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Introduction 
The process of converting the sampling rate of a signal 
from one rate to another is called sampling rate conversion 
(or SRC). This technique is encountered in many 
application areas such as: 

• Digital Audio (the focus of this paper) 
• Communications systems 
• Speech Processing 
• Antenna Systems 
• Radar Systems 

Sampling rates may be changed upward or downward. 
Increasing the sampling rate is called interpolation, and 
decreasing the sampling rate is called decimation. 
Reducing the sampling rate by a factor of M is achieved by 
discarding every M-1 samples, or, equivalently keeping 
every M’th sample. Increasing the sampling rate by a 
factor of L (interpolation by factor L) is achieved by 
inserting L-1 zeros into the output stream after every 
sample from the input stream of samples.  
This system can perform SRC for the following cases: 

• Decimation by a factor of M 
• Interpolation by a factor of L 
• SRC by a rational factor of L/M.  

SRC by L/M requires performing an interpolation to a 
sampling rate which is divisible by both L and M. The final 
output is then achieved by decimating by a factor of M. 
Appropriate lowpass filtering is required to prevent both 
imaging and aliasing. This system employs the polyphase, 
multistage technique in the process of the sampling rate 
conversion for computational savings.  

1.1 Sample Rate Conversion 
Designs 
SRC designs use the basic properties of decimation and 
interpolation to change sampling rates. Decimation is the 

reduction of the sampling rate and interpolation is the 
increasing of the sample rate. 

1.1.1 Decimation 
A reduction of sample rate (decimation) by a factor of M is 
achieved by sequentially discarding M-1 samples and 
retaining every M’th sample. While discarding M-1 of 
every M input samples reduces the original sample rate by 
a factor of M, it also causes input frequencies above one-
half the decimated sample rate to be aliased into the 
frequency band from DC to the decimated Nyquist 
frequency. To mitigate this effect, the input signal must be 
lowpass filtered to remove frequency components from 
portions of the output spectrum which are required to be 
alias free in subsequent signal processing steps. A benefit 
of the decimation process is that the lowpass filter may be 
designed to operate at the decimated sample rate, rather 
than the faster input sample rate, by using a FIR filter 
structure, and by noting that the output samples associated 
with the M-1 discarded samples need not be computed. 

1.1.2 Interpolation 
An increase in sample rate (interpolation) by a factor of L 
is achieved by inserting L-1 uniformly spaced, zero value 
samples between each input sample. While adding L-1 new 
samples between each input sample increases the sample 
rate by a factor of L, it also introduces images of the input 
spectrum into the interpolated output spectrum at 
frequencies between the original Nyquist frequency and 
the higher interpolated Nyquist frequency. To mitigate this 
effect, the interpolated signal must be lowpass filtered to 
remove any image frequencies which will disturb 
subsequent signal processing steps. A benefit of the 
interpolation process is that the lowpass filter may be 
designed to operate at the input sample rate, rather than the 
faster output sample rate, by using a FIR filter structure, 
and by noting that the inputs associated with the L-1 
inserted samples have zero values. 
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1.1.3 Sample Rate Changes Using Both 
Interpolation and Decimation 
When the specified SRC factor is not an integer factor, 
SRC design uses interpolation to increase the sample rate 
to a rate which is divisible by both the input and final 
output sample rates. This interpolation is then followed by 
decimation to achieve the specified output rate. Note that 
the output sample rate may be faster or slower than the 
original input rate. In cases where both interpolation and 
decimation are performed in tandem it is possible to 
combine the anti-imaging filter of the interpolator and the 
anti-aliasing filter of the decimator into a single filter 
which satisfies both requirements. The filters which run at 
the low data rate are actually implemented as a particular 
structure known as a polyphase filter, which will be 
discussed shortly. 

1.2 Decimation 
If the sampling rate is decreased by a factor M, in order to 
avoid aliasing, a lowpass filter is needed with the specific 
restrictions that the ratio of the half sample frequency to 
the passband frequency must be less than or equal to M.  

Let x(m) be the input signal, h(k), 0 <= k < K, be the 
coefficients of a given lowpass filter and z(m) be the output 
signal before decimating by a factor M, then: 

z(m) =∑
=
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K

k
kmxkh

0
)()(                                           (1) 

Now let the output signal after the decimator be y(r) = 
z(rM) where the sampling rate is reduced by a factor M. 
Clearly, y(r) = z(rM) if the output signal is decimated by a 
factor M. 
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Looking carefully at this equation, one can see that the 
filter is in effect using the downsampled signal. Thus the 
operations of downsampling and lowpass filtering have 

been embedded in such a way that the lowpass filter is 
operating at the reduced data rate and the average number 
of computations to generate one output sample is reduced 
by M.  

1.3 Interpolation 
Given an incoming sample rate of Fin and an interpolation 
factor of L, then the resulting output sampling frequency is 
Fout = L*Fin . To prevent imaging, a lowpass filter on the 
output signal is required such that the cutoff frequency is 
Fin/2.  

Let x(n) be the original input sequence, v(n) the sequence 
with L-1 zeros inserted, y(n) the output sequence of the 
lowpass filter and let h(0), ..., h(K-1) be the coefficients of 
the lowpass filter, then: 

y(n) =∑
=
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However, v(n-k) = 0 unless n-k is a multiple of L, since L-
1 zeros were inserted in the sequence x(n) to get v(n).  

Again let x(n) be the input signals, and h(k) be the filter 
coefficients. Then the output signal y(r) has a simple 
formula: 

y(r) =∑
=
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The average number of computations during one sampling 
time is reduced by L, the interpolation factor. 

1.4 Sample Rate Conversion by 
Rational Factor L/M 
To perform sample rate conversion by a rational factor 
L/M, the incoming signal is first interpolated by a factor M. 
The interpolation must be performed first to preserve the 
spectral content of the signal. Graphically, this process can 
be represented by the following diagram: 
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Anti-imaging
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lowpass filter
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Figure 1. Block Diagram of a Rational SRC 
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The anti-aliasing and anti-imaging lowpass filters can be 
combined into a single low-pass filter.  

1.5 Polyphase Filters 
Polyphase filters are used to implement multirate filters. 
The polyphase filters for interpolation-only and 
decimation-only filters have a simpler structure than the 
polyphase filter used between an interpolator and a 
decimator.  

1.5.1 Interpolator-Only Polyphase Filters 
The computational efficiency of the Interpolator filter 
structure can also be achieved by reducing the large FIR 
filter of length K into a set of smaller filters. These smaller 
filters will have a length N = K/L, where K is selected to be 
a multiple of L. Since the interpolation process inserts L - 1 
zeros between successive values of x(n), only N out of the 
K input values stored in the FIR filter at any one time are 
nonzero. At one time instant, these nonzero values coincide 
and are multiplied by the filter coefficients h(0),h(L), 
h(2L),...,h(K - L). In the following instant, the nonzero 
values of the input sequence coincide and are multiplied by 
the filter coefficients h(1), h(L + 1), h(2L + 1),...h(K - L + 
1), and so on. This observation leads us to define a set of 
smaller filters called polyphase filters, with unit sample 
responses: 

pk (n)=h(k+nL)     k = 0,1,...,L – 1         

                            n = 0,1,...,N – 1             (5) 

where N = K/L is an integer. 
Additional insight can be gained about the characteristics 
of the set of polyphase subfilters by noting that pk(n) is 
obtained from h(n) by decimation with a factor L. 
Consequently, if the original filter frequency response 
H(w) is flat over the range each of the polyphase subfilters 
will possess a relatively flat response over the range (i.e. 
the polyphase subfilters are basically allpass filters and 
differ primarily in their phase characteristics). This 
explains the reason for the term “polyphase” in describing 
these filters. The polyphase filter can also be viewed as a 
set of L subfilters connected to a common delay line. 
Ideally, the kth subfilter will generate a forward time shift 
of (k/L)Fin for k = 0, 1 2,..., L - 1, relative to the zeroth 
subfilter. Therefore, if the zeroth filter generates zero 
delay, the frequency response of the kth subfilter is: 

pk(w) =e L
k

jw                                                    (6) 

1.5.2 Decimator-Only Polyphase Filters 
By transposing the interpolator structure we obtain a 
commutator structure for a decimator that is based on the 
parallel bank of polyphase filters. The unit sample 
responses of the polyphase filter are now defined as: 

pk(n) = h(k+nM)  k = 0,1,...,M - 1 

n = 0,1,...,N – 1           (7) 
where N = K/M is an integer when K is selected to be a 
multiple of M. The commutator rotates in a counter-
clockwise direction starting with filter p0 (n). 

1.5.3 Simultaneous Interpolator and Decimator 
Polyphase Filter 
A Polyphase filter which is used to perform lowpass 
filtering between an interpolator and decimator function is 
more complicated than the structures previously discussed 
for either the Decimator-Only or Interpolator-Only phases. 
In the Interpolator-Only case, one input leads to several 
outputs, and in the Decimator-Only case, many inputs lead 
to a single output. Thus, there is a relatively simple 
relationship between the polyphase subfilters and h(n), the 
lowpass filter coefficients. An interpolator of L samples 
followed by a decimator of M samples means that L input 
values must lead to M output values.  

y(m) is the output of the polyphase filter  

g(n,m) is the polyphase filter coefficients  

h(n) is the lowpass filter used for both anti-
imaging of the interpolator and anti-aliasing of the 
decimator 

[x] denotes the largest integer in x                 (8) 

g(n,m) = h(nL +mM - [
L

mM ]* l) 

 n=0,…,N-1 and m=0,…,L-1              (9) 

 

y(m) = ∑
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where K is the filter length of h(n) and L|K 

with N = K/L, m=0,…,L-1            (10) 
In a multistage implementation, this type of polyphase 
filter is used between the interpolator and the decimator 
stage. All other stages are either simple decimation or 
interpolation stages. The polyphase filters are exactly those 
described in Section1.5.1 and Section1.5.2. An excellent 
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discussion of this topic is available in Chapter 10 of Digital 
Signal Processing by Proakis and Manolakis. 

1.6 Polyphase, Multistage Filter 
Design 
Given an input sampling frequency Fin (integer) and an 
output sampling frequency Fout (integer), then the smallest 
frequency Fmin is the Least Common Multiplier (or LCM) 
of both Fin and Fout. The decimator of the sample rate 
conversion is defined as D = Fmin/ Fout and the interpolator 
is defined as U = Fmin/ Fin. The number of primes in the 
decimator is the maximum number of stages in the 
decimation structure design. If the decimator is 24= 2 * 2 * 
2 * 3, then the maximum number of stages is 4. Likewise, 
the number of primes in the interpolator is the maximum 
number of stages in the interpolation structure design. Thus 
it is possible to have a different optimum multirate 
structure for a multistage decimation structure as opposed 
to a multistage interpolation structure.  

If you choose M = D, L = U, then you are in a design of a 
SRC system (U/D), but you can also choose M = RD, and 
L = RU to get an equivalent system (RU/RM) for any 
positive integer R. The user can choose R = 1, 2, 4,...  

A design of a SRC requires the selection of a structure: 
decimation or interpolation, over-sample rate R = 1, 2, 
4,…, number of stages, a factor for each stage, and a 
lowpass filter for each stage. The product of all the stage 
factors should be equal to the decimator if a decimation 
structure is selected or interpolator if an interpolation 
structure is selected, times the over-sample rate R. 

Momentum Data Systems (MDS) has developed a program 
to create and optimize SRC structures and generate 
coefficients: Advanced QED Series Sample Rate 
Conversion System (Windows 95/NT Version only) Version 
2.2. (www.mds.com). This program has two methods for 
best design of decimation and interpolation structures: 
minimizing the sum of filter lengths, and minimizing the 
number of computations of the signal filtering. The number 
of computations is calculated as follows:  

If U1, U2 and U3 are up-sample factors for a 3-stage 
interpolation structure, and L1, L2 and L3 are the filter 
lengths for 3-stages respectively, then the number of 
computations is 

L1 + L2 * U1 + L3 * U1 * U2, or equivalent L3/U3 + 
L2/(U2*U3) + L1/(U1*U2*U3) 

If D1, D2 and D3 are down-sample factors for a 3-stage 
decimation structure, then the number of computations is 

L3 + L2 * D3 + L1 * D3 * D2, or equivalent L1/D1 + 
L2/(D1*D2) + L3/(D1*D2*D3) 

This design problem is not a single-objective optimization 
problem. The number of computations, the number of filter 
taps and the complexity of the multi-structure enter in the 
calculations. The problem becomes particularly 
complicated if the number of stages is greater than 3.  

This EE-Note used the QED Series Sample Rate 
Conversion System to determine the optimum SRC 
structures and all coefficients.  

1.7 SRC Code Overview 
The work described in this EE-Note was based on the 
principles discussed in Section 1.1 through Section 1.6. 
From this, a polyphase multistage SRC was implemented 
on the ADSP-BF535 Blackfin® Processor. 

A zip file (SRC.zip) containing the VisualDSP++® 
projects discussed here can be obtained from Analog 
Devices (www.analog.com). These files can be easily 
imported into later versions of VisualDSP++. The Default 
C Linker Description File (*.ldf) for the latest version of 
VisualDSP++ should be used to recompile/relink these 
projects. Make sure BUFIN is defined in the assembly 
options (see Section 1.7.3). The SRC and main program C 
shell (SRC.c) were developed using the ADSP-BF535 
EZ-KIT Lite® Evaluation Platform. The C shell contains 
function calls and routines to initialize the state of the 
ADSP-BF535 as well as the SRC. Since this code does not 
use any DMA capabilities or peripherals, this ‘core’ code 
should port directly to next generation ADSP-BF5xx 
Blackfin Processors. The code has been verified on the 
ADSP-BF533 EZ-KIT Lite as well. All code for this 
project is listed in the Appendix. 

The following were the design objectives used in 
developing the SRC functions: 

• The optimized assembly routines are to be C callable 
(See src_init.asm and src_flt.asm in the 
Appendix).  

• All input and output data should be 16 bits. 

• All intermediate calculations should be 32-bit double- 
precision (maintaining 31.5 bits of precision per MAC). 

• All filter coefficients should be 32-bit. 

• All filters were designed for audio applications with 
these criteria: 

  0.2dB passband ripple 
  58dB stopband ripple 

• The MIPS budget should be ≤ 2 MIPS for all SRC 
examples. 

http://www.mds.com/
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The program assumes input data comes from a 16-bit 
buffer (initialized as ‘x’ in the shell). This data is copied 
into a 32-bit buffer ‘in1’ within src_flt.asm. At the 
end of src_flt.asm, the last 32-bit buffer inx (where 
‘x’ is the last stage) is copied into a 16-bit buffer (‘y’ in the 
shell). These 16-bit input/output buffers can be eliminated 
to conserve data space.  In this case, you will need to 
undefine BUFIN and preload in1 with 32-bit data and 
then use the 32-bit output data from inx.  

The filters were designed to convert between selected 
standard audio sample rates (Hz): 48000, 44100, 32000, 
22050, 16000, 11025, and 8000. See Figure 1 for the audio 
SRC matrix. Note that an ‘x’ in the matrix denotes that the 
SRC filter was designed and is included in SRC.zip. If 
you have the SRC program from MDS (or similar) you can 
generate coefficients for any SRC. See Section 1.7.2 
below. 

 
Figure 2. Audio SRC Matrix 

The #2 workspace in this project has all the necessary plots 
of the input/output stages as well as the intermediate 
buffers. You can look at the data in the time domain or 
apply the VisualDSP++ built-in FFT plotting function to 
analyze the frequency domain. Load 
plots_xxxxtoxxxx.vdw for a particular SRC. 

A SINE_xxxxx_16bit_1024.dat input file was 
generated to test every SRC. This is a 16-bit, 1024-sample, 
1 KHz or 250 Hz sine wave at the input sample rate. These 
input files were generated using MATLAB® scripts (see 
gen_sine_wave_comma_16.m). It's easy to verify 
proper SRC functionality by counting samples in one 
period at both the input rate (in the ‘x’ plot) and the output 
rate (in the ‘y’ plot) in workspace #2. See Figure 2 and 
Figure 3. 

 
Figure 3. ‘x’ Input Data for 44.1 KHz Sampling of a 
250 Hz Sine Wave. 

 
Figure 4. 'y' Output Data for 48 KHz SRC of a     
250 Hz Sine Wave 

The built-in FFT plotting functions were also used to 
analyze input and output data. See Figure 4 and Figure 5. 
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Figure 5. FFT of 'x' Input Data at 250 Hz 

 
Figure 6. FFT of 'y' Output Data at 250 Hz 

1.7.1 Input/Output Data Sizes and the GCD  
The size of NINPS and NOUTS can be modified in each 
src_xxxxtoxxxx.h file (see example of 
src_441to48.h in the Appendix). This will allow the 
user to vary the size of the input/output buffers according 
to system block processing needs. It was envisioned that 
the end application would be operating on blocks of audio 
samples. Note that the smallest block size can be no less 
than the LCM discussed in Section 1.6. However, an 
integer multiple of the LCM can be applied to increase the 

processed block size. The user can increase or decrease the 
integer multiple of the LCM (or Greatest Common 
Denominator, GCD, in Table 2) by changing the buffer 
sizes NINPS and NOUTS.  These two numbers must be at 
least half of the greatest filter coefficient count times the 
INTPx to ensure valid output data. Table 1 was generated 
from a simple C program: 

 
GCD=48000, Original=48000/48000,  NEW=1/1 
GCD=300, Original=48000/44100, NEW=160/147 
GCD=16000, Original=48000/32000, NEW=3/2 
GCD=150, Original=48000/22050, NEW=320/147 
GCD=16000, Original=48000/16000,  NEW=3/1 
GCD=75, Original=48000/11025, NEW=640/147 
GCD=8000,  Original=48000/8000,  NEW=6/1 
GCD=300, Original=44100/48000, NEW=147/160 
GCD=44100,  Original=44100/44100, NEW=1/1 
GCD=100, Original=44100/32000, NEW=441/320 
GCD=22050, Original=44100/22050,  NEW=2/1 
GCD=100, Original=44100/16000, NEW=441/160 
GCD=11025, Original=44100/11025, NEW=4/1 
GCD=100, Original=44100/8000, NEW=441/80 
GCD=16000, Original=32000/48000,  NEW=2/3 
GCD=100, Original=32000/44100, NEW=320/441 
GCD=32000, Original=32000/32000, NEW=1/1 
GCD=50, Original=32000/22050, NEW=640/441 
GCD=16000, Original=32000/16000, NEW=2/1 
GCD=25, Original=32000/11025, NEW=1280/441 
GCD=8000, Original=32000/8000, NEW=4/1 
GCD=150, Original=22050/48000, NEW=147/320 
GCD=22050,  Original=22050/44100, NEW=1/2 
GCD=50, Original=22050/32000, NEW=441/640 
GCD=22050,  Original=22050/22050, NEW=1/1 
GCD=50, Original=22050/16000, NEW=441/320 
GCD=11025, Original=22050/11025, NEW=2/1 
GCD=50, Original=22050/8000, NEW=441/160 
GCD=16000, Original=16000/48000, NEW=1/3 
GCD=100, Original=16000/44100, NEW=160/441 
GCD=16000,  Original=16000/32000, NEW=1/2 
GCD=50, Original=16000/22050, NEW=320/441 
GCD=16000, Original=16000/16000,  NEW=1/1 
GCD=25, Original=16000/11025, NEW=640/441 
GCD=8000, Original=16000/8000, NEW=2/1 
GCD=75, Original=11025/48000, NEW=147/640 
GCD=11025,  Original=11025/44100, NEW=1/4 
GCD=25, Original=11025/32000, NEW=441/1280 
GCD=11025, Original=11025/22050, NEW=1/2 
GCD=25, Original=11025/16000, NEW=441/640 
GCD=11025, Original=11025/11025, NEW=1/1 
GCD=25, Original=11025/8000, NEW=441/320 
GCD=8000, Original=8000/48000,  NEW=1/6 
GCD=100, Original=8000/44100,  NEW=80/441 
GCD=8000, Original=8000/32000, NEW=1/4 
GCD=50,  Original=8000/22050, NEW=160/441 
GCD=8000, Original=8000/16000, NEW=1/2 
GCD=25, Original=8000/11025, NEW=320/441 
GCD=8000, Original=8000/8000, NEW=1/1 

 

Table 1. Greatest Common Denominator for Audio 
SRC  
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1.7.2 Coefficient Generation and Formatting 
Assuming a program that is similar to the MDS tool is 
used, some data formatting must be performed. The 
following must be done to convert the raw decimal filter 
coefficients. With MDS, a *.dsp file is produced. Table 2 
is an example of the MDS data format for the *.dsp file. 
This file must be properly formatted as a 32-bit 
hexadecimal VisualDSP++ input data file (*.dat). This is 
then read (by VisualDSP++) into the corresponding 
variable at initialization: 

a.  Use Microsoft Excel to import the *.dsp file (space 
delimited). Select the "D" column and erase everything 
but the decimal filter coefficients. Save the file as a 
‘Formatted Text (Space Delimited)(*.prn)’ file.  

/* External References */  
.external  src_init; 
.external  src_flt; 
 
#define STAGE  3 /* Number of stages */ 
#define INTP0  160  /* Interpolation factor */ 
#define DOWN0  147 /* Decimation factor */ 
 
/* ------------------------------------------------------------ */ 
 
/* parameters for each stage */ 
#define INTP1  2 
#define DOWN1 1 
#define LENG1  223 
#define PLEN1  112 
#define MLEN1  224 
#define SHFT1  0 
#define NINP1  147 
#define SZIN1  512 
 
#define INTP2  5 
#define DOWN 2 1 
#define LENG2  27 
#define PLEN2  6 
#define MLEN2  30 
#define SHFT2  0 
#define NINP2  94 
#define SZIN2  512 
 
#define INTP3  16 
#define DOWN3  147 
#define LENG3  49 
#define PLEN3  4 
#define MLEN3  64 
#define SHFT3  0 
#define NINP3  1470 
#define SZIN3  2048 
 
#define NINP4  160 
#define SZIN4  256 
 
/* ------------------------------------------------------------------------ */ 
 
.VAR/DM flt1[MLEN1]; 
.INIT flt1: 
   0xffc8, /* -1.72471041e-003 cf 000 pp 000 ft 1 */ 
   0xfffe, /* -8.01035724e-005 cf 002 pp 000 ft 1 */ 

   0x000f, /*  4.65568547e-004 cf 004 pp 000 ft 1 */ 
   0xfffa, /* -2.00361260e-004 cf 006 pp 000 ft 1 */ 
   0x000c, /*  3.90279025e-004 cf 008 pp 000 ft 1 */ 
   0xfff2,  /* -4.43292360e-004 cf 010 pp 000 ft 1 */ 
   0x0013,  /*  6.04802800e-004 cf 012 pp 000 ft 1 */ 
   0xffe8, /* -7.54936936e-004 cf 014 pp 000 ft 1 */ 
   0x001e,  /*  9.43581218e-004 cf 016 pp 000 ft 1 */ 
      .,                        .                   .                       .           
      .,                        .                   .                       .           
      .,                        .                   .                       .           

Listing 1. Coefficient Format from MDS 

b.  Use the included MATLAB script dec_file_to-
_hex_file_converter.m. This script will read in 
decimal (exponential) data from the *.prn file and 
convert to a 32-bit Hexadecimal format (*.dat file) 
suitable to be read by VisualDSP++ within a data 
initialization section. This MATLAB script can be 
easily modified for other formats. 

1.7.3 BUFIN Define 
When BUFIN is undefined (under VisualDSP++: 
PROJECT OPTIONS> ASSEMBLER> ADDITIONAL 
OPTIONS: -D BUFIN), the SRC program assumes that 
buffer in1 is preloaded with 32-bit input data AFTER the 
src_init is accomplished (buffer zeroing). This requires 
that the shell program preload in1 from a 32-bit source. 
Define BUFIN to include the 16-bit buffer transfer code 
within src_flt.asm. ‘x’ and ‘y’ 16-bit input buffers are 
not necessary for a final application but they do allow for 
easier data manipulation for test purposes. 

1.7.4 Zeroing Filter Delays 
To "zero" out filter delays, use the following equations as 
offsets to first valid output data: 

1st Offset = (LENG1-1)/(2*DOWN1) 
2nd Offset = INTP2/DOWN2*1st Offset + (LENG2-1)/(2*DOWN2) 
3rd Offset = INTP3/DOWN3*2nd Offset + (LENG3-1)/(2*DOWN3) 

See the constants generated in the src_xxxxtoxxxx.h 
files. DOFSx is actually the offset from the end of the 
buffer. Therefore it is the number of valid output data 
samples. This will determine how often this routine needs 
to be executed in a block processed system. Be careful with 
this number. The preprocessor in VisualDSP++ will not 
generate fractional constants. Therefore, depending on the 
math here, DOFSx could have an error of ±1 sample. For a 
particular SRC, check the first sample in ‘y’ and adjust the 
DOFSx accordingly. 
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1.7.5 Reducing Intermediate Buffers 
One idea to reduce the number of intermediate buffers is to 
implement a zero_buf function (not included) that 
would re-zero the buffers between filter sections. This 
would reduce the number of intermediate buffers to two at 
the expense of more MIPS to accomplish the SRC. 
However, the MIPS increase would be negligible and is on 
the order of the size of the buffer times the number of 
times it is zeroed. These two intermediate buffers should 
be sized to the maximum needed for any SRC. 

1.7.6 Restrictions 
If there is a large interpolation constant INTPx, this 
severely reduces the number of valid data samples in the 
final output buffer. For example, in the 44.1K to 48K SRC, 
there is an interpolation constant of 16 in the 3rd stage. If 
we only use L1 data sections (max = 4096 bytes) we only 
get 111 valid data samples in the final output buffer. 
However, if we can use L2 (like what is available in the 
ADSP-BF535) and make this intermediate buffer as large 
as 4096 words (16K bytes), we can get a relatively large 
number of valid output data samples. Depending on 
interpolation constants and the need to run out of single 
cycle L1 memory, the limiting factor appears to be the L1 
section size. We can maximize all the filters based on this 
L1 section size (4096 bytes or 1024 32-bit words) or 
assume we can use L2 (internal or external) and make the 
intermediate buffers larger. In the latter case, the number of 
valid output data samples greatly increases. 

1.7.7 Unresolved Issues 
The following SRCs produced corrupted output data when 
using a 3-stage interpolator structure: 

11025to16,  

16to2204, and  

8to11025 

Therefore, a 2-stage filter decimator structure was used 
instead and produced valid results. It appears that the MDS 
filter generator produced corrupted 3rd stage outputs for all 
SRCs that up-converted between two similar rates. The 
MDS program chose by default a 3-stage interpolator 
structure in each of these cases. 

1.7.8 Case Study of Total SNR 
Two common SRC changes are 44.1 KHz to 48 KHz and 
48 KHz to 44.1 KHz. Instead of using the stopband and 
passband ripples above, a filter was generated with 

passband ripple = 0.0001 and a stopband ripple = 98 dB. 
This provided a overall SNR of 90 dB through all 3 stages 
of the filter. This was tested using Cooledit 2000 software. 
If a lesser system SNR is desirable (50-70 dB), a 32-bit 
implementation will provide a SNR that is close to the 
stopband attenuation. For higher system SNR's (above 
90 dB), much higher stopband attenuations are required. 

Conclusions 
The code and filters in this EE-Note were generated 
specifically with audio SRC in mind. Notwithstanding, by 
generating new filter input files with tighter passband and 
stopband ripple, this code could be used unaltered for 
many different applications. Keep in mind that we gained 
computational efficiency by eliminating the LxL multiply 
and thus only retaining 31.5 bits of precision for each 
Multiply And Accumulate (MAC). This amount of 
precision is more than enough for most applications. 
Notice in src_flt.asm that the inner MAC loops are 
only 2 cycles, enabling double precision math with very 
little overhead. This “low cycle” double precision 
capability of Blackfin is one of the great advantages of this 
architecture over competing single MAC architectures. 

Placement of data and code sections (i.e. L1, internal or 
external L2) is up to the user. However, coefficients and 
data should be placed in separate banks to avoid stalls 
(only applies to L1). Also, whether cache or SRAM is used 
will greatly impact the overall cycle counts. Since there are 
many filters required for all the various audio SRC 
combinations, it was assumed that coefficients would be 
placed in a larger external L2 SRAM or SDRAM. These 
coefficients could either be cached internally or brought 
into L1/L2 via DMA concurrent to block processing. 

Recommendations for Further Development 
The code developed in this EE-Note can be applied to any 
application requiring SRC. For example, many video 
applications require the ability to scale images to change 
the video size (D1 to CIF, etc.). This Polyphase multistage 
SRC approach could be modified to work on byte-wide 
single precision video data. The basic structure of this code 
would not require many alterations. Instead of working on 
one time-domain double-precision data sample per cycle, 
the SRC would be modified to operate on two byte-wide 
frequency-domain data samples per cycle.  

Finally, the code has not been completely optimized. 
Improvements can be made to reduce overall cycles 
particularly the elimination of pipeline stalls. 
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Appendix 

SRC.c 

/**************************************************************************** 
*   File:              SRC.c 
*   Date Started:  Sept 26 2002 
*   Created:             Jeff Sondermeyer 
****************************************************************************/ 
 
/* 
(C) Copyright 2002 - Analog Devices, Inc.  All rights reserved. 
 
File Name:  SRC.c 
 
Date Modified: 12/28/2005  Jeff Sondermeyer  Rev 0.5 
 
The example in directory C:\SRC Rev 5 Dec 2005\src_mod illustrate a Sample Rate Converter (SRC) and  
Main Program Shell utilizing the ADSP-BF53x EZ-KIT Lite Evaluation Platforms. Note that if the user  
would like to use the other "precanned" filters (include files) please apply changes to 
src_xxxtoxxx.h per "IPDC comment" in the example project directory.  I leave this as an exercise 
to the user :-) 
 
This C shell contains function calls and routines to initialize the state of the BF53x as well as the 
SRC.  This program assumes input data comes from a 16-bit buffer (initialized as 'x' in this shell). 
This data is copied into a 32-bit buffer 'in1' within src_flt.asm.  At the end of src_flt.asm, the 
last 32-bit buffer 'inx' (where 'x' is the last stage) is copied into a 16-bit buffer ('y' in this 
shell).  These 16-bit input/output buffers can be eliminated to conserve data space.  In this case, 
you will need to undefine 'BUFIN' and preload 'in1' with 32-bit data and then use the 32-bit output 
data from 'inx'. 
 
The converter was designed to convert between any of the following rates: 
48000, 44100, 32000, 22050, 16000, 11025, and 8000.  If you have the SRC program from Momentum Data 
Systems (or similar) you can generate coefficients for any SRC.  Follow #3 below.  One might use 
workspaces within VDSP to verify all necessary plots of the input/output stages as well in the  
intermediate buffers.  You can look at the data in the time domain or apply the built-in FFT plotting 
function to analyze the frequency domain.  Load "*.vdw" from the example SRC. 
 
I have generated a "SINE_xxxxx_16bit_1024.dat" input file to test every SRC.  This is a 16-bit,  
1024-sample, 1KHz sine wave at the input sample rate.  These were generated using MATLAB (see 
gen_sine_wave_comma_16.m'). it's easy to verify proper conversion by counting samples in one  
period at both the input rate (in the 'x' plot) and the output rate (in the 'y' plot) in workspace #2. 
 
  Notes:   
 
1. You can modify the size of NINPS and NOUTS in each 'src_xxxxtoxxxx.h' file.  However, it MUST be  
the same multiple of the GCD. 
 
2. Buffer sizes, NINPS and NOUTS must be at least half of the filter coefficient sizes times the  
INTPx value to ensure valid output data. 
 
3. Do the following to convert the decimal filter coefficients from Momentum Data Systems SRC *.dsp 
file to properly format this data as 32-bit Hexidecimal value.  This is then read into the 
corresponding variable at initialization: 
a. Use Excel to import the *.dsp file (space delimited).  Select the "D" column and erase everything 
else.  Save the file as a "Formatted Text (Space Delimited)(*.prn)" file. 
b. Use the MATLATB program "dec_file_to_hex_file_converter.m".  This MATLAB program will read in 
floating point decimal (exponential) data from a file (*.prn) and convert to a 32-bit Hexidecimal 
format (*.dat file) suitable to be read by VisualDSP within a data initialization section. 
 
4. When 'BUFIN' is undefined, the program assumes that 'in1' is preloaded with 32-bit input data 
AFTER the src_init is accomplished (buffer zeroing).  This requires that the shell program preload 
'in1' from a 32-bit source.  Define 'BUFIN' to include the 16-bit buffer transfer code within 
src_flt.asm.  x and y 16-bit 
buffers are nice for debug and prototyping but they do represent additional memory usage. 
 
5. To "zero" out filter delays, use the following equations as offsets to first valid data: 
1st Offset = (LENG1-1)/(2*DOWN1) 
2nd Offset = INTP2/DOWN2*1st Offset + (LENG2-1)/(2*DOWN2) 
3rd Offset = INTP3/DOWN3*2nd Offset + (LENG3-1)/(2*DOWN3) 



  a 

 

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 10 of 25 

See the constants generated in the 'src_xxxxtoxxxx.h' files. 
 
6. DOFSx (in src_xxxxtoxxxx.h) is the offset and also is the number of valid output data samples.  
This will allow you to figure how often this routine needs to be executed in a block-processed 
system.  Be careful with this number. The preprocessor in VDSP will not generate fractional 
constants.  Therefore, depending on the math here, DOFSx could have an error of +/-1.  For a 
particular SRC, check the first sample in 'y' and adjust the DOFSx accordingly. 
 
7. One idea of reducing the number of intermediate buffers is to call a 'zero_buf' function that  
would rezero the buffers between filter sections.  This would reduce the number of intermediate 
buffers to two at the expense 
of more MIPs.  However, the MIPs increase would be negligable and is on the order of the size of  
the buffer.  These two intermediate buffers should be sized to the maximum needed for any SRC. 
 
8. If there is a big interpolation constant, this severely reduces the number of valid data samples  
in the final output buffer.  For example, in the 44.1K to 48K case, there is an interpolation  
constant of 16 in the 3rd stage. If we only use L1 data sections (max = 4096 bytes) we only get 111 
valid data samples in the final output buffer. However, if I use L2 and make this intermediate 
buffer as large as 4096 words (16K bytes), I can get a relatively large number of valid output  
data samples.  The point here is that.. depending on interpolation constants, the limiting  
factor appears to be the L1 section size.  I can maximize all my filters based on this L1 section  
size (4096 bytes or 1024 words) ...OR..  assume someone can use L2 and make the intermediate buffers 
larger.  In the later case, the number of VALID output data samples greatly increases. 
 
9. The half band code was not implemented.  Therefore, the HALFB define is not used. 
 
10. 11025to16, 16to2204, and 8to11025 produced corrupted data with 3-stage filters.  Had to use  
2-stages.  MDS filter generator produces corrupted 3rd stage output for close sample rate  
conversions that required up sampling???  Not sure why. 
 
11. Revision 4 of the code was debugged on a Momentum Systems Hawk PCI board.  All FileIO was  
done over the PCI bus.  Several things need to change in this code to work with the Hawk board: 
a. Define 'HAWK' 
b. Add idle.c and the basiccrt.s file for the Hawk board to the project. 
 
12. With Rev 5, I have verified the code works on the BF533 EZKIT and on ALL existing Blackfins.  I 
removed the LDF from the project so this code will work "out of box" with just about any VDSP 
version. 
*/ 
 
/* ------------------------------------------------------------------------ */ 
#include "fract_math.h" 
#include <defBF535.h> 
#include "src_inc.h" 
#include "src_441to48.h" 
#include <stdlib.h> 
#include <stdio.h> 
 
/* ------------------------------------------------------------------------ */ 
 
// 16-bit input/output buffers 
 
static segment("L1_data_b")  
short x[NINPS]; 
 
static segment("L1_data_b")  
short y[NOUTS]; 
 
FILE *inFile,*outFile; 
 
// 32-bit intermediate buffers 
 
segment("L1_data_a")   
int in1[SZIN1]; 
 
segment("L1_data_a")  
int in2[SZIN2];  
 
#if STAGE>=2 
segment("L1_data_a")  
int in3[SZIN3];  
#endif 
 
#if STAGE==3 
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segment("L1_data_a")  
int in4[SZIN4];  
#endif 
 
// Filter Coefficients 
 
static segment("L1_data_b")   
int filter_h1[MLEN1] =  
{ 
#include "441to48_32bit_flt1.dat" 
}; 
 
#if STAGE>=2 
static segment("L1_data_b")  
int filter_h2[MLEN2] =   
{ 
#include "441to48_32bit_flt2.dat" 
}; 
#endif 
 
#if STAGE==3 
static segment("L1_data_b")  
int filter_h3[MLEN3] =   
{ 
#include "441to48_32bit_flt3.dat" 
}; 
#endif 
 
/////////////////////////////////////////////////////////////////// 
// This line enables the PCI as the default device for file I/O   
//#pragma retain_name 
//extern int __default_io_device = PCI_IO; 
//extern int __default_io_device = FILEIO;      
/////////////////////////////////////////////////////////////////// 
 
/* ------------------------------------------------------------------------ */ 
 
static void init_first_stage(STAGE_HANDLE *S) { 
 
 FIRST_STAGE_ENTRY *V; 
 
 V = S->V; 
 V->in_s = &in1[0]; 
 V->in_z = SZIN1; 
 V->out_s = &in2[0]; 
 V->out_z = SZIN2; 
 V->h = &filter_h1[0]; 
 V->plen = PLEN1-1; 
 V->up = INTP1; 
 V->dn = DOWN1; 
 V->nis = NINP1; 
 V->nos = NINP2; 
 V->nshft = SHFT1; 
 V->in_c = &in1[0]; 
 V->out_c = &in2[0]; 
  
} 
 
#if STAGE>=2 
static void init_sec_stage(STAGE_HANDLE *S) { 
 
 SEC_STAGE_ENTRY *M; 
 
 M = S->M; 
 M->in_s = &in2[0]; 
 M->in_z = SZIN2; 
 M->out_s = &in3[0]; 
 M->out_z = SZIN3; 
 M->h = &filter_h2[0]; 
 M->plen = PLEN2-1; 
 M->up = INTP2; 
 M->dn = DOWN2; 
 M->nis = NINP2; 
 M->nos = NINP3; 
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 M->nshft = SHFT2; 
 M->in_c = &in2[0]; 
 M->out_c = &in3[0]; 
} 
#endif 
 
#if STAGE==3 
 
static void init_last_stage(STAGE_HANDLE *S) { 
 
 THIRD_STAGE_ENTRY *L; 
 
 L = S->L; 
 L->in_s = &in3[0]; 
 L->in_z = SZIN3; 
 L->out_s = &in4[0]; 
 L->out_z = SZIN4; 
 L->h = &filter_h3[0]; 
 L->plen = PLEN3-1; 
 L->up = INTP3; 
 L->dn = DOWN3; 
 L->nis = NINP3; 
 L->nos = NINP4; 
 L->nshft = SHFT3; 
 L->in_c = &in3[0]; 
 L->out_c = &in4[0]; 
 } 
#endif 
 
/* ------------------------------------------------------------------------ */ 
 
static segment("L1_data_b")   
FIRST_STAGE_ENTRY vst; 
static segment("L1_data_b")   
SEC_STAGE_ENTRY mst; 
static segment("L1_data_b")   
THIRD_STAGE_ENTRY lst; 
static segment("L1_data_b")   
STAGE_HANDLE sth; 
static segment("L1_data_b")   
FUNDAMENT_DATA_ENTRY vfd; 
 
/* ------------------------------------------------------------------------ */ 
 
void init_stage_handle (void) { 
 
STAGE_HANDLE *S; 
S = &sth; 
S->V = &vst; 
 
#if STAGE>=2 
S->M = &mst; 
#endif 
 
#if STAGE==3 
S->L = &lst; 
#endif    
init_first_stage (S); 
 
#if STAGE>=2 
init_sec_stage (S); 
#endif 
 
#if STAGE==3 
init_last_stage (S); 
#endif  
 
} 
 
/* ------------------------------------------------------------------------ */ 
 
void init_src (void) { 
 
FUNDAMENT_DATA_ENTRY *F; 
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F = &vfd; 
F->S = &sth; 
 
F->half_band =   HALFB; 
F->up_stage =   NUPST; 
F->pivot_stage =  PVTFL; 
F->down_stage =   NDWNS; 
F->nstages =   STAGE; 
F->ninputs =   NINPS; 
F->noutputs =   NOUTS; 
 
src_init (F); 
 
} 
 
/* ------------------------------------------------------------------------ */ 
 
/* 
Shell test program.. eventually I will use Fread and Fwrite to input/output ASCII files 
(JWS) 
*/ 
int i,j=0,count,file_status; 
 
int getInput(short *inBuf,int count); 
int writeOutput(short *outBuf,int count); 
 
int main() 
{ 
 
//int i,j=0,count,file_status; 
 
 /* initialize filter */ 
 
inFile = fopen("C:\\DSP\\sin_1khz_44khz.dat","rb"); 
outFile = fopen("C:\\DSP\\out_1khz_44to48.dat","wb"); 
 
init_stage_handle(); 
init_src(); 
 
count = getInput(x,NINPS); 
 
while(count==NINPS) 
{  
 /* filter samples */  
j=j+1; 
#if STAGE==3 
src_flt (x, y, DOFS3, &vfd); 
#endif 
 
#if STAGE==1  
src_flt (x, y, DOFS1, &vfd); 
#endif 
 
#if STAGE==2 
src_flt (x, y, DOFS2, &vfd); 
#endif 
 
count = writeOutput(y,NOUTS); 
 
count = getInput(x,NINPS); 
} 
 
fclose(inFile); 
fclose(outFile); 
 
} 
 
int getInput(short *inBuf,int count) 
{ 
 int wordsRead=0; 
 wordsRead = fread(inBuf,sizeof(short),count,inFile); 
 return wordsRead; 
} 
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int writeOutput(short *outBuf,int count) 
{ 
 int wordsRead=0; 
 wordsRead = fwrite(outBuf,sizeof(short),count,outFile); 
 return wordsRead; 
} 
 

Listing 2. SRC.c 

Src_flt.asm 

/*  File: src_flt.asm Version 0.1 
 
fundemental structure order: 
 
1.   stage data handle 
2.   half band flag (0,1, or 2) 
3.   number of up stages 
4.   pivot flag (0 or 1) 
5.   number of down stages 
6.   number of stages (total) 
7.   number of input samples per block 
8.   number of output samples per block 
 
 P0 -> fundamental structure 
 P1 -> input samples 
 P2 -> output samples 
 P3 -> memory storage and retreival 
 P4 = temporary pointer 
 P5 = loop counter 
 
 R0 = Loop counters 
 R1 = temporary storage 
 R2 = Loop counters 
 R3 = Shift count 
 R4 = inner loop calculations 
 R5 = inner loop calculations 
 R6 = temporary storage 
 R7 = temporary storage 
 
 I0 = dedicated to input buffer 'inx' 
 I1 = general use...reading 'inputData' plus others 
 I2 = general use...reading 'inx' for output data 
 I3 = general use... 
 
 Input Data Structure (VAR_SIZE words) 
    AIS: address of input signal (circular), updated after return, 
    SIS: circular size of AIS, 
    AOS: address of output signal (circular), updated after return, 
    SOS: circular size of AOS, 
    AFA: address of filter array, 
    LEN: poly-phase filter length, 
 UPR: up sample rate >= 2, 
 DNR: down sample rate = 1 is assumed 
    NIS: number of input signals 
 NOS: number of output signals 
 SHF: number of shift counter, 0 or 1 
     
*/ 
 
.SECTION L1_data_a; 
.align 4; 
 
.byte4 pt_fundst;   // pointer to fundamental structure 
.byte4 pt2_fundst;   // pointer to fundamental structure 
.byte4 st_handle;   // pointer to stage data handle 
.byte2 inputs;    // number of inputs 
.byte2 outputs;    // number of outputs 
.byte2 diff_offset;   // Offset difference 
   



  a 

 

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 15 of 25 

 
.GLOBAL _src_flt; 
 
.SECTION program; 
 
_src_flt: 
 
 [--SP]=(R7:4,P5:3); // Push R7... 
 P1 = R0;   // Address of input data 
 P2 = R1;   // Address of output data 
 P0 = [SP+40];  // Address of fundemental structure 
 
 p3.l = diff_offset; 
 p3.h = diff_offset; 
 w[p3] = r2;   /* save DOFS3 (difference offset to strip filter delay off of final  
      buffer */ 
 
 p3.l = pt_fundst; // p3 -> to fundemental structure 
 p3.h = pt_fundst; 
 [p3] = p0;   // save fundemental stage pointer in memory pointed at by p3 
 
#ifdef BUFIN 
 
 p5 = 24;   /* 6*4 = 24 bytes (post increment points to number input samples per  
     block) */ 
 r6 = [p0++p5]; 
 p4 = r6;   // p4 -> stage handle 
 
 r6 = [p0++];  // r6 = number of inputs samples per block 
 p3.l = inputs;  // p3 -> to number of input samples per block 
 p3.h = inputs; 
 w[p3] = r6;   // save number of input samples per block 
 
 r6 = [p0++];  // r6 = number of output samples per block 
 p3.l = outputs;  // p3 -> to number of output samples per block 
 p3.h = outputs; 
 w[p3] = r6;   // save number of output samples per block 
 p0 = [p4++];  // p0 -> fist data structure 
/******** IPDC comment  *******/ 
// r6 = [p0++];  // r6 -> first input buffer 'inx' 
// i0 = r6;   // i0 -> first input buffer 'inx' 
// b0 = r6;   // b0 -> base of first input circular buffer 
/******************************/ 
 
/*********IPDC addition*******/ 
 p5 = 44; 
 r6 = [p0++p5];  // r6 -> first input buffer 'inx' 
 i0 = r6;   // i0 -> first input buffer 'inx' 
 p5=-40; 
 r6 = [p0++p5]; 
 b0 = r6;   // b0 -> base of first input circular buffer 
/******************************/ 
 r6 = [p0++]; 
 r6 = r6 << 2;  // double length (4 bytes per word) 
 l0 = r6;   // l0 = first input circular buffer size 'SZINx' 
 
go_back: 
 
// p3.l = num_blocks; 
// p3.h = num_blocks;  
// r6 = w[p3];   // get number of blocks 
// r6 += -1;   // Decrement number of blocks  
// w[p3] = r6;   // save decremented number of blocks 
// CC = r6 < 0;   
// IF CC JUMP RETURN_TO_SENDER;  // Return if less than 1 block 
 
 p3.l = inputs;  // p3 -> to number of input samples per block 
 p3.h = inputs; 
 r7 = w[p3](Z); 
 p5 = r7;   // p5 =  number of input samples per block 
 
 i1 = p1;   // load i1 with address of 'inputData' 
 l1 = 0; 
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 LSETUP(READ_INPUTS_BEGIN, READ_INPUTS_END) LC0 = p5; 
READ_INPUTS_BEGIN: 
  r6.h = w[i1++]; // read the input buffer 'inputData' 
  r6.l = 0; 
 
READ_INPUTS_END: 
  [i0++] = r6; // write input into input buffer 'inx' 
 
// p1 = i1;    // save i1 into p1 
 
 p3.l = pt_fundst;  // p3 -> to fundemental structure 
 p3.h = pt_fundst; 
 r7 = [p3]; 
 p0 = r7;   // p0 -> to fundemental structure 
 
#endif 
 
src_core: 
     
 r7 = [p0++];    
 p3.l = st_handle; 
 p3.h = st_handle; 
 [p3] = r7;   // store stage data handle 
 
 r6 = [p0++];  // r6 = half band flag (move past this for now) 
 
 r2 = [p0++];  // r2 = # of up stages 
 p3.l = pt2_fundst; 
 p3.h = pt2_fundst; 
 [p3] = p0;   // save pointer to current fundemental structure 
 
 
 CC = r2 <= 0; 
 IF CC JUMP over_upstage;  // if upstage = 0, jump over 
 
UPSTAGE_BEGIN: 
 
  p3.l = st_handle; 
  p3.h = st_handle; 
  p4 = [p3];   // p4 -> current stage data handle 
 
  r7 = [p4++];   
  p0 = r7;   // p0 -> stage data 
 
  [p3] = p4;   // save pointer to stage data handle 
 
up_src: 
/******** IPDC comment  *******/ 
//  r7 = [p0++];  // r7 -> input signal 'inx' 
//  b3 = r7;   // b3 set for circular buffering 
/******************************/ 
 
/*********IPDC addition*******/ 
  p4 = 44; 
  r7 = [p0++p4];  // r7 -> input signal 'inx' 
  p4 = -40; 
  r5 = [p0++p4]; 
  b3 = r5;   // b3 set for circular buffering 
/******************************/ 
 
  r5 = [p0++]; 
  r5 = r5 << 2;  // double the length (4 bytes per word) 
  l3 = r5;   // l3 = Size of Input Stage (SIS) 
 
/******** IPDC comment  *******/ 
//  r6 = [p0++]; 
//  i2 = r6;   // i2 -> output signal 'inx'+1 buffer (output buffer) 
//  b2 = r6;   // b2 set for circular buffering 
 
/******************************/ 
 
/*********IPDC addition*******/ 
     
  p4 = 40; 
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  r6 = [p0++p4]; 
  i2 = r6;   // i2 -> output signal 'inx'+1 buffer (output buffer) 
  p4 = -36; 
  r6 = [p0++p4]; 
  b2 = r6;   // b2 set for circular buffering 
/******************************/ 
 
  r6 = [p0++]; 
  r6 = r6 << 2;  // double the output size (4 bytes per word) 
  l2 = r6;   // l2 = Size of Output Stage (SOS) 
 
  r3 = [p0++];  // r3 -> the filter coefficients 
  r6 = [p0++];  // r6 = poly-phase filter size 
  p3 = r6;   // save poly-phase into p3 
  p4 = 8;   // always skip over DNR (2*4bytes) in the up SRC 
 
  r4 = [p0++p4];  // r4 = UPR 
  p5 = r4;   // p5 = Up Sample Rate (UPR) 
  r0 = [p0++p4];  // r0 = NIS 
 
  p4 = -40;   // Backup 10 words (10x4bytes) 
  r6 = [p0++p4];  // r6 = number of shifts (always a arithmatic left 
shift..upshift) 
  m2 = r6;   // Save in m2 
 
UP_SRC_OUTER_BEGIN: 
 
   i1 = r3;  // i1 -> filter coefficients 
   l1 = 0;  // linear addressing??? 
  
   LSETUP(UP_SAMPLE_BEGIN, UP_SAMPLE_END) LC0 = p5; 
 
UP_SAMPLE_BEGIN: 
    i3 = r7;   // i3 - > 'in' buffer   
    A1=A0=0 || R6=[I1++] || R5=[I3--]; // r6=filter coef, r5='inx' buffer 
 
    LSETUP(POLY_PHASE_BEGIN, POLY_PHASE_END) LC1 = p3; 
 
POLY_PHASE_BEGIN: R4=(A0+=R6.H*R5.H), A1+=R6.H*R5.L (M);    
POLY_PHASE_END:  R1=(A1+=R5.H*R6.L) (M) || R6=[I1++] || R5=[I3--]; 
     
//    R1=R1>>16; 
//    R4=R4+R1 (S); 
 
    r5=m2;     // load r5 with number of shifts 
/******** IPDC comment  *******/ 
//    A1 = A1>>16; 
/******************************/ 
 
/*********IPDC addition*******/ 
    A1=A1>>>15; 
/******************************/ 
    A0+=A1; 
    A0 = ASHIFT A0 BY r5.l; 
    r4 = A0; // high half-word extraction with 16-bit saturation.   
      // Rounding cntrl by  
      // RND_MOD.  0 = unbiased rounding = default 
 
//    A0 = A0 >>> 1; 
//    R4 = A0; 
 
UP_SAMPLE_END: [i2++] = R4;  // save output into 'inx'+1 
 
   i3 = r7;  // get input back at beginning of 'inx' 
   m3 = 4; 
   i3 += m3;  // increment by 1 word (4 bytes) 
   r7 = i3;  // update r7 -> 'inx' buffer 
 
UP_SRC_OUTER_END: 
  r0 += -1;   // Check number of input samples (NIS) 
  CC = r0 <= 0; 
  IF !CC JUMP UP_SRC_OUTER_BEGIN; // if NIS equal to 0, jump to UP_SRC_OUTER_BEGIN 
 
  p4 = 8;   // 2 words (2*4bytes per word) 
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  [p0++p4] = r7;  // save the input signal address 
  r6 = i2; 
  [p0] = r6;   // save the output signal address 
  
UPSTAGE_END: 
 r2 += -1;    // Check number of stages 
 CC = r2 <= 0; 
 IF !CC JUMP UPSTAGE_BEGIN; // if upstage not equal to 0, jump to UPSTAGE_BEGIN 
 
over_upstage: 
 
 p3.l = pt2_fundst; 
 p3.h = pt2_fundst; 
 p0 = [p3];   // p0 -> fundamental structure 
 
 r6 = [p0++];  // r6 = pivot flag 
 [p3] = p0;   // save fundamental structure 
 
 CC = r6 <= 0; 
 IF CC JUMP over_pivotstage;  // if pivotstage = 0, jump over 
 
 p3.l = st_handle; 
 p3.h = st_handle; 
 p4 = [p3];    // p4 -> current stage data handle 
 
 r7 = [p4++];   
 p0 = r7;   // p0 -> stage data 
 
 [p3] = p4;   // save pointer to stage data handle 
 
pvt_src: 
 
/******** IPDC comment  *******/ 
// r7 = [p0++];   // r7 - > input signal ('in*' buffer) 
// i3 = r7;    // i3 - > input signal 
// b3 = r7;    // b3 set for circular buffering 
 
/******************************/ 
 
/*********IPDC addition*******/ 
 p4 = 44; 
 r7 = [p0++p4];   // r7 -> input signal 'inx' 
 i3 = r7; 
 p4 = -40; 
 r5 = [p0++p4]; 
 b3 = r5; 
/******************************/ 
 
 r5 = [p0++]; 
 r5 = r5 << 2;   // double the length (4 bytes per word) 
 l3 = r5;    // l3 = Size of Input Stage (SIS) 
 
/******** IPDC comment  *******/ 
// r6 = [p0++]; 
// i2 = r6;    // i2 -> output signal 'inx'+1 buffer (output buffer) 
// b2 = r6;    // b2 set for circular buffering 
/******************************/ 
 
/*********IPDC addition*******/ 
 p4 = 40; 
 r6 = [p0++p4]; 
 i2 = r6;    // i2 -> output signal 'inx'+1 buffer (output buffer) 
 p4 = -36; 
 r6 = [p0++p4]; 
 b2 = r6;    // b2 set for circular buffering 
/******************************/ 
 
 r6 = [p0++]; 
 r6 = r6 << 2;   // double the output size (4 bytes per word) 
 l2 = r6;    // l2 = Size of Output Stage (SOS) 
 
 r3 = [p0++];   // r3 -> the filter coefficients 
 r6 = [p0++];   // r6 = poly-phase filter size 
 p3 = r6;    // save poly-phase into p3 
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 r6 = [p0++];   // r6 = UPR (filter step) 
 r6 = r6 << 2;   // post increment must be two bytes 
 m1 = r6;    // post increment set to UPR 
 p4 = 8;    // always skip over UPR (2*4bytes) in the up SRC 
 
 r0 = [p0++p4];   // r0 = DNR 
 r0 = r0 << 2;   // four bytes per word 
 r6 = [p0++];   // r6 = NOS 
 p5 = r6;    // p5 = Number of Outputs (NOS) 
 
 p4 = -40;    // Backup 10 words (10x4) 
// r1.l = w[p0];   // r1.l = Number of shifts (can be left shift=upshift or right  
      // shift=downshift) 
 r6 = [p0++p4];    
 m2 = r6;    // m2 = Number of shifts 
 
 r2 = 0;    // set poly index value to 0 
 i1 = r3;    // i1 -> filter coefficients 
 
// CC = r6 <= 0; 
// IF !CC JUMP pvt_positive; // if # of shifts > 0, jump over 
// CC = r6 < 0; 
// IF CC JUMP pvt_negative;  // if # of shifts < 0, jump over 
 
 LSETUP(PVT_OUT_BEGIN, PVT_OUT_END) LC0 = p5; 
PVT_OUT_BEGIN: 
 
  m3 = i3;     // save i3 into m3;  
  A1=A0=0 || R6=[I1] || R5=[I3--]; // r6=filter coef, r5='inx' buffer 
//  i1 += m1;   
  LSETUP(PVT_FILTER_BEGIN, PVT_FILTER_END) LC1 = p3; 
 
PVT_FILTER_BEGIN: 
   R4=(A0+=R6.H*R5.H), A1+=R6.H*R5.L (M)||i1 += m1;  
PVT_FILTER_END: 
   R1=(A1+=R5.H*R6.L) (M) || R6=[I1] || R5=[I3--]; 
   i1 += m1;  
  
//  R1=R1>>16; 
//  R4=R4+R1 (S); 
 
  r5 = m2; 
/******** IPDC comment  *******/ 
//  A1 = A1>>16; 
/******************************/ 
 
/*********IPDC addition*******/ 
  A1=A1>>>15; 
/******************************/ 
  A0+=A1; 
  A0 = ASHIFT A0 BY r5.l; 
  r6 = A0;   // high half-word extraction with 16-bit saturation.   
      // Rounding cntrl by  
      // RND_MOD.  0 = unbiased rounding = default 
  [i2++] = r6;  // save output into 'inx'+1 
 
//     R6.H=(A1+=R6.L*R5.H)    ||  NOP  ||  NOP; 
 
//  [i2++] = r4;  // save output into 'inx'+1 
 
// new_poly: 
 
  r7 = r2;   // r7 = poly_index 
  r7 = r7 + r0;  // r7 = poly_index + DNR 
  i3 = m3;   // restore i3 
  r6 = m1;   // r6 = UPR 
 
test_address: 
   r5 = r7 - r6;  // (poly_index + DNR)-UPR  
  CC = r5 < 0; 
  IF CC JUMP next_address; // if true, jump over    
  r7 = r5;   // r7 = new poly_index 
  m0 = 4; 
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  i3 += m0;   // increment by 1 word (4 bytes) 
 
  JUMP test_address;  // test the new poly_index   
next_address: 
 
  r2 = r7;   // save the new address 
  r7 = r7 + r3;  // r7 -> adjusted filter address 
 
PVT_OUT_END: 
  i1 = r7;   // i1 -> poly-phase filter 
 
pvt_return: 
 
 r7 = i3;    // update r7 -> 'inx' buffer 
 p4 = 8;    // 2 words (2*4bytes per word) 
 [p0++p4] = r7;   // save the input signal 
 
 r6 = i2; 
 [p0] = r6;    // save the output signal address 
 
over_pivotstage: 
 
 p3.l = pt2_fundst; 
 p3.h = pt2_fundst; 
 p0 = [p3];    // p0 -> fundamental structure 
 
 r0 = [p0++];   // r0 = number of down stages 
 CC = r0 <= 0; 
 
 IF CC JUMP return_src_core; // if number of down stages = 0, RTS 
   
DOWNSTAGE_BEGIN: 
 
 p3.l = st_handle; 
 p3.h = st_handle; 
 p4 = [p3];     // p4 -> current stage data handle 
 
 r7 = [p4++];   
 p0 = r7;    // p0 -> stage data 
 
 [p3] = p4;    // save pointer to stage data handle 
 
dn_src: 
 
/******** IPDC comment  *******/ 
// r7 = [p0++];   // r7 -> input signal 'inx' 
// i3 = r7;    // i3 -> input signal 'inx' 
// b3 = r7;    // b3 set for circular buffering 
/******************************/ 
 
/*********IPDC addition*******/ 
 p4 = 44; 
 r7 = [p0++p4];   // r7 -> input signal 'inx' 
 i3 = r7; 
 p4 = -40; 
 r5 = [p0++p4]; 
 b3 = r5; 
/******************************/ 
 
 r5 = [p0++]; 
 r5 = r5 << 2;   // double the length (4 bytes per word)   
 l3 = r5;    // l3 = Size of Input Stage (SIS) 
 
/******** IPDC comment  *******/ 
// r6 = [p0++]; 
// i2 = r6;    // i2 -> output signal 'inx'+1 buffer (output buffer) 
// b2 = r6;    // b2 set for circular buffering 
/******************************/ 
 
/*********IPDC addition*******/ 
 p4 = 40; 
 r6 = [p0++p4]; 
 i2 = r6;    // i2 -> output signal 'inx'+1 buffer (output buffer) 
 p4 = -36; 
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 r6 = [p0++p4]; 
 b2 = r6;    // b2 set for circular buffering 
/******************************/ 
 
 r6 = [p0++]; 
 r6 = r6 << 2;   // double the output size (2 bytes per word) 
 l2 = r6;    // l2 = Size of Output Stage (SOS) 
 
 p4 = 8;    // always skip over DNR (2*4bytes) in the up SRC 
 
 r3 = [p0++];   // r3 -> the filter coefficients 
 r6 = [p0++p4];   // r6 = filter length 
 p3 = r6; 
 
 r4 = [p0++p4];   // r4 = DNR 
 r4 = r4 << 2;   // Four bytes per word 
 m3 = r4; 
 
 p5 = [p0++];   // p5 = number of outputs 
 
 p4 = -40;    // Backup 10 words (10x4) 
 r2 = [p0++p4];   // r2 = number of shifts 
 
 LSETUP(DN_OUT_BEGIN, DN_OUT_END) LC0 = p5; 
   
DN_OUT_BEGIN: 
 
  i1 = r3;   // i1 -> filter coefficients 
  m1 = i3;   // save i3 into m1 
 
  A1=A0=0 || R6=[I1++] || R5=[I3--]; // r6=filter coef, r5='inx' buffer 
  LSETUP(DOWN_FILTER_BEGIN, DOWN_FILTER_END) LC1 = p3;  
DOWN_FILTER_BEGIN: 
   R4=(A0+=R6.H*R5.H), A1+=R6.H*R5.L (M); 
DOWN_FILTER_END: 
   R1=(A1+=R5.H*R6.L) (M) || R6=[I1++] || R5=[I3--]; 
 
//  R1=R1>>16; 
//  R4=R4+R1 (S); 
/******** IPDC comment  *******/ 
//  A1 = A1>>16; 
/******************************/ 
 
/*********IPDC addition*******/ 
  A1=A1>>>15; 
/******************************/ 
  A0+=A1; 
  A0 = ASHIFT A0 BY r2.l; 
  r6 = A0;   // high half-word extraction with 16-bit saturation.   
      // Rounding cntrl by  
      // RND_MOD.  0 = unbiased rounding = default 
  [i2++] = r6;  // save output into 'inx'+1 
//  JUMP shiftDone; 
 
//shiftPos:    // Left Shift = Up shift = positive number 
//  A1 = ASHIFT A1 BY r2.l;  
//  r6.h = A1;   // high half-word extraction with 16-bit saturation.  
      // Rounding cntrl by  
      // RND_MOD.  0 = unbiased rounding = default   
 
//  w[i2++] = r6.h;  // save output into 'inx'+1  
 
//shiftDone: 
  i3 = m1;   // restore i3 
 
DN_OUT_END: 
  i3 += m3;   // increment by 4 bytes per word 
 r7 = i3; 
 
 p4 = 8;    // 2 words (2*4bytes per word) 
 [p0++p4] = r7;   // save the input signal address 
 
 r6 = i2; 
 [p0] = r6;    // save the output signal address 
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DOWNSTAGE_END: 
 
 r0 += -1;    // Check number of downstages 
 CC = r0 <= 0; 
 IF !CC JUMP DOWNSTAGE_BEGIN; // if # equal to 0, jump to DOWNSTAGE_BEGIN 
 
return_src_core: 
 
#ifdef BUFIN 
 
 p3.l = diff_offset;  // p3 -> Offset difference to strip leading zeroes off of final 
      // buffer 
 p3.h = diff_offset; 
 r7 = w[p3](Z);   // r7 = number of outputs samples per block 
// r7 = 147; 
 p5 = r7;    // p5 = number of outputs samples per block (OSPB) 
   
 
 r7 = r7 << 2;   // 4 bytes per word. 
 m2 = r7; 
 i2 -= m2;    // modify i2 = i2-#OSPB (backup pointer by output block size) 
 
 i3 = p2;    // i3 -> 'outputData' 
 l3 = 0;    // non-circular 
 
 LSETUP(READ_OUTS_BEGIN, READ_OUTS_END) LC0 = p5; 
 
READ_OUTS_BEGIN: 
  r6 = [i2++];  // get 32-bit output from buffer 
 
READ_OUTS_END: 
  w[i3++] = r6.h;  // write 16-bit output to 'outputData' 
 
// p2 = i3;    // save i3 into p2 
    
// JUMP go_back;   // jump if more inputs 
 
#endif 
 
RETURN_TO_SENDER: 
 
 (R7:4,P5:3)=[SP++];  // Pop R7 ...P5 
 L0=0; 
 L1=0; 
 L2=0; 
 L3=0; 
 
 RTS; 
  

_src_flt.end: 

Listing 3. Src_flt.asm 

initial.asm 

/* ------------------------------------------------------------------------  
  
File: initial.asm 
 
Sample Rate Conversion Version 0.1 
 
 P0 -> fundamental structure 
 
 Registers used: P0, P1, P2, P5, R2, R3, R4, R5, R6, R7 
 
 ------------------------------------------------------------------------ */ 
 
.GLOBAL _src_init; 
 



  a 

 

Rational Sample Rate Conversion with Blackfin® Processors (EE-183) Page 23 of 25 

.SECTION program; 
 
/* 
 initialize all the buffers (inputs and delay) 
 P0 -> a fundamental structure 
*/ 
 
_src_init: 
  [--SP]=(R7:4,P5:3); // Push R7 and 
 
  P0 = R0;   // Address of fundemental structure 
  p5 = 20;   // 5*4 bytes = 20 byte-wide increment  
  r6 = [p0++p5];  // Pointer to fundemental structure 'fs_x' post increment of  
      // 5 32-bit words 
//jws  p1 = r2;  // p1 = 32-bit pointer 'st_handle' 
 
  r7 = [p0++];  // load number of stages 
  p5 = r7; 
  p1 = r6;   // p1 = 32-bit pointer 'st_handle' 
 
  LSETUP(L_BEGIN, L_END) LC0 = p5; 
L_BEGIN:   r2 = [p1++]; 
    
   p2 = r2;  // p2 -> 'datax' 
   r3 = [p2++];  // r3 -> first element 'inx' 
   r4 = [p2++];  // r4 = length 'SZINx' 
 
   i0 = r3;  // i0 -> 'inx' buffer 
   p5 = r4; 
   r5 = 0; 
   l0 = 0;  // l0 = length of 'inx' buffer SZINx 
   LSETUP(SET_ZERO_BEGIN, SET_ZERO_END) LC1 = p5; 
SET_ZERO_BEGIN: 
SET_ZERO_END:  [i0++] = r5; // zero out a 32-bit word 
 
L_END:   nop; 
 
_src_init_end1: (R7:4,P5:3)=[SP++]; // Pop R7 and P5 
RTS; 

Listing 4. initial.asm 

src_441to48.h 

//Include file for 44.1KHz to 48KHz.  Greatest Common Denominator (GCD) = 147/160. 
 
#define HALFB 0    // Half band flag 
#define NUPST 2    // Number of up stages 
#define PVTFL 1    // Pivot flag 
#define NDWNS 0    // Number of down stages 
#define STAGE 3    // Number of total stages  
#define NINPS 147   // Number of imput samples (Should be a even multiple of the GCD) 
#define NOUTS 160   // Number of output samples (Should be the same multiple as above 
      // of the GCD) 
 
#define INTP1 2 
#define DOWN1 1 
#define LENG1 509   // LENG1 = length of stage filter 
#define PLEN1 255   // PLEN1 = MLEN1/INTP1 (polyphase length) 
#define MLEN1 510   // MLEN1 = LENG1 + enough to make even length for polyphase 
#define SHFT1 0 
#define NINP1 NINPS   // NINPS (...or NOUTS) = 160 
#define SZIN1 (NINP1 + ((LENG1-1)/INTP1) + 1) // 160 + 48/147 + 1 = 161 
 
#define INTP2 5 
#define DOWN2 1 
#define LENG2 61    // LENG2 = length of stage filter 
#define PLEN2 13    // PLEN2 = MLEN2/INTP2 (polyphase length) 
#define MLEN2 65    // MLEN2 = LENG2 + enough to make even length for polyphase 
#define SHFT2 1 
#define NINP2 ((NINP1*INTP1)/DOWN1) // (NINPx*INTPx)/DOWNx = 160*147/16 = 1470 
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#define SZIN2 (NINP2 + ((LENG2-1)/INTP2) + 1) // 1470 + 26/1 + 1 = 1497 
 
#define INTP3 16 
#define DOWN3 147 
#define LENG3 113   // LENG3 = length of stage filter 
#define PLEN3 8    // PLEN2 = MLEN2/INTP2 (polyphase length) 
#define MLEN3 128   // MLEN2 = LENG2 + enough to make even length for polyphase 
#define SHFT3 0 
#define NINP3 ((NINP2*INTP2)/DOWN2) // (NINPx*INTPx)/DOWNx 1470*1/5 = 294 
#define SZIN3 (NINP3 + ((LENG3-1)/INTP3) + 1) // 294 + 222/1 + 1 = 517 
 
#define NINP4 ((NINP3*INTP3)/DOWN3) // (NINPx*INTPx)/DOWNx = 294*1/2 = 147 
#define SZIN4 NINP4 + 1     // for last decimation stage only = 148 
 
#define OFFS1 (LENG1-1)/(2*DOWN1) //   
#define OFFS2 (LENG2-1)/(2*DOWN2) //   
#define OFFS3 (LENG3-1)/(2*DOWN3) //   
 
#if OFFS3 < 1 
#define OF2S3 1 
#else 
#define OF2S3 OFFS3 
#endif 
 
#define TOFS1 OFFS1    //  
#define TOFS2 ((INTP2*TOFS1)/DOWN2 + OFFS2) //   
#define TOFS3 ((INTP3*TOFS2)/DOWN3 + OF2S3) //   
 
/*********IPDC comment *******/ 
//#define DOFS3 (NOUTS-TOFS3)  // Used to strip filter delays off buffers 
/******************************/ 
 
/*********IPDC addition*******/ 
#define DOFS3 NOUTS 
/******************************/ 

Listing 5. src_441to48.h 
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