LENG1 509 // LENG1 = length of stage filter
#define PLEN1 255 // PLEN1 = MLEN1/INTP1 (polyphase length)
#define MLEN1 510 // MLEN1 = LENG1 + enough to make even length for polyphase
#define SHFT1 0
#define NINP1 NINPS // NINPS (...or NOUTS) = 160
#define SZIN1 (NINP1 + ((LENG1-1)/INTP1) + 1) // 160 + 48/147 + 1 = 161

#define INTP2 5
#define DOWN2 1
#define LENG2 61 // LENG2 = length of stage filter
#define PLEN2 13 // PLEN2 = MLEN2/INTP2 (polyphase length)
#define MLEN2 65 // MLEN2 = LENG2 + enough to make even length for polyphase
#define SHFT2 1
#define NINP2 ((NINP1*INTP1)/DOWN1) // (NINPx*INTPx)/DOWNx = 160*147/16 = 1470

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 24 of 25

#define SZIN2 (NINP2 + ((LENG2-1)/INTP2) + 1) // 1470 + 26/1 + 1 = 1497

#define INTP3 16
#define DOWN3 147
#define LENG3 113 // LENG3 = length of stage filter
#define PLEN3 8 // PLEN2 = MLEN2/INTP2 (polyphase length)
#define MLEN3 128 // MLEN2 = LENG2 + enough to make even length for polyphase
#define SHFT3 0
#define NINP3 ((NINP2*INTP2)/DOWN2) // (NINPx*INTPx)/DOWNx 1470*1/5 = 294
#define SZIN3 (NINP3 + ((LENG3-1)/INTP3) + 1) // 294 + 222/1 + 1 = 517

#define NINP4 ((NINP3*INTP3)/DOWN3) // (NINPx*INTPx)/DOWNx = 294*1/2 = 147
#define SZIN4 NINP4 + 1 // for last decimation stage only = 148

#define OFFS1 (LENG1-1)/(2*DOWN1) //
#define OFFS2 (LENG2-1)/(2*DOWN2) //
#define OFFS3 (LENG3-1)/(2*DOWN3) //

#if OFFS3 < 1
#define OF2S3 1
#else
#define OF2S3 OFFS3
#endif

#define TOFS1 OFFS1 //
#define TOFS2 ((INTP2*TOFS1)/DOWN2 + OFFS2) //
#define TOFS3 ((INTP3*TOFS2)/DOWN3 + OF2S3) //

/*********IPDC comment *******/
//#define DOFS3 (NOUTS-TOFS3) // Used to strip filter delays off buffers
/******************************/

/*********IPDC addition*******/
#define DOFS3 NOUTS
/******************************/

Listing 5. src_441to48.h

 a

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 25 of 25

References
1. Advanced QED Series Sample Rate Conversion System (Windows 95/NT). Version 2.2, Momentum Data Systems,

1994-1998.
2. Digital Signal Processing. Chapter10. Proakis and Manolakis.

3. Discrete-Time signal Processing. A.V. Oppenheim and R. W. Schäfer, 1989

4. Multirate Systems and Filter Banks. P.P. Vaidyanathan, 1993.

5. MATLAB, V5.3 or later, MathWorks

6. VisualDSP++ 4.0 or later, Analog Devices Inc.

Document History

Revision Description

Rev 5 – January 3, 2006
by J. Sondermeyer

Added Matlab *.m files for converting floats to 32-bit fixed point HEX. Ported to
ADSP-BF533 EZ-KIT Lite and VisualDSP++ 4.0.

Rev 4 – March 18, 2004
by J. Sondermeyer

Problem in the base register initialization. Now runs with RT data. Also runs
under VisualDSP++ 3.5

 October 28, 2003
by J. Sondermeyer

Corrected bug: A1=A1>>16 should be A1=A1>>>15

 June 05, 2003
by J. Sondermeyer

Updated according to new naming conventions.
Ported example code from VisualDSP++ 3.0 to VisualDSP++ 3.1

 January 20, 2003
by J. Sondermeyer

Initial Release

	Introduction
	1.1 Sample Rate Conversion Designs
	1.1.1 Decimation
	1.1.2 Interpolation
	1.1.3 Sample Rate Changes Using Both Interpolation and Decim

	1.2 Decimation
	1.3 Interpolation
	1.4 Sample Rate Conversion by Rational Factor L/M
	1.5 Polyphase Filters
	1.5.1 Interpolator-Only Polyphase Filters
	1.5.2 Decimator-Only Polyphase Filters
	1.5.3 Simultaneous Interpolator and Decimator Polyphase Filt

	1.6 Polyphase, Multistage Filter Design
	1.7 SRC Code Overview
	1.7.1 Input/Output Data Sizes and the GCD
	1.7.2 Coefficient Generation and Formatting
	1.7.3 BUFIN Define
	1.7.4 Zeroing Filter Delays
	1.7.5 Reducing Intermediate Buffers
	1.7.6 Restrictions
	1.7.7 Unresolved Issues
	1.7.8 Case Study of Total SNR

	Conclusions
	Recommendations for Further Development

	Appendix
	SRC.c
	Src_flt.asm
	initial.asm
	src_441to48.h

	References
	Document History

